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Lakshmibai–Seshadri paths of level-zero shape and

one-dimensional sums associated to level-zero

fundamental representations

Satoshi Naito and Daisuke Sagaki

Abstract

We give an interpretation of the energy function and classically restricted one-dimensional
sums associated to tensor products of level-zero fundamental representations of quantum
affine algebras in terms of Lakshmibai–Seshadri paths of level-zero shape.

1. Introduction

A one-dimensional sum (1dsum for short) is a weighted sum over certain one-dimensional configu-
rations, where the weights are given by the ‘energy function’, and arose from the study of solvable
lattice models in statistical mechanics through Baxter’s corner transfer matrix method. However,
the crystal basis theory of Kashiwara provided an intrinsic definition of a 1dsum, and a conceptual
proof of the fact that, in the infinite lattice size limit, a 1dsum tends to the character of a high-
est weight module over an affine Lie algebra (see [KKMMNN92]). The purpose of this paper is to
give an interpretation of the energy function and hence of ‘classically restricted’ 1dsums associated
to tensor products of certain finite-dimensional irreducible modules, called level-zero fundamental
representations, over a quantum affine algebra via Lakshmibai–Seshadri paths (LS paths for short)
of level-zero shape.

Let g be an affine Lie algebra over Q with Cartan subalgebra h, and let gI0 be its finite-
dimensional simple Lie subalgebra whose Dynkin diagram (with I0 the set of vertices) is ob-
tained from that of g (with I the set of vertices) by removing a distinguished 0 vertex. Also,
let Uq(g) ⊃ Uq(gI0) be the quantized universal enveloping algebras associated to g ⊃ gI0, and let
U ′

q(g) (⊂ Uq(g)) be the quantum affine algebra (without derivation) associated to g.
In [KR90] (see also [Kir85, Kir87, Kir89] and [KKR88]), Kirillov and Reshetikhin conjectured

the existence of a family of finite-dimensional representations of the Yangian Y (gI0) associated to
gI0 for which tensor products of these representations admit the decomposition into irreducible
gI0-modules, with each multiplicity given by a specific sum of products of binomial coefficients.
Note that under the widely believed correspondence between the finite-dimensional representations
of the Yangian Y (g0) and those of the nontwisted quantum affine algebra U ′

q(g), this conjecture
can be translated into the one for the untwisted quantum affine algebras; both of them are called
the Kirillov–Reshetikhin (KR for short) conjecture. The KR conjecture has been the subject of a
number of papers (see [KNT02, § 5.7] and references therein). Among them, we would like to men-
tion [Nak03], [Her06], and [Her07], in which the KR conjecture (of ‘type I’ in the sense of [KNT02,
§ 5.7]) is first proved in nontwisted A, D, E cases, then in all the nontwisted cases, and finally in
the general case.
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Inspired by the seminal paper [KR90], it was conjectured in [HKOTY99] and [HKOTT02] that
there exists a family of finite-dimensional irreducible U ′

q(g)-modules W (i)
s having crystal bases Bi,s

indexed by i ∈ I0 and s ∈ Z�1 for which the decomposition into irreducible Uq(gI0)-modules is
prescribed by a special case of the KR conjecture (of ‘type II’ in the sense of [KNT02, § 5.7]); the
U ′

q(g)-module W (i)
s is called a KR module, and the crystal Bi,s is called a KR crystal. It should be

mentioned that (the roots of) the Drinfeld polynomials of the KR module W (i)
s for each i ∈ I0 and

s ∈ Z�1 are also specified up to a multiplicative constant (see [HKOTY99, Remark 2.2] and the
comment preceding [HKOTY99, Conjecture 2.1]).

Furthermore, in [HKOTY99] and [HKOTT02], a ‘fermionic formula’ M was defined to be a
suitable q-analogue of the tensor product multiplicity formula in the KR conjecture (of type II),
which can be rewritten as a weighted sum over a set of combinatorial objects (called rigged con-
figurations). Also, a classically restricted 1dsum X was introduced as the generating function in
q of Uq(gI0)-highest weight elements of a tensor product of the (conjectural) crystals Bi,s, i ∈ I0,
s ∈ Z�1, weighted by the energy function. The ‘X = M conjecture’ proposed in these papers asserts
the equality between these two kinds of polynomials in q−1 with nonnegative integer coefficients.

The X = M conjecture (including the construction of the crystals Bi,s) has been studied inten-
sively in recent years (see [Oka07, §§ 2.2 and 5.3] and references therein). Among them, we would like
to mention [Kas02], in which level-zero fundamental representations W (�i), i ∈ I0, of U ′

q(g) are in-
troduced, where the�i, i ∈ I0, are the level-zero fundamental weights for g. Furthermore, in [Kas02],
it is proved that the level-zero fundamental representations W (�i), i ∈ I0, are finite-dimensional
irreducible U ′

q(g)-modules having ‘simple’ crystal bases B(W (�i)). Also, the Drinfeld polynomials
of W (�i) are computed in [Nak04, § 3.1] (at least in the nontwisted case), and they coincide with
those of W (i)

1 specified in [HKOTY99] and [HKOTT02] for all i ∈ I0. Therefore, by [Nak03], [Her06],
and [Her07], the decomposition of W (�i) into irreducible Uq(gI0)-modules turns out to be the one
for W (i)

1 prescribed by a special case of the KR conjecture (of type I) for every i ∈ I0. Thus,
through enough evidence (see also [Cha01], [HN06], [Kas05], [FL06], and [FL07]), it is confirmed
that the level-zero fundamental representation W (�i) is indeed the (conjectural) KR module W (i)

s

with s = 1, and hence the crystal basis B(W (�i)) of W (�i) is the KR crystal Bi,1 for every i ∈ I0.
Here we recall that most of all the known proofs of the X = M conjecture are given by establish-

ing a weight-preserving bijection from the set of Uq(gI0)-highest weight elements of a tensor product
of KR crystals Bi,s to the set of rigged configurations (see [Sch07] and references therein; [KSS02],
[Sch05], [SSh06], [SSt06], [BFKL06], and also [FSS07] to name a few of the recent ones). In these
proofs, the KR crystal Bi,s is constructed as a certain direct sum (prescribed by the KR conjecture)
of highest weight crystals for Uq(gI0); the action of the Kashiwara operators corresponding to the
0 vertex are defined on it, by an argument that depends on the type of gI0 and requires a lot of
work based on an explicit combinatorial realization of highest weight crystals for Uq(gI0). Hence
it is highly desirable to have a type-independent combinatorial realization of the KR crystals Bi,s,
i ∈ I0, s ∈ Z�1, and the corresponding realization of the energy function on tensor products of
them, which would provide a general approach to the X = M conjecture.

Contrastingly, in Littelmann’s path model, the root operators are universally defined for all
paths, and hence we obtain a path model for KR modules if we choose the right set of paths; the
advantage of this approach is that, when it can be used, it enables us to study KR crystals in a
way completely independent of the type of gI0. In fact, in a series of papers [NS03, NS05, NS06],
we studied the crystal B(λ) of all LS paths of shape λ for a level-zero integral weight λ of the
form λ =

∑
i∈I0

λ(i)�i with λ(i) ∈ Z�0; we showed that the associated crystal B(λ)cl is isomorphic

to the tensor product crystal
⊗

i∈I0
B(�i)⊗λ(i)

cl , and that each B(�i)cl is isomorphic as a crystal
to B(W (�i)) = Bi,1 for i ∈ I0. Hence the crystal B(λ)cl is isomorphic to the tensor product
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crystal
⊗

i∈I0
(Bi,1)⊗λ(i)

. Here the crystal B(λ)cl is defined to be the set of all paths of the form
cl(π) = cl ◦π, π ∈ B(λ), where the map cl : h∗R � h∗R/Rδ is the canonical projection, with δ ∈ h∗

the null root of g and h∗R := R ⊗Q h∗. Thus, we have an explicit combinatorial realization of tensor
products of KR crystals Bi,s, i ∈ I0, with s = 1 in the framework of Littelmann’s path model.

Now, the remaining task is to give an interpretation of the energy function on tensor products of
KR crystals Bi,1, i ∈ I0, in terms of Littelmann’s path model. The purpose of this paper is to provide
such an interpretation. Let λ be a level-zero integral weight as above. We define a function (called
the degree function) Deg : B(λ)cl → Z�0 as follows (see § 3.1 for details). For η ∈ B(λ)cl, the degree
Deg(η) ∈ Z is defined to be (the negative of) the coefficient of the null root δ in a specific expression
of the weight πη(1) ∈ h∗ of a certain distinguished element πη ∈ B0(λ) such that cl(πη) = η, where
B0(λ) denotes the connected component of B(λ) containing the straight line path: t �→ tλ, t ∈ [0, 1].
Take an arbitrary sequence i = (i1, i2, . . . , in) of elements of I0 (with repetitions allowed). Then, as
above, the tensor product crystal Bi1,1 ⊗Bi2,1 ⊗ · · · ⊗ Bin,1 � B(�i1)⊗ B(�i2)⊗ · · · ⊗ B(�in) =: Bi

is isomorphic to the crystal B(λ)cl associated to the crystal B(λ) of all LS paths of shape λ :=∑n
k=1�ik . Our main result (Theorem 4.1.1) of this paper states that the energy function on the

tensor product Bi of KR crystals with s = 1 can be identified (through the isomorphism above
between Bi and B(λ)cl) with the degree function Deg on B(λ)cl, up to a specific additive constant
(see § 4.1 for its explicit definition). Furthermore, we obtain an expression (Corollary 5.1.1) for
classically restricted 1dsums in terms of LS paths. In particular, by restricting ourselves to the case
of A(1)

�−1, we obtain an expression (Corollary 5.2.4) for Kostka–Foulkes polynomials in terms of LS
paths.

This paper is organized as follows. In § 2, we first fix our notation for quantum affine algebras.
Then we briefly review some standard facts on LS path crystals with weight lattice P or Pcl, and
fundamental results on simple Pcl-crystals for quantum affine algebras. In § 3, we define our ‘degree
function’ on Pcl-crystals of LS paths of level-zero shape, and show some of its basic properties.
In § 4, we first state our main result (Theorem 4.1.1) describing the energy function associated to
tensor products of level-zero fundamental representations. Then, we give a proof of it after showing
a key proposition to our proof. In § 5, we mention the relation to classically restricted 1dsums and
Kostka–Foulkes polynomials.

2. Preliminaries

2.1 Affine Lie algebras and quantum affine algebras

Let A = (aij)i,j∈I be a generalized Cartan matrix of affine type. Throughout this paper, we assume
that the elements of the index set I are numbered as in [Kac90, § 4.8, Tables Aff 1–Aff 3]. Take a
special vertex 0 ∈ I as in these tables, and set I0 := I \ {0}. Let g = g(A) be the affine Lie algebra
associated to the Cartan matrix A = (aij)i,j∈I of affine type over the field Q of rational numbers,
and let h be its Cartan subalgebra. Note that h = (

⊕
j∈I Qhj) ⊕ Qd, where Π∨ := {hj}j∈I ⊂ h is

the set of simple coroots, and d ∈ h is the scaling element. Also, we denote by Π := {αj}j∈I ⊂ h∗ :=
HomQ(h,Q) the set of simple roots, and by Λj ∈ h∗, j ∈ I, the fundamental weights; note that
αj(d) = δj,0 and Λj(d) = 0 for j ∈ I. Let δ =

∑
j∈I ajαj ∈ h∗ and c =

∑
j∈I a

∨
j hj ∈ h be the null

root and the canonical central element of g, respectively. Here we should note that a0 = 2 if g is of
type A(2)

2� , and a0 = 1 otherwise. We define the Weyl group W of g by W = 〈rj | j ∈ I〉 ⊂ GL(h∗),
where rj ∈ GL(h∗) is the simple reflection associated to αj for j ∈ I, and then define the set ∆re of
real roots by ∆re = WΠ. The set of positive real roots is denoted by ∆re

+ ⊂ ∆re. Also, let us denote
by (·, ·) a nondegenerate, symmetric, (W -) invariant bilinear form on h∗ normalized in such a way
that (αi, αj) ∈ Z for all i, j ∈ I.
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We take a dual weight lattice P∨ and a weight lattice P as follows:

P∨ =
(⊕

j∈I

Zhj

)
⊕ Zd ⊂ h and P =

(⊕
j∈I

ZΛj

)
⊕ Za−1

0 δ ⊂ h∗. (2.1.1)

It is clear that P contains all the simple roots αj, j ∈ I, and that P ∼= HomZ(P∨,Z). The quintuplet
(A,Π,Π∨, P, P∨) is called a Cartan datum for the generalized Cartan matrix A = (aij)i,j∈I of affine
type (see [HK02, Definition 2.1.1]).

Let gI0 be the canonical finite-dimensional Lie subalgebra of g generated by xj, yj, j ∈ I0, and
hj , j ∈ I, where xj (respectively, yj) is a nonzero root vector of g corresponding to the simple
root αj (respectively, −αj); note that hI0 :=

⊕
j∈I Qhj is the Cartan subalgebra of gI0. We denote

by W̊ the subgroup of W generated by rj, j ∈ I0, which can be thought of as the Weyl group of
the Lie subalgebra gI0 ⊂ g. Let w0 ∈ W̊ denote the longest element of W̊ .

Definition 2.1.1. An integral weight λ ∈ P is said to be level-zero if λ(c) = 0. In addition, a
level-zero integral weight λ ∈ P is said to be I0-dominant (respectively, strictly I0-dominant) if
λ(hj) � 0 (respectively, λ(hj) > 0) for all j ∈ I0.

For each i ∈ I0 = I \ {0}, we define a level-zero fundamental weight �i ∈ P by

�i = Λi − a∨i Λ0. (2.1.2)

Note that the�i is actually a level-zero, I0-dominant integral weight; in fact, �(c) = 0 and �i(hj) =
δi,j for j ∈ I0. In particular, the restriction of the �i, i ∈ I0, to the Cartan subalgebra hI0 of gI0

can be thought of as the fundamental weights for gI0 ⊂ g. We set

P 0
+ :=

∑
i∈I0

Z�0�i. (2.1.3)

Recall from [Kas02, (5.6)] (see also [NS08, Lemmas 2.5 and 2.6]) that, for each λ ∈ P 0
+, the equality

Wλ ∩ (λ + Zδ) = λ+ Zdλδ holds for some positive integer dλ ∈ Z>0, and set Q̊+ :=
∑

j∈I0
Z�0αj.

The next lemma follows immediately from [NS08, Lemma 2.3.2 and Remark 4.1.1] and the proof of
[NS08, Lemma 2.3.3] by noting the linear independence of αj , j ∈ I0, and δ.

Lemma 2.1.2. Let λ ∈ P 0
+. Then, for each w ∈W , there exist unique β ∈ Q̊+ and k ∈ Z such that

wλ = λ− β + kdλδ. Moreover, λ− β = w′λ for some w′ ∈ W̊ .

Let λ ∈ P be an integral weight, and µ, ν ∈ Wλ. Following [Lit95, § 4], we write µ > ν if there
exist a sequence µ = ν0, ν1, . . . , νn = ν of elements of Wλ and a sequence ξ1, ξ2, . . . , ξn of positive
real roots such that νk = rξk

(νk−1) and such that νk−1(ξ∨k ) ∈ Z<0 for all 1 � k � n, where ξ∨k ∈ h

denotes the dual root of ξk ∈ ∆re
+ , and rξk

denotes the associated reflection; we write µ � ν if µ > ν
or µ = ν.

Remark 2.1.3. Let λ ∈ P 0
+, and let ν, ν ′ ∈Wλ be such that ν > ν ′. Write ν and ν ′ as ν = λ−β+kdλδ

and ν ′ = λ−β′+k′dλδ for β, β′ ∈ Q̊+ and k, k′ ∈ Z (see Lemma 2.1.2), respectively. Then we deduce
from [NS08, Remark 2.4.3(1)] that either k < k′ holds, or k = k′ and β − β′ ∈ Q̊+ \ {0} holds.

