
JFP 27, e20, 11 pages, 2017. c© Cambridge University Press 2017

doi:10.1017/S0956796817000120

1

FUNCTIONAL PEARL

Compiling a 50-year journey�

GRAHAM HUTTON

School of Computer Science, University of Nottingham, Nottingham, UK

(e-mail: gmh@cs.nott.ac.uk)

PATRICK BAHR

Department of Computer Science, IT University of Copenhagen, Copenhagen, Denmark

(e-mail: paba@itu.dk)

Abstract

Fifty years ago, John McCarthy and James Painter (1967) published the first paper on

compiler verification, in which they showed how to formally prove the correctness of a

compiler that translates arithmetic expressions into code for a register-based machine. In this

article, we revisit this example in a modern context, and show how such a compiler can now

be calculated directly from a specification of its correctness using simple equational reasoning

techniques.

1 Introduction

The first compiler correctness proof was published 50 years ago in a seminal paper by

McCarthy & Painter (1967). The input to their compiler was arithmetic expressions

built up from integers, variables and addition, and the output was code for a virtual

machine with an accumulator and an infinite number of additional registers.

Correctness of the compiler was then specified in the following manner. If variables

are stored in registers numbered below some value r, so that registers from r and

above can be used for temporary storage, then executing the compiled code for

an expression returns the value of the expression in the accumulator. Moreover, no

registers except the accumulator and those from r and above are affected. Correctness

was proved by induction on the expression being compiled, using a large number of

lemmas.

In this article, we revisit this example in a modern context, and show how a com-

piler for arithmetic expressions can now be calculated directly from a specification

of its correctness, using simple equational reasoning techniques and a few basic as-

sumptions about the behaviour of registers. In fact, we go further, showing how both

the compiler and the virtual machine can be calculated from the same specification.

The methodology we use is based upon our recent work on calculating compilers

for stack machines (Bahr & Hutton, 2015), adapted here to register machines. Our

� Graham Hutton was funded by EPSRC grant EP/P00587X/1, Unified Reasoning About Program
Correctness and Efficiency.

https://doi.org/10.1017/S0956796817000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000120

2 G. Hutton and P. Bahr

approach is founded on three ideas beyond those that were used by McCarthy and

Painter: defining functions by pattern matching, which avoids the need for explicit

destructors; generalising the compiler to take additional code to be executed, which

avoids the need for distributivity lemmas; and having the virtual machine “free up”

any temporary registers that were used, which avoids the need for reasoning modulo

unused registers.

All of our programs and calculations are written in Haskell, but we only use

the basic concepts of recursive types, recursive functions and inductive proofs. All

of our calculations have been mechanically checked using the Coq proof assistant,

and the proof scripts are available as online supplementary material for the article

(available at: https://doi.org/10.1017/S0956796817000120).

2 Preliminaries

The source language for our compiler is a datatype Expr of arithmetic expressions

built up from integer values using an addition operator, whose semantics is given

by a recursive function eval that evaluates an expression to its integer value:

data Expr = Val Int | Add Expr Expr

eval :: Expr → Int

eval (Val n) = n

eval (Add x y) = eval x + eval y

For simplicity, the source language does not include variables, but they pose no

difficulties for our methodology. In turn, the target for our compiler is a virtual

machine with a memory that comprises an infinite sequence of registers. Each register

has a unique name and is either empty or stores a single integer value. To simplify our

calculations, we use abstract types Mem and Reg for memories and register names:

type Mem = · · ·
type Reg = · · ·

We further assume that the machine has a special register called the accumulator,

which is used to store the result of evaluating an expression. Rather than using a

specific register in the memory for this purpose, we factor out the accumulator as

a component of the State of the machine, which comprises the current accumulator

value and memory:

type State = (Int ,Mem)

Given the assumptions above, our goal now is to calculate three additional

components that together complete the definition of a compiler for expressions:

• A datatype Code that represents code for the virtual machine.

• A function compile :: Expr → Code that compiles expressions to code.

