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Abstract
Risk measurement and econometrics are the two pillars of actuarial science. Unlike econometrics, risk
measurement allows taking into account decision-makers’ risk aversion when analyzing the risks. We pro-
pose a hybrid model that captures decision-makers’ regression-based approach to study risks, focusing on
explanatory variables while paying attention to risk severity. Our model considers different loss functions
that quantify the severity of the losses that are provided by the risk manager or the actuary. We present an
explicit formula for the regression estimators for the proposed risk-based regression problem and study
the proposed results. Finally, we provide a numerical study of the results using data from the insurance
industry.
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1. Introduction
Regression theory plays an essential role in actuarial science. Using regressionmodels, one obtains
predictions for the losses based on a priori knowledge of the explanatory variables considered by
the risk manager or actuary. Several papers developed and studied regression theory in the con-
text of risks and risk measures (He et al., 2020; Keilbar & Wang, 2022; Gaglianone et al., 2011;
Xiao et al., 2015; Barkai et al., 2021; Rennie & Srebro, 2005; Buccini et al., 2020; Ki Kang et al.,
2020; Pitselis, 2020; Jeong & Valdez, 2020; Daouia et al., 2021). Unlike standard regression anal-
ysis, when dealing with risks one commonly wishes to focus on risk severity levels, which can be
quantified by expected losses. In this paper, we develop a regression model that both minimizes
the standard OLS error function and the loss function of the severity of the studied risk. We prove
that the minimized solutions, that is, the regressors β̃ of the model, can be explicitly solved, which
allows us to capture the fundamental behavior of the slopes for the given econometric problem.
We then study prototypical examples of such a general approach and test it with empirical analysis.

Let Y be a risk with historical data Y= (Y 1, . . . , Y n)
T , X the n× p designed matrix that

defines the dependent variables (x1, x2, . . . , xn), and β ∈R
p be the vector of slopes.. Then, the

linear regression takes the form Y=Xβ + ε, where ε is the error term and the total error is given
by εTotal (β) = ‖Y− Xβ‖2 , whoseminimization with respect to β gives theminimum least square
estimator:

β̂ = arg inf
β∈Rp

εTotal (β) = (XTX)−1(XTY). (1)
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If
ε �Nn

(
0, σ 2In

)
, (2)

where σ > 0 is a dispersion parameter, In is an n× n identical matrix that satisfies all of the BLUE
assumptions, and β̂ is the BLUE estimator and also an MLE estimator of multivariate parameter
β.We consider the case in which matrix XTX is not singular, that is,

Rank(X)= p. (3)

We define the loss intensity of the problem by IY = E(||Y||2)= ∑n
i=1 EY2

i = βTXTX β+
nσ 2 quantified by the total sum of expected squares of the losses. Given a loss function
L : u ∈R≥0 ⇒L (u) ≥ 0, we considerL (IY) as the severity level of the loss intensity IYn . Following
a standard linear regression Y= Xβ + ε, our multi-objective problem is given by:

min ‖Y− Xβ‖2 ANDminL (IY) . (4)
In practical terms, loss intensity measures L (IY) can take many forms depending on the spe-

cific risks in the system. For example, in insurance, it might involve calculating the average claim
payout per policyholder over a certain period. It can also be a way to assess the potential financial
impact of different types of risks, such as natural disasters, cybersecurity breaches, or credit risks.
The measure L (IY) has a special role in risk measurement. The square root of the loss intensity
I1/2Y =

√
E(||Y||2) is an objective measure that provides us an index of the magnitude of loss in the

system in the units of the loss, for example, in US dollars, while the function L is subjective and
depends on the decision-maker. The function L quantifies how the decision-maker is risk-averse
toward the loss intensity, and λ as the trade-off parameter quantifies the weight we assign to the
consideration of L, that is, how important it is to minimize L compared to the minimization of
the regression error ‖Y− Xβ‖2 .

As we wish to find β that minimizes both the error term ‖Y− Xβ‖2 and the loss function
L (IY) , the severity is quantified by the sum of expected squares of the losses. We set a trade-off
goal function between them in the following standard trade-off form:

FL,λ (β) = ‖Y− Xβ‖2 + λL (IY) , (5)
with a trade-off parameter λ > 0. FL,λ (β) considers the balance sum of two functionals: the error
term and the penalty term of the minimized goal function.

