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Lakshmibai—Seshadri paths of level-zero shape and
one-dimensional sums associated to level-zero
fundamental representations

Satoshi Naito and Daisuke Sagaki

ABSTRACT

We give an interpretation of the energy function and classically restricted one-dimensional
sums associated to tensor products of level-zero fundamental representations of quantum
affine algebras in terms of Lakshmibai—Seshadri paths of level-zero shape.

1. Introduction

A one-dimensional sum (1dsum for short) is a weighted sum over certain one-dimensional configu-
rations, where the weights are given by the ‘energy function’, and arose from the study of solvable
lattice models in statistical mechanics through Baxter’s corner transfer matrix method. However,
the crystal basis theory of Kashiwara provided an intrinsic definition of a 1dsum, and a conceptual
proof of the fact that, in the infinite lattice size limit, a 1dsum tends to the character of a high-
est weight module over an affine Lie algebra (see [KKMMNNO92]). The purpose of this paper is to
give an interpretation of the energy function and hence of ‘classically restricted’ 1dsums associated
to tensor products of certain finite-dimensional irreducible modules, called level-zero fundamental
representations, over a quantum affine algebra via Lakshmibai-Seshadri paths (LS paths for short)
of level-zero shape.

Let g be an affine Lie algebra over Q with Cartan subalgebra b, and let g7, be its finite-
dimensional simple Lie subalgebra whose Dynkin diagram (with Iy the set of vertices) is ob-
tained from that of g (with I the set of vertices) by removing a distinguished 0 vertex. Also,
let Uy(g) D Uq(gr,) be the quantized universal enveloping algebras associated to g O gj,, and let
Ugy(8) (C Uy(g)) be the quantum affine algebra (without derivation) associated to g.

In [KR90] (see also [Kir85, Kir87, Kir89] and [KKR88]), Kirillov and Reshetikhin conjectured
the existence of a family of finite-dimensional representations of the Yangian Y (gy,) associated to
g1, for which tensor products of these representations admit the decomposition into irreducible
gr,-modules, with each multiplicity given by a specific sum of products of binomial coefficients.
Note that under the widely believed correspondence between the finite-dimensional representations
of the Yangian Y (go) and those of the nontwisted quantum affine algebra U,(g), this conjecture
can be translated into the one for the untwisted quantum affine algebras; both of them are called
the Kirillov—Reshetikhin (KR for short) conjecture. The KR conjecture has been the subject of a
number of papers (see [KNT02, §5.7] and references therein). Among them, we would like to men-
tion [Nak03], [Her06], and [Her07], in which the KR conjecture (of ‘type I’ in the sense of [KNT02,
§5.7]) is first proved in nontwisted A, D, E cases, then in all the nontwisted cases, and finally in
the general case.
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Inspired by the seminal paper [KR90], it was conjectured in [HKOTY99] and [HKOTTO02] that
there exists a family of finite-dimensional irreducible Ué(g)—modules WS(Z) having crystal bases B%*
indexed by ¢ € Iy and s € Z>; for which the decomposition into irreducible Uy,(gy,)-modules is

prescribed by a special case of the KR conjecture (of ‘type II’ in the sense of [KNT02, §5.7]); the
Ué(g)—module WS(Z) is called a KR module, and the crystal B%* is called a KR crystal. It should be

mentioned that (the roots of) the Drinfeld polynomials of the KR module Ws(i) for each 7 € Iy and
s € Z> are also specified up to a multiplicative constant (see [HKOTY99, Remark 2.2] and the
comment preceding [HKOTY99, Conjecture 2.1]).

Furthermore, in [HKOTY99] and [HKOTTO02], a ‘fermionic formula’ M was defined to be a
suitable g-analogue of the tensor product multiplicity formula in the KR conjecture (of type II),
which can be rewritten as a weighted sum over a set of combinatorial objects (called rigged con-
figurations). Also, a classically restricted 1dsum X was introduced as the generating function in
q of Uy(gy,)-highest weight elements of a tensor product of the (conjectural) crystals B>, i € I,
s € Z>1, weighted by the energy function. The ‘X = M conjecture’ proposed in these papers asserts
the equality between these two kinds of polynomials in ¢~ with nonnegative integer coefficients.

The X = M conjecture (including the construction of the crystals B%*) has been studied inten-
sively in recent years (see [Oka07, §§2.2 and 5.3] and references therein). Among them, we would like
to mention [Kas02], in which level-zero fundamental representations W (z;), i € I, of Uj(g) are in-
troduced, where the w;, i € Iy, are the level-zero fundamental weights for g. Furthermore, in [Kas02],
it is proved that the level-zero fundamental representations W(w;), i € Iy, are finite-dimensional
irreducible Uy (g)-modules having ‘simple’ crystal bases B(W (z;)). Also, the Drinfeld polynomials
of W(w;) are computed in [Nak04, §3.1] (at least in the nontwisted case), and they coincide with
those of Wl(z) specified in [HKOTY99] and [HKOTTO02] for all i € Iy. Therefore, by [Nak03], [Her06],
and [Her07], the decomposition of W (w;) into irreducible U, (gr,)-modules turns out to be the one

for Wl(i) prescribed by a special case of the KR conjecture (of type I) for every i € Iy. Thus,
through enough evidence (see also [Cha0Ol], [HNO06], [Kas05], [FL06], and [FLOT7]), it is confirmed

that the level-zero fundamental representation W (w;) is indeed the (conjectural) KR module Wi
with s = 1, and hence the crystal basis B(W (w;)) of W (w;) is the KR crystal B%! for every i € I.

Here we recall that most of all the known proofs of the X = M conjecture are given by establish-
ing a weight-preserving bijection from the set of Uy (gy,)-highest weight elements of a tensor product
of KR crystals B to the set of rigged configurations (see [Sch07] and references therein; [KSS02],
[Sch05], [SSh06], [SSt06], [BFKLO06], and also [FSS07] to name a few of the recent ones). In these
proofs, the KR crystal B%* is constructed as a certain direct sum (prescribed by the KR conjecture)
of highest weight crystals for U,(gy,); the action of the Kashiwara operators corresponding to the
0 vertex are defined on it, by an argument that depends on the type of g7, and requires a lot of
work based on an explicit combinatorial realization of highest weight crystals for Uq(g 1,)- Hence
it is highly desirable to have a type-independent combinatorial realization of the KR crystals B%#,
i € lp, s € Z>1, and the corresponding realization of the energy function on tensor products of
them, which would provide a general approach to the X = M conjecture.

Contrastingly, in Littelmann’s path model, the root operators are universally defined for all
paths, and hence we obtain a path model for KR modules if we choose the right set of paths; the
advantage of this approach is that, when it can be used, it enables us to study KR crystals in a
way completely independent of the type of gr,. In fact, in a series of papers [NS03, NS05, NS06],
we studied the crystal B(A) of all LS paths of shape A for a level-zero integral weight A of the
form A=), I A, with A9 e Z>0; we showed that the associated crystal B(\). is isomorphic

to the tensor product crystal @);. IOIB%(wZ-)?i)‘(i), and that each B(w;)q is isomorphic as a crystal

to B(W(w;)) = B for i € Iy. Hence the crystal B()\)q is isomorphic to the tensor product
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crystal @;cr, (B"’l)@)‘(z). Here the crystal B(\). is defined to be the set of all paths of the form
cl(m) = clom, m € B(\), where the map cl : b — bhi /R is the canonical projection, with § € h*
the null root of g and hi := R ®g h*. Thus, we have an explicit combinatorial realization of tensor
products of KR crystals B, i € Iy, with s = 1 in the framework of Littelmann’s path model.

Now, the remaining task is to give an interpretation of the energy function on tensor products of
KR crystals B!, i € I, in terms of Littelmann’s path model. The purpose of this paper is to provide
such an interpretation. Let A be a level-zero integral weight as above. We define a function (called
the degree function) Deg : B(\)q — Z«o as follows (see § 3.1 for details). For n € B(\)q, the degree
Deg(n) € Z is defined to be (the negative of) the coefficient of the null root § in a specific expression
of the weight 7,(1) € h* of a certain distinguished element , € By()) such that cl(r,) = 1, where
Bo(\) denotes the connected component of B(\) containing the straight line path: ¢ — tA, ¢ € [0, 1].
Take an arbitrary sequence i = (i1, 42, ... ,4,) of elements of Iy (with repetitions allowed). Then, as
above, the tensor product crystal B! @ B2 @ .- @ Bl ~ B(w;,) @ B(w;,) ® -+ @ B(w;,) =: B;
is isomorphic to the crystal B(\)q associated to the crystal B(A) of all LS paths of shape A\ :=
> p—q @i, Our main result (Theorem 4.1.1) of this paper states that the energy function on the
tensor product B; of KR crystals with s = 1 can be identified (through the isomorphism above
between B; and B(A)q) with the degree function Deg on B(\)., up to a specific additive constant
(see §4.1 for its explicit definition). Furthermore, we obtain an expression (Corollary 5.1.1) for
classically restricted 1dsums in terms of LS paths. In particular, by restricting ourselves to the case
of Agl)l, we obtain an expression (Corollary 5.2.4) for Kostka—Foulkes polynomials in terms of LS

paths.

This paper is organized as follows. In §2, we first fix our notation for quantum affine algebras.
Then we briefly review some standard facts on LS path crystals with weight lattice P or P, and
fundamental results on simple P,j-crystals for quantum affine algebras. In § 3, we define our ‘degree
function’ on P-crystals of LS paths of level-zero shape, and show some of its basic properties.
In §4, we first state our main result (Theorem 4.1.1) describing the energy function associated to
tensor products of level-zero fundamental representations. Then, we give a proof of it after showing
a key proposition to our proof. In §5, we mention the relation to classically restricted 1dsums and
Kostka—Foulkes polynomials.

2. Preliminaries

2.1 Affine Lie algebras and quantum affine algebras

Let A = (a;j); jer be a generalized Cartan matrix of affine type. Throughout this paper, we assume
that the elements of the index set I are numbered as in [Kac90, §4.8, Tables Aff 1-Aff 3]. Take a
special vertex 0 € I as in these tables, and set Iy := I\ {0}. Let g = g(A) be the affine Lie algebra
associated to the Cartan matrix A = (a;j); jer of affine type over the field Q of rational numbers,
and let b be its Cartan subalgebra. Note that h = (@jel Qhj) ® Qd, where IIY := {h;}jer C b is
the set of simple coroots, and d € b is the scaling element. Also, we denote by Il := {a;}jer C h* :=
Homg(h, Q) the set of simple roots, and by A; € b*, j € I, the fundamental weights; note that
aj(d) = dj,0 and Aj(d) = 0 for j € I. Let 6 = 3, ajo; € h* and ¢ = Zjeja]v'hj € b be the null
root and the canonical central element of g, respectively. Here we should note that ay = 2 if g is of
type Agi), and ag = 1 otherwise. We define the Weyl group W of g by W = (r; | j € I) C GL(h*),
where r; € GL(h*) is the simple reflection associated to «; for j € I, and then define the set A™ of
real roots by A™ = WIIL. The set of positive real roots is denoted by A%* C A'. Also, let us denote
by (-,-) a nondegenerate, symmetric, (WW-) invariant bilinear form on h* normalized in such a way
that (o, o) € Z for all 4,5 € I.
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We take a dual weight lattice PV and a weight lattice P as follows:

PY = (@ Zhj> ®ZdCh and P= (@ ZAj> @ Zay ' C h*. (2.1.1)
jer jer
It is clear that P contains all the simple roots «;, j € I, and that P = Homgy(P",Z). The quintuplet
(A, ILIIY, P, PY) is called a Cartan datum for the generalized Cartan matrix A = (a;;); jer of affine
type (see [HK02, Definition 2.1.1]).

Let gj, be the canonical finite-dimensional Lie subalgebra of g generated by z;, y;, j € Ip, and
hj, j € I, where z; (respectively, y;) is a nonzero root vector of g corresponding to the simple
root «; (respectively, —a;); note that by, := @ el Qh; is the Cartan subalgebra of g;,. We denote
by W the subgroup of W generated by r;, j € Iy, which can be thought of as the Weyl group of
the Lie subalgebra g7, C g. Let wg € W denote the longest element of w.

DEFINITION 2.1.1. An integral weight A € P is said to be level-zero if A(¢) = 0. In addition, a
level-zero integral weight A € P is said to be Ip-dominant (respectively, strictly Iy-dominant) if
A(hj) = 0 (respectively, A(h;) > 0) for all j € Iy.

For each i € Ip = I\ {0}, we define a level-zero fundamental weight w; € P by
w; = A; — a) Ag. (2.1.2)

Note that the w; is actually a level-zero, Ip-dominant integral weight; in fact, @w(c) = 0 and w;(h;) =
0;; for j € Iy. In particular, the restriction of the w;, i € Iy, to the Cartan subalgebra by, of g,
can be thought of as the fundamental weights for g;, C g. We set

P_?_ = ZZZOWZ'- (213)
i€lp
Recall from [Kas02, (5.6)] (see also [NS08, Lemmas 2.5 and 2.6]) that, for each A € P?, the equality
WAN (N+Z0) = X+ Zd6 holds for some positive integer dy € Z~q, and set Q+ = Zjelo L00.
The next lemma follows immediately from [NS08, Lemma 2.3.2 and Remark 4.1.1] and the proof of
[NS08, Lemma 2.3.3] by noting the linear independence of «;, j € Iy, and 0.

LEMMA 2.1.2. Let \ € Pfﬂ. Then, for each w € W, there exist unique 3 € Qo_l,_ and k € 7Z such that
w\ = X — B3+ kd,d. Moreover, A\ — 3 = w'\ for some w' € W.