• A function exec :: Code → State → State that provides a semantics for code.

https://doi.org/10.1017/S0956796817000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000120

Functional pearl 3

Intuitively, Code will provide a suitable collection of primitive machine instructions

for evaluating expressions, compile will translate an expression into a sequence of

such instructions and exec will execute code starting from an initial state of the

machine to give a final state. Moreover, the desired relationship between the source

language, compiler and virtual machine is captured by the following correctness

property:

exec (compile e) (a , empty) = (eval e, empty) (1)

That is, compiling an expression and executing the resulting code starting with

an empty memory gives a final state in which the accumulator contains the value

of the expression and the memory remains empty. In practice, the fact that the

memory must also be empty in the final state means that if the compiled code for

an expression uses any registers to store intermediate results, they must be freed

up (returned to empty) afterwards, to ensure that the memory is returned to the

original configuration. Once again, the rationale for this decision is that it simplifies

our subsequent calculations.

Equation (1) captures the correctness of the compiler, but on its own is not

suitable as a basis for calculating the three undefined components. In particular,

our methodology is based on induction, and as is often the case, we first need to

generalise the property we are considering. We begin by generalising Equation (1)

from the empty memory to an arbitrary memory m , as the use of a specific memory

would preclude the use of induction:

exec (compile e) (a ,m) = (eval e,m)

Second, in order that the compiler can use registers for temporary storage, we assume

the memory m is free from a given register r onwards, written as isFreeFrom r m ,

and generalise to a compilation function comp ::Expr → Reg → Code that takes the

first free register r as an additional argument, resulting in the following specification:

isFreeFrom r m ⇒ exec (comp e r) (a ,m) = (eval e,m)

Finally, as in our recent work on compiler calculation (Bahr & Hutton, 2015), we

further generalise comp to take additional code to be executed after the compiled

code. This step is a key aspect of our methodology and significantly streamlines

the calculations. Using these ideas, the correctness of the generalised compilation

function:

comp :: Expr → Reg → Code → Code

can then be specified by the following implication:

isFreeFrom r m ⇒ exec (comp e r c) (a ,m) = exec c (eval e,m) (2)

That is, if the memory is assumed to be free from a given register onwards, then

compiling an expression and executing the resulting code gives the same result as

executing the additional code with the value of the expression in the accumulator.

The behaviour of memory primitives such as empty and isFreeFrom is considered in

the next section.

https://doi.org/10.1017/S0956796817000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000120

4 G. Hutton and P. Bahr

In summary, Equations (1) and (2) provide specifications for the undefined

components, and our goal is to calculate definitions that satisfy these properties.

Given that the two specifications have four unknowns (Code, compile, exec, and

comp), this may seem like an impossible task. However, as we shall see, it can be

achieved using simple equational reasoning.

3 Memory model

Before proceeding to the calculation itself, we formalise our assumptions about the

abstract types Mem for memories and Reg for register names that we introduced.

First of all, we assume the following primitive operations on these types:

empty :: Mem

set :: Reg → Int → Mem → Mem

get :: Reg → Mem → Int

first :: Reg

next :: Reg → Reg

free :: Reg → Mem → Mem

Intuitively, empty is the initial memory in which all registers are empty (contain

no value), while set and get , respectively, change and fetch the integer value of a

given register in the memory; we will only apply get to non-empty registers, with

its behaviour for empty registers being left unspecified. In turn, first is the name of

the first register, next gives the name of the next register and free makes a register

empty. Note that isFreeFrom is not included in the above list, as it is a meta-level

predicate for reasoning purposes rather than being an operation on the memory of

the virtual machine.

