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Injectivity of the Connecting Maps in AH
Inductive Limit Systems

George A. Elliott, Guihua Gong, and Liangqing Li

Abstract. Let A be the inductive limit of a system

A1

φ1,2
−−→ A2

φ2,3
−−→ A3 −→ · · ·

with An =
⊕

tn
i=1

Pn,iM[n,i](C(Xn,i ))Pn,i , where Xn,i is a finite simplicial complex, and Pn,i is a projec-

tion in M[n,i](C(Xn,i )). In this paper, we will prove that A can be written as another inductive limit

B1

ψ1,2
−−→ B2

ψ2,3
−−→ B3 −→ · · ·

with Bn =
⊕

sn
i=1

Qn,iM{n,i}(C(Yn,i ))Qn,i , where Yn,i is a finite simplicial complex, and Qn,i is a pro-

jection in M{n,i}(C(Yn,i )), with the extra condition that all the maps ψn,n+1 are injective. (The result is

trivial if one allows the spaces Yn,i to be arbitrary compact metrizable spaces.) This result is important

for the classification of simple AH algebras. The special case that the spaces Xn,i are graphs is due to

the third author.

1 Introduction

An AH algebra A is the C∗-algebra inductive limit of a sequence

A1

φ1,2
−−→ A2

φ2,3
−−→ A3 −→ · · ·

with An =
⊕tn

i=1 Pn,iM[n,i](C(Xn,i))Pn,i , where [n, i] and tn are positive integers, Xn,i

are compact metrizable spaces, and Pn,i ∈ M[n,i](C(Xn,i)) are projections (see [Bl]).

Let us write A = lim
−→

(An, φn,m), where φn,m = φm−1,m ◦ φm−2,m−1 ◦ · · · ◦ φn+1,n+2 ◦
φn,n+1. As pointed out in [Bl], in such an inductive limit, one can always replace the

compact metrizable spaces Xn,i by finite simplicial complexes. Therefore, in the proof

of any classification theorem for AH algebras, one may always assume that the spaces

Xn,i above are finite simplicial complexes.

Let φ : C(X) → PMn(C(Y ))P be a unital homomorphism. Then for any y ∈ Y ,

there are x1, x2, . . . , xk ∈ X, where k = rank(P), and a unitary uy ∈ Mn(C(Y )) such
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y , for any f ∈ C(X).

Let us call the set {x1, x2, . . . , xk}, counting multiplicity, the spectrum of φ at y, and

denote it by SPφy . The concept of SPφy can be generalized to any homomorphism

Φ :
⊕

i PiMli (C(Xi))Pi →
⊕

j Q jMk j
(C(Y j))Q j (see [G1, 1.2.16]).

Let X be a compact metrizable space, and δ > 0. A subspace X1 ⊆ X will be said to

be δ-dense in X if for any x ∈ X, there is x1 ∈ X1 such that d(x, x1) < δ. In the study

of simple AH algebras A = lim
−→

(An, φn,m), the δ-density of SP(φn,m)y in the space

Xn,1

∐

Xn,2

∐

· · ·
∐

Xn,tn
for any y ∈ Xm,1

∐

Xm,2

∐

· · ·
∐

Xm,tm
, for an arbitrary

given small number δ, providing m is large enough (see [DNNP, Proposition 2.1]

of and also see [P]), is very important as shown in [Ell1, Ell2, Li1, Li2, Li3, NT, G1,

G2, EGL]. This δ-density holds only if all the homomorphisms φn,m are injective.

Therefore, it is desirable to replace the homomorphisms φn,m in the inductive limit

by injective homomorphisms. The following is a naive way to do this.

Suppose that A = lim
−→

(An, φn,m). Let Bn = φn,∞(An) ⊂ A, and denote by ψn,m :

Bn → Bm the inclusion map: φn,∞(An) = φm,∞(φn,m(An)) →֒ φm,∞(Am). Thenψn,m

is injective and A = lim
−→

(Bn, ψn,m). Furthermore, since Bn is the quotient algebra of

An modulo the ideal Ker φn,∞, we have Bn
∼=

⊕sn

i=1 Qn,iM[n,i](C(Yn,i))Qn,i , where Yn,i

is a subspace of Xn,i and the projection Qn,i is the restriction of the projection Pn,i to

Yn,i .

Unfortunately, the spaces Yn,i are not simplicial complexes any more—they are

just compact metrizable spaces. (Note that if the method in [Bl] is applied to change

the compact metrizable spaces Yn,i by simplicial complexes, then the injectivity of the

connecting homomorphisms will be lost again.) Let us point out that it is essential to

use finite simplicial complexes (instead of compact metrizable spaces) in the proof of

the main theorems in [G1, G2, EGL]. Among others, we only list two points below.

(1) A finite simplicial complex has finitely many path connected components and

can be dealt with as a path connected space by separating the components. The

path connectedness is used in two ways:

(a) A theorem of Thomsen [T] (see [Li2, Theorem 2.1] for a version of the the-

orem used in [EGL]) is used in the proof of the Existence Theorem and this

theorem holds only for path connected spaces.

(b) The theorem about maximum spectral multiplicity of a homomorphism

proved in [G1, §2] requires the space to be path connected.

(2) The K-theory of a finite simplicial complex is finitely generated, which is impor-

tant for the construction of the intertwining at the level of K-theory and also

important for the proof of the Uniqueness Theorem.

https://doi.org/10.4153/CMB-2005-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-005-9


52 G. A. Elliott, G. Gong and L. Li

In this paper, we will prove that the finite simplicial complexes Xn,i can be replaced

by finite simplicial sub-complexes Yn,i ⊂ Xn,i , and that the homomorphisms φn,m

can be replaced by injective homomorphisms. (Note that the spaces Yn,i may not be

connected, even if Xn,i are assumed to be connected.)

The result in this paper is used in [G1, G2, EGL]. The special case that dim(Xn,i) =

1 was due to the third author and played an important role in the classification of

simple AH algebras with one-dimensional local spectra (see [Ell1, Ell2, Li1, Li2, Li3]).

The proof given here is a modification of the proof of this special case.

2 The Proof of the Main Theorem

The following is the main theorem of this paper.