Let A € P be an integral weight, and u,v € WA. Following [Lit95, §4], we write p > v if there
exist a sequence y = vy, v1,...,V, = v of elements of WA and a sequence &1, &, ..., &, of positive
real roots such that vy, = r¢, (v5x—1) and such that vy_1()) € Z< for all 1 < k < n, where §/ € b
denotes the dual root of §, € A'?, and ¢, denotes the associated reflection; we write pp > v if u > v
or u=v.

Remark 2.1.3. Let A € P?, and let v,/ € WA be such that v > v/. Write v and v/ as v = A\—3+kd)&

and v/ = A— '+ K dy\6 for 3,8 € Q4 and k, k' € Z (see Lemma 2.1.2), respectively. Then we deduce
from [NSO08, Remark 2.4.3(1)] that either £ < k" holds, or k = k" and 8 — ' € Q4+ \ {0} holds.

Now, let cl : h* — h*/Q6 be the canonical projection from h* onto h*/QJ. We define a classical
weight lattice P, and a classical dual weight lattice Py by

Py=c(P)=EZcl(A;) and Py =EPHzh; c P". (2.1.4)
jeI jel

We see that P ~ P/(Q6 N P), and that P, can be identified with Homyz(P),Z) as a Z-module by

(cl(X))(h) = A(h) for A € P and h € P}. The quintuple (A, cl(II),IIY, P, PY) is called a classical
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Cartan datum (see [HK02, § 10.1]). Note that there exists a natural action of the Weyl group W on
h*/Qd induced by the one on h*, since W§ = 4. It is obvious that wocl = clo w for all w € W. If we
set h*0 := {\ € b* | A(c) = 0}, then there exists a (positive definite) symmetric bilinear form (-, -)q
on cl(h*?) = h*° /Q6 induced by the restriction to h** of the nondegenerate, symmetric bilinear form

(-,+) on b*, since (4,h*) = {0}.

DEFINITION 2.1.4. An integral weight pu € Py is said to be level-zero if u(c) = 0. In addition, a
level-zero integral weight pu € Py is said to be Iy-dominant (respectively, strictly Iy-dominant) if
A(hj) = 0 (respectively, A(h;) > 0) for all j € Iy.

Remark 2.1.5. Let A € P{. It is easy to verify that cl(W\) = W cl(A) (see the proof of NS08,
Lemma 2.3.3]). Also, we see that cl(\) is the unique level-zero, Ip-dominant integral weight in
cl(WX) = Wel()), and that cl(woA) = wpcl(A) is the unique element of cl(WX) = W cl(A) such
that (cl(woA))(hj) = (wocl(X))(h;) <0 for all j € .

Let Ué(g) be the quantized universal enveloping algebra of the affine Lie algebra g with weight
lattice P over the field Q(g) of rational functions in g. We denote by z;, y;, j € I, and ¢" he Pcvl,
the canonical generators of Ué(g), where x; (respectively, y;) corresponds to the simple root «;

(respectively, —a;) for j € I.

2.2 Crystals of LS paths with weight lattice P or P

A path (with weight in P) is, by definition, a piecewise linear, continuous map = : [0,1] — bi =
R ®g h* such that 7(0) = 0 and 7(1) € P C R®z P = hi. We denote by P the set of all paths
7 :[0,1] — b. For each 7y, m € P, we define a path w1 £y € P by (m1 £ m2)(t) = m1(t) £ ma(t) for
t € [0,1]. For an integral weight v € P, let 7, denote the straight line path connecting 0 € P with
v e P, ie m(t) :=tvfortel01].

Remark 2.2.1. In [Lit94] and [Lit95], paths in P are considered modulo reparametrization. However,
in this paper, we do not consider paths in P modulo reparametrization since there is no need to
do so. Note that all results of [Lit94] and [Lit95] that we need in this paper still hold in this setting.

Let 7 € P. A pair (v;0) of a sequence v : vy,vs,...,vs of elements of hy and a sequence
g:0=09< 0] <---<0s=1 of rational numbers is called an expression of m € IP if the following
equation holds:

u—1
7(t) = (0w —ow—1)vw + (t—ou1)vu for oy 1 <t< oy, 1<u<s. (2.2.1)
u'=1
In this case, we write 7 = (r;0). An expression (v1,vs,...,vs0) of m is said to be reduced if
Vy # VUyyq forany u =1,2,...,s — 1.

Remark 2.2.2 (see [NSO8, Remark 2.5.2]). Let m € P. We easily see that there exists a unique
reduced expression of 7. Also, if (11,vs,...,Vs;00,01,...,0s) is an expression of 7, then the reduced
expression of 7 is obtained from this expression by ‘omitting’ the element 1,1 such that v, = v, 41
and the corresponding rational number o,,.

DEFINITION 2.2.3. Let m = (11,12, ..., Vs;0) be an expression of 7 € IP. We call v € by (respectively,
vs € by) the initial (respectively, final) direction of ; it is easy to check that these elements
v1,vs € b do not depend on the choice of an expression of . The initial (respectively, final)
direction of 7 is denoted by ¢(m) (respectively, x(m)).

Remark 2.2.4. Let m,m € P. We easily see that «(m; & m2) = u(m1) £ ¢(m2) and k(m £ m) =
k(m1) £ K(m2).
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Let A € P be an integral weight. Recall from [NS08, Definition 2.6.1] (see also [Lit95, §4]) that
a Lakshmibai-Seshadri (LS) path of shape A is a path m € P having an expression of the form
m = (1,v2,...,Vs;00,01,-..,0s), where vy,vo,...,vs € WA, and where, for each 1 < u < s — 1,
there exists a ‘o,-chain’ for (v, vy,+1) (see [Lit95, §4] and [NS08, Definition 2.4.5] for the definition
of ‘oy-chain’). We denote by B(\) the set of all LS paths of shape A.

Remark 2.2.5 (see [NSO8, Remark 2.6.2]). Let A € P be an integral weight. The straight line path
m(t) :=tv, t € ]0,1], is an element of B(\) for all v € WA.

LEMMA 2.2.6. Let A € P{. If m € B(\), then 7 + myq, 5 € B(A) for all k € Z.

Proof. Let k € Z. We know from [NS08, Lemma 2.7.4] that 7 + 74,5 € B(A + kd)d). Also, because
there exists w € W such that w(\) = A+ kd)d by the definition of dy, we deduce from the definition
of LS paths that B(A + kdxd) = B(w(\)) = B(A) (see [NS08, Remark 2.6.3(3)]). This proves the

lemma. O

Throughout this paper, we use standard notation and terminology of the theory of (abstract)
crystals without further mention; we refer the reader to [Kas95, § 7] and [HK02, §4.5] for details.

Now, we recall from [Lit94, §§ 1.2 and 1.3] and [Lit95, § 1] the definition of the root operators e;
and fj, j € I, on B(\); see also [GL04, §5.1] for the presentation of the definition in this form. Let
m € B()N), and j € I. We set

H(t) == (x(t))(h;) forte[0,1], m7:=min{HF(t) |t e [0,1]}. (2.2.2)

Then we define e;m as follows (note that mj € Zgo by [Lit95, Lemma 4.5d)]). If m7 = 0, then
ejm := 0, where the 0 is an additional element corresponding to ‘0’ in the theory of crystals. If

mzr < —1, then we define e;m € P by

m(t) if 0 <t < to,
(ejm)(t) = § m(to) + rj(m(t) — w(to)) if to <t <ty (2.2.3)
m(t) + o if t1 <t <1,

where we set
t1 :=min{t € [0,1] | H} (t) = m] },

(2.2.4)
to := max{t € [0,1] | Hf (t) = mj + 1}.

Similarly, f;m € PU{0} is defined as follows (note that HT (1) —m] € Z¢ by [Lit95, Lemma 4.5d)]
and m(1) € P). If H7 (1) —m] = 0, then f;jm:= 0. If HT(1) —m] > 1, then we define f;m € P by

7(t) if 0 <t <to,
(fim)(t) =  7w(to) + rj(w(t) — 7w(to)) ifto <t <, (2.2.5)
W(t)—aj iftlgtél,

where we set
to == max{t € [0,1] | H} (t) = m] },

t1 :=min{t € [to, 1] | Hf (t) = mj + 1}.

(2.2.6)
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Using the root operators e; and f;, j € I, we can endow the set B(\) of all LS paths of shape A € P
with the structure of a (P-weighted) crystal, i.e. the structure of a crystal associated to the Cartan
datum (A, IL, 11V, P, PV) (see [Lit95, §§ 2 and 4] and also [NS06, Theorems 1.2.3 and 1.4.5]). In fact,
it follows from [Lit95, Lemma 2.1c)] that

—mj = max{l € Zx | el-7r # 0}, (2.2.7)
HT (1) —mj = max{l € Zx | f m# 0}, (2.2.8)
and hence that ¢;(m) = —m] and ¢;(m) = HJ (1) — m].

Let A € P be an integral weight. For 7 € B()), define a piecewise linear, continuous map
cl(m) : [0,1] — b /R6 by (cl(m))(t) = cl(n(t)) for t € [0,1], where cl : b — b /R6 is the canonical
projection. We set B(\)q := {cl(7) | 7 € B(\)}.

Remark 2.2.7. We see from Remark 2.2.5 that the straight line path 7,(t) = tu, t € [0,1], is
contained in B(\) for all i € cl(WA) = W el()).

An expression and a reduced expression of n € B(\)q are defined similarly to those for the
case of B(\). In addition, for n € B(\)., we define the initial and final directions of 7 (which do
not depend on the choice of an expression of 1) as in Definition 2.2.3, and also denote the initial
(respectively, final) direction of n € B(A)q by ¢(n) (respectively, x(n)).

Remark 2.2.8. Let m = (11,14, ...,Vs;0) be an expression of 7 € B(\). Then, cl(7) € B(\)q has an
expression cl(m) = (cl(v1), Cl(l/g) .,cl(vg); o). Hence it follows that

{L(Cl(ﬂ')) = cl(u(m)) € A(WA) = W cl(A)

K((m) = c(s(r) € AWy = ey T TERY)

)
Let 7 € B(A\)a, and j € I. We set H(t) := (n(t))(h;), t € [0,1], and define m to be the
minimum value of the function H}(t) in the interval [0, 1]. It is obvious that, for every = € B(\)

and j € I,

H;l(”) (t) = Hj(t) for all t € [0, 1], and hence m;l(w) =mj. (2.2.9)

Remark 2.2.9. Let n € B(\)q, and j € I. We see from [Lit95, Lemma 4.5d)] along with (2.2.9) that
n(l) € Py, and that all local minima of the function H 77( ), t € [0,1], are integers. In particular,
the minimum value m] of the function H(t) in the 1nterval [0,1] is a nonpositive integer, and
H 77( ) — m? is a nonnegative integer.

We define e;n, fin € B(A)qg U {0} for n € B(\)q and j € I in the same way as in the case of
B(A). We easily see from (2.2.9) that
cl(ejm) = ejcl(m), cl(fjm) = fjcl(m) for m € B(A\) and j € I, (2.2.10)
where cl(0) is understood to be 0.
Remark 2.2.10. Let n € B(\)q, and j € 1. It follows from the definition of the root operator e; that,
if ejn # 0, then the initial direction ¢(e;n) is equal either to ¢(n) or to r;(¢(n)).

We know from [NS05, Theorem 2.4 and § 3.1] that the set B(\).) equipped with the root operators
ej and fj, j € I, is a Py-weighted crystal (Pg-crystal for short), i.e. a crystal associated to the
classical Cartan datum (A, cI(II), IIV, P, PY), and that the following equations hold:

—m] = max{l € Zxo | eg-n #0} =¢;(n), (2.2.11)
HI(1) —m] = max{l € Zxo | fin # 0} = ¢;(n). (2.2.12)
5](’7)

For each n € B(\)a and j € I, we set e'**n := 1 € B(\)a. The proof of the next lemma is
similar to that of [Lit94, 5.3 Lemma| (see Remark 2.2.9).

1531

https://doi.org/10.1112/50010437X08003606 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X08003606

S. NAITO AND D. SAGAKI

LEMMA 2.2.11. Let A € P be an integral weight, and let n € B(\)q, j € 1.
(1) If the initial direction «(n) € Py of n satisfies (¢(n))(h;) < 0, then e;n # 0.
(2) For all 0 <1 < €j(n) — 1, we have L(eé-n) =(n).

(3) If (e(m)(hj) < 0, then v(ef**n) = r;((n))-

Using Lemma 2.2.11(3), we can show the following lemma by induction on p.

LEMMA 2.2.12. Let A € P be an integral weight. Let n € B(\)q, and set p := u(n) € Py. If
Ji,J2, .-, Jp € I satisfy the condition that (ijlrjp/,l STy (u))(hjp,ﬂ) <O0forallp =0,1,...,p—1,
max ,max

then the initial direction of €™ ep™ - eji**(n) € B(A)a is equal to rj,7j, -+ -5 (1)

LEMMA 2.2.13. Let A € P be an integral weight. Let n € B(\)., and set p:= k(n) € Po. If j € I is
such that p(h;) > 0, then fjn # 0 holds.