Now, let cl : h∗ � h∗/Qδ be the canonical projection from h∗ onto h∗/Qδ. We define a classical
weight lattice Pcl and a classical dual weight lattice P∨

cl by

Pcl = cl(P ) =
⊕
j∈I

Z cl(Λj) and P∨
cl =

⊕
j∈I

Zhj ⊂ P∨. (2.1.4)

We see that Pcl � P/(Qδ ∩ P ), and that Pcl can be identified with HomZ(P∨
cl ,Z) as a Z-module by

(cl(λ))(h) = λ(h) for λ ∈ P and h ∈ P∨
cl . The quintuple (A, cl(Π),Π∨, Pcl, P

∨
cl ) is called a classical
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Cartan datum (see [HK02, § 10.1]). Note that there exists a natural action of the Weyl group W on
h∗/Qδ induced by the one on h∗, since Wδ = δ. It is obvious that w ◦cl = cl ◦ w for all w ∈W . If we
set h∗0 := {λ ∈ h∗ | λ(c) = 0}, then there exists a (positive definite) symmetric bilinear form (·, ·)cl
on cl(h∗0) = h∗0/Qδ induced by the restriction to h∗0 of the nondegenerate, symmetric bilinear form
(·, ·) on h∗, since (δ, h∗0) = {0}.
Definition 2.1.4. An integral weight µ ∈ Pcl is said to be level-zero if µ(c) = 0. In addition, a
level-zero integral weight µ ∈ Pcl is said to be I0-dominant (respectively, strictly I0-dominant) if
λ(hj) � 0 (respectively, λ(hj) > 0) for all j ∈ I0.
Remark 2.1.5. Let λ ∈ P 0

+. It is easy to verify that cl(Wλ) = W̊ cl(λ) (see the proof of [NS08,
Lemma 2.3.3]). Also, we see that cl(λ) is the unique level-zero, I0-dominant integral weight in
cl(Wλ) = W̊ cl(λ), and that cl(w0λ) = w0 cl(λ) is the unique element of cl(Wλ) = W̊ cl(λ) such
that (cl(w0λ))(hj) = (w0 cl(λ))(hj) � 0 for all j ∈ I0.

Let U ′
q(g) be the quantized universal enveloping algebra of the affine Lie algebra g with weight

lattice Pcl over the field Q(q) of rational functions in q. We denote by xj , yj, j ∈ I, and qh, h ∈ P∨
cl ,

the canonical generators of U ′
q(g), where xj (respectively, yj) corresponds to the simple root αj

(respectively, −αj) for j ∈ I.

2.2 Crystals of LS paths with weight lattice P or Pcl

A path (with weight in P ) is, by definition, a piecewise linear, continuous map π : [0, 1] → h∗R :=
R ⊗Q h∗ such that π(0) = 0 and π(1) ∈ P ⊂ R ⊗Z P = h∗R. We denote by P the set of all paths
π : [0, 1] → h∗R. For each π1, π2 ∈ P, we define a path π1 ± π2 ∈ P by (π1 ± π2)(t) = π1(t)± π2(t) for
t ∈ [0, 1]. For an integral weight ν ∈ P , let πν denote the straight line path connecting 0 ∈ P with
ν ∈ P , i.e. πν(t) := tν for t ∈ [0, 1].

Remark 2.2.1. In [Lit94] and [Lit95], paths in P are considered modulo reparametrization. However,
in this paper, we do not consider paths in P modulo reparametrization since there is no need to
do so. Note that all results of [Lit94] and [Lit95] that we need in this paper still hold in this setting.

Let π ∈ P. A pair (ν;σ) of a sequence ν : ν1, ν2, . . . , νs of elements of h∗R and a sequence
σ : 0 = σ0 < σ1 < · · · < σs = 1 of rational numbers is called an expression of π ∈ P if the following
equation holds:

π(t) =
u−1∑
u′=1

(σu′ − σu′−1)νu′ + (t− σu−1)νu for σu−1 � t � σu, 1 � u � s. (2.2.1)

In this case, we write π = (ν;σ). An expression (ν1, ν2, . . . , νs;σ) of π is said to be reduced if
νu �= νu+1 for any u = 1, 2, . . . , s− 1.

Remark 2.2.2 (see [NS08, Remark 2.5.2]). Let π ∈ P. We easily see that there exists a unique
reduced expression of π. Also, if (ν1, ν2, . . . , νs;σ0, σ1, . . . , σs) is an expression of π, then the reduced
expression of π is obtained from this expression by ‘omitting’ the element νu+1 such that νu = νu+1

and the corresponding rational number σu.

Definition 2.2.3. Let π = (ν1, ν2, . . . , νs;σ) be an expression of π ∈ P. We call ν1 ∈ h∗R (respectively,
νs ∈ h∗R) the initial (respectively, final) direction of π; it is easy to check that these elements
ν1, νs ∈ h∗R do not depend on the choice of an expression of π. The initial (respectively, final)
direction of π is denoted by ι(π) (respectively, κ(π)).

Remark 2.2.4. Let π1, π2 ∈ P. We easily see that ι(π1 ± π2) = ι(π1) ± ι(π2) and κ(π1 ± π2) =
κ(π1) ± κ(π2).
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Let λ ∈ P be an integral weight. Recall from [NS08, Definition 2.6.1] (see also [Lit95, § 4]) that
a Lakshmibai–Seshadri (LS) path of shape λ is a path π ∈ P having an expression of the form
π = (ν1, ν2, . . . , νs;σ0, σ1, . . . , σs), where ν1, ν2, . . . , νs ∈ Wλ, and where, for each 1 � u � s − 1,
there exists a ‘σu-chain’ for (νu, νu+1) (see [Lit95, § 4] and [NS08, Definition 2.4.5] for the definition
of ‘σu-chain’). We denote by B(λ) the set of all LS paths of shape λ.

Remark 2.2.5 (see [NS08, Remark 2.6.2]). Let λ ∈ P be an integral weight. The straight line path
πν(t) := tν, t ∈ [0, 1], is an element of B(λ) for all ν ∈Wλ.

Lemma 2.2.6. Let λ ∈ P 0
+. If π ∈ B(λ), then π + πkdλδ ∈ B(λ) for all k ∈ Z.

Proof. Let k ∈ Z. We know from [NS08, Lemma 2.7.4] that π+ πkdλδ ∈ B(λ+ kdλδ). Also, because
there exists w ∈W such that w(λ) = λ+kdλδ by the definition of dλ, we deduce from the definition
of LS paths that B(λ + kdλδ) = B(w(λ)) = B(λ) (see [NS08, Remark 2.6.3(3)]). This proves the
lemma.

Throughout this paper, we use standard notation and terminology of the theory of (abstract)
crystals without further mention; we refer the reader to [Kas95, § 7] and [HK02, § 4.5] for details.

Now, we recall from [Lit94, §§ 1.2 and 1.3] and [Lit95, § 1] the definition of the root operators ej
and fj, j ∈ I, on B(λ); see also [GL04, § 5.1] for the presentation of the definition in this form. Let
π ∈ B(λ), and j ∈ I. We set

Hπ
j (t) := (π(t))(hj) for t ∈ [0, 1], mπ

j := min{Hπ
j (t) | t ∈ [0, 1]}. (2.2.2)

Then we define ejπ as follows (note that mπ
j ∈ Z�0 by [Lit95, Lemma 4.5d)]). If mπ

j = 0, then
ejπ := 0, where the 0 is an additional element corresponding to ‘0’ in the theory of crystals. If
mπ

j � −1, then we define ejπ ∈ P by

(ejπ)(t) =


π(t) if 0 � t � t0,
π(t0) + rj(π(t) − π(t0)) if t0 � t � t1,
π(t) + αj if t1 � t � 1,

(2.2.3)

where we set

t1 := min{t ∈ [0, 1] | Hπ
j (t) = mπ

j },
t0 := max{t ∈ [0, t1] | Hπ

j (t) = mπ
j + 1}. (2.2.4)

Similarly, fjπ ∈ P∪{0} is defined as follows (note that Hπ
j (1)−mπ

j ∈ Z�0 by [Lit95, Lemma 4.5d)]
and π(1) ∈ P ). If Hπ

j (1) −mπ
j = 0, then fjπ := 0. If Hπ

j (1) −mπ
j � 1, then we define fjπ ∈ P by

(fjπ)(t) =


π(t) if 0 � t � t0,
π(t0) + rj(π(t) − π(t0)) if t0 � t � t1,
π(t) − αj if t1 � t � 1,

(2.2.5)

where we set

t0 := max{t ∈ [0, 1] | Hπ
j (t) = mπ

j },
t1 := min{t ∈ [t0, 1] | Hπ

j (t) = mπ
j + 1}. (2.2.6)
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Using the root operators ej and fj, j ∈ I, we can endow the set B(λ) of all LS paths of shape λ ∈ P
with the structure of a (P -weighted) crystal, i.e. the structure of a crystal associated to the Cartan
datum (A,Π,Π∨, P, P∨) (see [Lit95, §§ 2 and 4] and also [NS06, Theorems 1.2.3 and 1.4.5]). In fact,
it follows from [Lit95, Lemma 2.1c)] that

−mπ
j = max{l ∈ Z�0 | eljπ �= 0}, (2.2.7)

Hπ
j (1) −mπ

j = max{l ∈ Z�0 | f l
jπ �= 0}, (2.2.8)

and hence that εj(π) = −mπ
j and ϕj(π) = Hπ

j (1) −mπ
j .

Let λ ∈ P be an integral weight. For π ∈ B(λ), define a piecewise linear, continuous map
cl(π) : [0, 1] → h∗R/Rδ by (cl(π))(t) = cl(π(t)) for t ∈ [0, 1], where cl : h∗R � h∗R/Rδ is the canonical
projection. We set B(λ)cl := {cl(π) | π ∈ B(λ)}.
Remark 2.2.7. We see from Remark 2.2.5 that the straight line path ηµ(t) = tµ, t ∈ [0, 1], is
contained in B(λ)cl for all µ ∈ cl(Wλ) = W̊ cl(λ).

An expression and a reduced expression of η ∈ B(λ)cl are defined similarly to those for the
case of B(λ). In addition, for η ∈ B(λ)cl, we define the initial and final directions of η (which do
not depend on the choice of an expression of η) as in Definition 2.2.3, and also denote the initial
(respectively, final) direction of η ∈ B(λ)cl by ι(η) (respectively, κ(η)).

Remark 2.2.8. Let π = (ν1, ν2, . . . , νs;σ) be an expression of π ∈ B(λ). Then, cl(π) ∈ B(λ)cl has an
expression cl(π) = (cl(ν1), cl(ν2), . . . , cl(νs);σ). Hence it follows that{

ι(cl(π)) = cl(ι(π)) ∈ cl(Wλ) = W̊ cl(λ)
κ(cl(π)) = cl(κ(π)) ∈ cl(Wλ) = W̊ cl(λ)

for every π ∈ B(λ).

Let η ∈ B(λ)cl, and j ∈ I. We set Hη
j (t) := (η(t))(hj), t ∈ [0, 1], and define mη

j to be the
minimum value of the function Hη

j (t) in the interval [0, 1]. It is obvious that, for every π ∈ B(λ)
and j ∈ I,

H
cl(π)
j (t) = Hπ

j (t) for all t ∈ [0, 1], and hence mcl(π)
j = mπ

j . (2.2.9)

Remark 2.2.9. Let η ∈ B(λ)cl, and j ∈ I. We see from [Lit95, Lemma 4.5d)] along with (2.2.9) that
η(1) ∈ Pcl, and that all local minima of the function Hη

j (t), t ∈ [0, 1], are integers. In particular,
the minimum value mη

j of the function Hη
j (t) in the interval [0, 1] is a nonpositive integer, and

Hη
j (1) −mη

j is a nonnegative integer.

We define ejη, fjη ∈ B(λ)cl ∪ {0} for η ∈ B(λ)cl and j ∈ I in the same way as in the case of
B(λ). We easily see from (2.2.9) that

cl(ejπ) = ej cl(π), cl(fjπ) = fj cl(π) for π ∈ B(λ) and j ∈ I, (2.2.10)

where cl(0) is understood to be 0.

Remark 2.2.10. Let η ∈ B(λ)cl, and j ∈ I. It follows from the definition of the root operator ej that,
if ejη �= 0, then the initial direction ι(ejη) is equal either to ι(η) or to rj(ι(η)).

We know from [NS05, Theorem 2.4 and § 3.1] that the set B(λ)cl equipped with the root operators
ej and fj, j ∈ I, is a Pcl-weighted crystal (Pcl-crystal for short), i.e. a crystal associated to the
classical Cartan datum (A, cl(Π),Π∨, Pcl, P

∨
cl ), and that the following equations hold:

−mη
j = max{l ∈ Z�0 | eljη �= 0} = εj(η), (2.2.11)

Hη
j (1) −mη

j = max{l ∈ Z�0 | f l
jη �= 0} = ϕj(η). (2.2.12)

For each η ∈ B(λ)cl and j ∈ I, we set emax
j η := e

εj(η)
j η ∈ B(λ)cl. The proof of the next lemma is

similar to that of [Lit94, 5.3 Lemma] (see Remark 2.2.9).
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Lemma 2.2.11. Let λ ∈ P be an integral weight, and let η ∈ B(λ)cl, j ∈ I.

(1) If the initial direction ι(η) ∈ Pcl of η satisfies (ι(η))(hj) < 0, then ejη �= 0.

(2) For all 0 � l � εj(η) − 1, we have ι(eljη) = ι(η).
(3) If (ι(η))(hj) � 0, then ι(emax

j η) = rj(ι(η)).

Using Lemma 2.2.11(3), we can show the following lemma by induction on p.

Lemma 2.2.12. Let λ ∈ P be an integral weight. Let η ∈ B(λ)cl, and set µ := ι(η) ∈ Pcl. If
j1, j2, . . . , jp ∈ I satisfy the condition that (rjp′rjp′−1

· · · rj1(µ))(hjp′+1
) � 0 for all p′ = 0, 1, . . . , p−1,

then the initial direction of emax
jp

emax
jp−1

· · · emax
j1

(η) ∈ B(λ)cl is equal to rjprjp−1 · · · rj1(µ).

Lemma 2.2.13. Let λ ∈ P be an integral weight. Let η ∈ B(λ)cl, and set µ := κ(η) ∈ Pcl. If j ∈ I is
such that µ(hj) > 0, then fjη �= 0 holds.

Proof. From the assumption of the lemma, we deduce that Hπ
j (1) −mπ

j > 0. Therefore, it follows
from Remark 2.2.9 that Hπ

j (1)−mπ
j � 1. Hence, by (2.2.12), we have ϕj(η) � 1, which implies that

fjη �= 0. This proves the lemma.

2.3 Regular crystals and simple crystals
For a proper subset J of I, we set AJ := (aij )i,j∈J , ΠJ := {αj}j∈J ⊂ Π, and Π∨

J := {hj}j∈J ⊂ Π∨.
When we regard a Pcl-crystal B as a crystal associated to the Cartan datum (AJ , cl(ΠJ),Π∨

J , Pcl, P
∨
cl ),

we denote it by resJ B. Also, we denote by U ′
q(g)J the Q(q)-subalgebra of U ′

q(g) generated by xj , yj,
j ∈ J , and qh, h ∈ P∨

cl . Recall that a Pcl-crystal B is said to be regular if, for every proper subset
J � I, resJ B is isomorphic to the crystal base of an integrable U ′

q(g)J -module.

Remark 2.3.1. Let λ ∈ P be a level-zero integral weight. We know from [NS05, Proposition 3.13]
that B(λ)cl is a regular Pcl-crystal with finitely many elements.

If B is a regular Pcl-crystal equipped with the Kashiwara operators ej and fj, j ∈ I, then we
set emax

j b := e
εj(b)
j b ∈ B for b ∈ B and j ∈ I, where εj(b) := max{l ∈ Z�0 | eljb �= 0}. For regular

Pcl-crystals B1 and B2, we define the tensor product Pcl-crystal B1 ⊗B2 of B1 and B2 as in [Kas95,
§ 7.3] and [HK02, Definition 4.5.3]; note that B1 ⊗ B2 is also a regular Pcl-crystal. The next lemma
follows immediately from the tensor product rule for crystals.

Lemma 2.3.2. Let B1 and B2 be regular Pcl-crystals, and b1 ∈ B1, b2 ∈ B2. Let j ∈ I.

(1) We have εj(b1 ⊗ b2) � εj(b1). Therefore, if ej(b1 ⊗ b2) = 0, then ejb1 = 0.