This paper explores the extension of the regression theory that captures themagnitude of loss in
the system of risks. Taking the proposed goal function (5) for obtaining the regression parameters
β∗ provides a more general framework than the classical regression model, in which one captures
both the minimization of the error provided by ‖Y− Xβ‖2 while also taking into account the
minimization of L (IY) .

In this paper, we explore the problem of minimization of (5) and prove that it has explicit
closed-form solutions in both an unrestricted (Section 2) and a restricted (Section 3) model. The
proposed findings hold crucial implications within actuarial analysis. Specifically, we demonstrate
that the ratio of intensities, represented as:

r = IY∗

IŶ
≤ 1,

where IY∗ is the loss intensity obtained by the results of Sections 2 and 3, and IŶ is the intensity
obtained by the classical least square method. Notice that our main theorems do not require the
normality assumption of the residuals ε, as we highlighted in Section 2, Remark 1. This might be
particularly useful in insurance data, where right-skewed distributions are often observed.

Regression analysis in actuarial science plays a vital role by modeling relationships between
variables to assess risk and predict future outcomes. Actuaries often employ regression to ana-
lyze historical data, such as insurance claims or mortality rates, to develop models that estimate
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the impact of various factors on future events. By utilizing regression techniques, actuaries can
make informed decisions regarding pricing, risk assessment, and policy development within the
insurance and financial sectors. In that follows Section 4 is devoted to a numerical illustration of
the risk-loaded approach using real data. In our numerical study demonstrating the risk-loaded
approach in regression analysis, we focus on the claims experience of a prominent property and
casualty insurer in the Midwestern United States. Specifically, we delve into the realm of pri-
vate passenger automobile insurance. Within this context, the variable we’re analyzing as the
dependent factor is the monetary value paid on closed claims, measured in US dollars.

2. Unrestricted FL,λ(β) model
In this section, we consider problem of minimization of functional (5) and for while we do not
apply any restrictions on the choice of regression coefficients β = (β1, . . . , βp)T . The following
theorem represents just such a case:

Theorem 1. Assume functions L′ (y) ≥ 0, L′′ (y) ≥ 0, and define a=YTXβ̂. If the univariate
equation

w= 1
1+ λL′ (aw2

) , (6)

has the solution w∗, this solution is unique, and the solution of the problem of minimization of
functional (5) has the following explicit form:

β∗ = arg inf
β∈Rp

FL,λ (β) =w∗β̂ , (7)

where the coefficient w∗ is depending on YTXβ̂.

Proof. For the proof of the theorem, we will need the following Lemma, the proof of which we
have included in the appendix.

Lemma 1. Let α ∈R
n be some vector and A> 0 be some positive definite matrix. Consider the

following optimization problem:

F(x)= F(αTx, xTAx)→ inf .
Suppose bivariate function F(x, y) is twice continuously differentiable in the feasible space X ⊂R×
R+ and functional F(x) is convex. Then, the analytic solution to the optimization problem (5) is as
follows:

x∗ = x∗
1

A−1
1∗ α

A−1α,

where A−1
1∗ is the first row of matrix A−1, that is, A−1

1∗ α = �n
j=1A

−1
1j αj, and x∗

1 is the root of the
univariate equation:

x1 = −1
2
G

(
ax1, bx21

)
A−1
1∗ α, (8)

where

G(x, y)= F′
x(x, y)

F′
y(x, y)

,

a= 1
A−1
1∗ α

αTA−1α,
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and

b= 1
(A−1

1∗ α)2
αTA−1α.

Using this Lemma, we now prove the problem of minimization of functional (5), which we
represent as the following problem:

F1(β)= F(αTβ , βTAβ)→ inf, (9)

where

F(x, y)= b− 2x+ y+ λL (
y
)
, (10)

andα = XTY ;A= XTX; b=YTY.Nowwe show that the functional (9) is convex.We first observe
that

F′
x(x, y) = −2 (11)

F′
y(x, y) = 1+ λL′ (y) .

F′′
xx(x, y) = F′′

xy(x, y)= 0,

F′′
yy(x, y) = λL′′ (y) ,

and we have

� = F′′
xx(x, y)F

′′
yy(x, y)− F′′

xy(x, y)
2 = 0. (12)

As the first derivatives of function L (
y
)
is also nonnegative, we use Lemma 3.1 of Landsman et al.