Proof. From the assumption of the lemma, we deduce that H 7 (1) — mj > 0. Therefore, it follows
from Remark 2.2.9 that HT (1) —m] > 1. Hence, by (2.2.12), we have ¢;(n) > 1, which implies that
fjm # 0. This proves the lemma. O

2.3 Regular crystals and simple crystals

For a proper subset J of I, we set Ay := (ay)ijer, ILy := {a;}jes CIL, and IIY := {h;};ec; C IIV.
When we regard a Py-crystal B as a crystal associated to the Cartan datum (A, cl(IL;),IIY, P, PY),
we denote it by res; B. Also, we denote by U, (g) the Q(g)-subalgebra of U, (g) generated by x;, y;,
jeJ, and ¢", h € PY. Recall that a Py-crystal B is said to be regular if, for every proper subset
J ; I, res; B is isomorphic to the crystal base of an integrable U(; (g) -module.

Remark 2.3.1. Let A\ € P be a level-zero integral weight. We know from [NS05, Proposition 3.13]
that B(\) is a regular P-crystal with finitely many elements.

If B is a regular Pj-crystal equipped with the Kashiwara operators e; and f;, j € I, then we

set ej'*b = jj(b)b € B for b € Band j € I, where ¢(b) := max{l € Zxg | eg-b # 0}. For regular
P,-crystals By and Ba, we define the tensor product Pg-crystal By ® By of By and By as in [Kas95,
§7.3] and [HK02, Definition 4.5.3]; note that B; ® By is also a regular P.-crystal. The next lemma
follows immediately from the tensor product rule for crystals.

LEMMA 2.3.2. Let By and By be regular P -crystals, and by € By, by € By. Let j € 1.
(1) We have €(by ® bg) > €(b1). Therefore, if ej(by ® by) = 0, then e;jb; = 0.
(2) Set L :=¢j(by ® bp). Then, for 0 <[ < L, we have

b1®€§-b2 if0<l<L—sj(b1),
e;—L+€j(bl)

In particular, we have e?ax(bl ® by) = ;b ® b’2 for some bl € Bs.

l _
ej(bl & b2) = L ej(bl)

by ®e by ifL—e;(b)) <I<L.

Let B be a regular P.-crystal. We define

6] :== /(wt(b), wt(b))a for b€ B. (2.3.1)

LEMMA 2.3.3. Let B be a regular Py-crystal. For each b € B and j € I, we have [[e}'**b] > [[b],
with equality if and only if either ejb = 0 or f;b = 0 holds.

Proof. Using the equation ¢;(b) = (wt(b))(h;) + €;(b), we easily see that
le5blI* = [[bI1* + &5 (b) 5 (b)(exj, cx)).
1532

https://doi.org/10.1112/50010437X08003606 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X08003606

LS PATHS OF LEVEL-ZERO SHAPE AND 1DSUMS

Therefore, the inequality [ej***b|| > ||b]| follows immediately from the fact that €;(b) > 0, ;(b) > 0,
and (o, ;) > 0. Also, the equality holds if and only if €;(b) = 0 or ¢;(b) = 0, which is equivalent
to saying that e;b = 0 or f;b = 0. This proves the lemma. O

Let B be a regular P-crystal. For each j € I, we define S; : B — B by

G flo it L= (wtb)(hy) >0,
T e if L= (wtb)(hy) < 0.

We know from [Kas94, §7] that there exists a unique action S : W — Bij(B), w + S, of the
Weyl group W on the set B such that S.; = S; for all j € I, where Bij(B3) denotes the group of

all bijections from the set B to itself; in fact, if w = ryj 7y, ---r; € W for ji,j2,...,7p € I, then
Sw = 8,85, ---Sj,. Note that wt(S,b) = w(wt(b)) for all w € W and b € B.

(2.3.2)

DEFINITION 2.3.4 [AK97, §1.4]. Let B be a regular Pg-crystal. An element b € B is said to be
extremal if, for every w € W, either e;5,b = 0 or f;S,b = 0 holds for each j € I.

Remark 2.3.5. Tt follows immediately from the definition above that, if b € B is an extremal element,
then S, is an extremal element of weight w(wt(b)) for each w € W.

LEMMA 2.3.6. Let B be a regular P.-crystal with finitely many elements. If b € B satisfies the
condition that ||b|| = max{[|t/|| | ¥ € B(\)a}, then b is an extremal element.

Proof. Let w € W, and j € I. Since (-,-)q is W-invariant, it follows that ||Syb|| = ||b||. Using this,

we obtain
[6]] = (e **Swbl| by the maximality of ||b]|
> [|Syb|| by Lemma 2.3.3
= [loll,
and hence [|e]'**S,,b|| = [|Syb[|. Therefore, by Lemma 2.3.3, either e;S,b = 0 or f;S,b = 0 holds.
This proves the lemma. O

DEFINITION 2.3.7. Let B be a regular P.-crystal with finitely many elements. The P-crystal B is
said to be simple if it satisfies the following conditions.

(1) The weights of elements of B are all level-zero.

(2) The set of all extremal elements of B is exactly the W-orbit of some extremal element of B.
Also, for each extremal element b € B, the subset By ) C B of all elements of weight wt(b) consists
of a single element, i.e. By ) = {b}.

Remark 2.3.8. Let B be a simple P.-crystal. Then it follows from Remark 2.1.5 and Defini-
tion 2.3.7(2) that there exists a unique extremal element b of B such that wt(b) € P, is level-zero
and Iy-dominant.

LEMMA 2.3.9. The following hold.
(1) A simple P.-crystal is connected.
(2) A tensor product of simple P,-crystals is also a simple P-crystal.

(3) Let By, By be simple P.-crystals. Then there exists at most one isomorphism of P-crystals
from By to By. In particular, any automorphism of a simple P.-crystal is necessarily the
identity map.

Proof. Parts (1) and (2) are precisely Lemmas 1.9 and 1.10 in [AK97], respectively. Let us show
part (3). Let By, By be simple Py-crystals, and let ® : By = By be an isomorphism of P-crystals
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from By to Bs. We see from Remark 2.3.8 that there exists a unique element by € By (respectively,
by € By) such that by (respectively, b2) is extremal, and such that wt(b;) (respectively, wt(bs)) is
level-zero and Iy-dominant. Since ® : By — By is an isomorphism of Pj-crystals, it follows that
®(by) is extremal, and that wt(®(b1)) is level-zero and Ip-dominant. Hence, from the uniqueness of
such an element, we obtain ®(by) = by. Also, because a simple P-crystal is connected by part (1),
an isomorphism of P-crystals from By to By is determined uniquely by the requirement that
®(b1) = by. Thus the proof of the lemma is complete. O

2.4 Tensor product decomposition and combinatorial R-matrices

We know from [NS06, Propositions 3.4.1 and 3.4.2] that, for each i € Iy, the P.-crystal B(w;)q
is a simple Pg-crystal isomorphic to the crystal basis B(W (w;)) of the level-zero fundamental
representation W (w;), which is a finite-dimensional irreducible Uy (g)-module introduced in [Kas02,
§5.2]. Because the W(w;), i € Iy, are ‘good’ U (g)-modules in the sense of [Kas02, § 8], we deduce
from [Kas02, Proposition 10.6] that, for each i1,i2 € Iy, there exists a unique isomorphism (called
a combinatorial R-matrix) Ry, i, B(wi,)a @ B(wi,)e — B(wi, ) @ B(wi, a1 of Po-crystals (see
also [Oka07, §2.3]); the uniqueness follows from parts (2) and (3) of Lemma 2.3.9. Combining this
fact and the tensor product decomposition theorem [NS05, Theorem 3.2], we obtain the following

theorem.
THEOREM 2.4.1. Let i = (i1,42,...,i,) be an arbitrary sequence of elements of Iy (with repetitions
allowed), and set A :== ) _, w;, € PJ?. Then there exists a unique isomorphism of P.-crystals,

\I/i : B()\)cl l> Bi = B(wil)cl & B(wiQ)d Q- B(win)cl. (2.4.1)

Remark 2.4.2. Let i = (i1,42,...,ip) and A = > p_ w;, € Pﬂ be as in Theorem 2.4.1. It follows
from Theorem 2.4.1 along with parts (1) and (2) of Lemma 2.3.9 that B()\) is a simple P-crystal
isomorphic to the crystal basis of the tensor product U, (g)-module W; := W (zw;, ) @ W (w;,) @+ ®
W (w;, ) of the level-zero fundamental representations W (w;, ), 1 < k < n.

Remark 2.4.3. Let X\ € PE. We know from [NS05, Lemma 3.19(1)] that the straight line path Mel(N)
is an extremal element of B(\)q, and that Suna) = Mwey) for each w € W. Therefore, from
Remark 2.4.2, we deduce (recalling the definition of simple P-crystals) that each extremal element
of B(\) is a straight line path 7, for some p € cl(WA) = W cl(\), and that the number of elements
of weight 1 in B(\)q is equal to one for all y € cl(WA) = W cl()\). In particular, the straight line
path 7)) is the unique extremal element of B(\). whose weight is level-zero and Ip-dominant, of
which we made mention in Remark 2.3.8.

Remark 2.4.4. Let A € P?. We see from [NS08, Lemma 2.6.4] that the weights of B(\)q are all
contained in the set cl(\) — ag ' cl(Q4).

Let i = (iy,42,...,i,) and A € P? be as in Theorem 2.4.1. It is easily seen from Remark 2.4.3
and [AK97, Lemma 1.6(1)] that Nel(wy,) @ Nel(wiy) @+ @ TNel(wiy,) is the unique extremal element
of the simple Pg-crystal B; = B(w;, )e @ B(wiy)a @ -+ @ B(w;, )a whose weight is level-zero and
Ip-dominant. Therefore, we deduce from Remark 2.4.3 and the proof of Lemma 2.3.9(3) that

Ti(Me1(x) = Nel(ws,) @ Nel(i,) @+ @ Nel(wy,,)- (2.4.2)

COROLLARY 2.4.5. Let A, \' € PY.
(1) There exists a unique isomorphism ¥y y : B(A 4+ X)q — B(A)a @ B(XN)a of Py-crystals.
(2) There exists a unique isomorphism Ry : B(A)a @ B(N)a — B(X)a @ B(A)a of Py-crystals.

Proof. Part (1) follows from Theorem 2.4.1. Part (2) follows immediately from part (1). O
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Let A\, X € PY. By the same reasoning as that yielding (2.4.2), we obtain

U (Mea(ean) = Ny @ ey (2.4.3)
Ry x(Me1x) @ Naavy) = Ne(vy @ Nel(n)-

2.5 Local energy functions
Let A\, X € P, and let i = (i1,4a,...,in), i’ = (#},,...,4,) be sequences of elements of Iy such
that A = >}, w;, and N = >}, Wi, respectively. We define the tensor product Uj(g)-modules

Wi and Wy corresponding to i and i/, respectively, as in Remark 2.4.2; note that both W; and
Wi are ‘good’ U, (g)-modules (in the sense of [Kas02, §8]) by [Kas02, Proposition 8.7], and that
B(A)q and B()\)q are isomorphic as a Py-crystal to the crystal bases of W; and Wiy, respectively.
Therefore, by an argument similar to that in [Kas02, §11], we obtain the following theorem (see
also [Oka07, §2.3]).

THEOREM 2.5.1. Let \, N € Pfg. Then, there exists a unique Z-valued function (called a local energy
function) Hy y : B(A)a @ B(XN)a — Z satisfying the following two conditions.

(H1) For each m @ n2 € B(A\)a ® B(X)a and j € I such that e;(m ® n2) # 0, the equation

Hy v (ej(m ®@mn2))
Hyy(m ®mn2)+1 if j =0, and if eg(m @ n2) = eom @ 12, eo(2 @ 1) = €o2 @ 11,
= Hx(m®mn)—1 if j=0, and if eg(n ® n2) =1 & egn2, €o(M2 @ M1) = N2 @ €T,
Hy (01 @ n2) otherwise,
(2.5.1)
holds, where we set 12 @ 1 := Ry x(m @ n2) € B(X)a @ B(\)ar.
(H2) The equation Hy x(nei(xy @ Ne(ny) = 0 holds.

3. Degree function on LS path crystals

3.1 Definition of the degree function

Let A\ € Pfg. Recall from Lemma 2.1.2 that every element v of WA can be written uniquely in the
form v =X — 0+ kd\d with § € Q1 and k € Z.

LEMMA 3.1.1. Let 7 € B()). If the initial direction o(w) € W of m is contained in A\ — Q4, then
7(1) € P can be written uniquely in the form 7(1) = X —ay '3+ ay ' K§ with 3 € Q4 and K € Z>q.

Proof. We know from [NS08, Lemma 2.6.4], along with the linear independence of ¢, j € I, and 0,
that (1) € P can be written uniquely in the form (1) = X\ — a&lﬁ + a(;chS with 6 € 4 and
K € Z. Let us show that the coefficient a LK of § in this expression of (1) € P is nonnegative.

Let m = (v1,v9,...,V5;0) be an expression of m € B(\), and write each v, € WA for 1 < u < s
as vy = X\ — By + kyd)d, where 8, € Q4 and k, € Z (see Lemma 2.1.2); note that k&3 = 0 by the
assumption of the lemma. It follows from the definition of LS paths that v; > 15 > -+ > vs, and

hence from Remark 2.1.3 that 0 = k; < ko < -+ < ks. Observe by (2.2.1) that the coefficient aalK
of § in the expression above of 7(1) € P is equal to Y. _,(0y — 0y—1)kydy. Therefore, we conclude
that ag 'K is nonnegative, and hence so is K. This proves the lemma. ]

Let us denote by Bo(A) C B(\) the connected component of the P-crystal B(\) containing the
straight line path 7). We know the following lemma from [NS08, Lemma 4.2.3].
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LEMMA 3.1.2. Let n € B()\)q. Then, the set cl™1(n) N By(\) is nonempty, where we set cl™!(n) :=
{m € B(\) | cl(7) = n}. Moreover, if we take an arbitrary = € c1~!()NBgy(\), then cl ™ (n)NBy(A) =
{7T—|—7deA5 |k eZ}.