A simple way to realise the above memory model is to represent a register name

as a natural number, the memory as a function from register names to their current

value, and use a special value to represent a register that is empty. For the purposes

of our calculations, however, we only require the following properties of the primitive

operations, and do not need to be concerned with precisely how they are defined.

isFreeFrom first empty (empty memory)

get r (set r n m) = n (set/get)

isFreeFrom r m ⇒ free r (set r n m) = m (set/free)

isFreeFrom r m ⇒ isFreeFrom (next r) (set r n m) (set/isFreeFrom)

These properties state in turn that every register from the first onwards is free in

the empty memory; setting a register and then getting its value gives the expected

result; setting the first free register and then freeing it up returns the memory to its

previous state and finally, setting the first free register leaves all subsequent registers

free. These properties are not complete, but suffice for our calculations and arose

naturally during their development.

https://doi.org/10.1017/S0956796817000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000120

Functional pearl 5

4 Compiler calculation

To calculate the compiler, we proceed directly from specification (2) by structural

induction on the expression argument e, using the desire to apply the induction

hypotheses as the driving force for the calculation process. In each case, we aim

to rewrite the left-hand side exec (comp e r c) (a ,m) of the equation into the form

exec c′ (a ,m) for some code c′, from which we can then conclude that the definition

comp e r c = c′ satisfies the specification in this case. In order to do this, we will

find that we need to introduce new constructors into the Code type, along with their

interpretation by the function exec.

In the base case, e = Val n , we assume isFreeFrom r m , and calculate as follows:

exec (comp (Val n) r c) (a ,m)

= { specification (2) }
exec c (eval (Val n),m)

= { applying eval }
exec c (n ,m)

Now we appear to be stuck, as no further definitions can be applied. However, we

are aiming to end up with a term of the form exec c′ (a ,m) for some code c′. That

is, in order to complete the calculation, we need to solve the following equation:

exec c′ (a ,m) = exec c (n ,m)

Note that we cannot simply use this equation as a definition for exec, because n and

c would be unbound in the body of the definition. The solution is to package these

two variables up in the code argument c′ (which can freely be instantiated as it is

existentially quantified, whereas the other variables in the equation are universally

quantified), by adding a new constructor to the Code datatype that takes these two

variables as arguments,

LOAD :: Int → Code → Code

and defining a new equation for the function exec as follows:

exec (LOAD n c) (a ,m) = exec c (n ,m)

That is, executing the code LOAD n c proceeds by loading the integer n into the

accumulator and then executing the code c, hence the choice of name for the new

constructor. Using these ideas, it is now straightforward to complete the calculation:

exec c (n ,m)

= { definition of exec }
exec (LOAD n c) (a ,m)

The final term now has the form exec c′ (a ,m), where c′ = LOAD n c, from which

we conclude that the following definition satisfies specification (2) in the base case:

comp (Val n) r c = LOAD n c

https://doi.org/10.1017/S0956796817000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000120

6 G. Hutton and P. Bahr

That is, the code for an integer value simply loads the value into the accumulator

and then continues with the additional code that is supplied. Note that for this case,

we did not need to use the register argument r or the isFreeFrom assumption.

For the inductive case, e = Add x y , we assume isFreeFrom r m and begin in the

same way as above by first applying the specification and the evaluation function:

exec (comp (Add x y) r c) (a ,m)

= { specification (2) }
exec c (eval (Add x y),m)

= { applying eval }
exec c (eval x + eval y ,m)

At this point, no further definitions can be applied. However, as we are performing

an inductive calculation, we can make use of the induction hypotheses for the

expressions x and y . To use the induction hypothesis for y , which is

isFreeFrom r ′ m ′ ⇒ exec (comp y r ′ c′) (a ′,m ′) = exec c′ (eval y ,m ′)

we must satisfy the precondition for some register r ′ and memory m ′, and rewrite

the term being manipulated into the form exec c′ (eval y ,m ′) for some code c′. That

is, we need to satisfy the precondition isFreeFrom r ′ m ′ and solve the equation:

exec c′ (eval y ,m ′) = exec c (eval x + eval y ,m)

We are free to instantiate r ′, m ′ and c′ in order to achieve these goals. First of all,

we generalise from the specific values eval x and eval y in the equation to give

exec c′ (a ,m ′) = exec c (b + a ,m)

We cannot use this equation as a definition for exec, because the variables c, b

and m would be unbound in the body of the definition. However, we are free to

instantiate c′ and m ′ in order to solve the equation. We consider each unbound

variable in turn:

• For c, the simplest option is to put it into the argument c′ as we did in the

base case, by adding a new constructor. If we attempted to put c into m ′,

this would require storing code in the memory, which is not supported by our

memory model.