(2020) and conclude that the considered functional (9) is convex. Then, we use Lemma 1 and find
an analytic solution of problem (5). Since

F′
x(x, y) = −2 (13)

F′
y(x, y) = 1+ λL′ (y) ,

we obtain G(x, y)= − 2
1+λL′(y) , and the solution of the optimization problem (5) is given by the

following explicit form:

β∗ = x∗
1

(XTX)−1
1∗ (XTY)

(XTX)−1(XTY) (14)

= x∗
1

β̂1
β̂ ,

where x∗
1 is a solution of the following equation:

x1 = 1

1+ λL′
(

a
β̂2
1
x21

) β̂1. (15)

Recall and verify that β̂1=(XTX)−1
1∗ (XTY). After designating w= x1/β̂1, we reduce equations (15)

to (6). Since the functional (9) is convex, the solution of equation (6) is unique and vector
β∗ presented in expression (14) is a minimum point of functional (9). It is not superfluous to
notice that
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a=YTXβ̂ = Y
T
KY≥ 0, (16)

where K = X(XTX)−1XT is an idempotent matrix and is, consequently, a nonnegative definite.
Therefore, aw2 ∈ R+.
Corollary 1. As L′ (y) ≥ 0 from equations (6) and (16) immediately follows that 0≤w∗ ≤ 1.

This corollary has an important value for understanding the actuarial and economic sense of
risk-loaded regression result. Define Ŷ= Xβ̂ and Y∗ = Xβ∗. Then for empirical intensities IŶ =
β̂
T
XTXβ̂ , IY∗ = β∗TXTXβ∗, it follows that the ratio of intensities:

r = IY∗

IŶ
=w∗2 ≤ 1. (17)

Remark 1. The conditions of Theorem 1 do not include the assumption of normal distribution
of residuals ε (cf. equation (2)).

Remark 2. As can be seen from the proposed model, the desired coefficients β∗ =w∗β̂ are biased
estimators stemming from the risk-loaded term λL (

E(YTY)
)
, in such a way that the rate of the

risk-loaded β∗ is w∗, since the biased estimator is achieved by β∗ = β̂ which is the solution when
λ = 0, or L (

E(YTY)
) = 0.

Remark 3. The proposed risk-loaded approach for regression analysis of risks modifies the stan-
dard concept of regression theory by adding a penalty term for the uncertainty of the risk and
allows the decision-maker to choose different functionals to both the error term ‖Y− Xβ‖2 and
E(YTY). The simplest form of L, L (u) = u, is the celebrated Ridge regression.

3. The equality constrained FL,λ(β) model
In certain situations, it is possible to possess non-sample information (a priori information on
the β parameters), which can vary in nature. We specifically focus on precise a priori informa-
tion regarding coefficients. Let us now scrutinize the proposed risk-based regression model under
equality constraints. Generally, this prior information on the coefficients can be represented as
follows: we address the issue (5) with linear constraints:

Rβ = r, (18)

where R is matrix, m≤ p, and r is m× 1 vector. A notable and significant example of such
constraints is

β1 + β2 + . . . + βp = 1, (19)

where matrix R= 1T , 1 is merely a vector-column of ones, and r= 1. This constraint allows us to
regard the coefficients βis as weights of the factors involved in the regression model. To solve the
optimization problem (5) under constraints (18), we use Theorem 3.1 of Landsman et al. (2020),
where such a problem was solved under even more general conditions. Denote the following
vectors

β0 = (XTX)−1RT(R(XTX)−1RT)−1r (20)

β1 = (XTX)−1XTY− (XTX)−1RT(R(XTX)−1RT)−1R(XTX)−1XTY

and the following values

α1 =YTXβ1, α2 = βT
0X

TXβ0. (21)
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Theorem 2. Under the conditions of Theorem 1, if the following univariate equation

w= 1
1+ λL′ (α2 + α1w2

) , (22)

has the solution w∗, then this solution is unique, and the solution of the problem of minimization of
functional (5) under linear constraints (18) has the following explicit form:

β∗
R = arg inf

Rβ=r
FL,λ (β) = β0 +w∗β1. (23)

The vectors β0 and β1 are orthogonal with respect to XTX in the sense that

βT
0X

TXβ1 = 0. (24)

Proof. The proof immediately follows from Theorem 3.1 of Landsman et al. (2020), and we
also refer to the main results given in Landsman et al. (2018). In fact, the problem (5), subject to
the system of linear constraints (18), is a special case of Theorem 3.1, where F(x, y) has a form
(10), equation (18) of Theorem 3.1 becomes (22), and the solution of the optimization problem
(18) of Theorem 3.1 becomes (23). Vectors β0 and β1 are calculated by vectors x0 and z given in
Theorem 3.1, respectively, where matrices � = XTX, B= R, and vectors c= r and μ = XTY. The
orthogonal property (24) immediately follows from the orthogonal property of vectors x0 and z,
see equation (19) of Theorem 3.1.