PROPOSITION 3.1.3. Let n € B(\)a. Then, the set cl™'(n) NBy(\) contains a unique element m,
such that «(m,) € A — Q4.

Proof. Let us take 7 € c1~(n)NBy()\), and write its initial direction t(7) € W as o(7) = A\—F+kd\d
for g € CDQJF and k € Z. Then we see from Lemma 3.1.2 that m, := m — 74,5 is also contained in
™1 (n)NBo(N). Also, it is easy to show (see Remark 2.2.4) that ¢(7,) is equal to ¢(7) —kdxd = A — 8,
and hence that (m,) € A — COQJF. This proves the existence of m,. The uniqueness of m, follows
immediately from Lemma 3.1.2. This completes the proof of the proposition. U

Let 1 € B(\)a, and take 7, € cI™*(n) N Bo()\) of Proposition 3.1.3. Then, by Lemma 3.1.1, we
can write m,(1) € P in the form 7,(1) = A — ay '3 + ag ' K§ with 8 € Q4 and K € Zxo. Now,
we define the degree Deg(n) € Z«q of the n € B(\)q by

Deg(n) = —K. (3.1.1)

PROPOSITION 3.1.4. Let 1) € B(\)q. Take 7 € cl™!(n) NB(A) such that () € A — Q. and 7 # -
(1) If we write (1) € P in the form w(1) = A — ag '3’ + ay ' K'd with ' € Q4 and K’ € Zy, then
we have —K' < Deg(n).

(2) If we write the final directions k(my) and k() of m, and m in the form k(m,) = A — B + kdx0
and k() = X — ' + k'd)é with 8,3 € Q4 and k,k’ € Z, respectively, then we have k < k'.

Remark 3.1.5. Part (1) of Proposition 3.1.4 characterizes the degree Deg(n) € Z<o of n € B(\)q as
the maximum of the nonpositive integers —K for which 7(1) € P is of the form (1) = A —ay '8 +
ag 'K § with 3 € Q4 and K € Zso, where 7 € cl™1(n) NB()) is such that (1) € A — Q.. Moreover,
the maximum Deg(n) is attained only by 7, € cl™*() N By(\) of Proposition 3.1.3.

To prove Proposition 3.1.4, we need the following lemma, which can be shown by an argument
in the proof of [NS08, Theorem 3.1.1].

LEMMA 3.1.6. Each connected component of B(\) contains a unique element whose reduced expres-
sion is of the form

(M A+ kodypd, ..., A+ ksd)6;00,01,...,05), (3.1.2)
with ko, ..., ks € Z and 0 =0cg < o1 < - < o0 = 1.
Remark 3.1.7. It follows from the definition of LS paths that A > A + kodyd > -+ > A + ksd)0.
Hence we see from Remark 2.1.3 that 0 < ko < -+ < kg.

Proof of Proposition 3.1.4. Assume that 7w € B(\) lies in a connected component of B()) containing
an LS path 7’ whose reduced expression is of the form (3.1.2). We see from Proposition 3.1.3 and
the assumption of the lemma that 7 does not lie in By(\), and hence that s > 2.

We set ¢ := (0, kod)d, . .., ksdp\0; 00,01, ...,05); note that 7’ = m) + 1. Let X be a monomial of
X in the root operators ej, f; for j € I such that 7 = X7'. Then we have
Xmy=X(r' =)= X7 —1 by [NS08, Lemma 2.7.1]
=m—1.
Since cl(7) = n, it follows that cl(Xy) = cl(mr—¢) = cl(r) = n. Hence we get X7 € cl_l(n)ﬂIB%o(o)\).
Also, because t(7) € A — Q4+ and ¢(v)) = 0, we see that «(Xmy) = t(m — ) = (7)) — () € X — Q4.
Hence it follows from Proposition 3.1.3 that X7y = m,. Thus we obtain m, = m — %, and hence

Deg(n) = =K' + ag x (coefficient of 6 in ¢ (1)) and k =4k —k;.
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Since s > 2 as seen above, we deduce from Remark 3.1.7 (using (2.2.1)) that the coefficient of ¢ in
(1) is greater than 0. Therefore, we conclude that —K’ < Deg(n). Furthermore, since ks > 0 with
s > 2, it follows that k < k’. This completes the proof of the proposition. O

3.2 Behavior of the degree function under root operators

Asin §3.1, let A € PY.

LEMMA 3.2.1. The following hold.
(1) We have Deg(n()) = 0.
(2) Let n € B(\)a1, and j € I. If ejn # 0, then (see Remark 2.2.10)

Deg(n) — 1 if j =0 and t(egn) = 1(n),
Deg(e;n) = § Deg(n) — (¢(n))(ho) — 1 if j =0 and t(egn) = ro(¢(n)), (32.1)
Deg(n) if j #0.
Proof. Part (1) is obvious from the definition of Deg, since m,,,, = m. Let us prove part (2).

It is obvious that ejm, € By(\) since m, € By(A) by definition. Also, we know from (2.2.10) that
cl(ejm,) = ej cl(m,;) = e;n. Let us write m,(1) € P in the form m,(1) = A — ay '8 — ag ' Deg(n)d with
B € Q4.

First, assume that j # 0. We deduce from Remark 2.2.10 along with Lemma, 2.1.2 that «(e;m,) €
A—Q. Because e;m, € Bo(A) and cl(ejm,;) = e;n, it follows from Proposition 3.1.3 that 7., = e;m,.
Since j # 0, we have

Te;n(1) = (ejmy)(1) = my(1) + a5 = A = (ag ' — o) —ag " Deg(n)é,
—_———
€ay Q4
and hence Deg(e;n) = Deg(n).

Next, assume that j = 0 and ¢(egn) = ¢(n). Then we deduce (using (2.2.9)) from the definitions
of the root operator ey on B(A) and the root operator eg on B(A)a that t(egm,) = ¢(my), and hence
t(eom,) € A — Q4. Because egm, € Bo(A) and cl(egm,) = egn, it follows from Proposition 3.1.3 that
Teon = €0Ty. Now, define 6 € Q1 by 0 = § — apayp. Since ag = a(;l(é — 0), we have

Teon(1) = (eomy) (1) = my(1) +
=\ —ag'B—ay" Deg(n)d +ag'(6 - 0)
=A=ag (B+0) — a5 (Deg(n) — 1)5,
and hence Deg(egn) = Deg(n) — 1.
Finally, assume that j = 0 and t(egn) = 79(¢(n)). Then we deduce (using (2.2.9)) from the
definitions of the root operator ey on B(\) and the root operator on ey B(\). that
w(eomy) = rou(my) = u(my) — (¢(my))(ho)ao
— i) + a5 (10m)) ()0 — g () (o), (3.22)
where 6 = §—agay as above. Note that ¢(m,))+ag *(1(m,)) (ho)0 € A=>jer, Qaj, since () € A—Q.
Because t(egmy,) € WA, it follows from Lemma 2.1.2 and the linear independence of o, j € I, and 0

that (7)) + ag *(t(my)) (ho)0 € X — Q. and ag (u(my)) (ho) € Zdy. Hence, ag*(e(my))(ho) = kdy for
some k € Z. Also, because eym, € By(A\) and cl(egm,) = eon € Bo(A), we deduce from Lemma 3.1.2
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that egm, + Tra,s € cl™(egn) N Bo(N). Furthermore, we have

t(eomy + Trays) = tleom) + t(Trays) by Remark 2.2.4
= (7)) + ag *(t(my)) (ho)0 — kdxd + kdyd by (3.2.2)
= u(my) + ag " ((my)) (ho)0,
where the last element lies in A — C°2+ as seen above. Therefore, by Proposition 3.1.3, we get 7, =
€0Ty + Tkd,s. From this, we obtain
Teon(1) = (€0my) (1) + Trays(1) = my(1) + g + kdyd

=\ —ay'B—ay' Deg(n)d +ag' (6 —0) + kdyo

=\ —ay (B+0) — ag*(Deg(n) — agkdy — 1)d,
and hence

Deg(eon) = Deg(n) — aokdy — 1 = Deg(n) — (¢(my))(ho) — 1.

Note that (u(m))(ho) = (e(n))(ho) since cl(v(my)) = (cl(my)) = ¢(n) by Remark 2.2.8. Thus we

conclude that Deg(egn) = Deg(n) — (¢(n))(ho) — 1, as desired. This completes the proof of the
lemma. O

LEMMA 3.2.2. Let n € B(\)a, and j € I. Assume that e;n # 0, and that (v(n))(h;) < 0. Then,

Deg(n) —eo(n) — (¢(n))(ho) if j =0,
Deg(n) if j # 0.

Proof. 1f j # 0, then it follows immediately from Lemma 3.2.1(2) that Deg(el**n) = Deg(n). Now
assume that j = 0. If eg(n) = 0, i.e. ¢gn = 0, then we see from Lemma 2.2.11(1) that (c(n))(ho) > 0,
which, when combined with the assumption of the lemma, implies that (¢(n))(ho) = 0. Hence we
have

Deg(e}***n) = { (3.2.3)

Deg(ef™n) = Deg(egn) = Deg(n) = Deg(n) — co(m) ~ (m)) (o)
=0 =0

Thus it remains to consider the case €g(n) > 1. From Lemmas 2.2.11(2) and 3.2.1(2), it follows that

Deg(eg""™"n) = Deg(n) — coln) + 1. (3.24)
Therefore, by using parts (2) and (3) of Lemma 2.2.11, we see from Lemma 3.2.1(2) that
Deg(ef™n) = Deg(eg""n) = Deg(eoey” " ~'n)
= Deg(eg”" 1) — ((n)) (o) — 1
= Deg(n) —eo(n) + 1= («(n)(ho) =1 by (3.24)
= Deg(n) —€0(n) — (¢(n))(ho)-
This proves the lemma. 0

4. Relation between the energy function and the degree function

4.1 Main results

Let i = (i1,i9,...,i,) be an arbitrary sequence of elements of Iy, and define the tensor product
Pg-crystal B; := B(w;, ) @ B(wiy)e @ -+ - @ B(w;,, )e. For an element 71 ® o ® --- ® 1, € By, we
define nl(k) € B(wi,)a, 1 < k <1< n, as follows (see [HKOTY99, § 3] and [HKOTTO02, §3.3]). There
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exists a unique isomorphism
B(w@iy )el @ B(@iy 1) ® - @ B(wi,_, )at @ B(w, )l
= B(w;,)a @ B(wiy)a ® -+ @ B(w;,_,)a @ B(wi,_, )
of P.-crystals, which is given as the composition Rwik @i, © RkaH,le 0---0 Rw” iy of combina-
torial R-matrices (see §2.4); for uniqueness, see Lemma 2.3.9(3). We define 771( ) to be the first factor
(which lies in B(cw;,)q1) of the image of np @ g1 ® --- @y € B(wiy )a @ B(wiy,,)a @ -+ @ B(wy,)a
under the above isomorphism of Pg-crystals. For convenience, we set nl(l) = for 1 <1l < n.

For each 1 < k < n, take (and fix) an arbitrary element 7} € B(w;, )a such that f;n; = 0 for
all j € Iy. Note that such an element 7],"f € B(w;, )a actually exists. Indeed, for each ¢ € Iy, we
know from Remark 2.2.7 that nz, € B(w;)q, where @; := wo cl(w;) € Py (see also Remark 2.1.5);
it follows immediately from the definition of the root operators f;, j € Ip, that f;nz, = 0 for all
JE Ip.

Now, following [HKOTY99, § 3] and [HKOTT02, §3.3], we define the energy function D; : B; =
B(wi; )a @ B(wiy)el @ -+ @ B(wy,, )t — Z by

Di(m @m2 @ -+ @ny)

n

k+1 l
1<k<i<n k=1

Also, we define a constant Df*' € Z by

DE =3 He e (0 ) (4.1.2)
k=1

The main result of this paper is the following theorem.

THEOREM 4.1.1. Let i = (i1,42,...,i,) be an arbitrary sequence of elements of Iy, and set \ :=
S p_i @i, € PV. Then, for every n € B(\)q, the equation
Deg(n) = Di(Wi(n)) — Df** (4.1.3)

holds, where U; : B(\)q = By is the isomorphism of P.j-crystals in Theorem 2.4.1.

We will establish Theorem 4.1.1 under the following plan. First, in § 4.2, we show some technical
lemmas needed in subsections that follow. Next, in §4.3, using these lemmas, we prove Proposi-
tion 4.3.1, which is the key to our proof (in §4.4) of Theorem 4.1.2 below. Finally, in § 4.5, we prove
Theorem 4.1.3 below, which, when combined with Theorem 4.1.2, establishes Theorem 4.1.1.