Theorem 2.1 Let A = lim
−→

(An, φn,m) be an inductive limit of

An =

tn
⊕

i=1

Pn,iM[n,i](C(Xn,i))Pn,i ,

where Xn,i is a connected finite simplicial complex, and Pn,i ∈ M[n,i](C(Xn,i)) is a pro-

jection. Then A can be written as the inductive limit of a system

(

Bn =

tn
⊕

i=1

Qn,iM{n,i}(C(Yn,i))Qn,i , ψn,m

)

,

where the spaces Yn,i are (not necessarily connected) finite simplicial complexes, and

Qn,i ∈ M{n,i}(C(Yn,i)) are projections, with the extra property that all connecting ho-

momorphisms ψn,m are injective. Furthermore, the spaces Yn,i may be chosen such that

dim Yn,i ≤ dim Xn,i . (In fact, the simplicial complexes Yn,i can be chosen to be subspaces

of the spaces Xn,i .)

Remark 2.2 In the above theorem, we do not assume the simplicity of A. Also, there

is no restriction on the growth of dim Xn,i .

Let us first discuss how to reduce the proof of Theorem 2.1 to the special case

that the algebras An are direct sums of full matrix algebras (instead of their corner

subalgebras) over Xn,i .

According to [G1, Lemma 1.3.3] (see [EG, 4.24]), there exists an inductive limit

C∗-algebra Ã of this special form, containing A as a corner sub-C∗-algebra (see [G1,

§1.3]), and in fact such that

Ã = lim
−→

(

Ãn =

tn
⊕

i=1

M[n,i]∼(C(Xn,i)), φ̃n,m

)

,

where, not only is An a corner subalgebra of Ãn, but also φn,m = φ̃n,m|An
. In particular,

there is an increasing sequence of projections, Q1 ≤ Q2 ≤ · · · ≤ Qn ≤ · · · , in Ã,

such that

A =

⋃

n

QnÃQn.
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Suppose that Theorem 2.1 holds when all the algebras An are direct sums of full

matrix algebras over Xn,i . Then, Ã can be written as the inductive limit of a sequence

(

B̃n =

tn
⊕

i=1

M{n,i}(C(Yn,i)), ψ̃n,m

)

where each Yn,i is finite simplicial complex of dimension at most that of Xn,i (and, in

fact, if chosen suitably, a subset of Xn,i), and each ψ̃n,m is injective.

Passing to a subsequence of (B̃n) (and, at the same time, of (An)), and replacing

the increasing sequence of projections (Qn) by a unitarily equivalent one, we may

assume that Qn ∈ B̃n. Set QnB̃nQn = Bn and ψ̃n,m|Bn
= ψn,m. Then each ψn,m is

injective and A is the inductive limit of the sequence (Bn, ψn,m). In other words, the

conclusion of the theorem holds also in the general case.

Thanks to the above discussion, we may assume that each An is a direct sum of full

matrix algebras, An =
⊕

M[n,i](C(Xn,i)).
From the proof below, we will see that the algebras Bn are chosen to be

Bn =

tn
⊕

i=1

M[n,i](C(Yn,i)),

where Yn,i ⊂ Xn,i . Furthermore, from the proof, we will see that

rank(φi, j
n,m(1Ai

n
)) = rank(ψi, j

n,m(1Bi
n
)).

Therefore, if (An, φn,m) has very slow dimension growth, then so also does (Bn, ψn,m).

This result was used in [G1, G2] (and therefore also in [EGL]). (Recall that an in-

ductive system lim
−→

(An =
⊕tn

i=1 Pn,iM[n,i](C(Xn,i))Pn,i , φn,m) is said to satisfy the very

slow dimension growth condition if for any summand Ai
n = Pn,iM[n,i](C(Xn,i))Pn,i

of a fixed An,

lim
m→+∞

max
j

{

(dim Xm, j)
3

rankφ
i, j
n,m(1Ai

n
)

}

= 0,

where φ
i, j
n,m is the partial map of φn,m from Ai

n to A
j
m.)

The proof of this theorem is a modification of the proof of the same theorem for

the case that the spaces Xn,i are graphs (equivalently, finite simplicial complexes of

dimension at most one), due to the third author [Li1].

2.3 For each An =
⊕tn

i=1 M[n,i](C(Xn,i)), we have

φn,∞(An) ∼=

tn
⊕

i=1

M[n,i](C(X̃n,i)),

where each space X̃n,i is a subspace of Xn,i . Replacing An by

Ãn =

tn
⊕

i=1

M[n,i](C(X̃n,i)),
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we may write A as the inductive limit of the sequence (Ãn, φ̃n,m), where φ̃n,m, the map

induced by φn,m, is injective. Since, in general, the spaces X̃n,i are no longer simplicial

complexes, we now need to replace them by simplicial complexes.

2.4 Let X be a connected simplicial complex and let X̃ ⊂ X be a closed subset.

(Later, we will let X = Xn,i and X̃ = X̃n,i ; see 2.3.) For each simplicial subdivision σ
of X, we will define a finite simplicial complex Y and a surjection α : X̃ → Y . (Y may

not be connected.) Note that such a simplicial complex Y and surjection α : X̃ → Y

give rise to a subalgebra Mk(C(Y )) ⊂ Mk(C(X̃)) via α∗ : Mk(C(Y )) → Mk(C(X̃)).

2.5 The simplicial complex Y will be constructed to be a subspace of X. In fact, it

will be the union of two sets, one the underlying space of a sub-complex of (X, σ)

and the other a finite subset of X.

Denote by Y1 the underlying space of the sub-complex of (X, σ) consisting of all

simplices ∆ ∈ σ such that
◦

∆ ∩ X̃ is uncountable, together with the faces of these

simplices. (
◦

∆ denotes the interior of ∆.)

The space Y is obtained from Y1 by adding finitely many points as follows. First,

add to Y1 all the vertices of (X, σ) which are in X̃. Second, if ∆ is a simplex of dimen-

sion≥ 1 with the property that
◦

∆∩X̃ is a non-empty set with at most countably many

points, then by a standard argument of real analysis, there exist a point x ∈
◦

∆ ∩ X̃

and a neighbourhood of x, Ux ⊂
◦

∆, such that

Ux ∩ X̃ = {x}.