Note that the vectors β0 and β1 are not dependent on the loss function L(u) but are dependent
only on matrix X, vector Y, restriction matrix R, and vector r. When w∗ = 1, we have the classical
minimum least squared estimator under restriction (19):

β̂R = β0 + β1. (25)

Function L(u), in turn, determines equations (6) and (22).
As in the unrestricted case considered in Section 2, we have the following

Corollary 2. As L′ (y) ≥ 0 from equations (22) and (16) immediately follows that 0≤w∗ ≤ 1.

We define the empirical intensities of ŶR = Xβ̂R and Y∗
R = Xβ∗

R, by:

IŶR
= β̂RXTXβ̂R (26)

and

IY∗
R
= β∗

RX
TXβ∗

R, (27)

respectively. Then, Corollary 2 and the orthogonal property of β0 and β1 (see, (24)) immediately
lead to the following intensity ratio:

r = IY∗
R

IŶR

= β∗T
R XTXβ∗

R

β̂
T
RXTXβ̂R

= (β0 +w∗β1)TXTX(β0 +w∗β1)
(β0 + β1)TXTX(β0 + β1)

= βT
0XTXβ0 +w∗2βT

1XTXβ1

βT
0XTXβ0 + βT

1XTXβ1
≤ 1. (28)

The above bound supports the preferability of a risk-loaded approach.
In the following, we examine special cases for our proposed actuarial and econometricmeasure,

for different functions L.
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3.1 Classical case
The classical case is obtained when L⇐u⇒= u. Then, the solution of equations (6) and (22)
reduces to

w∗ = 1
1+ λ

, (29)

and the solution to the optimization unrestricted optimization problem is β∗ = 1
1+λ

β̂. For the
case λ = 0, which is the classical minimum least squared case, we have

β∗ = β̂ , (30)

which conforms well with the solution of the classical problem. Notice that as β̂ is unbiased and a
consistent estimator of β , β∗ is unbiased and consistent estimator of 1

1+λ
β.

In the context of the equality constrained model from Theorem 2 and (29), it immediately
follows that

β∗
R = β0 + 1

1+ λ
β1. (31)

When λ = 0, which is the classical minimum least squared case under linear constraints (18), we
have

β∗
R = β0 + β1 = β̂R, (32)

which conforms well with the solution of the classical problem, cf. Őzkale & Selahattin (2007), eq
(1.16).

3.2 Powered penalty function
Assume L (u) = uδ , δ > 0. Then equation (6) has the following form:

w= 1
1+ λδaδ−1w2δ−2 , (33)

which can be reduced to the power equation:

w+ λδaδ−1w2δ−1 = 1. (34)
A special case of this example is the case in which δ = 1/2. Then, equation (34) has an analytic
solution:

w∗ = 1− λ

2
√
a
, (35)

and, the explicit solution of the minimization problem becomes

β∗ =
⎛
⎝1− λ

2
√
YTXβ̂

⎞
⎠ β̂. (36)

It is well known that under natural condition
1
n
XTX →Q as n→ ∞, (37)

where Q is p× p matrix and β̂ is a consistent estimator of β. We show that in the case
that residuals are normally distributed, ε �Nn(0, σ 2In), β∗ is also consistent estimator of β.
Recall β∗ =w∗β̂ , where w∗ = 1− λ

2
√
a , and a=YTXβ̂ = Y

T
KY, where K = X(XTX)−1XT . As

K2 = X(XTX)−1XT =K, matrix K is idempotent. Recall that matrix X has maximal rank equal
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to p and vector Y is distributed Nn(Xβ , σ 2In). Then Y/σ �Nn(Xβ/σ , In) and a/σ 2 � χn (�),
where χn(�) is a non-central chi-squared distribution with p degrees of freedom, and � =
1
σ 2 β

TXTXβ is a non-centrality parameter. Then, E(a/n)= (n+ �)= 1+ 1
nβTXTX β → 1, and

Var(a)= 2(n+ 2�)= 2n+ 4βTXTXβ. From Chebyshev’s inequality follows that

P
(∣∣∣an − E

(a
n

)∣∣∣ > ε
)