(2) Set L := εj(b1 ⊗ b2). Then, for 0 � l � L, we have

elj(b1 ⊗ b2) =

b1 ⊗ eljb2 if 0 � l � L− εj(b1),

e
l−L+εj(b1)
j b1 ⊗ e

L−εj(b1)
j b2 if L− εj(b1) � l � L.

In particular, we have emax
j (b1 ⊗ b2) = emax

j b1 ⊗ b′2 for some b′2 ∈ B2.

Let B be a regular Pcl-crystal. We define

‖b‖ :=
√

(wt(b),wt(b))cl for b ∈ B. (2.3.1)

Lemma 2.3.3. Let B be a regular Pcl-crystal. For each b ∈ B and j ∈ I, we have ‖emax
j b‖ � ‖b‖,

with equality if and only if either ejb = 0 or fjb = 0 holds.

Proof. Using the equation ϕj(b) = (wt(b))(hj) + εj(b), we easily see that

‖emax
j b‖2 = ‖b‖2 + εj(b)ϕj(b)(αj , αj).
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Therefore, the inequality ‖emax
j b‖ � ‖b‖ follows immediately from the fact that εj(b) � 0, ϕj(b) � 0,

and (αj , αj) > 0. Also, the equality holds if and only if εj(b) = 0 or ϕj(b) = 0, which is equivalent
to saying that ejb = 0 or fjb = 0. This proves the lemma.

Let B be a regular Pcl-crystal. For each j ∈ I, we define Sj : B → B by

Sjb =

{
f l

jb if l := (wt b)(hj) � 0,
e−l
j b if l := (wt b)(hj) < 0.

(2.3.2)

We know from [Kas94, § 7] that there exists a unique action S : W → Bij(B), w �→ Sw, of the
Weyl group W on the set B such that Srj = Sj for all j ∈ I, where Bij(B) denotes the group of
all bijections from the set B to itself; in fact, if w = rj1rj2 · · · rjp ∈ W for j1, j2, . . . , jp ∈ I, then
Sw = Sj1Sj2 · · ·Sjp . Note that wt(Swb) = w(wt(b)) for all w ∈W and b ∈ B.

Definition 2.3.4 [AK97, § 1.4]. Let B be a regular Pcl-crystal. An element b ∈ B is said to be
extremal if, for every w ∈W , either ejSwb = 0 or fjSwb = 0 holds for each j ∈ I.

Remark 2.3.5. It follows immediately from the definition above that, if b ∈ B is an extremal element,
then Swb is an extremal element of weight w(wt(b)) for each w ∈W .

Lemma 2.3.6. Let B be a regular Pcl-crystal with finitely many elements. If b ∈ B satisfies the
condition that ‖b‖ = max{‖b′‖ | b′ ∈ B(λ)cl}, then b is an extremal element.

Proof. Let w ∈ W , and j ∈ I. Since (·, ·)cl is W -invariant, it follows that ‖Swb‖ = ‖b‖. Using this,
we obtain

‖b‖ � ‖emax
j Swb‖ by the maximality of ‖b‖

� ‖Swb‖ by Lemma 2.3.3
= ‖b‖,

and hence ‖emax
j Swb‖ = ‖Swb‖. Therefore, by Lemma 2.3.3, either ejSwb = 0 or fjSwb = 0 holds.

This proves the lemma.

Definition 2.3.7. Let B be a regular Pcl-crystal with finitely many elements. The Pcl-crystal B is
said to be simple if it satisfies the following conditions.
(1) The weights of elements of B are all level-zero.
(2) The set of all extremal elements of B is exactly the W -orbit of some extremal element of B.
Also, for each extremal element b ∈ B, the subset Bwt(b) ⊂ B of all elements of weight wt(b) consists
of a single element, i.e. Bwt(b) = {b}.
Remark 2.3.8. Let B be a simple Pcl-crystal. Then it follows from Remark 2.1.5 and Defini-
tion 2.3.7(2) that there exists a unique extremal element b of B such that wt(b) ∈ Pcl is level-zero
and I0-dominant.

Lemma 2.3.9. The following hold.

(1) A simple Pcl-crystal is connected.

(2) A tensor product of simple Pcl-crystals is also a simple Pcl-crystal.

(3) Let B1, B2 be simple Pcl-crystals. Then there exists at most one isomorphism of Pcl-crystals
from B1 to B2. In particular, any automorphism of a simple Pcl-crystal is necessarily the
identity map.

Proof. Parts (1) and (2) are precisely Lemmas 1.9 and 1.10 in [AK97], respectively. Let us show
part (3). Let B1, B2 be simple Pcl-crystals, and let Φ : B1

∼−→ B2 be an isomorphism of Pcl-crystals
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from B1 to B2. We see from Remark 2.3.8 that there exists a unique element b1 ∈ B1 (respectively,
b2 ∈ B2) such that b1 (respectively, b2) is extremal, and such that wt(b1) (respectively, wt(b2)) is
level-zero and I0-dominant. Since Φ : B1

∼−→ B2 is an isomorphism of Pcl-crystals, it follows that
Φ(b1) is extremal, and that wt(Φ(b1)) is level-zero and I0-dominant. Hence, from the uniqueness of
such an element, we obtain Φ(b1) = b2. Also, because a simple Pcl-crystal is connected by part (1),
an isomorphism of Pcl-crystals from B1 to B2 is determined uniquely by the requirement that
Φ(b1) = b2. Thus the proof of the lemma is complete.

2.4 Tensor product decomposition and combinatorial R-matrices
We know from [NS06, Propositions 3.4.1 and 3.4.2] that, for each i ∈ I0, the Pcl-crystal B(�i)cl
is a simple Pcl-crystal isomorphic to the crystal basis B(W (�i)) of the level-zero fundamental
representation W (�i), which is a finite-dimensional irreducible U ′

q(g)-module introduced in [Kas02,
§ 5.2]. Because the W (�i), i ∈ I0, are ‘good’ U ′

q(g)-modules in the sense of [Kas02, § 8], we deduce
from [Kas02, Proposition 10.6] that, for each i1, i2 ∈ I0, there exists a unique isomorphism (called
a combinatorial R-matrix) R	i1

,	i2
: B(�i1)cl ⊗ B(�i2)cl

∼−→ B(�i2)cl ⊗ B(�i1)cl of Pcl-crystals (see
also [Oka07, § 2.3]); the uniqueness follows from parts (2) and (3) of Lemma 2.3.9. Combining this
fact and the tensor product decomposition theorem [NS05, Theorem 3.2], we obtain the following
theorem.

Theorem 2.4.1. Let i = (i1, i2, . . . , in) be an arbitrary sequence of elements of I0 (with repetitions
allowed), and set λ :=

∑n
k=1�ik ∈ P 0

+. Then there exists a unique isomorphism of Pcl-crystals,

Ψi : B(λ)cl
∼−→ Bi := B(�i1)cl ⊗ B(�i2)cl ⊗ · · · ⊗ B(�in)cl. (2.4.1)

Remark 2.4.2. Let i = (i1, i2, . . . , in) and λ =
∑n

k=1�ik ∈ P 0
+ be as in Theorem 2.4.1. It follows

from Theorem 2.4.1 along with parts (1) and (2) of Lemma 2.3.9 that B(λ)cl is a simple Pcl-crystal
isomorphic to the crystal basis of the tensor product U ′

q(g)-module Wi := W (�i1)⊗W (�i2)⊗ · · ·⊗
W (�in) of the level-zero fundamental representations W (�ik), 1 � k � n.

Remark 2.4.3. Let λ ∈ P 0
+. We know from [NS05, Lemma 3.19(1)] that the straight line path ηcl(λ)

is an extremal element of B(λ)cl, and that Swηcl(λ) = ηw cl(λ) for each w ∈ W . Therefore, from
Remark 2.4.2, we deduce (recalling the definition of simple Pcl-crystals) that each extremal element
of B(λ)cl is a straight line path ηµ for some µ ∈ cl(Wλ) = W̊ cl(λ), and that the number of elements
of weight µ in B(λ)cl is equal to one for all µ ∈ cl(Wλ) = W̊ cl(λ). In particular, the straight line
path ηcl(λ) is the unique extremal element of B(λ)cl whose weight is level-zero and I0-dominant, of
which we made mention in Remark 2.3.8.

Remark 2.4.4. Let λ ∈ P 0
+. We see from [NS08, Lemma 2.6.4] that the weights of B(λ)cl are all

contained in the set cl(λ) − a−1
0 cl(Q̊+).

Let i = (i1, i2, . . . , in) and λ ∈ P 0
+ be as in Theorem 2.4.1. It is easily seen from Remark 2.4.3

and [AK97, Lemma 1.6(1)] that ηcl(	i1
) ⊗ ηcl(	i2

) ⊗ · · · ⊗ ηcl(	in ) is the unique extremal element
of the simple Pcl-crystal Bi = B(�i1)cl ⊗ B(�i2)cl ⊗ · · · ⊗ B(�in)cl whose weight is level-zero and
I0-dominant. Therefore, we deduce from Remark 2.4.3 and the proof of Lemma 2.3.9(3) that

Ψi(ηcl(λ)) = ηcl(	i1
) ⊗ ηcl(	i2

) ⊗ · · · ⊗ ηcl(	in). (2.4.2)

Corollary 2.4.5. Let λ, λ′ ∈ P 0
+.

(1) There exists a unique isomorphism Ψλ,λ′ : B(λ+ λ′)cl
∼−→ B(λ)cl ⊗ B(λ′)cl of Pcl-crystals.

(2) There exists a unique isomorphism Rλ,λ′ : B(λ)cl ⊗ B(λ′)cl
∼−→ B(λ′)cl ⊗ B(λ)cl of Pcl-crystals.

Proof. Part (1) follows from Theorem 2.4.1. Part (2) follows immediately from part (1).
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Let λ, λ′ ∈ P 0
+. By the same reasoning as that yielding (2.4.2), we obtain

Ψλ,λ′(ηcl(λ+λ′)) = ηcl(λ) ⊗ ηcl(λ′), (2.4.3)

Rλ,λ′(ηcl(λ) ⊗ ηcl(λ′)) = ηcl(λ′) ⊗ ηcl(λ). (2.4.4)

2.5 Local energy functions
Let λ, λ′ ∈ P 0

+, and let i = (i1, i2, . . . , in), i′ = (i′1, i
′
2, . . . , i

′
n′) be sequences of elements of I0 such

that λ =
∑n

k=1�ik and λ′ =
∑n′

k′=1�i′
k′

, respectively. We define the tensor product U ′
q(g)-modules

Wi and Wi′ corresponding to i and i′, respectively, as in Remark 2.4.2; note that both Wi and
Wi′ are ‘good’ U ′

q(g)-modules (in the sense of [Kas02, § 8]) by [Kas02, Proposition 8.7], and that
B(λ)cl and B(λ′)cl are isomorphic as a Pcl-crystal to the crystal bases of Wi and Wi′ , respectively.
Therefore, by an argument similar to that in [Kas02, § 11], we obtain the following theorem (see
also [Oka07, § 2.3]).

Theorem 2.5.1. Let λ, λ′ ∈ P 0
+. Then, there exists a unique Z-valued function (called a local energy

function) Hλ,λ′ : B(λ)cl ⊗ B(λ′)cl → Z satisfying the following two conditions.

(H1) For each η1 ⊗ η2 ∈ B(λ)cl ⊗ B(λ′)cl and j ∈ I such that ej(η1 ⊗ η2) �= 0, the equation

Hλ,λ′(ej(η1 ⊗ η2))

=


Hλ,λ′(η1 ⊗ η2) + 1 if j = 0, and if e0(η1 ⊗ η2) = e0η1 ⊗ η2, e0(η̃2 ⊗ η̃1) = e0η̃2 ⊗ η̃1,

Hλ,λ′(η1 ⊗ η2) − 1 if j = 0, and if e0(η1 ⊗ η2) = η1 ⊗ e0η2, e0(η̃2 ⊗ η̃1) = η̃2 ⊗ e0η̃1,

Hλ,λ′(η1 ⊗ η2) otherwise,

(2.5.1)

holds, where we set η̃2 ⊗ η̃1 := Rλ,λ′(η1 ⊗ η2) ∈ B(λ′)cl ⊗ B(λ)cl.

(H2) The equation Hλ,λ′(ηcl(λ) ⊗ ηcl(λ′)) = 0 holds.

3. Degree function on LS path crystals

3.1 Definition of the degree function
Let λ ∈ P 0

+. Recall from Lemma 2.1.2 that every element ν of Wλ can be written uniquely in the
form ν = λ− β + kdλδ with β ∈ Q̊+ and k ∈ Z.

Lemma 3.1.1. Let π ∈ B(λ). If the initial direction ι(π) ∈ Wλ of π is contained in λ − Q̊+, then
π(1) ∈ P can be written uniquely in the form π(1) = λ−a−1

0 β+a−1
0 Kδ with β ∈ Q̊+ and K ∈ Z�0.

Proof. We know from [NS08, Lemma 2.6.4], along with the linear independence of αj , j ∈ I, and δ,
that π(1) ∈ P can be written uniquely in the form π(1) = λ − a−1

0 β + a−1
0 Kδ with β ∈ Q̊+ and

K ∈ Z. Let us show that the coefficient a−1
0 K of δ in this expression of π(1) ∈ P is nonnegative.

Let π = (ν1, ν2, . . . , νs;σ) be an expression of π ∈ B(λ), and write each νu ∈ Wλ for 1 � u � s
as νu = λ − βu + kudλδ, where βu ∈ Q̊+ and ku ∈ Z (see Lemma 2.1.2); note that k1 = 0 by the
assumption of the lemma. It follows from the definition of LS paths that ν1 � ν2 � · · · � νs, and
hence from Remark 2.1.3 that 0 = k1 � k2 � · · · � ks. Observe by (2.2.1) that the coefficient a−1

0 K
of δ in the expression above of π(1) ∈ P is equal to

∑s
u=1(σu − σu−1)kudλ. Therefore, we conclude

that a−1
0 K is nonnegative, and hence so is K. This proves the lemma.

Let us denote by B0(λ) ⊂ B(λ) the connected component of the P -crystal B(λ) containing the
straight line path πλ. We know the following lemma from [NS08, Lemma 4.2.3].
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Lemma 3.1.2. Let η ∈ B(λ)cl. Then, the set cl−1(η) ∩ B0(λ) is nonempty, where we set cl−1(η) :=
{π ∈ B(λ) | cl(π) = η}. Moreover, if we take an arbitrary π ∈ cl−1(η)∩B0(λ), then cl−1(η)∩B0(λ) =
{π + πkdλδ | k ∈ Z}.
Proposition 3.1.3. Let η ∈ B(λ)cl. Then, the set cl−1(η) ∩ B0(λ) contains a unique element πη

such that ι(πη) ∈ λ− Q̊+.

Proof. Let us take π ∈ cl−1(η)∩B0(λ), and write its initial direction ι(π) ∈Wλ as ι(π) = λ−β+kdλδ
for β ∈ Q̊+ and k ∈ Z. Then we see from Lemma 3.1.2 that πη := π − πkdλδ is also contained in
cl−1(η)∩B0(λ). Also, it is easy to show (see Remark 2.2.4) that ι(πη) is equal to ι(π)−kdλδ = λ−β,
and hence that ι(πη) ∈ λ − Q̊+. This proves the existence of πη. The uniqueness of πη follows
immediately from Lemma 3.1.2. This completes the proof of the proposition.

Let η ∈ B(λ)cl, and take πη ∈ cl−1(η) ∩ B0(λ) of Proposition 3.1.3. Then, by Lemma 3.1.1, we
can write πη(1) ∈ P in the form πη(1) = λ − a−1

0 β + a−1
0 Kδ with β ∈ Q̊+ and K ∈ Z�0. Now,

we define the degree Deg(η) ∈ Z�0 of the η ∈ B(λ)cl by

Deg(η) = −K. (3.1.1)

Proposition 3.1.4. Let η ∈ B(λ)cl. Take π ∈ cl−1(η) ∩ B(λ) such that ι(π) ∈ λ− Q̊+ and π �= πη.