THEOREM 4.1.2. Let i = (i1,42,...,i,) be an arbitrary sequence of elements of Iy, and set \ :=
> h_q @i, € PJ?. Let n € B(\)q, and set ¥i(n) :=m @ne @ -+ @ np, € By = B(wy,)a @ B(wiy)a @
-+ ® B(w;, ). Then, the following equation holds:

Deg(n) = . Hayp o, (e @n ™)+ Z Deg (1 (4.1.4)
1<k<I<n

THEOREM 4.1.3. Let i € I, and let 1% € B(w;)a be an element of B(w;). such that fjn" = 0 for
all j € Iy. Then, for every n € B(w;)., the following equation holds:

Deg(1) = Hey oo, (1 @ 1) = Heoy oo, (11 @ Nt (am))- (4.1.5)

Remark 4.1.4. Assume that g is a nontwisted affine Lie algebra (note that ap = 1), and let i € Iy,
m € Zx1. In [GL04, §5.7 and Proposition 5.9], they constructed an isomorphism ¢ of P-weighted
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crystals from the affinization of the P.j-crystal (B(w;)q)®™ onto Uo<ar<m Bo(mei+M0); see [GLO4,
§2.8] and [NSO08, §4.1] for the affinization of a P-crystal. Also, in [NS08, §4.2], we constructed
an isomorphism © of P-weighted crystals from the affinization of the P.-crystal B(mw;) onto
Lo<ar<m Bo(mw; + M§). In fact, we can show, without making use of Theorem 4.1.1 (cf. the proof
of [NS08, Proposition 4.14]), that the two isomorphisms ¢ and © can be considered as identical
under the identification B(mw;)q — (B(w;)a)®™ of Py-crystals given by Theorem 2.4.1. From this,
using the explicit constructions of ¢ and © (see the proof of [NS08, Proposition 4.14]), we obtain a
description of Deg(n) for n € B(mw;). in terms of local energy functions. This description of the
degree function Deg : B(\)e — Z is similar and closely related to the one in Theorem 4.1.1 for the
special case that g is a nontwisted affine Lie algebra and A = muw;.

4.2 Some technical lemmas
Recallo from [Kac90, Proposition 6.3] that a real root of g lies either in ag 1COQ+ + ay 176 or in
_aalQJ,_ + aalZé.
LEMMA 4.2.1. Let A € Pfg, and let we W, jel.
(1) If (w(cl(N)))(h;) < 0, then the real root w™!(«;) lies in _aalé_l’_ + ay ' 7Z6.
(2) If the real root w™'(a;) lies in —a(;l@Jr + ay 'Z6, then (w(cl(N)))(hj) < 0.
(3) Assume that A is strictly Ip-dominant. Then, (w(cl(X)))(h;) < 0 if and only if the real root
w () lies in —ag ' Q4 + ag 'Z4.
Proof. Since (o, ;) € Z for all j € I, and since
2(w(N), o) _ 2(A\w (o))
(w(cl(A)))(hy) = (w(A))(h;) = =
’ ’ (aj, ) (aj, o))

it follows that (w(cl(A\))(h;) < 0 if and only if (\,w !(a;)) < 0, and that (w(cl())))
(h;j) = 0 if and only if (\,w !(a;)) = 0. Also, since A is level-zero and Ip-dominant, and since
(0, 5) € Zs for all j € Iy, we have

(A, +a5t Q4 4 a5 Z6) = (A, a5 Q) € £Qso.

Now, all the assertions of the lemma follow immediately from the discussion above. ]

9

LEMMA 4.2.2. Let A € P, and let n € B(\)a, j € I. Assume that 1 has an expression of the
form n = (u1,p2;0,0,1), with py,pe € c(WA) = Wcl()\) and 0 < o < 1. If py(h;) < 0, then
M = (15(ju1), pb; 0,7, 1), where

1 if po(hj;) =0,
ph = { 2 2(h;) (4.2.1)

T2 l'fpg(hj) < 0.

Proof. First, assume that ps(h;) > 0. Then, since p1(h;) < 0 by the assumption of the lemma, it
follows that the function H(t) is strictly decreasing in the interval [0, 0], and m] = H(o) < 0;
note that €;(n) = —mJ by (2.2.11). For 0 <1 < g;(n) = —m], let o® be the unique point in [0, o]
such that Hy(a(l)) = m? +1; observe that 0 = o(&() < g M-1) < ... < 5(0) = 5. Now it is easily
shown by induction on [ that, for 0 <1 < ¢;(n),

n(t) if0<t<ol),
(e (t) = { n(e®) +r;(n(t) —n(e®)) ol <t <o,
n(t) + la; ifo<t< L
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In particular, by taking I = €;(n), we have

(egnaxn)(t) _ {Tj(ﬁ(t)) 1f 0<t<o,
n(t) +ej(n)o; fo<t<l
which implies that e;***n = (rj(p1), p2;0,0,1), since n = (p1, p2; 0,0, 1).

Next, assume that po(h;) < 0. Then, since p1(h;) < 0 by the assumption of the lemma, it
follows that the function HJ(t) is strictly decreasing in the interval [0,1], and m] = HJ(1) < 0;
note that £;(n) = —mj by (2.2.11). For 0 <1 < g;(n) = —m], let o be the unique point in [0, 1]
such that Hy(a(l)) = m? 4 1; observe that 0 = &) < gEM-1 < ... < 5O = 1, Now it is easily
shown by induction on [ that, for 0 <1 < g;(n),

e . =
" n(0®) +ri(n(t) — n(@®)) it o <
In particular, by taking I = €;(n), we have
(e7™n)(t) = r;(n(t)) forte[0,1],

which implies that e}'*n = (r;(u1),7;(p2);0,0,1), since n = (u1,12;0,0,1). This completes the
proof of the lemma. O

ON

<o
t<1.

max

LEMMA 4.2.3. Let A € PY. Let ) = (1, fa, - - - , ls; 00, 01,02, . . ., 05) be an expression of n € B(\)a,
and assume that s > 2.
(1) The element n' := (u1, p2; 00,01, 0s) Is contained in B(A)q.

(2) If j € I is such that pi(h;) < 0, then (ef'*n)(t) = (e]**n')(t) for all t € [0,02]. Hence, by

Lemma 4.2.2, e]***n € B(\)q has an expression of the form

maxn = (r],ul,,uQ,,ug, Moo, 01,090,050k, (4.2.2)

where

;o {/’LQ lf,LLQ(h]) = 07 (423)

Mo = .
T2 lfpg(hj) < 0.
Proof. (1) Let m € B()\) be such that cl(7) =7, and let
= (V1,V2,...,Ug;00,00,05, ... ,0m)

be an expression of 7. By ‘inserting’ (see [NS08, Remark 2.5.2(2)]) o1 (respectively, o2) between
o, and o, such that ;) < o1 (respectively, o2) < 07/, ; if necessary, we may assume that there
exist 1 < uy < up < s” such that oy, = o1 and oy, = 02. By Remark 2.2.8 and the condition that
cl(r) = n, we have
cl(vy) = w1 for all 1 <u < uy,
<

(4.2.4)

cl(vy) = po  for all uy +1 < u < ue.

Set 7' 1= (V1,00 ..., Vup3 00,005, Oy 1,00 ) Then we can easily deduce from the definition of

LS paths (see also [Lit95, Lemma 4.5b)]) that 7/ € B(\). Furthermore, it is clear from Remark 2.2.8
and (4.2.4) that cl(n") = n/. Thus we have proved that 7" € B(\)q.

(2) For 0 <1 <¢€j(n) —1, we set n := egn € B(\)q, and
t = min{t € 0,1] | H"(t) =m]'}, 1§ == max{t € [0,¢1] | HP(t) = m" + 1}.
By (2.2.11), we have
= —¢j(m) = —ej(en) = —g;(n) +1 = m]+1 for 0 <1<ej(n) -1 (4.2.5)
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Now, let us assume that pa(h;) = 0. Since 1 (hj) < 0 by the assumption of the lemma, it follows
that ky = H”(Ul) < 0. Also, since pa(hj) > 0, we see that the function H”( ), t € [0,1], attains a
local minimum at ¢ = o7. Therefore, we obtain k1 € Z_-o by Remark 2.2.9. Observe that

Hn(t) >k forallt e 0,09)]. (4.2.6)
We set [y 1= k; — m € Z>p; note that i1 < m = ¢j(n) since k1 € Zo.

CrAam. For all 0 <1 <1y, we have ni(t) = n(t) for all t € [0, 02].

Proof of Claim. We show the assertion by induction on [. When [ = 0, the assertion obviously holds.
Assume that 0 < ! <[; and that 7, (t) = n(t) for all t € [0,02]. Note that 7, = e;m_1. Therefore,
by the definition of the root operator e;, it suffices to show that o9 < t(()l_l). We see from (4.2.5)
that

H' )y =ml = ml pl—1<ml 4l — 1=k — L. (4.2.7)
Also, since n;_1(t) = n(t) for all t € [0, 02 by the induction hypothe51s, it follows from (4.2.6) that
H]m’l(t) = H]n(t) > ky for all t € [0,02]. Hence we deduce from (4.2.7) that tgl_l) ¢ [0,09], ie.

that oy < Y.
We have Hm‘l( 2) = Hi(02) =2 ki = m]+1l >m]+1 = m?l‘l + 1 as seen above, and
Hy“l(tgl_l)) m;” < mm ' + 1. Therefore, from the continuity of the function H]ﬁ“l(t) in the
t < t(l Y Such that Hm’l (t') = m?“l—i-l.

interval o9 <t < tgl_l) we conclude that there exists o9 <
Hence it follows from the definition of té U that t( 2 >t/ > o9. This proves the claim. O

From the claim above, by taking [ = [;, we obtain 7, (t) = n(t) for all ¢ € [0, 02]. Consequently,
we see from the definition of tgll) that tgll) = 01, since m?ll = m? +1; = k; and Hy(al) = k.
Therefore, as in the proof of Lemma 4.2.2, we can show (using 7(t) = n, (t) for t € [0,02]) that

(e n)(t) = (e;myn)(t) = (M) (t) = (e m, ) (t)
(n(t)) if 0 <t <oy,
=nt) — ki ifop <t <o,
m, (1) — ko if o <t < 1

From this and Lemma 4.2.2, we conclude that (ej***n)(t) = (e'**n’)(t) for t € [0, o2].

The proof for the case pa(h;) < 0 is similar; we give only a sketch of the proof. Take the largest
u € {2,3,...,s} such that ju,s(h;) < 0 for all 1 < ' < u. Then we see that the function H(t),
te0,1], attalns a local minimum at ¢ = o,, and hence that k, := H}(0,) € Z<o by Remark 2 2.9.

We set [, :=ky, — m € Z>o. Exactly in the same way as above, we can show that n(t) =, (¢) for
(lu)

all t € [0, 0. Consequently, we have t;"’ = oy, since p,y(h;) < 0 for all 1 < v’ < u. Therefore, as
in the proof of Lemma 4.2.2, we can show (using 7(t) =, (t) for ¢t € [0,0,]) that

ri(n(t)) if 0 <t <oy,
1, (1) — kuaj lf%\t@.

(e ™n)(t) = (e; " m,)(t) = {

From this and Lemma 4.2.2, we conclude that (e}'**n)(t) = (ej***1)(t) for t € [0, 02]. This completes
the proof of the lemma. O

4.3 Key proposition to the proof of Theorem 4.1.2
The following proposition plays a key role in the proof of Theorem 4.1.2.
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PROPOSITION 4.3.1. Let A € P, and let ) € B(A)q be an element of B(\)q such that ejn = 0 for
all j € Iy. Then, there exists a sequence ji, jo,...,Jjn € I such that:

max ,max .,  ,nax,, __ .
(A) €in Cin-a €1 1= Tel(N)

(B) rjirj, - --rjp(aij) € —a51602+ + aglzé forp=0,1,...,N — 1.
In order to prove Proposition 4.3.1, we need Lemmas 4.3.2 and 4.3.3 below.

LEMMA 4.3.2. Let A € Zielo Z~ow; be a strictly Ip-dominant integral weight. Let ny be an element
of B(\)q such that v(n) = cl(X\). Then, there exists a sequence ji,ja,...,jn € I such that:

max,max & ,MaX,, .
(A) €in Cin-1 €= Tel(N)>

(B,) (’I"jp’l"jp71 cee Ty (Cl()\)))(hijrl) <0 forp=0,1,...,N — 1.
Proof. The crucial point in the proof is to consider the special case of n € B(\).; having an expression
of the form

n=(cl(A),1;0,0,1), with g€ (W) =Wecl(\) and 0 < o < 1, (4.3.1)

and prove the assertion of the lemma in this case. Before doing this, we show how to deduce the
general case from the special case (4.3.1). By Remark 2.3.1, the set of all elements of [0, 1] appearing
as the o, in the reduced expression (v;o09,01,...,0s) of some element of B(\). is a finite set. Let
n = (cl(N\), 2, ..., ts; 00,01,02,...,0s) be the reduced expression of 1. Using the finiteness above,
we show the assertion of Lemma 4.3.2 by descending induction on o7 in the reduced expression
(cl(A), 2y - -+ s p15500,01,02, ..., 05) of ) € B(A)e1. When o1 = 1, we have ) = 1y, since ¢(n) = cl(})
by the assumption of the lemma. Thus the assertion obviously holds. Assume that o1 < 1, or
equivalently s > 2. Set 0’ := (cl()\), po; 00,01,05); note that ' € B(\)q by Lemma 4.2.3(1). It
follows from the assertion in the special case (4.3.1) that there exists a sequence ji, jo,...,jn €
satisfying conditions (A) and (B') for n/. We set i := e’2*e’%* .. eJi**n. Then, repeated use of
Lemma 4.2.3(2) shows that

n'(t) = (efoeres eRn ) (t) = napy(t) = tcl(A)  for t € [0, 03] (4.3.2)
Hence the initial direction ¢(n"), which equals r;,,7;., , ---7j (cl(\)) by Lemma 4.2.3(2), must be
equal to cl(\). Therefore, if n” = (cl(X\), ;. .., pl; 00,01, 05, ...,0%) is the reduced expression of
7", then we see from (4.3.2) that o} > o2 > o1. Hence, by the induction hypothesis, there exists
a sequence jn/i1,jN'42,---,JN € I satisfying conditions (A) and (B’) for n”. Thus we obtain a
sequence
jl)ij s 7jN’7jN’+l7jN’+27 s 7jN el

satisfying conditions (A) and (B') for n (note that rj ,7; ., -7 (cl(X)) = ¢(n") = cl(N)). This
proves the assertion of the lemma in the general case.