For each such simplex ∆, add such a point x to Y1 (only one point for each such

simplex and so only finitely many such points altogether). (Notice that such a simplex

∆ (with at most countably many points in
◦

∆∩X̃), may already be a subset of Y1, since

it is possible that there is another simplex ∆1 ⊃ ∆ such that
◦

∆1 ∩ X̃ is uncountable,

and hence ∆ ⊂ ∆1 ⊂ Y1. In this case, adding the point x does not change the space

Y1 at all.)

Note that the new space Y ⊂ X defined above is the union of the underlying space

of a sub-complex of (X, σ) and a finite subset of X, and therefore has a simplicial

structure. With this new space Y , for each simplex ∆ ∈ σ, there are the following

three cases:

Y ∩ ∆ = ∆;(1)

Y ∩
◦

∆ = ∅;(2)

Y ∩
◦

∆ = singleton.(3)

To define the surjective map α : X̃ → Y , we will need the following two easy

lemmas from real analysis.
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Lemma 2.6 For any simplex ∆, if T ⊂ ∆ is a closed subset such that T ∩
◦

∆ contains

uncountably many points, then for any continuous map α : ∂∆ → ∂∆, there is an

extension α̃ : ∆ → ∆ such that

α̃|∂∆ = α and α̃(T ∩
◦

∆) = ∆.

Proof Since T∩
◦

∆ has uncountably many points, there is a closed subset T1 ⊂ T∩
◦

∆

which is homeomorphic to the Cantor set. It is well known that there is a continuous

surjection α1 : T1 → ∆ (a similar argument appeared in [Li1, 2.2.2]). Note that T1

and ∂∆ are disjoint closed subsets of ∆, and so the map α2 : ∂∆ ∪ T1 → ∆, defined

by

α2(y) =

{

α(y) if y ∈ ∂∆,

α1(y) if y ∈ T1,

is continuous. Choose α̃ to be any continuous extension of α2 to ∆. (Such an exten-

sion exists by the Tietze Extension Theorem.)

Lemma 2.7 Suppose that X is a compact metric space, and Y ⊂ X is a nonempty

closed subspace such that the complement X\Y is countable. Then there is a continuous

map α : X → Y satisfying α|Y = id.

Proof Let r : X → R
+ be defined by

r(x) = dist(x,Y ) = inf
y∈Y

dist(x, y).

Then r is continuous and, since X is compact, r(X) ⊂ R is a closed set. Since r|Y =

0 and X\Y is a countable set, r(X) is a countable closed subset of R
+. Choose a

sequence of positive numbers ε1 > ε2 > · · · > εi > · · · satisfying
∑+∞

i=1 εi < +∞
and εi 6∈ r(X) for all i. Then the sets

Yεi
= {x ; dist(x,Y ) < εi}

are closed and open subsets of X. We shall define a sequence of continuous maps

αi : X → Yεi
⊂ X, inductively. We shall then define the continuous map α : X → X

to be the limit of this sequence which, as we shall see, converges.

Choose any point y0 ∈ Y . Define α1 : X → X by

α1(x) =

{

x if x ∈ Yε1

y0 if x /∈ Yε1
.

As the induction assumption, suppose thatαi is defined in such a way thatαi |Yεi
= id

and αi(X\Yεi
) ⊂ Y . Define αi+1 as follows. Since Yεi

\Yεi+1
is a countable closed and

open subset of X, there are finitely many closed and open subsets X1,X2, . . . ,Xn with

Yεi
\Yεi+1

= X1 ∪ X2 ∪ · · · ∪ Xn and diameter(X j) < εi ,
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for j = 1, 2, . . . , n. Choose y1, y2, . . . , yn ∈ Y such that dist(y j ,X j) ≤ εi . Define

αi+1 : X → Yεi+1
by

αi+1(x) =











x if x ∈ Yεi+1

y j if x ∈ X j , j = 1, 2, . . . , n

αi(x) if x /∈ Yεi
.

Then αi+1 is continuous. Since
∑+∞

i=1 εi < +∞, it is evident that (αi) is Cauchy in

the uniform metric. Denote by α the limit of (αi). Then α is continuous, α(X) ⊂ Y ,

and α|Y = id, as desired.

2.8 Set X ′
= X̃ ∪ Y1 = X̃ ∪ Y , where Y1 and Y are as defined in 2.5. We will define

a map α ′ : X ′ → Y such that α := α ′|X̃ : X̃ → Y is a surjection. For later use, we

shall also ensure that α ′(∆ ∩ X ′) ⊂ ∆ ∩ Y for every simplex ∆ of X. Then α ′ will

be defined on ∆ ∩ X ′, inductively, for each simplex ∆ with X ′ ∩
◦

∆ 6= ∅. Namely,

after we have the definition of α ′ on ∂∆ ∩ X ′, we will extend the definition of α ′ to

∆ ∩ X ′.

Let V (X) denote the collection of all vertices of (X, σ). From the construction of

Y (see 2.5),

V (X) ∩ X ′
= V (X) ∩Y ⊂ Y.

Define α ′(x) = x for any x ∈ V (X) ∩ X ′.

Let us fix a simplex ∆ ∈ σ with X ′ ∩
◦

∆ 6= ∅. As the inductive assumption, we

assume that α ′ is defined on ∂∆ ∩ X ′ in such a way that

α ′(∂∆ ∩ X ′) ⊂ α(∂∆ ∩Y ).

The definition of α ′ on X ′ ∩ ∆ will be broken up into the following three cases.

Case 1 X ′ ∩ ∆ = ∆, and X̃ ∩
◦

∆ contains at most countably many points. (This case

occurs when there is a simplex ∆1 ⊃ ∆ such that X̃ ∩
◦

∆1 contains uncountably many

points, but X̃ ∩
◦

∆ itself contains at most countably many points.) Choose any extension

of α ′|∂∆ to ∆. (Note that ∆ ⊂ Y .)

Case 2 X ′ ∩ ∆ = ∆, and X̃ ∩
◦

∆ contains uncountably many points. In this case,

X ′ ∩∆ = Y ∩∆ = ∆ and X ′ ∩ ∂∆ = ∂∆. By Lemma 2.6, we can extend α ′|∂∆ to ∆

in such a way that α ′(X̃ ∩
◦

∆) = ∆.