• For b, the simplest option is to put it into the memory m ′, by assuming that

it is stored in a register. If we attempted to put b into the code c′, this would

require evaluating the argument expression x at compile time to produce this

value, whereas for a compiler, we normally expect evaluation to take place at

run time.

• For m , the simplest option is also to put it into m ′, by assuming that m can

be derived from m ′ in some way. If we attempted to put m into c′, this would

require storing the entire memory in the code, which is not what we expect

from a compiler.

How should we satisfy the above requirements for m and b? One might try simply

equating the memories and assuming the value is stored in the first free register,

that is take m ′ = m and assume get r m = b. However, the latter assumption is

https://doi.org/10.1017/S0956796817000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000120

Functional pearl 7

not satisfiable as it conflicts with our top-level assumption isFreeFrom r m that all

registers from r onwards are free in m .

The simplest way to resolve this problem is to equate the two memories for all

registers except register r , which in the case of m ′ should contain the value b to

satisfy our requirement, and in the case of m should be free to satisfy our top-

level assumption. The desired relationship between the two memories can then be

captured by two assumptions, get r m ′ = b and free r m ′ = m , using which the

equation to be solved now has the form:

exec c′ (a ,m ′) = exec c (get r m ′ + a , free r m ′)

The variable r is now unbound on the right-hand side of the equation, but can

readily be packaged up along with the variable c in the code argument c′ by adding

a new constructor to the Code datatype that takes these two variables as arguments,

ADD :: Reg → Code → Code

and defining a new equation for the function exec:

exec (ADD r c) (a ,m) = exec c (get r m + a , free r m)

That is, executing the code ADD r c proceeds by adding the value of register r to

the accumulator and then freeing up this register in the memory, hence the choice

of name for the new constructor. Using our three local assumptions,

a. isFreeFrom r ′ m ′

b. get r m ′ = eval x

c. free r m ′ = m

we then continue the calculation as follows:

exec c (eval x + eval y ,m)

= { assumptions (b) and (c) }
exec c (get r m ′ + eval y , free r m ′)

= { definition of exec }
exec (ADD r c) (eval y ,m ′)

= { induction hypothesis for y , assumption (a) }
exec (comp y r ′ (ADD r c)) (a ′,m ′)

We are now free to choose m ′ and r ′ to satisfy the assumptions (a), (b) and (c).

The simplest approach is to define m ′ by setting register r in memory m to the

value eval x , and define r ′ as the next free register after r . That is, we take

m ′ = set r (eval x) m and r ′ = next r . It is then easy to verify that these assignments

discharge the assumptions:

a. isFreeFrom r ′ m ′

⇔ { applying r ′ and m ′ }
isFreeFrom (next r) (set r (eval x) m)

⇔ { set/isFreeFrom property, isFreeFrom r m }
True

https://doi.org/10.1017/S0956796817000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000120

8 G. Hutton and P. Bahr

b. get r m ′

= { applying m ′ }
get r (set r (eval x) m)

= { set/get property }
eval x

c. free r m ′

= { applying m ′ }
free r (set r (eval x) m)

= { set/free property, isFreeFrom r m }
m

In summary, using the assignments for m ′ and r ′ that we have determined above,

the term that we are manipulating now has the following form:

exec (comp y (next r) (ADD r c)) (a ′, set r (eval x) m)

We are free to chose the new accumulator value a ′ at this point. With a view to

now applying the induction hypothesis for x , which requires that the accumulator

contains eval x , we simply take a ′ = eval x , resulting in the following term:

exec (comp y (next r) (ADD r c)) (eval x , set r (eval x) m)