(1) If we write π(1) ∈ P in the form π(1) = λ− a−1
0 β′ + a−1

0 K ′δ with β′ ∈ Q̊+ and K ′ ∈ Z�0, then
we have −K ′ < Deg(η).
(2) If we write the final directions κ(πη) and κ(π) of πη and π in the form κ(πη) = λ − β + kdλδ
and κ(π) = λ− β′ + k′dλδ with β, β′ ∈ Q̊+ and k, k′ ∈ Z, respectively, then we have k < k′.

Remark 3.1.5. Part (1) of Proposition 3.1.4 characterizes the degree Deg(η) ∈ Z�0 of η ∈ B(λ)cl as
the maximum of the nonpositive integers −K for which π(1) ∈ P is of the form π(1) = λ− a−1

0 β +
a−1

0 Kδ with β ∈ Q̊+ and K ∈ Z�0, where π ∈ cl−1(η)∩B(λ) is such that ι(π) ∈ λ− Q̊+. Moreover,
the maximum Deg(η) is attained only by πη ∈ cl−1(η) ∩ B0(λ) of Proposition 3.1.3.

To prove Proposition 3.1.4, we need the following lemma, which can be shown by an argument
in the proof of [NS08, Theorem 3.1.1].

Lemma 3.1.6. Each connected component of B(λ) contains a unique element whose reduced expres-
sion is of the form

(λ, λ+ k2dλδ, . . . , λ+ ksdλδ;σ0, σ1, . . . , σs), (3.1.2)
with k2, . . . , ks ∈ Z and 0 = σ0 < σ1 < · · · < σs = 1.

Remark 3.1.7. It follows from the definition of LS paths that λ > λ + k2dλδ > · · · > λ + ksdλδ.
Hence we see from Remark 2.1.3 that 0 < k2 < · · · < ks.

Proof of Proposition 3.1.4. Assume that π ∈ B(λ) lies in a connected component of B(λ) containing
an LS path π′ whose reduced expression is of the form (3.1.2). We see from Proposition 3.1.3 and
the assumption of the lemma that π does not lie in B0(λ), and hence that s � 2.

We set ψ := (0, k2dλδ, . . . , ksdλδ;σ0, σ1, . . . , σs); note that π′ = πλ +ψ. Let X be a monomial of
X in the root operators ej , fj for j ∈ I such that π = Xπ′. Then we have

Xπλ = X(π′ − ψ) = Xπ′ − ψ by [NS08, Lemma 2.7.1]
= π − ψ.

Since cl(π) = η, it follows that cl(Xπλ) = cl(π−ψ) = cl(π) = η. Hence we get Xπλ ∈ cl−1(η)∩B0(λ).
Also, because ι(π) ∈ λ− Q̊+ and ι(ψ) = 0, we see that ι(Xπλ) = ι(π − ψ) = ι(π) − ι(ψ) ∈ λ− Q̊+.
Hence it follows from Proposition 3.1.3 that Xπλ = πη. Thus we obtain πη = π − ψ, and hence

Deg(η) = −K ′ + a0 × (coefficient of δ in ψ(1)) and k = k′ − ks.
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Since s � 2 as seen above, we deduce from Remark 3.1.7 (using (2.2.1)) that the coefficient of δ in
ψ(1) is greater than 0. Therefore, we conclude that −K ′ < Deg(η). Furthermore, since ks > 0 with
s � 2, it follows that k < k′. This completes the proof of the proposition.

3.2 Behavior of the degree function under root operators

As in § 3.1, let λ ∈ P 0
+.

Lemma 3.2.1. The following hold.

(1) We have Deg(ηcl(λ)) = 0.

(2) Let η ∈ B(λ)cl, and j ∈ I. If ejη �= 0, then (see Remark 2.2.10)

Deg(ejη) =


Deg(η) − 1 if j = 0 and ι(e0η) = ι(η),
Deg(η) − (ι(η))(h0) − 1 if j = 0 and ι(e0η) = r0(ι(η)),
Deg(η) if j �= 0.

(3.2.1)

Proof. Part (1) is obvious from the definition of Deg, since πηcl(λ)
= πλ. Let us prove part (2).

It is obvious that ejπη ∈ B0(λ) since πη ∈ B0(λ) by definition. Also, we know from (2.2.10) that
cl(ejπη) = ej cl(πη) = ejη. Let us write πη(1) ∈ P in the form πη(1) = λ− a−1

0 β− a−1
0 Deg(η)δ with

β ∈ Q̊+.

First, assume that j �= 0. We deduce from Remark 2.2.10 along with Lemma 2.1.2 that ι(ejπη) ∈
λ−Q̊+. Because ejπη ∈ B0(λ) and cl(ejπη) = ejη, it follows from Proposition 3.1.3 that πejη = ejπη.
Since j �= 0, we have

πejη(1) = (ejπη)(1) = πη(1) + αj = λ− (a−1
0 β − αj)︸ ︷︷ ︸
∈a−1

0 Q̊+

−a−1
0 Deg(η)δ,

and hence Deg(ejη) = Deg(η).

Next, assume that j = 0 and ι(e0η) = ι(η). Then we deduce (using (2.2.9)) from the definitions
of the root operator e0 on B(λ) and the root operator e0 on B(λ)cl that ι(e0πη) = ι(πη), and hence
ι(e0πη) ∈ λ− Q̊+. Because e0πη ∈ B0(λ) and cl(e0πη) = e0η, it follows from Proposition 3.1.3 that
πe0η = e0πη. Now, define θ ∈ Q̊+ by θ = δ − a0α0. Since α0 = a−1

0 (δ − θ), we have

πe0η(1) = (e0πη)(1) = πη(1) + α0

= λ− a−1
0 β − a−1

0 Deg(η)δ + a−1
0 (δ − θ)

= λ− a−1
0 (β + θ) − a−1

0 (Deg(η) − 1)δ,

and hence Deg(e0η) = Deg(η) − 1.

Finally, assume that j = 0 and ι(e0η) = r0(ι(η)). Then we deduce (using (2.2.9)) from the
definitions of the root operator e0 on B(λ) and the root operator on e0 B(λ)cl that

ι(e0πη) = r0ι(πη) = ι(πη) − (ι(πη))(h0)α0

= ι(πη) + a−1
0 (ι(πη))(h0)θ − a−1

0 (ι(πη))(h0)δ, (3.2.2)

where θ = δ−a0α0 as above. Note that ι(πη)+a−1
0 (ι(πη))(h0)θ ∈ λ−

∑
j∈I0

Qαj , since ι(πη) ∈ λ−Q̊+.
Because ι(e0πη) ∈Wλ, it follows from Lemma 2.1.2 and the linear independence of αj , j ∈ I, and δ
that ι(πη) + a−1

0 (ι(πη))(h0)θ ∈ λ− Q̊+ and a−1
0 (ι(πη))(h0) ∈ Zdλ. Hence, a−1

0 (ι(πη))(h0) = kdλ for
some k ∈ Z. Also, because e0πη ∈ B0(λ) and cl(e0πη) = e0η ∈ B0(λ), we deduce from Lemma 3.1.2
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that e0πη + πkdλδ ∈ cl−1(e0η) ∩ B0(λ). Furthermore, we have

ι(e0πη + πkdλδ) = ι(e0πη) + ι(πkdλδ) by Remark 2.2.4

= ι(πη) + a−1
0 (ι(πη))(h0)θ − kdλδ + kdλδ by (3.2.2)

= ι(πη) + a−1
0 (ι(πη))(h0)θ,

where the last element lies in λ− Q̊+ as seen above. Therefore, by Proposition 3.1.3, we get πe0η =
e0πη + πkdλδ. From this, we obtain

πe0η(1) = (e0πη)(1) + πkdλδ(1) = πη(1) + α0 + kdλδ

= λ− a−1
0 β − a−1

0 Deg(η)δ + a−1
0 (δ − θ) + kdλδ

= λ− a−1
0 (β + θ) − a−1

0 (Deg(η) − a0kdλ − 1)δ,

and hence

Deg(e0η) = Deg(η) − a0kdλ − 1 = Deg(η) − (ι(πη))(h0) − 1.

Note that (ι(πη))(h0) = (ι(η))(h0) since cl(ι(πη)) = ι(cl(πη)) = ι(η) by Remark 2.2.8. Thus we
conclude that Deg(e0η) = Deg(η) − (ι(η))(h0) − 1, as desired. This completes the proof of the
lemma.

Lemma 3.2.2. Let η ∈ B(λ)cl, and j ∈ I. Assume that ejη �= 0, and that (ι(η))(hj ) � 0. Then,

Deg(emax
j η) =

{
Deg(η) − ε0(η) − (ι(η))(h0) if j = 0,
Deg(η) if j �= 0.

(3.2.3)

Proof. If j �= 0, then it follows immediately from Lemma 3.2.1(2) that Deg(emax
j η) = Deg(η). Now

assume that j = 0. If ε0(η) = 0, i.e. e0η = 0, then we see from Lemma 2.2.11(1) that (ι(η))(h0) � 0,
which, when combined with the assumption of the lemma, implies that (ι(η))(h0) = 0. Hence we
have

Deg(emax
0 η) = Deg(e00η) = Deg(η) = Deg(η) − ε0(η)︸ ︷︷ ︸

=0

− (ι(η))(h0)︸ ︷︷ ︸
=0

.

Thus it remains to consider the case ε0(η) � 1. From Lemmas 2.2.11(2) and 3.2.1(2), it follows that

Deg(eε0(η)−1
0 η) = Deg(η) − ε0(η) + 1. (3.2.4)

Therefore, by using parts (2) and (3) of Lemma 2.2.11, we see from Lemma 3.2.1(2) that

Deg(emax
0 η) = Deg(eε0(η)

0 η) = Deg(e0e
ε0(η)−1
0 η)

= Deg(eε0(η)−1
0 η) − (ι(η))(h0) − 1

= Deg(η) − ε0(η) + 1 − (ι(η))(h0) − 1 by (3.2.4)
= Deg(η) − ε0(η) − (ι(η))(h0).

This proves the lemma.

4. Relation between the energy function and the degree function

4.1 Main results

Let i = (i1, i2, . . . , in) be an arbitrary sequence of elements of I0, and define the tensor product
Pcl-crystal Bi := B(�i1)cl ⊗ B(�i2)cl ⊗ · · · ⊗ B(�in)cl. For an element η1 ⊗ η2 ⊗ · · · ⊗ ηn ∈ Bi, we
define η(k)

l ∈ B(�il)cl, 1 � k < l � n, as follows (see [HKOTY99, § 3] and [HKOTT02, § 3.3]). There
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exists a unique isomorphism

B(�ik)cl ⊗ B(�ik+1
)cl ⊗ · · · ⊗ B(�il−1

)cl ⊗ B(�il)cl
∼−→ B(�il)cl ⊗ B(�ik)cl ⊗ · · · ⊗ B(�il−2

)cl ⊗ B(�il−1
)cl

of Pcl-crystals, which is given as the composition R	ik
,	il

◦R	ik+1
,	il

◦ · · · ◦R	il−1
,	il

of combina-
torial R-matrices (see § 2.4); for uniqueness, see Lemma 2.3.9(3). We define η(k)

l to be the first factor
(which lies in B(�il)cl) of the image of ηk ⊗ ηk+1 ⊗ · · · ⊗ ηl ∈ B(�ik)cl ⊗ B(�ik+1

)cl ⊗ · · · ⊗ B(�il)cl
under the above isomorphism of Pcl-crystals. For convenience, we set η(l)

l := ηl for 1 � l � n.
For each 1 � k � n, take (and fix) an arbitrary element η


k ∈ B(�ik)cl such that fjη


k = 0 for

all j ∈ I0. Note that such an element η

k ∈ B(�ik)cl actually exists. Indeed, for each i ∈ I0, we

know from Remark 2.2.7 that η	̃i
∈ B(�i)cl, where �̃i := w0 cl(�i) ∈ Pcl (see also Remark 2.1.5);

it follows immediately from the definition of the root operators fj, j ∈ I0, that fjη	̃i
= 0 for all

j ∈ I0.
Now, following [HKOTY99, § 3] and [HKOTT02, § 3.3], we define the energy function Di : Bi =

B(�i1)cl ⊗ B(�i2)cl ⊗ · · · ⊗ B(�in)cl → Z by

Di(η1 ⊗ η2 ⊗ · · · ⊗ ηn)

=
∑

1�k<l�n

H	ik
,	il

(ηk ⊗ η
(k+1)
l ) +

n∑
k=1

H	ik
,	ik

(η

k ⊗ η

(1)
k ). (4.1.1)

Also, we define a constant Dext
i ∈ Z by

Dext
i =

n∑
k=1

H	ik
,	ik

(η

k ⊗ ηcl(	ik

)). (4.1.2)

The main result of this paper is the following theorem.

Theorem 4.1.1. Let i = (i1, i2, . . . , in) be an arbitrary sequence of elements of I0, and set λ :=∑n
k=1�ik ∈ P 0

+. Then, for every η ∈ B(λ)cl, the equation

Deg(η) = Di(Ψi(η)) −Dext
i (4.1.3)

holds, where Ψi : B(λ)cl
∼−→ Bi is the isomorphism of Pcl-crystals in Theorem 2.4.1.

We will establish Theorem 4.1.1 under the following plan. First, in § 4.2, we show some technical
lemmas needed in subsections that follow. Next, in § 4.3, using these lemmas, we prove Proposi-
tion 4.3.1, which is the key to our proof (in § 4.4) of Theorem 4.1.2 below. Finally, in § 4.5, we prove
Theorem 4.1.3 below, which, when combined with Theorem 4.1.2, establishes Theorem 4.1.1.

Theorem 4.1.2. Let i = (i1, i2, . . . , in) be an arbitrary sequence of elements of I0, and set λ :=∑n
k=1�ik ∈ P 0

+. Let η ∈ B(λ)cl, and set Ψi(η) := η1 ⊗ η2 ⊗ · · · ⊗ ηn ∈ Bi = B(�i1)cl ⊗ B(�i2)cl ⊗
· · · ⊗ B(�in)cl. Then, the following equation holds:

Deg(η) =
∑

1�k<l�n

H	ik
,	il

(ηk ⊗ η
(k+1)
l ) +

n∑
k=1

Deg(η(1)
k ). (4.1.4)

Theorem 4.1.3. Let i ∈ I0, and let η
 ∈ B(�i)cl be an element of B(�i)cl such that fjη

 = 0 for

all j ∈ I0. Then, for every η ∈ B(�i)cl, the following equation holds:

Deg(η) = H	i,	i(η

 ⊗ η) −H	i,	i(η


 ⊗ ηcl(	i)). (4.1.5)

Remark 4.1.4. Assume that g is a nontwisted affine Lie algebra (note that a0 = 1), and let i ∈ I0,
m ∈ Z�1. In [GL04, § 5.7 and Proposition 5.9], they constructed an isomorphism ψ of P -weighted
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crystals from the affinization of the Pcl-crystal (B(�i)cl)⊗m onto
⊔

0�M<m B0(m�i+Mδ); see [GL04,
§ 2.8] and [NS08, § 4.1] for the affinization of a Pcl-crystal. Also, in [NS08, § 4.2], we constructed
an isomorphism Θ of P -weighted crystals from the affinization of the Pcl-crystal B(m�i)cl onto⊔

0�M<m B0(m�i +Mδ). In fact, we can show, without making use of Theorem 4.1.1 (cf. the proof
of [NS08, Proposition 4.14]), that the two isomorphisms ψ and Θ can be considered as identical
under the identification B(m�i)cl

∼−→ (B(�i)cl)⊗m of Pcl-crystals given by Theorem 2.4.1. From this,
using the explicit constructions of ψ and Θ (see the proof of [NS08, Proposition 4.14]), we obtain a
description of Deg(η) for η ∈ B(m�i)cl in terms of local energy functions. This description of the
degree function Deg : B(λ)cl → Z is similar and closely related to the one in Theorem 4.1.1 for the
special case that g is a nontwisted affine Lie algebra and λ = m�i.

4.2 Some technical lemmas

Recall from [Kac90, Proposition 6.3] that a real root of g lies either in a−1
0 Q̊+ + a−1

0 Zδ or in
−a−1

0 Q̊+ + a−1
0 Zδ.

Lemma 4.2.1. Let λ ∈ P 0
+, and let w ∈W , j ∈ I.