Case 3 X ′ ∩∆ 6= ∆. In this case, X̃ ∩
◦

∆ contains at most countably many points, and

Y ∩
◦

∆ = {y} for some point y ∈
◦

∆. From the way the point y is chosen in 2.5, we know

that (X ′ ∩ ∆)\{y} is a closed and open subset of X ′ ∩ ∆.

First, we assume that X ′ ∩ ∂∆ 6= ∅. Since X ′ ∩
◦

∆ = X̃ ∩
◦

∆ is a countable set, by

Lemma 2.7, there is a continuous map

β : (X ′ ∩ ∆)\{y} −→ X ′ ∩ ∂∆
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satisfying

β|X ′∩∂∆ = id.

Define α ′ on X ′ ∩ ∆ by

α ′(x) =

{

y if x = y

α ′ ◦ β(x) otherwise.

(Note that α ′ is defined on X ′ ∩ ∂∆.)

On the other hand, if X ′ ∩ ∂∆ = ∅, then we define α ′(x) = y for any x ∈

X ′ ∩ ∆ = X ′ ∩
◦

∆.

This ends the construction of the map α ′.

Finally, we can define the map α : X̃ → Y by

α = α ′|X̃.

One can check the following properties of α from the construction:

(1) α : X̃ → Y is a surjection;

(2) α(X̃ ∩ ∆) ⊂ Y ∩ ∆ for all simplices ∆ of X.

The property (2) is obvious. To check the property (1), we first note that for any

point x ∈ X, there is a unique simplex ∆ ∈ σ such that x ∈
◦

∆. For any fixed point

y ∈ Y , we need to verify that y is in the image of α. Let ∆ be the unique simplex

such that y ∈
◦

∆. We must consider the following two cases.

Case a. Y ∩
◦

∆ = {y}.

This case follows from the definition of α ′ in Case 3 above, if dim(∆) ≥ 1. The case

dim(∆) = 0 is a special case of Case b below.

Case b. Y ∩ ∆ = ∆.

If dim(∆) = 0 and ∆ = {y} ⊂ X̃, then y ∈ image(α), since α(y) = y. Oth-

erwise, there is a simplex ∆1 ⊃ ∆ such that X̃ ∩
◦

∆1 contains uncountably many

points. Therefore, from the definition of α ′ (for ∆1) in Case 2 above, image(α) ⊃
image(α ′|X̃∩∆1

) = ∆1 ∋ y.

2.9 Suppose that X is a simplicial complex and X̃ ⊂ X is a closed subset. Let G ⊂
Mn(C(X̃)) be a finite set. For any ε > 0, there is an η > 0 such that if dist(x, x ′) < η
then ‖g(x) − g(x ′)‖ < ε

2
for all g ∈ G. Choose a subdivision σ of X such that

diameter(∆) < η for every simplex ∆ of (X, σ). With respect to the subdivision σ,

let us define the subspace Y ⊂ X as in 2.5 and the surjection α : X̃ → Y as in 2.8.

Lemma 2.10 Following the notation of 2.9, one has

G ⊂ε Mn(C(Y ))

(see [G1, 1.1.7(e)] for the notation ⊂ε), where Mn(C(Y )) is regarded as a subalgebra of

Mn(C(X̃)) by the inclusion α∗.
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(This lemma is an analogue of of [Li1, Lemma 2.2.6]; the proof is also analogous.)

Proof Let us just sketch the argument. For any g ∈ G, define g̃ ∈ Mn(C(Y )) as

follows. For each vertex y of Y (including vertices in V (X) ∩Y and discrete points of

Y ), there is at least one simplex ∆ of X such that X̃ ∩∆ 6= ∅ and y ∈ ∆. Choose any

y1 ∈ X̃ ∩ ∆, and define g̃(y) = g(y1). Then extend g̃ to Y linearly on each simplex.

It is easy to check that

‖g − α∗(g̃)‖ < ε,

as in the proof of [Li1, Lemma 2.2.6].

Note that a sub-complex of [0, 1] is a union of finitely many intervals and finitely

many single point spaces. As a corollary of the construction in 2.4–2.9, we have

obtained the following result which will be used in [EGL].

Corollary 2.11 Let A =
⊕t

i=1 Mli (C(Xi)), where each Xi is the interval [0, 1] or the

single point space {pt}. Let F ⊂ A be a finite subset and ε > 0. For any homomorphism

φ : A → B, there is a C∗-algebra D which is a direct sum of matrix algebras over C[0, 1]

or C, and there are two homomorphisms φ1 : A → D and φ2 : D → B such that

(1) ‖(φ2 ◦ φ1)( f ) − φ( f )‖ < ε for any f ∈ F,

(2) φ1 is surjective and φ2 is injective.

Proof Without loss of generality we may assume that B = φ(A), the image of A

under the homomorphism φ. Then B ∼=
⊕t

i=1 Mli (C(X̃i)), X̃i ⊂ Xi , and φ is the

restriction map

φ( f1, f2, . . . , ft ) = ( f1|X̃1
, f2|X̃2

, . . . , ft |X̃t
) for all ( f1, f2, . . . , ft ) ∈

t
⊕

i=1

Mli (C(Xi)).

Obviously the proof can be reduced to the case of the single block A = C([0, 1]) and

B = C(X̃) with X̃ ⊂ [0, 1]. Since C[0, 1] is generated by the single function defined

by h(x) = x for x ∈ [0, 1], we can assume that F = {h}. Choose a subdivision σ
of [0, 1] such that the length of each subinterval is smaller than ε. Apply 2.4–2.8 to

X̃ ⊆ [0, 1] and the subdivision σ to find a finite simplicial complex Y —a subspace

of [0, 1] and a surjective map α : X̃ → Y . Set D = C(Y ). Let φ2 : C(Y ) → C(X̃) be

defined by φ2 = α∗. And let φ1 : C[0, 1] → C(Y ) be defined as the restriction map

φ1( f ) = f |Y for any f ∈ C[0, 1]. Evidently φ1 is surjective. The injectivity of φ2

follows from the surjectivity of α (see the property (1) of 2.8). It follows from the

property (2) of 2.8 that

‖(φ2 ◦ φ1)(h) − φ(h)‖ < ε.