Now, it remains to prove the assertion of the lemma in the special case (4.3.1). Since B(\)q is a
finite set (see Remark 2.3.1), it follows that max{|[7/|| | n € B(A)a} < oo, where ||n| is as defined
in (2.3.1); recall that wt(n) is given by wt(n) = n(1) € P,. We will show the assertion by descending
induction on ||n]|. When ||5|| = max{||7/|| | € B(\)a}, it follows from Lemma 2.3.6 that 7 is an
extremal element. Since the initial direction «(n) of 7 is equal to cl(\) by assumption, we deduce
from Remark 2.4.3 that n = 7y (hence there is nothing to prove).

Assume that [[n]| < max{||n[| | n’ € B(A)a}. Set A := woA, where wy € W is the longest element
of W. Then it is easy to check that A(h;) € Z<g for all j € Iy. Note that p € cl(WA) = Wcl()\)
satisfies the condition that p(h;) < 0 for all j € Iy if and only if p = cl(A) (see Remark 2.1.5).

We see from [AK97, Lemma 1.4] that there exists a sequence j1, jo, ..., jn’ € I such that:

(@) 7 Tinry i (Cl(A)) = cl(A);
(b) (1,7, T (l(N)) (R, 1) <0 for p=0,1,..., N — 1.
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Set 7' 1= e™¥elnax ... ey € B(A)q. Then it follows from Lemma 2.3.3 that
n

IN? TIN'—1
71l = lInll. (4.3.3)

Furthermore, from (b), we deduce by repeated application of Lemma 4.2.2 that

max _max max

Sorerny ety = (T Tinr = T (cl(\)), 1';0,0,1)  for some p’ € cl(WN),

and hence from (a) that

max max

T, - e]N/ e]N/ 1 maxn = (TJN/TJN/ 1 ' Th (Cl(}\)),'u/, 07 g, 1)
= (cl(A), 50,0, 1).
Case 1: p/ = cl(A). In this case, we have 1’ = (cl(A), cl(A);0,0,1) = ). Let wo =

Tjn_1Tjn b€ areduced expression of wgy € W; note that jn/y1,jn742,---,JN-1,JN € Ip. Then, since
A = wgA, it follows that

(C) Terijl e Tqu_l(Cl(A)) = Cl()\)

In addition, using [Kac90, Lemma 3.11b)], we obtain

(d) (r,75p 1 Tipr i (€M) (R, ) <O for allp=N',N'+1,...,N - 1.
From (c) and (d), we see by repeated use of Lemma 4.2.2 that

TinrgaTinrge ™"

max  max max _max  max max max  max max ./
ejN ejN 1 IN/41 IN' CINT—1 n= e]N e]N 1 eJN’+177
__ _max _ max max . _ —
= Cin Cin_1 ejN/+1 (CI(A)v CI(A)v 0> g, 1) - (CI(A)a CI(A)a Oa a, 1) = Tlcl(N) -

Therefore, the sequence ji,j2,...,jn € I satisfies condition (A). Also, it follows from (a), (b),
and (d) that (r;,rj,_, 75 (cl(X)))(hj,,,) < 0 for all p = 0,1,...,N — 1, and hence that the
sequence ji, j2,...,jn € I satisfies condition (B').

Case 2: pi" # cl(A). In this case, we can take (and fix) jy/11 € Io such that p/'(h;,, ) > 0. Then,

there exists a reduced expression of wgy € W of the form wy = “Tjyn; Dote that

IN'41s JN'+25 - - -, N7 € Tp. Since A = woA, it follows that

(e) T]'N// TjN//_l e er/+1 (CI(A)) = Cl()\)

In addition, using [Kac90, Lemma 3.11b)], we obtain

(£) (rj,rjp_y - TjN/H(cl(A)))(hij) <Oallforp=N' N +1,...,N" —1.

If we set 0" = = ejorerey ;“A?,Xln then [|n”]| > |[[n]|. Indeed, since (cl(A))(hjy,,,) < 0 by (f)
with p = N’ it follows from Lemma 2.2.11(1) that eJ'N/+177, # 0. Also, since ,u’(th/H) > 0, it follows
from Lemma 2.2.13 that ij’+177, # 0. Therefore, we obtain from Lemma 2.3.3

TjN’+1er’+2 o

leres 'l > . (4.3.4)

Hence we have
"]l = ||€]N,+177 || by Lemma 2.3.3
> 7|l by (4.3.4)
> |nll by (4.3.3).

Furthermore, from (e) and (f), we see, by applying Lemma 4.2.2 successively, that

emax max .. max /
77 TN TN 1 JN’+177

( N”TJN” 1 "I"jN,+1(Cl(A)),/L”;0,O', 1)
= (cl(N), p";0,0,1)
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for some p” € cl(WA). Therefore, by the induction hypothesis, there exists a sequence jyui1,
JN742,.-.,Jn € I satisfying conditions (A) and (B’) for n”. It is easily checked by (a), (b), (e), (f),
and the induction hypothesis that the sequence

jl?j?a v 7jN’7jN'+17jN’+27’ - 7jN”7jN”+17jN”+27 s 7jN el

satisfies conditions (A) and (B') for 7. This proves the assertion in the special case (4.3.1), and
hence completes the proof of the lemma. O

If X € ) icp, Z>ow; is strictly Ip-dominant, then we see from Lemma 4.2.1(3) that condition (B')
of Lemma 4.3.2 can be replaced by condition (B) of Proposition 4.3.1. Namely, we have the following
result.

LEMMA 4.3.3. Let A € ZZEIO Z~ow; be a strictly Iy-dominant integral weight. Let n be an element
of B(\)a such that «(n) = cl(X\). Then, there exists a sequence ji, j2, ..., jn € I satisfying conditions
(A) and (B) of Proposition 4.3.1.

Finally, let us give a proof of Proposition 4.3.1.

Proof of Proposition 4.3.1. We set p := Zz‘elo w; € Pﬂ; note that p € Pﬂ is strictly Ip-dominant,
and hence so is A+ p € > ; Z~ow;. Since ejn = 0 for all j € Iy by assumption and €jNel(p) = 0 for
all j € Iy by the definition of the root operators e;, we see from the tensor product rule for crystals
that n®1a(,) € B(A)a®@B(p)q also satisfies the condition that e;(n®mnqy,)) = 0 for all j € Io. Recall
from Corollary 2.4.5(1) that there exists an isomorphism ¥y , : B(A+ p)a — B(A)a @ B(p)e of Pr-
crystals. Set n/ := ‘Pi,lp(77®77c1(p)) € B(A+ p)a. Then, clearly e;jn’ = 0 for all j € Iy. Hence it follows
from Lemma 2.2.11(1) (see also Remark 2.2.8) that the initial direction «(n') € cl(W(X + p)) =
W cl(A + p) of 7" is level-zero and Iy-dominant, and hence from Remark 2.1.5 that (n/) = cl(A + p).
Since A + p € Y, Z~ow; is strictly Ip-dominant, we know from Lemma 4.3.3 that there exists a

sequence ji,jo, ..., jn € I satisfying conditions (A) and (B) for 7. Now, it remains to show that
eqvre s o €57 = ne(y), 1.e. that the sequence ji, j2, ..., jn € I also satisfies condition (A) for 7.
We have

I (1) 9 1) = RN, (0 (1)

= Wy (efFen™ - ef™n') = Wy p(Narngp)) by condition (A) for '

= N1\ @ Nei(p) by (24.3).
Also, we see from Lemma 2.3.2(2) that

MM (1) 1)) = (RN B @ for some 1" € B(p)a.
Thus, we obtain e}\™ej*™ ---e**n = n¢y). This establishes Proposition 4.3.1. O

4.4 Proof of Theorem 4.1.2

In this (and the next) subsection, the degree function Deg is defined on several different crystals
B(u)a, p € PY. Accordingly, we write Deg,, (1) instead of Deg(n) for n € B(u)a with p € PY to
emphasize that 7 is an element of B(u)..

Let \,\ € PE. For m1 @ 2 € B(A\)q @ B(X)e1, we define (see Theorem 2.5.1)

Dy x(m ®n2) == Hx x(m ®n2) + Degy(m) + Degy (12), (4.4.1)

where 175 € B(X)q is defined by 72 ® i1 = Ry x(m ® 1n2) (see Corollary 2.4.5(2)). From Theo-
rem 2.5.1(H2) and Lemma 3.2.1(1), we deduce by use of (2.4.4) that

Dy x(Meax) @ navy) = Hax (Mo @ neaovy) + Degy(maeyy) + Degy () = 0. (4.4.2)

1545

https://doi.org/10.1112/50010437X08003606 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X08003606

S. NAITO AND D. SAGAKI

LEMMA 4.4.1. Let \, N € P9, and let n; ® 12 € B(A\)q ® B(XN)q. The following hold:

(1) Dy (ef™(m ®@n2)) = Dy x(m @ n2) for all j € Io;
(2) if (¢(m))(ho) < 0 and (¢(772))(ho) < 0, then

D\ (eg™ (m ®@n2)) = Dy (m @n2) — (¢(n1) + ¢(12))(ho) — €0(nm @ n2). (4.4.3)
Proof. Let j € I. We see from Lemma 2.3.2(2) that
e (m @n2) = e m @1 for some 75 € B(N ),

and hence that
Ry x (€5 (m @ m2)) = €™ Ry x(m ®@n2) = €] (12 @ m1)
gy @ny  for some 1) € B(\)g.
Therefore, from the definition (4.4.1) of D) y/, we obtain

Dy (e (m @m2)) = Hx x (€™ (m @ n2)) + Degy (e} m ) + Deg (e}***n2). (4.4.4)

From (4.4.4), part (1) follows immediately by Theorem 2.5.1(H1) and Lemma 3.2.1(2). Let us prove
part (2). We give a proof only for the case gq(n1) > €¢(72); the proof for the case eq(n1) < eo(72) is
similar. By Lemma 3.2.2,

Deg, (eg™*m) = Degy(m) — €o(m) — («(m))(ho),
Degy (e5"™12) = Degy (2) — €0(72) — (¢(712)) (ho)-
For simplicity of notation, we set L := g¢(n1 ® 12); note that L = (72 @ 11) since 7o @ 11 =

Ry x(m ®mn2), and that L > €y(n1),€0(72) by Lemma 2.3.2(1). It follows from Lemma 2.3.2(2) that,
for 0 <1< L,

(4.4.5)

I m @ ehns if0<I<L—eo(m),
o(m ®@m2) = {eé—meo(m)m @ el S L eo(m) <1< L,

and
N2 ® ey if 0< 1< L—ep(n),

l ~ ~
€ X = ~
ot &) {éLﬁwmn®e )G if L — eo(fl) < I < L.
Therefore, we deduce from Theorem 2.5.1(H1) that, for 0 <" < L —eo(m),
Hy x (el (m ® 12)) = Hyx(m @ 1) =1 (4.4.6)
Similarly, we see from Theorem 2.5.1(H1) that, for 0 < I’ < eg(m) — eo(72),
Ho (e ™™ (@ m2) = Haw (e ™™ (m © m2))
= H)\’)\/(T]l X 7]2) — L+ 50(771) by (446) with ' = L — 80(7]1), (447)
and that, for 0 < I’ < go(2),
L—eo(i2)+ —eo(72) /
H (e (m ®mp)) = Hyx(eq (m ®m2)) +1
= H)\7)\/(’I71 (039 7’}2) — L+ 50(771) + U by (4.4.7) with I/ = 50(771) — 50(772). (4.4.8)
Finally, by taking I’ = £¢(72) in (4.4.8), we conclude that
Hy (g™ (m @ m2)) = Hax(ef (m @ n2))
= Hyx(m ®n2) — L+ co(m) + £0(2)

= Hyx(m @ n2) — eo(m @ n2) + €o(m) + €0(72)- (4.4.9)

By substituting (4.4.5) and (4.4.9) into (4.4.4), and then comparing the resulting equation with

(4.4.1), we obtain the desired equation (4.4.3). This proves the lemma. O
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PROPOSITION 4.4.2. Let \, N € P{, and let n € B(A+ \)q. Then,
Degx (1) = Dax (¥ax (1), (4.4.10)

where W) v : BN+ X)a = B(A)a @ B(X)a is the isomorphism of P-crystals in Corollary 2.4.5(1).

Proof. If j € Iy, then it follows from Lemmas 3.2.1(2) and 4.4.1(1) that Degy\ (e]*™n) =
Degyx(n) and Dy (Wan (€]n)) = Dyx (€] (Wan (1)) = Dax (¥ x(n)). Therefore, we may
assume that n € B(X + \)q satisfies the condition that e;n = 0 for all j € Iy, since the Py-
crystal B(A + N)g is regular. Then it follows from Lemma 2.2.11(1) (see also Remark 2.2.8)
that t(n) € cl(WA) = Wecl(A) is level-zero and Ip-dominant, and hence from Remark 2.1.5 that
t(n) = cl(A+ X). Set m @ m2 1= Wy v(n) € B(AN)a ® B(N)a, and 72 @ i1 := Ry x(m @ n2). Since
e;n = 0 for all j € Iy, we have ej(m ®12) = 0 and e;(72 ®71) = 0 for all j € Iy, which implies that
ejm = 0 and ey = 0 for all j € Ip by Lemma 2.3.2(1). Hence an argument similar to the above
shows that ¢(n1) = cl(\) and «(72) = cl(N).