(1) If (w(cl(λ)))(hj) < 0, then the real root w−1(αj) lies in −a−1
0 Q̊+ + a−1

0 Zδ.

(2) If the real root w−1(αj) lies in −a−1
0 Q̊+ + a−1

0 Zδ, then (w(cl(λ)))(hj) � 0.

(3) Assume that λ is strictly I0-dominant. Then, (w(cl(λ)))(hj) < 0 if and only if the real root
w−1(αj) lies in −a−1

0 Q̊+ + a−1
0 Zδ.

Proof. Since (αj , αj) ∈ Z>0 for all j ∈ I, and since

(w(cl(λ)))(hj) = (w(λ))(hj) =
2(w(λ), αj)

(αj , αj)
=

2(λ,w−1(αj))
(αj , αj)

,

it follows that (w(cl(λ)))(hj) < 0 if and only if (λ,w−1(αj)) < 0, and that (w(cl(λ)))
(hj) = 0 if and only if (λ,w−1(αj)) = 0. Also, since λ is level-zero and I0-dominant, and since
(αj , αj) ∈ Z>0 for all j ∈ I0, we have

(λ,±a−1
0 Q̊+ + a−1

0 Zδ) = (λ,±a−1
0 Q̊+) ⊂ ±Q�0.

Now, all the assertions of the lemma follow immediately from the discussion above.

Lemma 4.2.2. Let λ ∈ P 0
+, and let η ∈ B(λ)cl, j ∈ I. Assume that η has an expression of the

form η = (µ1, µ2; 0, σ, 1), with µ1, µ2 ∈ cl(Wλ) = W̊ cl(λ) and 0 < σ < 1. If µ1(hj) < 0, then
emax
j η = (rj(µ1), µ′2; 0, σ, 1), where

µ′2 :=

{
µ2 if µ2(hj) � 0,
rjµ2 if µ2(hj) < 0.

(4.2.1)

Proof. First, assume that µ2(hj) � 0. Then, since µ1(hj) < 0 by the assumption of the lemma, it
follows that the function Hη

j (t) is strictly decreasing in the interval [0, σ], and mη
j = Hη

j (σ) < 0;
note that εj(η) = −mη

j by (2.2.11). For 0 � l � εj(η) = −mη
j , let σ(l) be the unique point in [0, σ]

such that Hη
j (σ(l)) = mη

j + l; observe that 0 = σ(εj(η)) < σ(εj(η)−1) < · · · < σ(0) = σ. Now it is easily
shown by induction on l that, for 0 � l � εj(η),

(eljη)(t) =


η(t) if 0 � t � σ(l),

η(σ(l)) + rj(η(t) − η(σ(l))) if σ(l) � t � σ,

η(t) + lαj if σ � t � 1.
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In particular, by taking l = εj(η), we have

(emax
j η)(t) =

{
rj(η(t)) if 0 � t � σ,

η(t) + εj(η)αj if σ � t � 1,

which implies that emax
j η = (rj(µ1), µ2; 0, σ, 1), since η = (µ1, µ2; 0, σ, 1).

Next, assume that µ2(hj) < 0. Then, since µ1(hj) < 0 by the assumption of the lemma, it
follows that the function Hη

j (t) is strictly decreasing in the interval [0, 1], and mη
j = Hη

j (1) < 0;
note that εj(η) = −mη

j by (2.2.11). For 0 � l � εj(η) = −mη
j , let σ(l) be the unique point in [0, 1]

such that Hη
j (σ(l)) = mη

j + l; observe that 0 = σ(εj(η)) < σ(εj(η)−1) < · · · < σ(0) = 1. Now it is easily
shown by induction on l that, for 0 � l � εj(η),

(eljη)(t) =

{
η(t) if 0 � t � σ(l),
η(σ(l)) + rj(η(t) − η(σ(l))) if σ(l) � t � 1.

In particular, by taking l = εj(η), we have

(emax
j η)(t) = rj(η(t)) for t ∈ [0, 1],

which implies that emax
j η = (rj(µ1), rj(µ2); 0, σ, 1), since η = (µ1, µ2; 0, σ, 1). This completes the

proof of the lemma.

Lemma 4.2.3. Let λ ∈ P 0
+. Let η = (µ1, µ2, . . . , µs;σ0, σ1, σ2, . . . , σs) be an expression of η ∈ B(λ)cl,

and assume that s � 2.

(1) The element η′ := (µ1, µ2;σ0, σ1, σs) is contained in B(λ)cl.
(2) If j ∈ I is such that µ1(hj) < 0, then (emax

j η)(t) = (emax
j η′)(t) for all t ∈ [0, σ2]. Hence, by

Lemma 4.2.2, emax
j η ∈ B(λ)cl has an expression of the form

emax
j η = (rjµ1, µ

′
2, µ

′
3, . . . , µ

′
s′ ;σ0, σ1, σ2, σ

′
3, . . . , σ

′
s′), (4.2.2)

where

µ′2 =

{
µ2 if µ2(hj) � 0,
rjµ2 if µ2(hj) < 0.

(4.2.3)

Proof. (1) Let π ∈ B(λ) be such that cl(π) = η, and let

π = (ν1, ν2, . . . , νs′′ ;σ′′0 , σ
′′
1 , σ

′′
2 , . . . , σ

′′
s′′)

be an expression of π. By ‘inserting’ (see [NS08, Remark 2.5.2(2)]) σ1 (respectively, σ2) between
σ′′k and σ′′k+1 such that σ′′k < σ1 (respectively, σ2) < σ′′k+1 if necessary, we may assume that there
exist 1 � u1 < u2 � s′′ such that σ′′u1

= σ1 and σ′′u2
= σ2. By Remark 2.2.8 and the condition that

cl(π) = η, we have

cl(νu) = µ1 for all 1 � u � u1,

cl(νu) = µ2 for all u1 + 1 � u � u2.
(4.2.4)

Set π′ := (ν1, ν2, . . . , νu2 ;σ
′′
0 , σ

′′
1 , . . . , σ

′′
u2−1, σ

′′
s′′). Then we can easily deduce from the definition of

LS paths (see also [Lit95, Lemma 4.5b)]) that π′ ∈ B(λ). Furthermore, it is clear from Remark 2.2.8
and (4.2.4) that cl(π′) = η′. Thus we have proved that η′ ∈ B(λ)cl.

(2) For 0 � l � εj(η) − 1, we set ηl := eljη ∈ B(λ)cl, and

t
(l)
1 := min{t ∈ [0, 1] | Hηl

j (t) = mηl
j }, t

(l)
0 := max{t ∈ [0, tl1] | Hηl

j (t) = mηl
j + 1}.

By (2.2.11), we have

mηl
j = −εj(ηl) = −εj(eljη) = −εj(η) + l = mη

j + l for 0 � l � εj(η) − 1. (4.2.5)
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Now, let us assume that µ2(hj) � 0. Since µ1(hj) < 0 by the assumption of the lemma, it follows
that k1 := Hη

j (σ1) < 0. Also, since µ2(hj) � 0, we see that the function Hη
j (t), t ∈ [0, 1], attains a

local minimum at t = σ1. Therefore, we obtain k1 ∈ Z<0 by Remark 2.2.9. Observe that

Hη
j (t) � k1 for all t ∈ [0, σ2]. (4.2.6)

We set l1 := k1 −mη
j ∈ Z�0; note that l1 < −mη

j = εj(η) since k1 ∈ Z<0.

Claim. For all 0 � l � l1, we have ηl(t) = η(t) for all t ∈ [0, σ2].

Proof of Claim. We show the assertion by induction on l. When l = 0, the assertion obviously holds.
Assume that 0 < l � l1 and that ηl−1(t) = η(t) for all t ∈ [0, σ2]. Note that ηl = ejηl−1. Therefore,
by the definition of the root operator ej , it suffices to show that σ2 � t

(l−1)
0 . We see from (4.2.5)

that

H
ηl−1

j (t(l−1)
1 ) = m

ηl−1

j = mη
j + l − 1 � mη

j + l1 − 1 = k1 − 1. (4.2.7)

Also, since ηl−1(t) = η(t) for all t ∈ [0, σ2] by the induction hypothesis, it follows from (4.2.6) that
H

ηl−1

j (t) = Hη
j (t) � k1 for all t ∈ [0, σ2]. Hence we deduce from (4.2.7) that t(l−1)

1 /∈ [0, σ2], i.e.

that σ2 < t
(l−1)
1 .

We have H
ηl−1

j (σ2) = Hη
j (σ2) � k1 = mη

j + l1 � mη
j + l = m

ηl−1

j + 1 as seen above, and

H
ηl−1

j (t(l−1)
1 ) = m

ηl−1

j < m
ηl−1

j + 1. Therefore, from the continuity of the function H
ηl−1

j (t) in the

interval σ2 � t � t
(l−1)
1 , we conclude that there exists σ2 � t′ < t

(l−1)
1 such thatHηl−1

j (t′) = m
ηl−1

j +1.

Hence it follows from the definition of t(l−1)
0 that t(l−1)

0 � t′ � σ2. This proves the claim.

From the claim above, by taking l = l1, we obtain ηl1(t) = η(t) for all t ∈ [0, σ2]. Consequently,
we see from the definition of t(l1)

1 that t(l1)
1 = σ1, since m

ηl1
j = mη

j + l1 = k1 and Hη
j (σ1) = k1.

Therefore, as in the proof of Lemma 4.2.2, we can show (using η(t) = ηl1(t) for t ∈ [0, σ2]) that

(emax
j η)(t) = (e

−mη
j

j η)(t) = (el1−k1
j η)(t) = (e−k1

j ηl1)(t)

=


rj(η(t)) if 0 � t � σ1,
η(t) − k1αj if σ1 � t � σ2,
ηl1(t) − k1αj if σ2 � t � 1.

From this and Lemma 4.2.2, we conclude that (emax
j η)(t) = (emax

j η′)(t) for t ∈ [0, σ2].
The proof for the case µ2(hj) < 0 is similar; we give only a sketch of the proof. Take the largest

u ∈ {2, 3, . . . , s} such that µu′(hj) < 0 for all 1 � u′ � u. Then we see that the function Hη
j (t),

t ∈ [0, 1], attains a local minimum at t = σu, and hence that ku := Hη
j (σu) ∈ Z<0 by Remark 2.2.9.

We set lu := ku −mη
j ∈ Z�0. Exactly in the same way as above, we can show that η(t) = ηlu(t) for

all t ∈ [0, σu]. Consequently, we have t(lu)
1 = σu, since µu′(hj) < 0 for all 1 � u′ � u. Therefore, as

in the proof of Lemma 4.2.2, we can show (using η(t) = ηlu(t) for t ∈ [0, σu]) that

(emax
j η)(t) = (e−ku

j ηlu)(t) =

{
rj(η(t)) if 0 � t � σu,
ηlu(t) − kuαj if σu � t � 1.

From this and Lemma 4.2.2, we conclude that (emax
j η)(t) = (emax

j η′)(t) for t ∈ [0, σ2]. This completes
the proof of the lemma.

4.3 Key proposition to the proof of Theorem 4.1.2
The following proposition plays a key role in the proof of Theorem 4.1.2.
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Proposition 4.3.1. Let λ ∈ P 0
+, and let η ∈ B(λ)cl be an element of B(λ)cl such that ejη = 0 for

all j ∈ I0. Then, there exists a sequence j1, j2, . . . , jN ∈ I such that:

(A) emax
jN

emax
jN−1

· · · emax
j1

η = ηcl(λ);

(B) rj1rj2 · · · rjp(αjp+1) ∈ −a−1
0 Q̊+ + a−1

0 Zδ for p = 0, 1, . . . , N − 1.

In order to prove Proposition 4.3.1, we need Lemmas 4.3.2 and 4.3.3 below.

Lemma 4.3.2. Let λ ∈ ∑
i∈I0

Z>0�i be a strictly I0-dominant integral weight. Let η be an element
of B(λ)cl such that ι(η) = cl(λ). Then, there exists a sequence j1, j2, . . . , jN ∈ I such that:

(A) emax
jN

emax
jN−1

· · · emax
j1

η = ηcl(λ);
(B′) (rjprjp−1 · · · rj1(cl(λ)))(hjp+1) < 0 for p = 0, 1, . . . , N − 1.

Proof. The crucial point in the proof is to consider the special case of η ∈ B(λ)cl having an expression
of the form

η = (cl(λ), µ; 0, σ, 1), with µ ∈ cl(Wλ) = W̊ cl(λ) and 0 < σ < 1, (4.3.1)

and prove the assertion of the lemma in this case. Before doing this, we show how to deduce the
general case from the special case (4.3.1). By Remark 2.3.1, the set of all elements of [0, 1] appearing
as the σu in the reduced expression (ν;σ0, σ1, . . . , σs) of some element of B(λ)cl is a finite set. Let
η = (cl(λ), µ2, . . . , µs;σ0, σ1, σ2, . . . , σs) be the reduced expression of η. Using the finiteness above,
we show the assertion of Lemma 4.3.2 by descending induction on σ1 in the reduced expression
(cl(λ), µ2, . . . , µs;σ0, σ1, σ2, . . . , σs) of η ∈ B(λ)cl. When σ1 = 1, we have η = ηcl(λ), since ι(η) = cl(λ)
by the assumption of the lemma. Thus the assertion obviously holds. Assume that σ1 < 1, or
equivalently s � 2. Set η′ := (cl(λ), µ2;σ0, σ1, σs); note that η′ ∈ B(λ)cl by Lemma 4.2.3(1). It
follows from the assertion in the special case (4.3.1) that there exists a sequence j1, j2, . . . , jN ′ ∈ I
satisfying conditions (A) and (B′) for η′. We set η′′ := emax

jN′ e
max
jN′−1

· · · emax
j1

η. Then, repeated use of
Lemma 4.2.3(2) shows that

η′′(t) = (emax
jN′ e

max
jN′−1

· · · emax
j1 η′)(t) = ηcl(λ)(t) = t cl(λ) for t ∈ [0, σ2]. (4.3.2)

Hence the initial direction ι(η′′), which equals rjN′ rjN′−1
· · · rj1(cl(λ)) by Lemma 4.2.3(2), must be

equal to cl(λ). Therefore, if η′′ = (cl(λ), µ′2, . . . , µ′s′ ;σ
′
0, σ

′
1, σ

′
2, . . . , σ

′
s′) is the reduced expression of

η′′, then we see from (4.3.2) that σ′1 � σ2 > σ1. Hence, by the induction hypothesis, there exists
a sequence jN ′+1, jN ′+2, . . . , jN ∈ I satisfying conditions (A) and (B′) for η′′. Thus we obtain a
sequence

j1, j2, . . . , jN ′ , jN ′+1, jN ′+2, . . . , jN ∈ I

satisfying conditions (A) and (B′) for η (note that rjN′ rjN′−1
· · · rj1(cl(λ)) = ι(η′′) = cl(λ)). This

proves the assertion of the lemma in the general case.
Now, it remains to prove the assertion of the lemma in the special case (4.3.1). Since B(λ)cl is a

finite set (see Remark 2.3.1), it follows that max{‖η′‖ | η′ ∈ B(λ)cl} < ∞, where ‖η‖ is as defined
in (2.3.1); recall that wt(η) is given by wt(η) = η(1) ∈ Pcl. We will show the assertion by descending
induction on ‖η‖. When ‖η‖ = max{‖η′‖ | η′ ∈ B(λ)cl}, it follows from Lemma 2.3.6 that η is an
extremal element. Since the initial direction ι(η) of η is equal to cl(λ) by assumption, we deduce
from Remark 2.4.3 that η = ηcl(λ) (hence there is nothing to prove).

Assume that ‖η‖ < max{‖η′‖ | η′ ∈ B(λ)cl}. Set Λ := w0λ, where w0 ∈ W̊ is the longest element
of W̊ . Then it is easy to check that Λ(hj) ∈ Z<0 for all j ∈ I0. Note that µ ∈ cl(Wλ) = W̊ cl(λ)
satisfies the condition that µ(hj) � 0 for all j ∈ I0 if and only if µ = cl(Λ) (see Remark 2.1.5).