Lemma 2.12 Let A =
⊕q

k=1
Mlk (C(Xk)), where Xk are connected simplicial com-

plexes. Let F ⊂ A be a finite set containing all matrix units ek
i j of each block Ak

=

Mlk (C(Xk)) and a set of generators of the centre C(Xk) of each Ak.
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For any ε > 0 and any positive integers n and l, there is a number δ > 0 such that

if φ : A → Mn(C(∂∆)) (where ∆ is an l-dimensional simplex) is a homomorphism

satisfying

‖φ( f )(t) − φ( f )(t ′)‖ < δ for any f ∈ F, t, t ′ ∈ ∂∆,

then there is a homomorphism ψ : A → Mn(C(∆)) with the following properties:

(1) i∗ψ = φ, where i∗ : Mn(C(∆)) → Mn(C(∂∆)) is induced by the inclusion

i : ∂∆ → ∆;

(2) ‖ψ( f )(t) − ψ( f )(t ′)‖ < ε for any f ∈ F, t, t ′ ∈ ∆.

Proof Note that if δ is small enough, then the projections φ(ek
11) (k = 1, 2, . . . , q)

are trivial in the sense of [G1, 1.2.1]. Therefore, φ(ek
11)Mn(C(∂∆))φ(ek

11) ∼=
Mn1

(C(∂∆)), where n1 = rank(φ(ek
11)). The lemma follows from the fact that the

space

Fn1 Xk := Hom(C(Xk),Mn1
(C))1

is locally contractible for each n1 ≤ n and k ∈ {1, 2, . . . , q}.

Lemma 2.13 Let A =
⊕q

k=1
Mlk (C(Yk)), where Yk are connected finite simplicial

complexes. Let F ⊂ A be a finite set containing all matrix units ek
i j and a set of gen-

erators of the centre C(Yk) of every block Ak
= Mlk (C(Yk)), k ∈ {1, 2, . . . , q}. Let

X1,X2, . . . ,Xm be connected finite simplicial complexes and let B =
⊕m

i=1 Mni
(C(X̃i)),

where each X̃i is a closed subset of the simplicial complex Xi . Suppose that G ⊂ B is a

finite subset and φ : A → B is an injective homomorphism. For any ε > 0, there exists

a subalgebra B ′
=

⊕m
i=1 Mni

(C(Zi)) ⊂ B, where each Zi is a (possibly non-connected)

finite simplicial complex, and there exists an injective homomorphism ψ : A → B ′ such

that

(1) ‖φ( f ) − ψ( f )‖ < ε for all f ∈ F;

(2) G ⊂ε B ′.

Proof Let Y = Y1

∐

Y2

∐

· · ·
∐

Yq. One can endow Y with a metric such that for

any t < 1 and y0 ∈ Y , the closed t-ball Bt (y0) is a path connected simplicial complex

(see [G1, 1.4.1]). Using the Peano curve, one can find a continuous surjective map

from [0, 1] onto Bt (y0) for any y0 ∈ Y and t < 1. (We will use this fact later.)

Without loss of generality, we may assume ε < 1.

Let l denote the maximum of {dim Xi}. Applying Lemma 2.12 to ε
4
> 0, (each

of) the positive integers ni (corresponding to the integer n, the order of the matrices

of Mn(C(∆)), in Lemma 2.12), and the integer l (corresponding to the integer l, the

dimension of the simplex ∆, in Lemma 2.12), we can find a number εl, 0 < εl <
ε
4
,

as the number δ (works for all ni) in Lemma 2.12. Then apply Lemma 2.12 to εl

4
> 0,

the positive integers ni , and the integer l − 1, to find εl−1. In general, once we have

εk, we apply 2.12 to the number εk

4
> 0, the positive integers ni , and the integer k−1,

to find a number εk−1(0 < εk−1 <
εk

4
), as the number δ in Lemma 2.12. In this way,

we obtain

ε > εl > εl−1 > · · · > ε2 > ε1 > 0.

https://doi.org/10.4153/CMB-2005-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-005-9


60 G. A. Elliott, G. Gong and L. Li

We further assume that the number ε1 ∈ (0, ε2

4
) also satisfies that, if dist(y, y ′) < 2ε1,

then

‖ f (y) − f (y ′)‖ <
ε2

4
for all f ∈ F.

For ε1 > 0, there is a number η > 0 such that dist(x, x ′) < η implies that

‖φ( f )(x) − φ( f )(x ′)‖ <
ε1

4
for all f ∈ F ⊂ A,

and

‖g(x) − g(x ′)‖ <
ε

2
for all g ∈ G.

(The latter is the condition in 2.9.) Furthermore, suppose that η > 0 satisfies the

following condition. If x, x ′ ∈ X = X̃1

∐

X̃2

∐

· · ·
∐

X̃m are such that dist(x, x ′) <
η, then SPφx and SPφx ′ can be paired to be within ε1

4
, where SPφx is a subset of

Y = Y1

∐

Y2

∐

· · ·
∐

Yq. (See [EG, §1.4], or [G1, §1.2.2] for the definition; also see

[G1, §1.2.12].)

Choose a subdivision for each Xi such that each simplex of the subdivision has di-

ameter at most η
4

. Using these subdivisions, one can construct spaces Zi (as the space

Y in 2.5) and surjective maps αi : X̃i → Zi (as in 2.8). Then B ′ :=
⊕m

i=1 Mni
(C(Zi))

can be regarded as a subalgebra of B =
⊕m

i=1 Mni
(C(X̃i)) via α∗

i . By Lemma 2.10,

G ⊂ε B ′.

We will define an injective homomorphism ψ : A → B ′ as follows.

Define ψ on each block B ′
i = Mni

(C(Zi)) separately. For each z ∈ Zi , one needs

to define ψ( f )(z). First, define it for each vertex z ∈ V (Zi), then define it for each

1-simplex, each 2-simplex and so on.

For each vertex z ∈ V (Zi), by the way Zi is constructed (as in 2.8), there is a point

x ∈ X̃i such that dist(z, x) < η
4

and αi(x) = z. (Note that both Zi and X̃i are subsets

of Xi . The distance dist(z, x) is taken inside Xi .) Define

ψ( f )(z) = φ( f )(x).

Since each simplex has diameter at most η
4

, if z1, z2 are vertices of one simplex, then

‖ψ( f )(z1) − ψ( f )(z2)‖ <
ε1

4
.