We could now apply the induction hypothesis for x , because the memory satisfies

the precondition for the register next r . However, doing so would yield the term

exec (comp x (next r) (comp y (next r) (ADD r c))) (a , set r (eval x) m)

which cannot be rewritten into the desired form exec c′ (a ,m), as there is no way

of retrieving the value eval x from the state of the machine. Therefore, we have to

transform the state from (eval x , set r (eval x) m) into (eval x ,m) before applying

the induction hypothesis. That is, we need to solve the equation

exec c′ (eval x ,m) = exec (comp y (next r) (ADD r c)) (eval x , set r (eval x) m)

As in the case for y , we first generalise the equation, in this case by abstracting over

the value eval x and the code comp y (next r) (ADD r c), to give the following:

exec c′ (a ,m) = exec c (a , set r a m)

We cannot use this equation as a definition for exec, because the variables c and r

would be unbound in the body of the definition. However, we are free to instantiate c′

in order to solve the equation. As previously, we can package r and c up in the code

argument c′ by adding a new constructor to the Code datatype,

STORE :: Reg → Code → Code

and defining a new equation for the function exec:

exec (STORE r c) (a ,m) = exec c (a , set r a m)

That is, executing the code STORE r c proceeds by storing the accumulator value

in register r , hence the choice of name for the new constructor.

https://doi.org/10.1017/S0956796817000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000120

Functional pearl 9

We then continue the calculation:

exec (comp y (next r) (ADD r c)) (eval x , set r (eval x) m)

= { definition of exec }
exec (STORE r (comp y (next r) (ADD r c))) (eval x ,m)

= { induction hypothesis for x , assuming isFreeFrom r ′ m }
exec (comp x r ′ (STORE r (comp y (next r) (ADD r c)))) (a ′,m)

We are now free to choose the register r ′ and the new accumulator value a ′ to satisfy

the inductive assumption isFreeFrom r ′ m . The simplest approach is just to take

r ′ = r and a ′ = a , under which the inductive assumption reduces to our top-level

assumption isFreeFrom r m and the machine state has the desired form (a ,m). The

resulting term

exec (comp x r (STORE r (comp y (next r) (ADD r c)))) (a ,m)

now has the form exec c′ (a ,m) for some code c′, from which we conclude that the

following definition satisfies specification (2) in the inductive case:

comp (Add x y) r c = comp x r (STORE r (comp y (next r) (ADD r c)))

That is, the code for addition first computes the value of expression x and stores the

resulting value in the first free register r , and then computes the value of expression y

and adds the resulting value to the contents of register r . Note that when compiling

y the next free register becomes next r , because r itself is used to store the value of

x .

Finally, we consider the top-level function compile :: Expr → Code, whose

correctness was specified by Equation (1). In a similar manner to Equation (2),

we aim to rewrite the left-hand side exec (compile e) (a , empty) into the form

exec c (a , empty) for some code c, from which we can then conclude that the

definition compile e = c satisfies the specification. In this case, there is no need

to use induction as simple calculation suffices, during which we introduce a new

constructor HALT ::Code to transform the term being manipulated into the required

form so that specification (2) can then be applied.

exec (compile e) (a , empty)

= { specification (1) }
(eval e, empty)

= { define: exec HALT (a ,m) = (a ,m) }
exec HALT (eval e, empty)

= { specification (2), empty memory property }
exec (comp e first HALT) (a , empty)

In summary, we have calculated the following definitions:

data Code = LOAD Int Code | STORE Reg Code | ADD Reg Code | HALT

compile :: Expr → Code

compile e = comp e first HALT

comp :: Expr → Reg → Code → Code

https://doi.org/10.1017/S0956796817000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000120

10 G. Hutton and P. Bahr

comp (Val n) r c = LOAD n c

comp (Add x y) r c = comp x r (STORE r (comp y (next r) (ADD r c)))

exec :: Code → State → State

exec (LOAD n c) (a ,m) = exec c (n ,m)

exec (STORE r c) (a ,m) = exec c (a , set r a m)

exec (ADD r c) (a ,m) = exec c (get r m + a , free r m)

exec HALT (a ,m) = (a ,m)

This compiler is essentially the same as McCarthy and Painter’s (1967) except that

(i) our compiler has been calculated directly from a high-level specification of its

correctness, with all the above compilation machinery falling naturally out of the

calculation process; and (ii) their source language also includes variables, which

have not been considered here for simplicity, but do not pose any difficulties for

our approach. The calculation for the language with variables is included as a Coq

proof in the online supplementary material.