We see from [AK97, Lemma 1.4] that there exists a sequence j1, j2, . . . , jN ′ ∈ I such that:
(a) rjN′ rjN′−1

· · · rj1(cl(λ)) = cl(Λ);
(b) (rjprjp−1 · · · rj1(cl(λ)))(hjp+1) < 0 for p = 0, 1, . . . , N ′ − 1.
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Set η′ := emax
jN′ e

max
jN′−1

· · · emax
j1

η ∈ B(λ)cl. Then it follows from Lemma 2.3.3 that

‖η′‖ � ‖η‖. (4.3.3)

Furthermore, from (b), we deduce by repeated application of Lemma 4.2.2 that

emax
jN′ e

max
jN′−1

· · · emax
j1 η = (rjN′ rjN′−1

· · · rj1(cl(λ)), µ′; 0, σ, 1) for some µ′ ∈ cl(Wλ),

and hence from (a) that

η′ = emax
jN′ e

max
jN′−1

· · · emax
j1 η = (rjN′ rjN′−1

· · · rj1(cl(λ)), µ′; 0, σ, 1)

= (cl(Λ), µ′; 0, σ, 1).

Case 1: µ′ = cl(Λ). In this case, we have η′ = (cl(Λ), cl(Λ); 0, σ, 1) = ηcl(Λ). Let w0 = rjN′+1
rjN′+2

· · ·
rjN−1

rjN
be a reduced expression of w0 ∈ W̊ ; note that jN ′+1, jN ′+2, . . . , jN−1, jN ∈ I0. Then, since

Λ = w0λ, it follows that
(c) rjN

rjN−1
· · · rjN′+1

(cl(Λ)) = cl(λ).
In addition, using [Kac90, Lemma 3.11b)], we obtain
(d) (rjprjp−1 · · · rjN′+1

(cl(Λ)))(hjp+1) < 0 for all p = N ′, N ′ + 1, . . . , N − 1.
From (c) and (d), we see by repeated use of Lemma 4.2.2 that

emax
jN

emax
jN−1

· · · emax
jN′+1

emax
jN′ e

max
jN′−1

· · · emax
j1 η = emax

jN
emax
jN−1

· · · emax
jN′+1

η′

= emax
jN

emax
jN−1

· · · emax
jN′+1

(cl(Λ), cl(Λ); 0, σ, 1) = (cl(λ), cl(λ); 0, σ, 1) = ηcl(λ).

Therefore, the sequence j1, j2, . . . , jN ∈ I satisfies condition (A). Also, it follows from (a), (b),
and (d) that (rjprjp−1 · · · rj1(cl(λ)))(hjp+1) < 0 for all p = 0, 1, . . . , N − 1, and hence that the
sequence j1, j2, . . . , jN ∈ I satisfies condition (B′).

Case 2: µ′ �= cl(Λ). In this case, we can take (and fix) jN ′+1 ∈ I0 such that µ′(hjN′+1
) > 0. Then,

there exists a reduced expression of w0 ∈ W̊ of the form w0 = rjN′+1
rjN′+2

· · · rjN′′ ; note that
jN ′+1, jN ′+2, . . . , jN ′′ ∈ I0. Since Λ = w0λ, it follows that
(e) rjN′′ rjN′′−1

· · · rjN′+1
(cl(Λ)) = cl(λ).

In addition, using [Kac90, Lemma 3.11b)], we obtain
(f) (rjprjp−1 · · · rjN′+1

(cl(Λ)))(hjp+1) < 0 all for p = N ′, N ′ + 1, . . . , N ′′ − 1.
If we set η′′ := emax

jN′′ e
max
jN′′−1

· · · emax
jN′+1

η′, then ‖η′′‖ > ‖η‖. Indeed, since (cl(Λ))(hjN′+1
) < 0 by (f)

with p = N ′, it follows from Lemma 2.2.11(1) that ejN′+1
η′ �= 0. Also, since µ′(hjN′+1

) > 0, it follows
from Lemma 2.2.13 that fjN′+1

η′ �= 0. Therefore, we obtain from Lemma 2.3.3

‖emax
jN′+1

η′‖ > ‖η′‖. (4.3.4)

Hence we have

‖η′′‖ � ‖emax
jN′+1

η′‖ by Lemma 2.3.3

> ‖η′‖ by (4.3.4)
� ‖η‖ by (4.3.3).

Furthermore, from (e) and (f), we see, by applying Lemma 4.2.2 successively, that

η′′ = emax
jN′′ e

max
jN′′−1

· · · emax
jN′+1

η′

= (rjN′′ rjN′′−1
· · · rjN′+1

(cl(Λ)), µ′′; 0, σ, 1)

= (cl(λ), µ′′; 0, σ, 1)
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for some µ′′ ∈ cl(Wλ). Therefore, by the induction hypothesis, there exists a sequence jN ′′+1,
jN ′′+2, . . . , jN ∈ I satisfying conditions (A) and (B′) for η′′. It is easily checked by (a), (b), (e), (f),
and the induction hypothesis that the sequence

j1, j2, . . . , jN ′ , jN ′+1, jN ′+2, . . . , jN ′′ , jN ′′+1, jN ′′+2, . . . , jN ∈ I
satisfies conditions (A) and (B′) for η. This proves the assertion in the special case (4.3.1), and
hence completes the proof of the lemma.

If λ ∈ ∑
i∈I0

Z>0�i is strictly I0-dominant, then we see from Lemma 4.2.1(3) that condition (B′)
of Lemma 4.3.2 can be replaced by condition (B) of Proposition 4.3.1. Namely, we have the following
result.

Lemma 4.3.3. Let λ ∈ ∑
i∈I0

Z>0�i be a strictly I0-dominant integral weight. Let η be an element
of B(λ)cl such that ι(η) = cl(λ). Then, there exists a sequence j1, j2, . . . , jN ∈ I satisfying conditions
(A) and (B) of Proposition 4.3.1.

Finally, let us give a proof of Proposition 4.3.1.

Proof of Proposition 4.3.1. We set ρ :=
∑

i∈I0
�i ∈ P 0

+; note that ρ ∈ P 0
+ is strictly I0-dominant,

and hence so is λ+ ρ ∈ ∑
i∈I Z>0�i. Since ejη = 0 for all j ∈ I0 by assumption and ejηcl(ρ) = 0 for

all j ∈ I0 by the definition of the root operators ej , we see from the tensor product rule for crystals
that η⊗ηcl(ρ) ∈ B(λ)cl⊗B(ρ)cl also satisfies the condition that ej(η⊗ηcl(ρ)) = 0 for all j ∈ I0. Recall
from Corollary 2.4.5(1) that there exists an isomorphism Ψλ,ρ : B(λ+ ρ)cl

∼−→ B(λ)cl ⊗B(ρ)cl of Pcl-
crystals. Set η′ := Ψ−1

λ,ρ(η⊗ ηcl(ρ)) ∈ B(λ+ ρ)cl. Then, clearly ejη′ = 0 for all j ∈ I0. Hence it follows
from Lemma 2.2.11(1) (see also Remark 2.2.8) that the initial direction ι(η′) ∈ cl(W (λ + ρ)) =
W̊ cl(λ+ ρ) of η′ is level-zero and I0-dominant, and hence from Remark 2.1.5 that ι(η′) = cl(λ+ ρ).
Since λ + ρ ∈ ∑

i∈I Z>0�i is strictly I0-dominant, we know from Lemma 4.3.3 that there exists a
sequence j1, j2, . . . , jN ∈ I satisfying conditions (A) and (B) for η′. Now, it remains to show that
emax
jN

emax
jN−1

· · · emax
j1

η = ηcl(λ), i.e. that the sequence j1, j2, . . . , jN ∈ I also satisfies condition (A) for η.
We have

emax
jN

emax
jN−1

· · · emax
j1 (η ⊗ ηcl(ρ)) = emax

jN
emax
jN−1

· · · emax
j1 (Ψλ,ρ(η′))

= Ψλ,ρ(emax
jN

emax
jN−1

· · · emax
j1 η′) = Ψλ,ρ(ηcl(λ+ρ)) by condition (A) for η′

= ηcl(λ) ⊗ ηcl(ρ) by (2.4.3).

Also, we see from Lemma 2.3.2(2) that

emax
jN

emax
jN−1

· · · emax
j1 (η ⊗ ηcl(ρ)) = (emax

jN
emax
jN−1

· · · emax
j1 η) ⊗ η′′ for some η′′ ∈ B(ρ)cl.

Thus, we obtain emax
jN

emax
jN−1

· · · emax
j1

η = ηcl(λ). This establishes Proposition 4.3.1.

4.4 Proof of Theorem 4.1.2
In this (and the next) subsection, the degree function Deg is defined on several different crystals
B(µ)cl, µ ∈ P 0

+. Accordingly, we write Degµ(η) instead of Deg(η) for η ∈ B(µ)cl with µ ∈ P 0
+ to

emphasize that η is an element of B(µ)cl.
Let λ, λ′ ∈ P 0

+. For η1 ⊗ η2 ∈ B(λ)cl ⊗ B(λ′)cl, we define (see Theorem 2.5.1)

Dλ,λ′(η1 ⊗ η2) := Hλ,λ′(η1 ⊗ η2) + Degλ(η1) + Degλ′(η̃2), (4.4.1)

where η̃2 ∈ B(λ′)cl is defined by η̃2 ⊗ η̃1 = Rλ,λ′(η1 ⊗ η2) (see Corollary 2.4.5(2)). From Theo-
rem 2.5.1(H2) and Lemma 3.2.1(1), we deduce by use of (2.4.4) that

Dλ,λ′(ηcl(λ) ⊗ ηcl(λ′)) = Hλ,λ′(ηcl(λ) ⊗ ηcl(λ′)) + Degλ(ηcl(λ)) + Degλ′(ηcl(λ′)) = 0. (4.4.2)

1545

https://doi.org/10.1112/S0010437X08003606 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003606


S. Naito and D. Sagaki

Lemma 4.4.1. Let λ, λ′ ∈ P 0
+, and let η1 ⊗ η2 ∈ B(λ)cl ⊗ B(λ′)cl. The following hold:

(1) Dλ,λ′(emax
j (η1 ⊗ η2)) = Dλ,λ′(η1 ⊗ η2) for all j ∈ I0;

(2) if (ι(η1))(h0) � 0 and (ι(η̃2))(h0) � 0, then

Dλ,λ′(emax
0 (η1 ⊗ η2)) = Dλ,λ′(η1 ⊗ η2) − (ι(η1) + ι(η̃2))(h0) − ε0(η1 ⊗ η2). (4.4.3)

Proof. Let j ∈ I. We see from Lemma 2.3.2(2) that

emax
j (η1 ⊗ η2) = emax

j η1 ⊗ η′2 for some η′2 ∈ B(λ′)cl,

and hence that

Rλ,λ′(emax
j (η1 ⊗ η2)) = emax

j Rλ,λ′(η1 ⊗ η2) = emax
j (η̃2 ⊗ η̃1)

= emax
j η̃2 ⊗ η′1 for some η′1 ∈ B(λ)cl.

Therefore, from the definition (4.4.1) of Dλ,λ′ , we obtain

Dλ,λ′(emax
j (η1 ⊗ η2)) = Hλ,λ′(emax

j (η1 ⊗ η2)) + Degλ(emax
j η1) + Degλ′(emax

j η̃2). (4.4.4)

From (4.4.4), part (1) follows immediately by Theorem 2.5.1(H1) and Lemma 3.2.1(2). Let us prove
part (2). We give a proof only for the case ε0(η1) � ε0(η̃2); the proof for the case ε0(η1) < ε0(η̃2) is
similar. By Lemma 3.2.2,{

Degλ(emax
0 η1) = Degλ(η1) − ε0(η1) − (ι(η1))(h0),

Degλ′(emax
0 η̃2) = Degλ′(η̃2) − ε0(η̃2) − (ι(η̃2))(h0).

(4.4.5)

For simplicity of notation, we set L := ε0(η1 ⊗ η2); note that L = ε0(η̃2 ⊗ η̃1) since η̃2 ⊗ η̃1 =
Rλ,λ′(η1 ⊗η2), and that L � ε0(η1), ε0(η̃2) by Lemma 2.3.2(1). It follows from Lemma 2.3.2(2) that,
for 0 � l � L,

el0(η1 ⊗ η2) =

{
η1 ⊗ el0η2 if 0 � l � L− ε0(η1),
e
l−L+ε0(η1)
0 η1 ⊗ e

L−ε0(η1)
0 η2 if L− ε0(η1) � l � L,

and

el0(η̃2 ⊗ η̃1) =

{
η̃2 ⊗ el0η̃1 if 0 � l � L− ε0(η̃2),

e
l−L+ε0(η̃2)
0 η̃2 ⊗ e

L−ε0(η̃2)
0 η̃1 if L− ε0(η̃2) � l � L.

Therefore, we deduce from Theorem 2.5.1(H1) that, for 0 � l′ � L− ε0(η1),

Hλ,λ′(el
′
0 (η1 ⊗ η2)) = Hλ,λ′(η1 ⊗ η2) − l′. (4.4.6)

Similarly, we see from Theorem 2.5.1(H1) that, for 0 � l′ � ε0(η1) − ε0(η̃2),

Hλ,λ′(eL−ε0(η1)+l′
0 (η1 ⊗ η2)) = Hλ,λ′(eL−ε0(η1)

0 (η1 ⊗ η2))
= Hλ,λ′(η1 ⊗ η2) − L+ ε0(η1) by (4.4.6) with l′ = L− ε0(η1), (4.4.7)

and that, for 0 � l′ � ε0(η̃2),

Hλ,λ′(eL−ε0(η̃2)+l′
0 (η1 ⊗ η2)) = Hλ,λ′(eL−ε0(η̃2)

0 (η1 ⊗ η2)) + l′

= Hλ,λ′(η1 ⊗ η2) − L+ ε0(η1) + l′ by (4.4.7) with l′ = ε0(η1) − ε0(η̃2). (4.4.8)

Finally, by taking l′ = ε0(η̃2) in (4.4.8), we conclude that

Hλ,λ′(emax
0 (η1 ⊗ η2)) = Hλ,λ′(eL0 (η1 ⊗ η2))

= Hλ,λ′(η1 ⊗ η2) − L+ ε0(η1) + ε0(η̃2)
= Hλ,λ′(η1 ⊗ η2) − ε0(η1 ⊗ η2) + ε0(η1) + ε0(η̃2). (4.4.9)

By substituting (4.4.5) and (4.4.9) into (4.4.4), and then comparing the resulting equation with
(4.4.1), we obtain the desired equation (4.4.3). This proves the lemma.
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Proposition 4.4.2. Let λ, λ′ ∈ P 0
+, and let η ∈ B(λ+ λ′)cl. Then,

Degλ+λ′(η) = Dλ,λ′(Ψλ,λ′(η)), (4.4.10)

where Ψλ,λ′ : B(λ+λ′)cl
∼−→ B(λ)cl ⊗B(λ′)cl is the isomorphism of Pcl-crystals in Corollary 2.4.5(1).

Proof. If j ∈ I0, then it follows from Lemmas 3.2.1(2) and 4.4.1(1) that Degλ+λ′(emax
j η) =

Degλ+λ′(η) and Dλ,λ′(Ψλ,λ′(emax
j η)) = Dλ,λ′(emax

j (Ψλ,λ′(η))) = Dλ,λ′(Ψλ,λ′(η)). Therefore, we may
assume that η ∈ B(λ + λ′)cl satisfies the condition that ejη = 0 for all j ∈ I0, since the Pcl-
crystal B(λ + λ′)cl is regular. Then it follows from Lemma 2.2.11(1) (see also Remark 2.2.8)
that ι(η) ∈ cl(Wλ) = W̊ cl(λ) is level-zero and I0-dominant, and hence from Remark 2.1.5 that
ι(η) = cl(λ + λ′). Set η1 ⊗ η2 := Ψλ,λ′(η) ∈ B(λ)cl ⊗ B(λ′)cl, and η̃2 ⊗ η̃1 := Rλ,λ′(η1 ⊗ η2). Since
ejη = 0 for all j ∈ I0, we have ej(η1 ⊗ η2) = 0 and ej(η̃2 ⊗ η̃1) = 0 for all j ∈ I0, which implies that
ejη1 = 0 and ej η̃2 = 0 for all j ∈ I0 by Lemma 2.3.2(1). Hence an argument similar to the above
shows that ι(η1) = cl(λ) and ι(η̃2) = cl(λ′).