Define ψ on each edge [z1, z2] of Zi as follows. Identify [z1, z2] with [0, 1]. Then
z1+z2

2
is well defined. For z1, there are y1, y2, . . . , ys ∈ Y1

∐

Y2

∐

· · ·
∐

Yq and a

unitary u ∈ Mni
(C) such that

ψ( f )(z1) = u

























f (y1)

f (y2)
. . .

f (ys)

0
. . .

0

























u∗
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for all f ∈
⊕q

k=1
Mlk (C(Yk)) = A.

For each y j(1 ≤ j ≤ s), we can find a map

β j : [z1,
z1 + z2

2
] → Y = Y1

∐

Y2

∐

· · ·
∐

Yq

with the following properties:

(i) β j(z1) = y j and β j(
z1+z2

2
) = y j ;

(ii) Imageβ j = Bε1
(y j) as a set.

This is possible because of the Peano curve we mentioned before. Define ψ on

[z1,
z1+z2

2
] by

ψ( f )(z) = u

























f (β1(z))

f (β2(z))
. . .

f (βs(z))

0
. . .

0

























u∗

for each z ∈ [z1,
z1+z2

2
]. Hence

ψ( f )(
z1 + z2

2
) = ψ( f )(z1) and ‖ψ( f )(z1) − ψ( f )(z)‖ <

ε2

4

for all f ∈ F and z ∈ [z1,
z1+z2

2
], since

‖β j(z) − β j(z1)‖ ≤ ε1.

Recall that

‖ψ( f )(z2) − ψ( f )(
z1 + z2

2
)‖ = ‖ψ( f )(z2) − ψ( f )(z1)‖ <

ε1

4

for all f ∈ F. By Lemma 2.12 and the way ε1 is chosen, one can extend the definition

of ψ to [ z1+z2

2
, z2] so that it agrees with the definition of ψ at the endpoints z1+z2

2
and

z2, and

‖ψ( f )(z) − ψ( f )(
z1 + z2

2
)‖ <

ε2

4

for all f ∈ F and z ∈ [ z1+z2

2
, z2]. Thus we obtain the definition of ψ on each edge

[z1, z2] with the property

‖ψ( f )(z) − ψ( f )(z1)‖ <
ε2

4
for all z ∈ [z1, z2] and f ∈ F.
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Therefore, for each 2-simplex ∆, we have the definition of ψ on ∂∆ such that

‖ψ( f )(z) − ψ( f )(z ′)‖ < ε2

for all f ∈ F and z, z ′ ∈ ∂∆. Apply Lemma 2.12 again to obtain the definition of ψ
on each 2-simplex ∆ such that

‖ψ( f )(z) − ψ( f )(z ′)‖ <
ε3

4
for all z, z ′ ∈ ∆.

Repeating this procedure, we can obtain the definition of ψ on the whole space Zi

such that, if z, z ′ are in the same simplex, then

‖ψ( f )(z) − ψ( f )(z ′)‖ <
ε

4
.

Thus we have obtained the property (1) of the theorem.

To prove injectivity, we only need to verify

SP(ψ) =

⋃

x∈
∐

m
i=1

Zi

SPψx = Y.

The proof is the same as the corresponding part of the proof of [Li1, Theorem 2.2.10].

Namely, we use the fact that
⋃

x∈
∐

m
i=1

X̃i
SPφx = Y — a consequence of the injectivity

of φ, the property (ii) of the maps β j above, and the fact that SPφx and SPφx ′ can

be paired to be within ε1

4
whenever dist(x, x ′) < η. (See [Li1, Theorem 2.2.10,] for

details.) Note that one can prove

⋃

x∈
∐

m
i=1

Z(1)
i

SPφx = Y,

where Z(1)
i is the 1-skeleton of Zi under the subdivision.

2.14 The proof of Theorem 2.1 As pointed out in 2.2, we only need to prove the

case for full matrix algebras. We will imitate [Li1, 2.2.12], with [Li1, 2.2.6 and 2.2.10]

replaced by Lemma 2.10 and Lemma 2.13 above.

As in 2.3, let Ãn = φn,∞(An) ∼=
⊕tn

i=1 M[n,i](C(X̃n,i)), where the spaces X̃n,i are

closed subspaces of finite simplicial complexes Xn,i . Write A = lim
−→

(Ãn, φ̃n,m), where

the homomorphisms φ̃n,m are induced by φn,m and they are injective.

Let εn =
1
2n . Let {xi}

∞
i=1 be a dense subset of A. We will construct an injective

inductive limit B1 → B2 → · · · as follows.

Consider G1 = {x1} ⊂ A. There is an Ãi1
and a finite subset G̃1 ⊂ Ãi1

such that

G1 ⊂ε1/2 G̃1.

For G̃1 ⊂ Ãi1
, by Lemma 2.10 applied to each block of Ãi1

, there exists a subalgebra

B1 ⊂ Ãi1
satisfying the following two conditions:

(1) B1 is a finite direct sum of matrix algebras over finite simplicial complexes.

https://doi.org/10.4153/CMB-2005-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-005-9


Injectivity of the Connecting Maps in AH Inductive Limit Systems 63

(2) G̃1 ⊂ε1/2 B1. This gives us an injective homomorphism B1 →֒ Ãi1
.

Let {b1 j}
∞
j=1 be a dense subset of B1. Set F1 = {b11} ⊂ B1 and G2 = {x1, x2} ⊂ A.

There exist Ãi2
, (i2 > i1) and a finite subset G̃2 ⊂ Ãi2

such that G2 ⊂ε2/2 G̃2. By

Lemma 2.13 applied to F1 ⊂ B1 (in place of F ⊂ A), G̃2 ⊂ Ãi2
(in place of G ⊂

B), and the injective map B1 →֒ Ãi1
→ Ãi2

(in place of φ : A → B), there exist a

subalgebra B2 ⊂ Ãi2
(in place of B ′ ⊂ B), which is a direct sum of matrix algebras

over finite simplicial complexes, and an injective homomorphism ψ1,2 : B1 → B2

such that G̃2 ⊂ε2/2 B2 (see (2) of Lemma 2.13) and such that the diagram

Ãi1

φ̃i1 ,i2 // Ãi2

B1

ψ1,2 //
?�

OO

B2

?�

OO

almost commutes on F1 to within ε1 (see Lemma 2.13(1)). Let {b2 j}
∞
j=1 be a dense

subset of B2. Consider F2 = {b21, b22} ∪ {ψ1,2(b11), ψ1,2(b12)} and G3 = {x1, x2, x3}
in place of F1 and G2 respectively, and repeat the above construction to obtain

Ãi3
,B3 ⊂ Ãi3

and an injective homomorphism ψ2,3 : B2 → B3 (using ε2 and ε3 in

place of ε1 and ε2, respectively).