5 Reflection

The original compiler correctness proof of McCarthy and Painter (1967) is rather

complex, using many lemmas. A methodology that can be used for calculating a

compiler has to be simpler, otherwise one becomes lost in the technical details.

Three main ideas form the foundation of the simplified methodology that made our

calculation possible: using pattern matching rather than deconstructors, strengthen-

ing the induction hypothesis using additional code, and using a specification that

requires freeing up unused registers.

The use of pattern matching improves the clarity of the reasoning by virtue of

providing a more compact notation than deconstructors. But pattern matching is

also indispensable for the methodology for calculating the virtual machine. As part

of the calculation, we need to solve equations in order to make progress, and solving

such an equation directly yields a case for the definition of the virtual machine by

pattern matching.

The desire to apply induction hypotheses is the main driving force in our

calculation process. Strengthening the induction hypothesis by introducing an

additional code argument to the compiler means that the induction hypothesis

becomes directly applicable without the need for additional lemmas (Hutton, 2016,

chapter 16). The need for such lemmas would obscure the goal to which the

calculation is targeted. Instead, the more general induction hypothesis allows us to

make progress in the calculation by solving simple equations.

McCarthy and Painter use reasoning modulo unused registers. Rather than using

normal equality, they reason with an equivalence relation =r on the memory of

their machine, under which m =r m ′ when m and m ′ coincide on all registers

prior to r . This relaxed equality allows the compiler to use registers from r

onwards to store intermediate results. However, this approach makes reasoning

with additional code more difficult. In particular, the specification for comp then

becomes exec (comp e r c) (a ,m) = exec c (eval e,m ′), where the final memory m ′

https://doi.org/10.1017/S0956796817000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000120

Functional pearl 11

is existentially quantified with the side condition that m =r m ′. Calculations with

existentially quantified variables that are subject to side conditions are difficult to

manage and prone to errors. Instead, our approach is to demand the equality of

m and m ′. As a consequence, the virtual machine has to “clean up after itself” by

using free to restore memory that has been used to store intermediate results.

One might think that this requirement may result in a less efficient implementation.

However, all uses of free can safely be removed from the virtual machine. Or

equivalently, we can instantiate the memory model with an implementation where

free r is the identity function. We only use free to impose structure on the memory to

simplify the reasoning. This structure, in the form of the isFreeFrom predicate, is not

used in the virtual machine itself. Importantly, however, having a virtual machine

that cleans up after itself allowed us to adapt the compiler calculation methodology

that we developed for stack-based machines (Bahr & Hutton, 2015), which relies on

the intrinsic structure of the stack.

In future work we plan to explore how our methodology can be scaled up to

more expressive source and target languages, and how mechanical tool support can

be used to assist with the resulting calculations and certify their correctness.

Acknowledgements

We would like to thank Ralf Hinze, Jeremy Gibbons and the JFP referees for many

useful comments and suggestions.

Supplementary materials

For supplementary material for this article, please visit dx.doi.org/10.1017/

S0956796817000120.

References

Bahr, P. & Hutton, G. (2015) Calculating correct compilers. Journal of Functional Programm-

ing, 25, 47 pages.

Hutton, G. (2016) Programming in Haskell. Cambridge University Press.

McCarthy, J. & Painter, J. (1967) Correctness of a compiler for arithmetic expressions.

In Mathematical Aspects of Computer Science, Proceedings of Symposia in Applied

Mathematics, vol. 19. American Mathematical Society.

https://doi.org/10.1017/S0956796817000120 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000120