By Proposition 4.3.1, there exists a sequence j1, j2, . . . , jN ∈ I satisfying conditions (A) and (B)
for η ∈ B(λ+ λ′)cl. Condition (B) implies that

(w(p)(cl(λ+ λ′)))(hjp+1) � 0 for p = 0, 1, . . . , N − 1, (4.4.11)

by Lemma 4.2.1(2), where we set w(p) := rjprjp−1 · · · rj1 for 0 � p � N . Therefore, we see from
Lemma 2.2.12 that

ι(E(p)η) = w(p)(cl(λ+ λ′)) for p = 0, 1, . . . , N, (4.4.12)

where we set E(p) := emax
jp

emax
jp−1

· · · emax
j1

for 0 � p � N . Because ι(η1) = cl(λ) and ι(η̃2) = cl(λ′), an
argument similar to the above shows that{

ι(E(p)η1) = w(p)(cl(λ)) for p = 0, 1, . . . , N,
(w(p)(cl(λ)))(hjp+1) � 0 for p = 0, 1, . . . , N − 1,

(4.4.13)

and {
ι(E(p)η̃2) = w(p)(cl(λ′)) for p = 0, 1, . . . , N,
(w(p)(cl(λ′)))(hjp+1) � 0 for p = 0, 1, . . . , N − 1.

(4.4.14)

Now we have

0 = Degλ+λ′(ηcl(λ+λ′)) by Lemma 3.2.1(1)

= Degλ+λ′(emax
jN

emax
jN−1

· · · emax
j1 η) by condition (A) for η

= Degλ+λ′(η) −
∑

1�p�N ;jp=0

{ε0(E(p−1)η) + (w(p−1)(cl(λ+ λ′)))(hjp)}

by Lemma 3.2.2 along with (4.4.11) and (4.4.12),

and hence

Degλ+λ′(η) =
∑

1�p�N ;jp=0

{ε0(E(p−1)η) + (w(p−1)(cl(λ+ λ′)))(hjp)}. (4.4.15)

Here, by Lemma 2.3.2(2),

E(p)(η1 ⊗ η2) = E(p)η1 ⊗ η′2 for some η′2 ∈ B(λ′)cl,

Rλ,λ′(E(p)(η1 ⊗ η2)) = E(p)(Rλ,λ′(η1 ⊗ η2)) = E(p)(η̃2 ⊗ η̃1)

= E(p)η̃2 ⊗ η′1 for some η′1 ∈ B(λ)cl.
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Therefore, we see that

0 = Dλ,λ′(ηcl(λ) ⊗ ηcl(λ′)) by (4.4.2)

= Dλ,λ′(emax
jN

emax
jN−1

· · · emax
j1 (η1 ⊗ η2)) by condition (A) for η and (2.4.3)

= Dλ,λ′(η1 ⊗ η2) −
∑

1�p�N ;jp=0

{ε0(E(p−1)(η1 ⊗ η2)) + (w(p−1)(cl(λ+ λ′)))(hjp)}

by Lemma 4.4.1 along with (4.4.13) and (4.4.14).

Also, since Ψλ,λ′(E(p)η) = E(p)Ψλ,λ′(η) = E(p)(η1⊗η2), it follows that ε0(E(p)η) = ε0(E(p)(η1⊗η2))
for all p = 0, 1, . . . , N . Thus we obtain

Dλ,λ′(η1 ⊗ η2) =
∑

1�p�N ;jp=0

{ε0(E(p−1)η) + (w(p−1)(cl(λ+ λ′)))(hjp)}. (4.4.16)

Equation (4.4.10) follows immediately from (4.4.15) and (4.4.16). This completes the proof of the
proposition.

Now we are ready to prove Theorem 4.1.2.

Proof of Theorem 4.1.2. We proceed by induction on the length n of the sequence i = (i1, i2, . . . , in).
When n = 1, the assertion obviously holds. Assume that n > 1, and set i′ := (i1, i2, . . . , in−1),
λ′ := λ−�in ∈ P 0

+. Recall from Theorem 2.4.1 and Corollary 2.4.5(1) that there exist isomorphisms

Ψi′ : B(λ′)cl
∼−→ Bi′ = B(�i1)cl ⊗ B(�i2)cl ⊗ · · · ⊗ B(�in−1)cl

and

Ψλ′,	in
: B(λ)cl

∼−→ B(λ′)cl ⊗ B(�in)cl
of Pcl-crystals. Let η ∈ B(λ)cl. We set η′ ⊗ η′′ := Ψλ′,	in

(η) ∈ B(λ′)cl ⊗ B(�in)cl, and

η1 ⊗ η2 ⊗ · · · ⊗ ηn := Ψi(η) ∈ Bi = B(�i1)cl ⊗ B(�i2)cl ⊗ · · · ⊗ B(�in)cl.

Note that both of Ψi and (Ψi′ ⊗ id) ◦ Ψλ′,	in
are isomorphisms of Pcl-crystals from B(λ)cl to Bi.

Since the Pcl-crystals B(λ)cl and Bi are both simple, it follows from Lemma 2.3.9(3) that Ψi =
(Ψi′ ⊗ id) ◦ Ψλ′,	in

, and hence that

η′′ = ηn and Ψi′(η′) = η1 ⊗ η2 ⊗ · · · ⊗ ηn−1. (4.4.17)

We see from Proposition 4.4.2 that

Degλ(η) = Dλ′,	in
(η′ ⊗ η′′) = Hλ′,	in

(η′ ⊗ η′′) + Degλ′(η′) + Deg	in
(η̃′′), (4.4.18)

where we set η̃′′ ⊗ η̃′ := Rλ′,	in
(η′ ⊗ η′′). Here we remark that the element η(1)

n ∈ B(�in)cl (for

the definition of η(1)
n , see § 4.1) is the first factor of the image of η1 ⊗ η2 ⊗ · · · ⊗ ηn ∈ Bi under the

(unique) isomorphism (id⊗Ψi′)◦Rλ′,	in
◦Ψλ′,	in

◦Ψ−1
i of Pcl-crystals, which is obtained as follows:

B(�i1)cl ⊗ B(�i2)cl ⊗ · · · ⊗ B(�in)cl = Bi
Ψ−1

i−−−→∼ B(λ)cl
Ψλ′,�in−−−−−→∼ B(λ′)cl ⊗ B(�in)cl

Rλ′,�in−−−−−→∼ B(�in)cl ⊗ B(λ′)cl
id⊗Ψi′−−−−→∼ B(�in)cl ⊗ B(�i1)cl ⊗ · · · ⊗ B(�in−1)cl.

Also, it is easy to check that this first factor is identical to η̃′′ ∈ B(�in)cl. Thus we have η(1)
n = η̃′′.

Furthermore, using (4.4.17), we see from [Oka07, Lemma 5.2] that

Hλ′,	in
(η′ ⊗ η′′) =

∑
1�k�n−1

H	ik
,	in

(ηk ⊗ η(k+1)
n ). (4.4.19)

1548

https://doi.org/10.1112/S0010437X08003606 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X08003606


LS paths of level-zero shape and 1dsums

Now, the induction hypothesis along with (4.4.17) implies that

Degλ′(η′) =
∑

1�k<l�n−1

H	ik
,	il

(ηk ⊗ η
(k+1)
l ) +

n−1∑
k=1

Deg	ik
(η(1)

k ). (4.4.20)

By substituting (4.4.19) and (4.4.20) into (4.4.18), and using the fact that η(1)
n = η̃′′, we obtain

Degλ(η) = Hλ′,	in
(η′ ⊗ η′′) + Degλ′(η′) + Deg	in

(η̃′′)

=
∑

1�k�n−1

H	ik
,	in

(ηk ⊗ η(k+1)
n )

+
∑

1�k<l�n−1

H	ik
,	il

(ηk ⊗ η
(k+1)
l ) +

n−1∑
k=1

Deg	ik
(η(1)

k ) + Deg	in
(η(1)

n )

=
∑

1�k<l�n

H	ik
,	il

(ηk ⊗ η
(k+1)
l ) +

n∑
k=1

Deg	ik
(η(1)

k ).

This completes the proof of (4.1.4), thereby establishing Theorem 4.1.2.

4.5 Proof of Theorem 4.1.3
In this subsection, we continue to write Degµ(η) instead of Deg(η) in the case that η is an element
of B(µ)cl for µ ∈ P 0

+.
Fix an arbitrary i ∈ I0. Recall from Corollary 2.4.5(1) that there exists an isomorphism Ψ	i,	i :

B(2�i)cl
∼−→ B(�i)cl ⊗ B(�i)cl of Pcl-crystals. The next lemma follows from the proof of [NS06,

Proposition 3.4.4].

Lemma 4.5.1. Let η1 ⊗ η2 ∈ B(�i)cl ⊗ B(�i)cl. Then, the preimage Ψ−1
	i,	i

(η1 ⊗ η2) ∈ B(2�i)cl of
η1 ⊗ η2 ∈ B(�i)cl ⊗ B(�i)cl under the isomorphism Ψ	i,	i is identical to the concatenation η1 ∗ η2

of η1 and η2 defined by

(η1 ∗ η2)(t) =

{
η1(2t) if 0 � t � 1/2,
η1(1) + η2(2t− 1) if 1/2 � t � 1.

(4.5.1)

In addition, from [NS06, Proposition 3.2.2], we have the next result.

Lemma 4.5.2. The set B(2�i) is identical to the set of all concatenations π1 ∗ π2 of LS paths
π1, π2 ∈ B(�i) such that κ(π1) � ι(π2). Here, the concatenation π1 ∗ π2 is defined by the same
formula as (4.5.1), with η1 and η2 replaced by π1 and π2, respectively.

Lemma 4.5.3. Let η ∈ B(2�i)cl, and set η1 ⊗ η2 := Ψ	i,	i(η) ∈ B(�i)cl ⊗ B(�i)cl. Then,

Deg2	i
(η) = H	i,	i(η1 ⊗ η2) + 2Deg	i

(η1). (4.5.2)

Proof. Applying Theorem 4.1.2 to the case in which i = (i, i) and hence λ = 2�i, we obtain

Deg2	i
(η) = H	i,	i(η1 ⊗ η

(2)
2 ) + Deg	i

(η(1)
1 ) + Deg	i

(η(1)
2 )

= H	i,	i(η1 ⊗ η2) + Deg	i
(η1) + Deg	i

(η(1)
2 ),

since η(1)
1 = η1 and η

(2)
2 = η2 by definition. Also, from Lemma 2.3.9(3) and the definition of η(1)

2 ,
we deduce that η(1)

2 = η1, since the Pcl-crystal B(�i)cl ⊗ B(�i)cl is simple. Thus we obtain (4.5.2).
This proves the lemma.

Let us fix an (arbitrary) element η
 ∈ B(�i)cl such that fjη

 = 0 for all j ∈ I0. Then it

follows from (2.2.10) that fjπη� = 0 for all j ∈ I0. Therefore, by Lemma 2.2.13, the final direction
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ν
 := κ(πη� ) ∈ W�i of πη� satisfies the condition that ν
(hj) � 0 for all j ∈ I0. Hence cl(ν
) =
w0(cl(�i)) by Remark 2.1.5. From this, we deduce (using Lemma 2.1.2) that ν
 ∈ W�i can be
written as ν
 = w0�i + k
d	iδ for some k
 ∈ Z.

Lemma 4.5.4. Let η ∈ B(�i)cl, and set η′ := Ψ−1
	i,	i

(η
 ⊗ η) ∈ B(2�i)cl. The following hold:

(1) the path πη� ∗ (πη + πk�d�iδ
) lies in cl−1(η′) ∩ B(2�i);

(2) πη′ = πη� ∗ (πη + πk�d�iδ
).

Proof. (1) First, note that η′ is identical to the concatenation η
 ∗ η by Lemma 4.5.1. Also, by the
definition of concatenations (see (4.5.1)),

cl(πη� ∗ (πη + πk�d�iδ
)) = cl(πη�) ∗ cl(πη + πk�d�iδ

).

Since cl(πη�) = η
 and cl(πη + πk�d�iδ
) = cl(πη) = η, we have

cl(πη� ∗ (πη + πk�d�iδ
)) = cl(πη�) ∗ cl(πη + πk�d�iδ

) = η
 ∗ η = η′,

and hence πη� ∗ (πη + πk�d�iδ
) ∈ cl−1(η′).

Next, we show that πη� ∗(πη +πk�d�iδ
) ∈ B(2�i). Note that πη+πk�d�iδ

∈ B(�i) by Lemma 2.2.6.

Therefore, by Lemma 4.5.2, it suffices to show that ι(πη + πk�d�iδ
) � ν
 = κ(πη�). Let us write

ι(πη) ∈ �i − Q̊+ as ι(πη) = w�i for some w ∈ W̊ (see Lemma 2.1.2). Since w0 ∈ W̊ is greater than
or equal to w ∈ W̊ with respect to the usual Bruhat ordering on the (finite) Weyl group W̊ of gI0, it
follows (see [Lit95, Remark 4.2]) that w0�i � w�i. From this, using the definition of the ordering
� on W�i, we see that

ν
 = w0�i + k
d	iδ � w�i + k
d	iδ = ι(πη) + k
d	iδ. (4.5.3)

Hence, by Remark 2.2.4, we obtain

ι(πη + πk�d�i
δ) = ι(πη) + ι(πk�d�i

δ) = ι(πη) + k
d	iδ � w0�i + k
d	iδ = ν
.

This proves part (1).
(2) First, by the definitions of Deg	i

(η
) and Deg	i
(η), we can write πη�(1) ∈ P and πη(1) ∈ P

as πη�(1) = �i−a−1
0 β
−a−1

0 Deg	i
(η
) and πη(1) = �i−a−1

0 β−a−1
0 Deg	i

(η) for some β
, β ∈ Q̊+,
respectively. Hence we have

(πη� ∗ (πη + πk�d�iδ
))(1) = πη�(1) + (πη + πk�d�iδ

)(1) = πη�(1) + πη(1) + πk�d�iδ
(1)

= {�i − a−1
0 β
 − a−1

0 Deg	i
(η
)} + {�i − a−1

0 β − a−1
0 Deg	i

(η)} + k
d	iδ

= 2�i − a−1
0 (β
 + β) − a−1

0 (Deg	i
(η
) + Deg	i

(η) − a0k

d	i)δ. (4.5.4)

Now, in view of Proposition 3.1.4(1), it suffices to show the following:

ι(πη� ∗ (πη + πk�d�i
δ)) ∈ 2�i − Q̊+, (4.5.5)

Deg2	i
(η′) � Deg	i

(η
) + Deg	i
(η) − a0k


d	i . (4.5.6)

As for (4.5.5), we easily deduce from the definition of concatenations that ι(πη� ∗ (πη + πk�d�iδ
)) =

2ι(πη�), where the right-hand side lies in 2�i − Q̊+ since ι(πη�) ∈ �i − Q̊+ by definition.
Let us show (4.5.6). Set π1(t) := πη′(t/2) and π2(t) := πη′((t+ 1)/2) − πη′(1/2) for t ∈ [0, 1].

Then it is obvious that πη′ = π1 ∗ π2. Also, we see from the proof of [NS06, Proposition 3.2.2] that
π1, π2 ∈ B(�i). Furthermore, since η
 ∗ η = η′ = cl(πη′) = cl(π1) ∗ cl(π2), we deduce that cl(π1) = η


and cl(π2) = η.
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Since ι(πη′) ∈ 2�i − Q̊+, and since ι(π1) = 1
2 ι(πη′) by the definition of π1 ∈ B(�i), it follows

from Lemma 2.1.2 that ι(π1) ∈ W�i lies in �i − Q̊+. If we write π1(1) ∈ P in the form π1(1) =
�i − a−1

0 β1 + a−1
0 K1δ with β1 ∈ Q̊+ and K1 ∈ Z�0 (see Lemma 3.1.1), then by Proposition 3.1.4(1)

applied to cl(π1) = η
 ∈ B(�i)cl, we have

−K1 � Deg	i
(η
). (4.5.7)

Also, if we write κ(π1) ∈ W�i in the form �i − β′1 + k′1d	iδ with β′1 ∈ Q̊+ and k′1 ∈ Z, then by
Proposition 3.1.4(2) applied to cl(π1) = η
 ∈ B(�i)cl, we have

k′1 � k
, (4.5.8)

where we recall from the discussion preceding this lemma that ν
 = κ(πη�) ∈ W�i equals w0�i +
k
d	iδ.