In general, we can construct the diagram

Ãi1

φ̃i1 ,i2 // Ãi2

φ̃i2 ,i3 // Ãi3
// · · · Ãik

// · · ·

B1

ψ1,2 //
?�

OO

B2

ψ2,3 //
?�

OO

B3
//

?�

OO

· · ·Bk
//

?�

OO

· · ·

with the following properties:

(i) The homomorphisms ψk,k+1 are injective;

(ii) For each k, Gk := {x1, x2, . . . , xk} ⊂εk
φ̃ik,∞(Bk), where Bk is considered to be a

sub-algebra of Ãik
;

(iii) The diagram

Ãik

φ̃ik ,ik+1 // Ãik+1

Bk

ψk,k+1 //
?�

OO

Bk+1

?�

OO

almost commutes on Fk := {bi j ; 1 ≤ i ≤ k, 1 ≤ j ≤ k} to within εk, where

{bi j}
∞
j=1 is a dense subset of Bi . (Note for i < k, bi j ∈ Bi can be regarded as

elements in Bk via the injective map ψi,k.)
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Then, by [Ell3, 2.3; 2.4], the above diagram defines a homomorphism from B =

lim
−→

(Bn, ψn,m) to A = lim
−→

(Ãn, φ̃n,m). It is routine to check that the homomorphism is

in fact an isomorphism. This ends the proof of Theorem 2.1.

2.15 Let us briefly discuss the special case that A is a commutative C∗-algebra. That

is, for a compact metrizable space X, how to write A = C(X) as an inductive limit

of C∗-algebras C(Xn) with injective connecting maps, where Xn are finite simplicial

complexes.

It is easy to see that the theorem for this special case follows if one can prove:

(1) For a finite simplicial complex X, a closed subset X̃ ⊂ X and a positive number

ε > 0, there exist a finite simplicial complex Y ⊂ X and a surjective map f : X̃ →
Y such that dist(x, f (x)) < ε for any x ∈ X̃;

(2) Under the assumption of (1), if we further assume that Z is a finite simplicial

complex and g : X̃ → Z is a surjective map, then the space Y and the map f

can be chosen in such a way that there is a surjective map g1 : Y → Z with the

property that dist(g1( f (x)), g(x)) < ε for any x ∈ X̃.

The above statement (1) is Lemma 2.10 and statement (2) is Lemma 2.13 for the

special case of commutative C∗-algebras. (To prove (1), there is a simpler construc-

tion. But the construction in 2.5–2.8 is important in the proof of (2) and Lemma

2.13 above.)

2.16 Suppose that A = lim
−→

(An =
⊕tn

i=1 M[n,i](C(Xn,i)), φn,m) is a simple inductive

limit with supn,i(dim(Xn,i)) < ∞, where the spaces Xn,i are finite simplicial com-

plexes. By Theorem 2.1 above, A can be written as the inductive limit of another se-

quence of the same form, but with injective connecting homomorphisms φn,m. Then

by [G1, Theorem 6.3, Remark 6.4], A can be written as

lim
−→

(Bn =

sn
⊕

i=1

M{n,i}(C(Yn,i)), ψn,m)

with ψn,m injective, where the spaces Yn,i are from the list of spaces {pt}, [0, 1], S1,

TII,k, TIII,k and S2.

Furthermore, by [G1, 6.5] and the discussion in 2.2 above, a simple inductive

limit A = lim
−→

(

An =
⊕tn

i=1 Pn,iM[n,i](C(Xn,i))Pn,i , φn,m

)

can be written as lim
−→

(

Bn =
⊕sn

i=1 Qn,iM{n,i}(C(Yn,i))Qn,i , ψn,m

)

with ψn,m injective, where the spaces Yn,i are

from the list of spaces {pt}, [0, 1], S1, TII,k, TIII,k and S2.

Namely, we have the following theorem.

Theorem 2.17 Suppose that

A = lim
−→

(

An =

tn
⊕

i=1

Pn,iM[n,i](C(Xn,i))Pn,i , φn,m

)
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is a simple inductive limit with supn,i{dim Xn,i} < ∞, where the spaces Xn,i are finite

simplicial complexes. Then A can be written as

B = lim
−→

(

Bn =

sn
⊕

i=1

Qn,iM{n,i}(C(Yn,i))Qn,i , ψn,m

)

with ψn,m injective, where Yn,i are from the list {pt}, [0, 1], S1, TII,k, TIII,k, and S2.

Combining with [G1, Lemma 6.2], we obtain the following corollary.

Corollary 2.18 Let

A = lim
−→

(

An =

tn
⊕

i=1

Pn,iM[n,i](C(Xn,i))Pn,i , φn,m

)

be a simple inductive limit with φn,m injective, where Xn,i are spaces from the list {pt},

[0, 1], S1, TII,k, TIII,k and S2. Then there are a subsequence Ak1
,Ak2

, . . . ,Akn
, . . . and

homomorphisms ψn,n+1 : Akn
→ Akn+1

such that the following are true:

(1) A = lim
−→

(Akn
, ψn,m), where ψn,m = ψm−1,m ◦ ψm−2,m−1 ◦ · · · ◦ ψn+1,n+2 ◦ ψn,n+1;

(2) Each ψ
i, j
n,m is injective if Xkm, j 6= {pt};

(3) KK(ψn,m) = KK(φkn ,km
).

Proof The result is trivially true if there is a subsequence k1, k2, . . . , kn, . . . such that

each Akn
is a finite dimensional C∗-algebra, since we can choose ψn,n+1 : Akn

→ Akn+1

to be φkn,kn+1
. (For the chosen subsequence (kn) and maps ψn,n+1, the condition (2)

is trivially true, since Xkm, j = {pt} for all m, j.) Without loss of generality we may

assume that for any n, An is not of finite dimension. That is, for any n, there is at least

one i such that Xn,i 6= {pt}.