By Proposition 4.3.1, there exists a sequence j1, jo, ..., jn € I satisfying conditions (A) and (B)
for n € B(A + X)q. Condition (B) implies that

(WP (A + X)) (hj,.,) <O forp=0,1,....,N —1, (4.4.11)
by Lemma 4.2.1(2), where we set w® := 7j,Tj,—1 -+ Tj for 0 < p < N. Therefore, we see from
Lemma 2.2.12 that

WUEP ) =w® (cl(A+ X)) forp=0,1,...,N, (4.4.12)
where we set E(®) := eprren™ -+ efi™ for 0 < p < N. Because ¢(m1) = cl(A) and ¢(72) = cl(N), an

» -
argument similar to the above shows that

L(E®n) =wP (c(N)  forp=0,1,...,N, (4.4.13)
(w® (cl(N\))(hj,,,) <O forp=0,1,....,N —1, o
and
EWy) = w® (cl(N forp=0,1,...,N
l’( 772) w (C (>\ )) or p 0) 3 s 4V, (4414)
(w® (X)) (hj,,,) <O forp=0,1,...,N —1.
Now we have
0= Deg)\+)\/(77cl()\+)\/)) by Lemma 321(1)
= DegAJr)\,(e?l;‘Xe?]j‘fl N e?}axn) by condition (A) for n
=Degyn(m — Y {2o(EY V) + (wP V(A + X)) (hy,)}
1<p<N;jp=0
by Lemma 3.2.2 along with (4.4.11) and (4.4.12),
and hence
Degyi () = Y {eo(EP )+ (wP D (cl(A + X)) (hy,)}- (4.4.15)

1<p<N;jp=0
Here, by Lemma 2.3.2(2),
E(p)(Th ®n2) = E(p)m ®@ny  for some 0 € B(N)q,
Ry (E®) (i @ m2)) = EP(Ry x(m @m2)) = EP) (7 @ 1)
= EP, @) for some 1}, € B(A)q.
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Therefore, we see that

0 = Dxx (M) @ nany) by (4.4.2)
= Dy y(ef3en ... el (n ®@ny)) by condition (A) for n and (2.4.3)

JN TIN-1 J1

=Daxv(mem)— D> {eoBP V(@) + (P V(e + X)) (hy,)}
1<p<N;jp=0

by Lemma 4.4.1 along with (4.4.13) and (4.4.14).

Also, since Wy, \/(E®)n) = E®)W, \(n) = EP) (1, @12), it follows that eo(EP)n) = go(EP) (n, @15))
for all p=0,1,...,N. Thus we obtain

Dyyv(m@m)= Y. {eoEPDn)+ @@ (A + N)))(hy,)}- (4.4.16)
1<p<N;jp=0

Equation (4.4.10) follows immediately from (4.4.15) and (4.4.16). This completes the proof of the
proposition. O

Now we are ready to prove Theorem 4.1.2.

Proof of Theorem 4.1.2. We proceed by induction on the length n of the sequence i = (i1, 42, . . ., in)-
When n = 1, the assertion obviously holds. Assume that n > 1, and set i’ := (i1,42,...,0p-1),
N = \—w;, € PY. Recall from Theorem 2.4.1 and Corollary 2.4.5(1) that there exist isomorphisms

\Ilil . B(A,)Cl l} Bi/ = B(wll)cl ® B(wzg)cl ® o .. ® B(win_l)Cl
and
\Il)\'ﬂﬂin : B(A)Cl = IB()\/)CI ® B(win)cl
of Py-crystals. Let n € B(A)o. We set 7 @ 1" := Wy o, (1) € B(N)a @ B(w;, )e1, and
MO - @1, = Vi(n) € By = B(wi,)a @ B(@iz)a @ -+ - ® B(w@i, )a-

Note that both of W; and (Vi ®id) o Uy o, are isomorphisms of Pg-crystals from B(A)q to Bj.
Since the P-crystals B(\) and B; are both simple, it follows from Lemma 2.3.9(3) that ¥; =
(Vy ®id) o Wy o, , and hence that

" =n, and Vy(n)=m@m @ @1 (4.4.17)
We see from Proposition 4.4.2 that
Degy (1) = Dy w;,, (0 @ 1") = Hy (0" @ n"') + Deg (1) + Deg, (17"), (4.4.18)

where we set 77" @ 1) := Ry &, ( @ n"). Here we remark that the element ng) € B(w;, )a (for

the definition of 777(11), see §4.1) is the first factor of the image of 7 ® 72 ® - -+ @ 1, € B; under the

(unique) isomorphism (id @W¥y)o Ry o, oWy o, oW, L of Py-crystals, which is obtained as follows:

\I/Tl \Ij/\/,win
B(wi, )l @ B(wiy)a @ - - @ B(w;, )a = By — B(A)a — B(X)a @ B(w@i, )a

Ryt id @V
— B(w@i, )1 @ B(X)ag —— B(wi, )a @ B(wi, )a @ - - - @ B(wi,_, )ol-

~

Also, it is easy to check that this first factor is identical to 77" € B(w;, )e1. Thus we have ng) ="

Furthermore, using (4.4.17), we see from [OkaO? Lemma 5.2] that

Hy m,, (0 = Y Heypm, (@), (4.4.19)
1<k<n—1
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Now, the induction hypothesis along with (4.4.17) implies that

n—1
k
Degy() = Y.  Hoypw (mon )+ Deg,, (n”). (4.4.20)

1<k<I<n—1 k=1

By substituting (4.4.19) and (4.4.20) into (4.4.18), and using the fact that ngl) = 17", we obtain

~1/

Degy (1) = Hy ,, (' @ 1) + Degy () + Deg,, (7")

= Z Hwik Wiy (e ® 777(1“1))
1<k<n—1

n—1
k
+ Y Hepw o)+ Deg,, () + Degy, (1Y)
1<k<I<n—1 k=1

n
k+1 1
= > Hepw (o0 + Y Deg,, ().
1<k<I<n k=1

This completes the proof of (4.1.4), thereby establishing Theorem 4.1.2. O

4.5 Proof of Theorem 4.1.3
In this subsection, we continue to write Deg,, () instead of Deg(n) in the case that 7 is an element
of B(p)q for p e PY.

Fix an arbitrary ¢ € Iy. Recall from Corollary 2.4.5(1) that there exists an isomorphism ¥, . :
B(2w;)a — B(w;)a @ B(w;)a of Py-crystals. The next lemma follows from the proof of [NS06,
Proposition 3.4.4].

LEMMA 4.5.1. Let n1 ® 12 € B(w;)a ® B(w;)a. Then, the preimage ‘I’;,m (m ®@mn2) € B(2w;)q of
m @12 € B(w;)e ® B(w;)a under the isomorphism Vo, . is identical to the concatenation ny * 1z
of m1 and 19 defined by

m(2t) if0<t<1/2,

t
) (4.5.1)
m(l)+mn(2t —1) if1/2<t <1

(1 * m2)(t) = {

In addition, from [NS06, Proposition 3.2.2], we have the next result.

LEMMA 4.5.2. The set B(2w;) is identical to the set of all concatenations m * mo of LS paths
71, T2 € B(w;) such that k(m) > t(ma). Here, the concatenation my x 7y is defined by the same
formula as (4.5.1), with 1, and ny replaced by m and g, respectively.

LEMMA 4.5.3. Let n € B(2w;)q, and set 1 @ 02 := VYo, =.(n) € B(w;i)a ® B(w;)c. Then,

Degy, (1) = Hey (i © 12) + 2 Deg, () (4.5.2)
Proof. Applying Theorem 4.1.2 to the case in which i = (4,7) and hence A\ = 2w;, we obtain

Degoes. (1) = Hey oy (1 @105 ) + Deg (1)) + Degoy, (n5))

1
= Heg, (11 @ n2) + Deg,. (m1) + Deg.. "),

since 77%1) = n; and 7752) = 19 by definition. Also, from Lemma 2.3.9(3) and the definition of 7751),

we deduce that 1751) = 11, since the P-crystal B(w;)q ® B(w;)q is simple. Thus we obtain (4.5.2).
This proves the lemma. O

Let us fix an (arbitrary) element 7° € B(w;)q such that fjn" = 0 for all j € Iy. Then it
follows from (2.2.10) that fimyp = 0 for all j € Iy. Therefore, by Lemma 2.2.13, the final direction
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Vo= K(m,p) € W of m, satisfies the condition that v *(hj) < 0 for all j € I. Hence cl(1’) =

wo(cl(w;)) by Remark 2.1.5. From this, we deduce (using Lemma 2.1.2) that v’ € Wew; can be

written as 1 = wWoTo; + kbdwié for some k” € Z.

LEMMA 4.5.4. Let ) € B(w;)e, and set n/ := W1 (7 ®n) € B(2w;)a. The following hold:

(1) the path m,, * (m, + kadwi(;) lies in 1™ (') N B(2w;);

(2) Ty = mpp x (g + Tpog, 5)-

Proof. (1) First, note that 7 is identical to the concatenation 7’ %1 by Lemma 4.5.1. Also, by the
definition of concatenations (see (4.5.1)),

cl(myp * (T + Mg, 5)) = cl(myp) * cl(my + Tpog_s)-
Since cl(m,,) = 7’ and cl(m, + kadwﬁ) = cl(m,) = n, we have

cl(m,p * (my + ﬂkbdwi(;)) = cl(m,p) * cl(m, + Wk”dwié) = xn=1,

and hence m,; * (, + kadwﬁ) €l t(n).
Next, we show that 7, *(71,7+7kadwi5) € B(2w;). Note that T+ T, 5 € B(w;) by Lemma 2.2.6.
Therefore, by Lemma 4.5.2, it suffices to show that «(m, + Thod,s, 5) <V = k(m,p). Let us write

v(my) € w; — Q4 as ¢(my) = ww; for some w € W (see Lemma 2.1.2). Since wg € W is greater than
or equal to w € W with respect to the usual Bruhat ordering on the (finite) Weyl group W of 91, 1
follows (see [Lit95, Remark 4.2]) that woto; > weww;. From this, using the definition of the orderlng
> on Ww;, we see that

V' = wow; + K dw, > ww; + K de,d = 1(m,) + K dw,0. (4.5.3)
Hence, by Remark 2.2.4, we obtain
Uy + Tppa,, 5) = Umy) + UTpsa,, 5) = () + K dg, 6 < wowi + K dg, 6 = 1.
This proves part (1).

(2) First, by the definitions of Deg_, (n°) and Deg_;, (1), we can write m,,(1) € P and m,(1) € P
as m (1) = w; —ay'B —ay! Deg,. (n°) and 7, (1) = @w; —ay ' B—ag* Deg,.(n) for some @ B3eqQ.,
respectively. Hence we have

(7, * (m + ”kbdwia))(l) =T, (1) + (my + kadwié)(l) = (1) +my(1) + deia(l)
= {w; — aglﬁb —ap! Degwi(nb)} +{wi —ay'B —ag? Deg,,.(n)} + K de,0
=2w; —ay ' (8" + B) — ag ' (Deg, (1) + Degg, (n) — aok’de, )0 (4.5.4)
Now, in view of Proposition 3.1.4(1), it suffices to show the following;:
Uty * (Mg + Mg, 5)) € 200 — Q4 (4.5.5)
Degy.. (n') < Degwi(nb) + Deg,,. (1) — aokbdwi. (4.5.6)
As for (4.5.5), we easily deduce from the definition of concatenations that ¢(m,; * (m,; + mp de, 5)) =
2u(,» ), where the right-hand side lies in 2c0; — Q4 since () € @; — ()4 by definition.

Let us show (4.5.6). Set m1(t) := my(t/2) and mo(t) := my((t +1)/2) — my(1/2) for t € [0,1].

Then it is obvious that m,y = m; * 2. Also, we see from the proof of [NS06, Proposition 3.2.2] that

71,2 € B(cw;). Furthermore, since 7° +n = ' = cl(m,) = cl(m) *cl(ma), we deduce that cl(m) = 7’
and cl(my) = .
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Since u(my) € 2w; — Q- , and since ((m;) = $u(my) by the definition of m; € B(cw;), it follows
from Lemma 2.1.2 that «(m1) € W lies in @; — Q4. If we write (1) € P in the form 7 (1) =
w; — aalﬁl + aglchS with (5 € 602+ and Ky € Z>( (see Lemma 3.1.1), then by Proposition 3.1.4(1)
applied to cl(m1) = 1 € B(w;)a, we have

— K1 < Deg, (7). (4.5.7)
Also, if we write s(m1) € Weo; in the form w; — 3] + K, de,d with 8] € Q4 and k| € Z, then by
Proposition 3.1.4(2) applied to cl(m) = 1 € B(w;)c1, we have
K=k (4.5.8)
where we recall from the discussion preceding this lemma that V= H(?Tnb) € Ww; equals wyw; +
kdg,0.
Since m,y = w1 *mp € B(2ww;), it follows from Lemma 4.5.2 that «(m2) < k(1) = w; — 8] + ki d,0.