≤ 2n+ 4βTXTXβ

n2ε2
= 2

nε2
+ 4

nε2
βT XTX

n
β → 0. (38)

This implies that
a
n

P→ 1

and then

w∗ = 1− λ

2
√
a

P→ 1,

that is, β∗ is a consistent estimator of β for this case.
The same happens even for the more general case, 1/2≤ δ < 1. In fact, it follows from equation

(33) that:

w∗ = 1
1+ λδ[(a/n)1−δn1−δw∗2(1−δ)]−1

p→ 1, n→ ∞. (39)

Considering the second special case δ = 1, we obtain from the power equation (34) that w∗ =
1

1+λ
, which conforms well with Subsection 3.1, but in this case, β∗ is not a consistent estimator of

β , but a consistent estimator of 1
1+λ

β.

4. Numerical analysis
We illustrate the risk-loaded approach for regression analysis by conducting a numerical study.
We consider claims experience from a large Midwestern (US) property and casualty insurer for
private passenger automobile insurance. The dependent variable is the amount paid on a closed
claim, in (US) dollars (claims that were not closed by year end are handled separately). The inde-
pendent variables are State code, vehicle Class code, Gender, and Age. We obtained the data from
Frees (2010, Table 4). To have a design matrix X be only numerically valued, we denoted the dif-
ferent class vehicle codes by numbers from 1 to 18 and Gender variable by 1 or 0. In Table 1, we
present the first 10 lines (of n= 6773 lines) that, in fact, are the first 10 rows of matrix X and
vector Y:

Consider, first, the unrestricted case and powered penalty function. Then the solution of
equation (34) is, in fact, the zero of function:

F(w)=w+ λδaδ−1w2δ−1 − 1. (40)

In Fig. 1, we show the graph of function F(w) for λ = 0.2 and δ = 1.1, and we can see that this
function has the unique root w∗ = 0.170.

In Fig. 2, we provide the graph of the ratio of empirical intensities. One can see that the ratio
of intensities decreases from 1 to 0.

Now assume that we have the equality constraint (19). Then equation (22) in Theorem 2 takes
of the form:

F1(w)=w+ λδw
(
α2 + α1w2)δ−1 − 1= 0. (41)

The solution of this equation is a zero of function F1(w). In Fig. 3, we show the graph of function
F1(w) for λ = 0.2 and δ = 1.1. We can see that this function has the unique root w∗ = 0.341.
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Table 1. First 10 lines of matrix X and vector Y

State code Class code Gender Age Paid
Obs. Intercept From(1–18) From (1–17) Mail= 1, Female= 0 From (70–97) Y

1 1 14 1 0 97 1134.44
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 1 15 1 0 96 3761.24
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 1 15 2 0 95 7842.31
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 1 15 3 1 95 2384.67
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 1 15 3 0 95 650
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 1 15 3 0 95 391.12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 1 15 2 0 94 3775.83
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 1 10 1 0 94 415.35
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 1 14 2 0 93 2283.56
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 1 3 2 0 93 665.48
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Figure 1. Graph of function F(w) for λ = 0.2 and δ = 1.1;w∗ = 0.1701.

Using obtained w∗, we can provide the solution of the problem (5) under linear constraints
(18), that is, coefficients β∗

R as follows:
In the following table, we provide the classical estimators for comparison with the risk-loaded

estimators.
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Figure 2. Changing the ratio of empirical intensities r= IY
 /IŶ when power parameter δ increases from 0.5 to 1.5.

In order to collate these two solutions for the minimum least squared problem, we calculate
the ratio of empirical intensities:

r = IY∗
R

IŶR

(42)

using the expression (28). In the considered numerical case r = 0.116, this implies that the
intensity is significant lower using risk-loaded approach. In addition, we can say that as the
βR−coefficients satisfy the restriction (19), they indicate the weights of the factors such as
Intercept, State, Class Vehicle, Gender, and Age in the considered regression model. Comparing
the risk-loaded estimators reported in Table 2 with the classical estimators given in Table 3, we
can conclude that the amplitude of changing weights for the risk-loaded estimators is much less
than for the classical regression estimators. Regarding the difference between non-restricted and
restricted models, we can observe that for the considered numerical data, the intensity ratio for
the unrestricted approach, that is, r = 0.029, which is lower than for the restricted case. This result
is quite natural because in the non-restricted case, we have an absolute minimum. However, in
some sense, the unrestricted case can be considered as useless because we cannot interpret the
meaning of each β−coefficient.