As explained in 2.2, we need only consider the case of full matrix algebras An =
⊕tn

i=1 M[n,i](C(Xn,i)).

For any given An, finite set F ⊆ An, and ε > 0, by [G1, Lemma 6.2]] with C = An

and φ = id : C → An, there are an Am and a homomorphism ψ : An → Am such

that for any i, j, either the partial map ψi, j : Ai
n → A

j
m is injective or ψi, j (Ai

n), the

image of Ai
n under ψi, j , is a finite dimensional algebra, and such that ‖φn,m( f ) −

ψ( f )‖ < ε. Since An is a direct sum of matrix algebras over the special spaces

{pt}, [0, 1], S1,TII,k,TIII,k, and S2, by [G1, 5.13, 5.16, 5.17] (see [DL, Proposition 2.9]

also), the element KK(φ) ∈ KK(An,Am) of a homomorphism φ : An → Am is com-

pletely determined by the image of a finite set of projections P from An⊗M•(C(Wk×
S1)), k = 2, 3, 4, . . . , under the homomorphisms φ, φ ⊗ id (see 5.16 and 5.17 for

notations). (Note that the case of Xn,i = S1 is not discussed in [G1]. But it can

be dealt with in the same way.) Therefore, if F generates An as a C∗-algebra and

ε > 0 is sufficiently small, then ‖φn,m( f ) − ψ( f )‖ < ε for all f ∈ F implies that

KK(φn,m) = KK(ψ). (Also see [R, Proposition 5.4]. Note that the spaces Xn,i are

finite simplicial complexes. Hence KL(An,Am) = KK(An,Am).) From the proof of
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[G1, Lemma 6.2], we know that ψi, j is injective if Xm, j 6= {pt}. (On lines 6–7 of page

443 of [G1], the author assumed Xm, j 6= {pt} and then constructed the map ψ to be

injective.)

Based on the above fact, passing to a subsequence, it is routine to construct an

approximate intertwining

Ak1

φk1 ,k2 // Ak2

φk2 ,k3 // Ak3

φk3 ,k4 // · · ·A

Ak1

ψk1 ,k2 //
��

id

OO

Ak2

ψk2 ,k3 //
��

id

OO

Ak3

ψk3 ,k4 //
��

id

OO

· · ·A

· · ·

of the maps φkn,kn+1
with the maps ψn,n+1, which therefore give rise to the same limit

C∗-algebra A = lim
−→

(Akn
, ψn,m) (see [Ell3, §2] and [EG, §1.1]), such that ψn,n+1 satisfy

the desired conditions KK(ψn,n+1) = KK(φkn ,kn+1
) and ψ

i, j
n,m is injective if Xkn+1, j 6=

{pt}. The only thing left to verify is the condition (2) for ψn,m with m > n + 1. From

the assumption at the beginning of the proof, there is an index i(n) for each kn such

that Xkn,i(n) = SP(Ai(n)

kn
) 6= {pt}. For any pair of blocks Ai

n,A
j
m (m ≥ n + 1), consider

the homomorphism

α := ψ
i(m−1), j
m−1,m ◦ ψi(m−2),i(m−1)

m−2,m−1 ◦ · · · ◦ ψi(n+1),i(n+2)
n+1,n+2 ◦ ψi,i(n+1)

n,n+1 .

The map α is injective if Xm, j 6= {pt}. Note that α is the part of the map ψ
i, j
n,m

obtained by cutting down by the projection α(1Ai
n
). Therefore the map ψ

i, j
n,m itself is

also injective if Xm, j 6= {pt}.

Applying Corollary 2.11, we can strengthen [G1, Corollary 6.12] to the following

result.

Corollary 2.19 Suppose that A = lim
−→

(

An =
⊕tn

i=1 Pn,iM[n,i](C(Xn,i))Pn,i , φn,m

)

is

a simple inductive limit C∗-algebra. Suppose that each of the spaces Xn,i belongs to

the list {pt}, [0, 1], S1,TII,k,TIII,k and S2. Suppose that all the connecting maps φn,m

are injective. For any F ⊂ An and ε > 0, if m is large enough, then there are two

mutually orthogonal projections P,Q ∈ Am and two homomorphisms φ : An → PAmP

and ψ : An → QAmQ such that

(1) ‖φn,m( f ) − (φ⊕ ψ)( f )‖ < ε for all f ∈ F;

(2) φ(F) is weakly approximately constant to within ε and SPV(φ) < ε;

(3) ψ factors through D—a direct sum of matrix algebras over C[0, 1] or C—as

An
ψ1
−→ D

ψ2
−→ QAmQ

with ψ2 injective.

Furthermore, if for some i, j, the partial map φ
i, j
n,m : Ai

n → A
j
m is homotopic to a

homomorphism with finite dimensional image, then the part φ of the decomposition
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φ⊕ ψ corresponding to this partial map can be chosen to be zero (or, equivalently, φ
i, j
n,m

itself is close to a homomorphismψ factoring through D — a matrix algebra over C[0, 1]

or C as in (3) above).

Proof Apply [G1, Corollary 6.12] to the finite set F and ε
2

(instead of ε). Let

ψ : An → QAmQ be as in [G1, Corollary 6.12]], factoring through C — a direct sum

of matrix algebras over C[0, 1] — as

ψ : An
ψ1
−→ C

ψ2
−→ QAmQ.

Apply Corollary 2.11 to ψ2 : C → QAmQ (in place of φ : A → B), ψ1(F) ⊂ C (in

place of F ⊂ A), and ε
2

(in place of ε) to obtain D and homomorphisms

C
φ1
−→ D

φ2
−→ QAmQ

with φ2 injective, such that

‖(φ2 ◦ φ1)( f ) − ψ2( f )‖ <
ε

2
for all f ∈ ψ1(F).

Finally let newψ1 = φ1 ◦ (oldψ1), newψ2 = φ2 and newψ = (newψ2) ◦ (newψ1) to

finish the proof.

Corollaries 2.18 and 2.19 will be used in the proof of the classification theorem for

simple AH algebras in [EGL].
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