Hence, by Lemma 2.1.2 and Remark 2.1.3, «(m2) € Wew; is of the form «(me) = w; — 05 + khyd,0,
with ) € Q4 and kf € Z such that

Ky > K. (4.5.9)
If we set 7l := my — Ty d. 5, then it follows from Lemma 2.2.6 that 7}, € B(w;). Also, we have
cl(wh) = cl(m2) = n, and by Remark 2.2.4, «(7}) = 1(me) — kbdw,0 = w; — B4 € w; — Q+. Hence, if
we write 75(1) € P in the form 75(1) = w; — ay ' B2 + ag ' K2 with 35 € Q. and Ky € Zsg (see
Lemma 3.1.1), then by Proposition 3.1.4(1) applied to cl(7}) = n € B(w;)., we have

— K3 < Deg,.(n). (4.5.10)

From the above, we see that
T (1) = (m1 % m2) (1) = w1 (1) + m2(1) = 71 (1) + m5(1) + k5de, 6
= (@i — ay 1 + ag ' K10) + (w; — ag ' Ba + ag ' K26) + Kyde,6
= 2w; —ag ' (61 + ) + ag ' (K1 + Ka + akydes, )9,

and hence that Degy (7') = —K1 — K3 — apk)d,. By (4.5.7), (4.5.10), and the inequalities (4.5.8)
and (4.5.9), we obtain

Dege, (1) = —K1 — Kz — aokyde, < Dege, (1) + Dege, (1) — aok’dus,,
which is the desired inequality (4.5.6). This completes the proof of part (2). O

Now we are ready to prove Theorem 4.1.3.

Proof of Theorem 4.1.3. Let 1) € B(w;)a, and set ' := ¥ ! (” @ n) € B(2w;)q. It follows from
Lemma 4.5.3 that

Degy, (1) = Hey o, (11 © 1) + 2 Degoy, (17). (4.5.11)
Also, we deduce from Lemma 4.5.4(2) and the definition of Deg(#n’), by using (4.5.4), that
Degy.,. (n) = Deg.,. (7]") + Deg,.(n) — aokl’dwi. (4.5.12)
Hence, by combining (4.5.11) and (4.5.12), we obtain
Ho, (0" @ 1) = Dege, (1) — Dego, (1) — aok’de, (4.5.13)

In particular, by taking 1 = 7¢j(w,) € B(w@i)q in (4.5.13), we obtain

H‘Wi,wz‘ (Ub ® ncl(wi)) = Degwi (ncl(wi)) - Degwi (Ub) - aOkbdwi-
1551

https://doi.org/10.1112/50010437X08003606 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X08003606

S. NAITO AND D. SAGAKI

Since Deg,. (1eci(w,)) = 0 by Lemma 3.2.1(1), it follows that

Hes, o, (1 © Net()) = —Dege, (1) — a0k’ ds,. (4.5.14)
Equation (4.1.5) follows immediately from (4.5.13) and (4.5.14). This establishes Theorem 4.1.3. [

5. Relation to one-dimensional sums

In this section, as an application of Theorem 4.1.1, we provide an expression for classically restricted
one-dimensional sums (1dsums for short) and, in the case of type Agl_)l, an expression for Kostka—

Foulkes polynomials in terms of LS paths.

5.1 Expression for one-dimensional sums in terms of LS paths

Here we recall from [HKOTY99, Conjecture 2.1] and [HKOTTO02, Conjecture 2.1] a conjectural
family of finite-dimensional irreducible Ué(g)—modules WS(Z) having crystal bases B indexed by
i € Ipand s € Zx; for which the decomposition into irreducible U, (gr,)-modules is prescribed by the

KR conjecture, presented in [KR90]; the Uy (g)-module W is called a KR module, and the crystal
B%* is called a KR crystal. Through enough evidence (see Introduction and references therein), it
is confirmed that the level-zero fundamental representation W (w;) is indeed the (conjectural) KR

module W with s = 1, and hence the crystal basis B(W (w;)) of W (w;) is the KR crystal B! for
every i € Ip. Thus, the (conjectural) KR crystal B*® with s = 1 is obtained as the crystal B(w;)q
for all 7 € Iy.

In [HKOTY99] and [HKOTTO02], a g-analogue of the KR conjecture (called the X = M conjec-
ture) was proposed by introducing a classically restricted one-dimensional sum (1dsum for short)
X associated to a tensor product of KR crystals B, i € Iy, s € Z>1, and a fermionic formula
M, which is a specific sum of products of g-binomial coefficients. (We will not pursue the fermionic
formula M in this paper.) Following the definition in [HKOTY99, §3] and [HKOTT02, §3.3] of
classically restricted 1dsums, we define a classically restricted 1dsum associated to a tensor product
of simple crystals B(w;)a ~ B(W (w;)), i € Iy, with B(w;)q in place of B! for i € Iy, as follows.
Let i = (i1,49,...,1,) be a sequence of elements of Iy, and B; = B(w;, )a @ B(w;, )a @ - - - @ B(wi,, )el-
Then, for an element p € cl(P?) =Y, ; Z>qcl(cw;), the classically restricted 1dsum X (B, u;q) is

i€ly
defined by
XBi,wg)= Y, "0,
beB;
ejb=0 (jelo)
wt b=p

where Dj : By — Z is as defined in (4.1.1). Because the isomorphism ¥; : B(\)q = B; of Py-crystals
is compatible with the root operators e;, j € Iy, on B(\)q and the root operators ej, j € Iy, on By,
we obtain the following corollary of Theorem 4.1.1.

COROLLARY 5.1.1. Let i = (i1,1i2,...,i,) be a sequence of elements of Iy, and set X\ := Y ,_, w;, €
PE. For every p € cl(PJOF) = Zielo Zxq cl(w;), the following equation holds:
ST P = P X (B, i) (5.1.1)
NEB(N)c1
e;n=0 (j€lo)
n(l)=p

Remark 5.1.2 (see also [HKOTTO02, Proposition 3.9]). Let A € P9, and let u € cl(P?). We see

from Corollary 5.1.1 that q‘DthX (B, p1;q) does not depend on the choice of the sequence i =
(i1,%2,...,in) of elements of Iy such that A = >"}'_, w;,.

1552

https://doi.org/10.1112/50010437X08003606 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X08003606

LS PATHS OF LEVEL-ZERO SHAPE AND 1DSUMS

5.2 Expression for Kostka—Foulkes polynomials in terms of LS paths

Let ¢ € Iy. Recall the element 7z, € B(w;)q introduced in §4.1, where @; = wo cl(w;) € Poy. We
note that if the crystal resy, B(w;)q is connected (see §2.3 for the definition of resj, B(w;)q), then
the element 7z, is the unique element of B(w;)q such that fjnz, = 0 for all j € Iy, since the
Pg-crystal B(w;), is regular.

LEMMA 5.2.1. Let i € Iy, and assume that the crystal resy, B(w;)q is connected. Then, the equation
Hwiywi
(nz, ®n) = 0 holds for all n € B(w;)q.

Remark 5.2.2. Since the Py-crystal B(w;) is regular, we see that resy, B(w;)q is connected if and
only if W (w;) is irreducible when regarded as a U, (g) ;,-module by restriction. Therefore, we deduce
from [Kas05, Lemma 4.3(ii)] that, if @ = 1, then res;, B(w;)q is connected.

Proof of Lemma 5.2.1. Since resy, B(w;). is connected by the assumption of the lemma, there exists
a monomial X in the root operators f; for j € Iy such that Xn = nz,. Since fjnz, = 0 for all j € Iy,
it follows from the tensor product rule for crystals that

Xz, ®n) = nz, © Xn =z, Nz,
Furthermore, we see from the proof of [AK97, Lemma 1.6(1)] that

Son(T/%i ® 77) = Swo ("71%1- ® 77151-) = (Swonﬁi) ® (Swo’r/ﬁi)7

and from Remark 2.4.3 that Sy 0z, = 7c(w,)- Since wy € VV, it follows from the definition of
Swo (see (2.3.2)) that there exists a monomial X’ in the root operators e;j, f; for j € Iy such that
SwoX Nz, ®n) = X' X(nz, @ n). Therefore, we obtain

0= He, o, (Mel(wy) ® Nel(wy)) by Theorem 2.5.1 (H2)
- Hw'mwz (( w()nwl) (SU)OT]‘Z%Z))
= H‘me (X/ (nw ® 7]))

= Hy, = (Nz, ®n) by Theorem 2.5.1 (HI).

k3

This proves the lemma. 0

Remark 5.2.3. Let i = (iy,1i9,...,i,) be a sequence of elements of Iy such that a;; = 1 for all
1 < k < n. Then we know from Remark 5.2.2 that res;, B(w;, ) is connected for all 1 < k < n.
Therefore, we see from Lemma 5.2.1 and the definitions of D; and DieXt that, for every

MM E: - Qnp € By =B(wy, )a @ B(wiy)a @ -+ @ B(wi,, )l

we have
Dim@m@ @)= . Hep o eon™) and DPt=o0. (5.2.1)
1<k<i<n

(1)

Now we restrict our attention to the case in which g is of type A, . Because a) =1forallie I
in the case of type Agl_)l, we know from Remark 5.2.2 that resy, B(w;). is connected for all i € Ij. In
fact, we can check by direct calculation that every w; is ‘minuscule’, i.e. that w@;(3Y) € {0, +1} for
all € A := WIIj, C A™, where II;, = {a;};cr,, and hence that @;(£) € {0,£1} for all £ € AT,
Using this fact, we deduce from the definition of LS paths that

B(wi)a = {1 | 1 € A(Wewi) = W cl(w;)} (5.2.2)
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for every ¢ € Iy. Also, it follows from the definition of the root operators e; (respectively, f;), j € 1,
that, for u € Wcl(w;) and j € I, the following hold:

(1) ejnu # O (respectively, fjn, # 0) if and only if u(h;) = —1 (respectively, = 1);

(2) if ejn, # O (vespectively, f;n,, # 0), then e;n, (vespectively, fin.) = 04, (5.2.3)

with 7;(p) = p+ cl(a;) (respectively, = p — cl(a;)).

Here we recall from [NY97, §§2.1 and 2.4] the Pg-crystals Bei(w,;) (adapted to our notation) for
i€lp={12,...,0 =1} Let i € Iy = {1,2,...,£ — 1}. Then, the crystal B, consists of all
Young diagrams of shape (1¢) having i dots (in all) with at most one dot in each box. The weight
wt(b) € P of the element b € B(,) having dots exactly in the jith box, jath box, ..., jith box with
1< g1 <jo<---<ji <{isgiven by v, +vj, +- -+, € Pa, where we set v; := cl(w;) —cl(wj_1)
for 1 <j < /¥, with wg=wy=0¢ P.

Now, for each i € Iy = {1,2,...,£—1}, we define a map ®; : B,y — B(w@i)a by ®i(b) = (s
for b € Bj(w,), which is easily seen to be a (well-defined) bijection that preserves weights, since

o

the subgroup W C W is isomorphic to the symmetric group Sy permuting the v;, 1 < j < ¢, and
since cl(ww;) = 71 + 72 + -+ + . Actually, the map ®; : Bgj(,) — B(w@;)a is an isomorphism of
P-crystals. Indeed, from the definition in [NY97, §2.4] of the Kashiwara operators e; (respectively,
fi), § € I, on Byy(s,), we see that, for b € B,y and j € I, ejb # 0 (respectively, f;b # 0) holds if
and only if (wt(b))(h;j) = —1 (respectively, = 1), since v; = cl(w;) — cl(wj—1) = cl(A;) — cl(Aj—1)
for 2 < j < {f—1,and y1 = cl(wy) = cl(Ay) — cl(Ag), v = —cl(wr_1) = —cl(Ap—1) + cl(Ap).
Also, if e;b # 0 (respectively, fjb # 0), then we have wt(e;b) = wt(b) + cl(cj) (respectively,
wt(f;b) = wt(b) — cl(ay)). Therefore, from (5.2.3), we conclude that ®; : B,y — B(w@;)e is an
isomorphism of P,-crystals.

Let i = (i1,12,...,1,) be an arbitrary sequence of elements of Iy = {1,2,...,/—1} such that i; >
ig > = ip, and set A\ :=> ) | w;, € PE; we denote this sequence i = (i1, i2,...,7,) by AT when
we regard it as a partition (or Young diagram). In the following, we identify an element u € cl(PJ?)
that is the weight of an element of the P,-crystal B; with the partition (D, @y, ... Op) € (Z50)*
of [N*| := iy +ig + -~ + iy such that p = S22H Dy — (D) cl(wy) and °°_, @p = |AT]; note
that the elements cl(w;), 1 <i < ¢ —1, of h*/Q¢ are linearly independent over Q. Because B(w;)q
is isomorphic as a Py-crystal to Bg(g,) through the map ®; : By(,) = B(w;)q and, in addition,
resy, B(w;)q is connected for every i € Iy = {1,2,...,¢ — 1}, we deduce from [NY97, Corollary 4.3]
along with (5.2.1) that, for every pu € cl(P?) that is the weight of an element of B;, the Kostka-
Foulkes polynomial K y+(q) (as defined in [Mac95, ch. III, §6]) associated to the conjugate (or
transpose) u' of the partition p and the partition A" is identical to the following 1dsum:

XBipsg )= Y, ¢ PO (5.2.4)
beB;
e;b=0 (jelo)
wt b=p
By combining this fact and Corollary 5.1.1 (along with (5.2.1)), we obtain the following expression
for Kostka—Foulkes polynomials in terms of LS paths.

COROLLARY 5.2.4. Assume that g is of type Agl_)l, and keep the notation above. Let y € cl(PJ(g) =

> iety Lo cl(w;) be the weight of an element of the Py-crystal B;. Then, the following equation
holds:

Kuril)= 3 gPesn,
77€IBé(>‘)cl
e;n=0(j€lo)
n(1)=p
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