In Fig. 4, we show how the ratio of intensities changes when power parameter δ increases from
0.5 to 1.5. In this figure, we see that the ratio of intensities decreases when δ increases from 0.5 to
1.5 and that its graph is very similar to the graph given in Fig. 2.
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Table 2. Solution of Theorem 2 under power
risk-loaded function

Variables Coefficients (β∗
R)

Intercept −16.028
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

State 2.909
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Class Vehicle 14.272
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gender −8.266
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age 8.112

Table 3. The classical minimum least
squared estimator under restriction (19)

Variables Coefficients (β̂R)

Intercept −48.894
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

State 8.527
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Class Vehicle 41.842
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gender −24.260
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age 23.784
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Figure 3. Graph of function F1(w) for λ = 0.2 and δ = 1.1;w∗ = 0.34146.
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Figure 4. Changing of the ratio of empirical intensities when power parameter δ increases from 0.5 to 1.5: Linear constraint
is present.

Notice that sometimes the data need to be log-transformed. In our case, it is unnecessary
because our factors (State, Vehicle Class, Gender, and Age) are integers, and the relatively low
ratios (r) indicate a reasonably good level of adequacy.

5. Conclusion
In this paper, we proposed a hybrid risk-loaded regression model that simultaneously minimizes
the classical least squared loss function and penalty loss function of suggested loss intensity of
the problem, being the sum of expected squared historical data of responses Y= (Y 1, . . . , Y n)

T .
Imposing rather general conditions on the model and the loss function, we find that the explicit
solution of the minimization problem takes a proportional form of the least squared estimator
β̂ , where the coefficient of proportionality depends on response vector Y and design matrix X.
Special attention was given to the powered penalty loss function, which essentially generalized
the classical case of identical loss function. In addition to the unconditional problem, we also
considered a situation in which the solution satisfies the linear equality constraints. In that case,
we also found the explicit closed-form solution. In both the unconditional and conditional cases,
we demonstrated that the ratio of empirical intensities for classical least squared estimator and for
hybrid risk loaded estimator proposed in the paper is always less than 1, which speaks in favor of
the proposed method. We also provided a numerical illustration of the proposed model using real
data.
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Appendix
Proof of Lemma 1:

To find the stationary points of the optimization problem (5), we obtain the following system
of equations:

d
dx

F
(
αTx, xTAx

) = F′
x
(
αTx, xTAx

)
α+ 2F′

y
(
αTx, xTAx

)
Ax= 0.
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After algebraic calculations, we obtain x= − 1
2G

(
αTx, xTAx

)
A−1α. Thus, we have the following

system of equations: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 = − 1
2G

(
αTx, xTAx

)
A−1
1∗ α

x2 = − 1
2G

(
αTx, xTAx

)
A−1
2∗ α

· · ·
xn = − 1

2G
(
αTx, xTAx

)
A−1
n∗ α

, (A1)

where A−1
i∗ is the i-th row of matrix A−1. Dividing the i-th equation, i= 2, . . . , n, into the first

equation, we obtain

xi
x1

= A−1
i∗ α

A−1
1∗ α

, i= 2, . . . , n,

where, without loss of generality, we assume that A−1
1∗ α �= 0. Then xi = A−1

i∗ α

A−1
1∗ α

x1, i= 2, . . . , n, and
hence x can be represented by the first variable x1, in the following manner:

x= x1
A−1
1∗ α

A−1α, (A2)

where x1 is the solution of the first equation of system (A1). Substituting (A2) into this equation,
we obtain equation:

x1 = −1
2
G

(
αTx, xTAx

)
A−1
1∗ α = −1

2
G

⎛
⎜⎝ x1
A−1
1∗ α

αTA−1α,
x21(

A−1
1∗ α

)2αTA−1AA−1α

⎞
⎟⎠A−1

1∗ α

= −1
2
G

⎛
⎜⎝ x1
A−1
1∗ α

αTA−1α,
x21(

A−1
1∗ α

)2αTA−1α

⎞
⎟⎠A−1

1∗ α,

If this equation has a solution, this solution is unique due to the convexity of function F, and the
obtained stationary point given in (A2) is a minimum point. The Lemma is proved

Cite this article: Landsman Z and Shushi T (2025). Optimizing insurance risk assessment: a regression model based on a
risk-loaded approach, Annals of Actuarial Science, 19, 82–95. https://doi.org/10.1017/S1748499524000162
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