Since πη′ = π1∗π2 ∈ B(2�i), it follows from Lemma 4.5.2 that ι(π2) � κ(π1) = �i−β′1 +k′1d	iδ.
Hence, by Lemma 2.1.2 and Remark 2.1.3, ι(π2) ∈ W�i is of the form ι(π2) = �i − β′2 + k′2d	iδ,
with β′2 ∈ Q̊+ and k′2 ∈ Z such that

k′2 � k′1. (4.5.9)

If we set π′2 := π2 − πk′
2d�i

δ, then it follows from Lemma 2.2.6 that π′2 ∈ B(�i). Also, we have
cl(π′2) = cl(π2) = η, and by Remark 2.2.4, ι(π′2) = ι(π2) − k′2d	iδ = �i − β′2 ∈ �i − Q̊+. Hence, if
we write π′2(1) ∈ P in the form π′2(1) = �i − a−1

0 β2 + a−1
0 K2δ with β2 ∈ Q̊+ and K2 ∈ Z�0 (see

Lemma 3.1.1), then by Proposition 3.1.4(1) applied to cl(π′2) = η ∈ B(�i)cl, we have

−K2 � Deg	i
(η). (4.5.10)

From the above, we see that

πη′(1) = (π1 ∗ π2)(1) = π1(1) + π2(1) = π1(1) + π′2(1) + k′2d	iδ

= (�i − a−1
0 β1 + a−1

0 K1δ) + (�i − a−1
0 β2 + a−1

0 K2δ) + k′2d	iδ

= 2�i − a−1
0 (β1 + β2) + a−1

0 (K1 +K2 + a0k
′
2d	i)δ,

and hence that Deg2	i
(η′) = −K1 −K2 − a0k

′
2d	i . By (4.5.7), (4.5.10), and the inequalities (4.5.8)

and (4.5.9), we obtain

Deg2	i
(η′) = −K1 −K2 − a0k

′
2d	i � Deg	i

(η
) + Deg	i
(η) − a0k


d	i ,

which is the desired inequality (4.5.6). This completes the proof of part (2).

Now we are ready to prove Theorem 4.1.3.

Proof of Theorem 4.1.3. Let η ∈ B(�i)cl, and set η′ := Ψ−1
	i,	i

(η
 ⊗ η) ∈ B(2�i)cl. It follows from
Lemma 4.5.3 that

Deg2	i
(η′) = H	i,	i(η


 ⊗ η) + 2Deg	i
(η
). (4.5.11)

Also, we deduce from Lemma 4.5.4(2) and the definition of Deg(η′), by using (4.5.4), that

Deg2	i
(η′) = Deg	i

(η
) + Deg	i
(η) − a0k


d	i . (4.5.12)

Hence, by combining (4.5.11) and (4.5.12), we obtain

H	i,	i(η

 ⊗ η) = Deg	i

(η) − Deg	i
(η
) − a0k


d	i . (4.5.13)

In particular, by taking η = ηcl(	i) ∈ B(�i)cl in (4.5.13), we obtain

H	i,	i(η

 ⊗ ηcl(	i)) = Deg	i

(ηcl(	i)) − Deg	i
(η
) − a0k


d	i .
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Since Deg	i
(ηcl(	i)) = 0 by Lemma 3.2.1(1), it follows that

H	i,	i(η

 ⊗ ηcl(	i)) = −Deg	i

(η
) − a0k

d	i . (4.5.14)

Equation (4.1.5) follows immediately from (4.5.13) and (4.5.14). This establishes Theorem 4.1.3.

5. Relation to one-dimensional sums

In this section, as an application of Theorem 4.1.1, we provide an expression for classically restricted
one-dimensional sums (1dsums for short) and, in the case of type A(1)

�−1, an expression for Kostka–
Foulkes polynomials in terms of LS paths.

5.1 Expression for one-dimensional sums in terms of LS paths
Here we recall from [HKOTY99, Conjecture 2.1] and [HKOTT02, Conjecture 2.1] a conjectural
family of finite-dimensional irreducible U ′

q(g)-modules W (i)
s having crystal bases Bi,s indexed by

i ∈ I0 and s ∈ Z�1 for which the decomposition into irreducible Uq(gI0)-modules is prescribed by the
KR conjecture, presented in [KR90]; the U ′

q(g)-module W (i)
s is called a KR module, and the crystal

Bi,s is called a KR crystal. Through enough evidence (see Introduction and references therein), it
is confirmed that the level-zero fundamental representation W (�i) is indeed the (conjectural) KR
module W (i)

s with s = 1, and hence the crystal basis B(W (�i)) of W (�i) is the KR crystal Bi,1 for
every i ∈ I0. Thus, the (conjectural) KR crystal Bi,s with s = 1 is obtained as the crystal B(�i)cl
for all i ∈ I0.

In [HKOTY99] and [HKOTT02], a q-analogue of the KR conjecture (called the X = M conjec-
ture) was proposed by introducing a classically restricted one-dimensional sum (1dsum for short)
X associated to a tensor product of KR crystals Bi,s, i ∈ I0, s ∈ Z�1, and a fermionic formula
M , which is a specific sum of products of q-binomial coefficients. (We will not pursue the fermionic
formula M in this paper.) Following the definition in [HKOTY99, § 3] and [HKOTT02, § 3.3] of
classically restricted 1dsums, we define a classically restricted 1dsum associated to a tensor product
of simple crystals B(�i)cl � B(W (�i)), i ∈ I0, with B(�i)cl in place of Bi,1 for i ∈ I0, as follows.
Let i = (i1, i2, . . . , in) be a sequence of elements of I0, and Bi = B(�i1)cl ⊗B(�i2)cl ⊗· · ·⊗B(�in)cl.
Then, for an element µ ∈ cl(P 0

+) =
∑

i∈I0
Z�0 cl(�i), the classically restricted 1dsum X(Bi, µ; q) is

defined by

X(Bi, µ; q) =
∑
b∈Bi

ejb=0 (j∈I0)
wt b=µ

qDi(b),

where Di : Bi → Z is as defined in (4.1.1). Because the isomorphism Ψi : B(λ)cl
∼−→ Bi of Pcl-crystals

is compatible with the root operators ej , j ∈ I0, on B(λ)cl and the root operators ej , j ∈ I0, on Bi,
we obtain the following corollary of Theorem 4.1.1.

Corollary 5.1.1. Let i = (i1, i2, . . . , in) be a sequence of elements of I0, and set λ :=
∑n

k=1�ik ∈
P 0

+. For every µ ∈ cl(P 0
+) =

∑
i∈I0

Z�0 cl(�i), the following equation holds:∑
η∈B(λ)cl

ejη=0 (j∈I0)

η(1)=µ

qDeg(η) = q−Dext
i X(Bi, µ; q). (5.1.1)

Remark 5.1.2 (see also [HKOTT02, Proposition 3.9]). Let λ ∈ P 0
+, and let µ ∈ cl(P 0

+). We see
from Corollary 5.1.1 that q−Dext

i X(Bi, µ; q) does not depend on the choice of the sequence i =
(i1, i2, . . . , in) of elements of I0 such that λ =

∑n
k=1�ik .
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5.2 Expression for Kostka–Foulkes polynomials in terms of LS paths

Let i ∈ I0. Recall the element η	̃i
∈ B(�i)cl introduced in § 4.1, where �̃i = w0 cl(�i) ∈ Pcl. We

note that if the crystal resI0 B(�i)cl is connected (see § 2.3 for the definition of resI0 B(�i)cl), then
the element η	̃i

is the unique element of B(�i)cl such that fjη	̃i
= 0 for all j ∈ I0, since the

Pcl-crystal B(�i)cl is regular.

Lemma 5.2.1. Let i ∈ I0, and assume that the crystal resI0 B(�i)cl is connected. Then, the equation
H	i,	i

(η	̃i
⊗ η) = 0 holds for all η ∈ B(�i)cl.

Remark 5.2.2. Since the Pcl-crystal B(�i)cl is regular, we see that resI0 B(�i)cl is connected if and
only if W (�i) is irreducible when regarded as a U ′

q(g)I0-module by restriction. Therefore, we deduce
from [Kas05, Lemma 4.3(ii)] that, if a∨i = 1, then resI0 B(�i)cl is connected.

Proof of Lemma 5.2.1. Since resI0 B(�i)cl is connected by the assumption of the lemma, there exists
a monomial X in the root operators fj for j ∈ I0 such that Xη = η	̃i

. Since fjη	̃i
= 0 for all j ∈ I0,

it follows from the tensor product rule for crystals that

X(η	̃i
⊗ η) = η	̃i

⊗Xη = η	̃i
⊗ η	̃i

.

Furthermore, we see from the proof of [AK97, Lemma 1.6(1)] that

Sw0X(η	̃i
⊗ η) = Sw0(η	̃i

⊗ η	̃i
) = (Sw0η	̃i

) ⊗ (Sw0η	̃i
),

and from Remark 2.4.3 that Sw0η	̃i
= ηcl(	i). Since w0 ∈ W̊ , it follows from the definition of

Sw0 (see (2.3.2)) that there exists a monomial X ′ in the root operators ej , fj for j ∈ I0 such that
Sw0X(η	̃i

⊗ η) = X ′X(η	̃i
⊗ η). Therefore, we obtain

0 = H	i,	i(ηcl(	i) ⊗ ηcl(	i)) by Theorem 2.5.1 (H2)

= H	i,	i((Sw0η	̃i
) ⊗ (Sw0η	̃i

))
= H	i,	i(Sw0X(η	̃i

⊗ η))
= H	i,	i(X

′X(η	̃i
⊗ η))

= H	i,	i(η	̃i
⊗ η) by Theorem 2.5.1 (H1).

This proves the lemma.

Remark 5.2.3. Let i = (i1, i2, . . . , in) be a sequence of elements of I0 such that a∨ik = 1 for all
1 � k � n. Then we know from Remark 5.2.2 that resI0 B(�ik)cl is connected for all 1 � k � n.
Therefore, we see from Lemma 5.2.1 and the definitions of Di and Dext

i that, for every

η1 ⊗ η2 ⊗ · · · ⊗ ηn ∈ Bi = B(�i1)cl ⊗ B(�i2)cl ⊗ · · · ⊗ B(�in)cl,

we have

Di(η1 ⊗ η2 ⊗ · · · ⊗ ηn) =
∑

1�k<l�n

H	ik
,	il

(ηk ⊗ η
(k+1)
l ) and Dext

i = 0. (5.2.1)

Now we restrict our attention to the case in which g is of type A(1)
�−1. Because a∨i = 1 for all i ∈ I0

in the case of type A(1)
�−1, we know from Remark 5.2.2 that resI0 B(�i)cl is connected for all i ∈ I0. In

fact, we can check by direct calculation that every �i is ‘minuscule’, i.e. that �i(β∨) ∈ {0,±1} for
all β ∈ ∆̊ := W̊ΠI0 ⊂ ∆re, where ΠI0 = {αj}j∈I0, and hence that �i(ξ∨) ∈ {0,±1} for all ξ ∈ ∆re

+ .
Using this fact, we deduce from the definition of LS paths that

B(�i)cl = {ηµ | µ ∈ cl(W�i) = W̊ cl(�i)} (5.2.2)
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for every i ∈ I0. Also, it follows from the definition of the root operators ej (respectively, fj), j ∈ I,
that, for µ ∈ W̊ cl(�i) and j ∈ I, the following hold:

(1) ejηµ �= 0 (respectively, fjηµ �= 0) if and only if µ(hj) = −1 (respectively, = 1);

(2) if ejηµ �= 0 (respectively, fjηµ �= 0), then ejηµ (respectively, fjηµ) = ηrjµ,
with rj(µ) = µ+ cl(αj) (respectively, = µ− cl(αj)).

(5.2.3)

Here we recall from [NY97, §§ 2.1 and 2.4] the Pcl-crystals Bcl(	i) (adapted to our notation) for
i ∈ I0 = {1, 2, . . . , � − 1}. Let i ∈ I0 = {1, 2, . . . , � − 1}. Then, the crystal Bcl(	i) consists of all
Young diagrams of shape (1�) having i dots (in all) with at most one dot in each box. The weight
wt(b) ∈ Pcl of the element b ∈ Bcl(	i) having dots exactly in the j1th box, j2th box, . . . , jith box with
1 � j1 < j2 < · · · < ji � �, is given by γj1 +γj2 + · · ·+γji ∈ Pcl, where we set γj := cl(�j)−cl(�j−1)
for 1 � j � �, with �0 = �� = 0 ∈ P .

Now, for each i ∈ I0 = {1, 2, . . . , �− 1}, we define a map Φi : Bcl(	i) → B(�i)cl by Φi(b) = ηwt(b)

for b ∈ Bcl(	i), which is easily seen to be a (well-defined) bijection that preserves weights, since
the subgroup W̊ ⊂ W is isomorphic to the symmetric group S� permuting the γj , 1 � j � �, and
since cl(�i) = γ1 + γ2 + · · · + γi. Actually, the map Φi : Bcl(	i) → B(�i)cl is an isomorphism of
Pcl-crystals. Indeed, from the definition in [NY97, § 2.4] of the Kashiwara operators ej (respectively,
fj), j ∈ I, on Bcl(	i), we see that, for b ∈ Bcl(	i) and j ∈ I, ejb �= 0 (respectively, fjb �= 0) holds if
and only if (wt(b))(hj) = −1 (respectively, = 1), since γj = cl(�j) − cl(�j−1) = cl(Λj) − cl(Λj−1)
for 2 � j � � − 1, and γ1 = cl(�1) = cl(Λ1) − cl(Λ0), γ� = − cl(��−1) = − cl(Λ�−1) + cl(Λ0).
Also, if ejb �= 0 (respectively, fjb �= 0), then we have wt(ejb) = wt(b) + cl(αj) (respectively,
wt(fjb) = wt(b) − cl(αj)). Therefore, from (5.2.3), we conclude that Φi : Bcl(	i) → B(�i)cl is an
isomorphism of Pcl-crystals.

Let i = (i1, i2, . . . , in) be an arbitrary sequence of elements of I0 = {1, 2, . . . , �−1} such that i1 �
i2 � · · · � in, and set λ :=

∑n
k=1�ik ∈ P 0

+; we denote this sequence i = (i1, i2, . . . , in) by λ+ when
we regard it as a partition (or Young diagram). In the following, we identify an element µ ∈ cl(P 0

+)
that is the weight of an element of the Pcl-crystal Bi with the partition ((1)µ, (2)µ, . . . , (�)µ) ∈ (Z�0)�

of |λ+| := i1 + i2 + · · · + in such that µ =
∑�−1

i=1((i)µ − (i+1)µ) cl(�i) and
∑�

i=1
(i)µ = |λ+|; note

that the elements cl(�i), 1 � i � �− 1, of h∗/Qδ are linearly independent over Q. Because B(�i)cl
is isomorphic as a Pcl-crystal to Bcl(	i) through the map Φi : Bcl(	i)

∼−→ B(�i)cl and, in addition,
resI0 B(�i)cl is connected for every i ∈ I0 = {1, 2, . . . , �− 1}, we deduce from [NY97, Corollary 4.3]
along with (5.2.1) that, for every µ ∈ cl(P 0

+) that is the weight of an element of Bi, the Kostka–
Foulkes polynomial Kµt,λ+(q) (as defined in [Mac95, ch. III, § 6]) associated to the conjugate (or
transpose) µt of the partition µ and the partition λ+ is identical to the following 1dsum:

X(Bi, µ; q−1) =
∑
b∈Bi

ejb=0 (j∈I0)
wt b=µ

q−Di(b). (5.2.4)

By combining this fact and Corollary 5.1.1 (along with (5.2.1)), we obtain the following expression
for Kostka–Foulkes polynomials in terms of LS paths.

Corollary 5.2.4. Assume that g is of type A
(1)
�−1, and keep the notation above. Let µ ∈ cl(P 0

+) =∑
i∈I0

Z�0 cl(�i) be the weight of an element of the Pcl-crystal Bi. Then, the following equation
holds:

Kµt,λ+(q) =
∑

η∈B(λ)cl
ejη=0(j∈I0)

η(1)=µ

q−Deg(η).
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