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ON [-ADIC ITERATED INTEGRALS, III
GALOIS ACTIONS ON FUNDAMENTAL GROUPS

ZDZISLAW WOJTKOWIAK

Abstract. We continue to study [l-adic iterated integrals introduced in the
first part. We shall calculate explicitly I-adic logarithm and [-adic polyloga-
rithms. Next we shall use these results to study Galois representations on the

fundamental group of P%\ {0, pn, 00}

§13. Introduction to Part III

13.0. In Part I and II of our paper on l-adic iterated integrals we were
studying coefficients of the power series A,(c). We were trying to go as
far as possible without explicit calculations of these coefficients. (Only in
Section 7 we use explicitly the fact that the coefficients at degree one of
the power series A, are Kummer characters, because it is well known that
the realization map from K* ® Q to H'(Gg;Q(1)) associates to z € K
the Kummer character corresponding to z. We could however use Proposi-
tions 11.0.17 and 11.1.0 to avoid explicit calculations in Proposition 7.1.0.)

We start this paper with an explicit calculations of [-adic logarithm.
We show that [(z) is a Kummer character x(z) associated to z. Next we
shall calculate explicitly coefficients in degree 1 of the power series log A,,.
These coefficients are also expressed by Kummer characters. We have the
following result.

THEOREM F. Let X = Pk \ {a1,...,a,,00}, let z,v € X(K) and let
p be a path from v to z. Let g; : X — P} \{0,00} be given by gi(z) = z —a;
fori=1,...,n. Let us fixr a path q; from 01 to gi(v) fori=1,...,n. (If
v = a;a then g;(v) = (a — ai)O—f and gj(v) = a; —a; for i #j.) If

fp=aft - 2o mod I'?my (X ;)

then
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i) if z,v € X(K) then a; = k(2 — @) g, (p)-q; — K(V — @i)g;;

ii) if 2 € X(K) and v = a;a then oj = k(z — aj)g;(p)-q; — K@i — aj)g; for

i# J and a; = K(2 — ai)g,(p)-q; — (@ — ai)g;-

We give also an explicit formula for l-adic polylogarithms following
[INW]. We modify slightly the proof given in [NW] as we shall not use a
free differential calculus.

Next we are discussing /-adic polylogarithms evaluated at roots of unity.
Let n be a positive integer prime to [. We take K = Q(uy) as our basic
field. The [- adlc polylogarithms evaluated at n-th roots of 1 are cocycles if
paths from 0l to € are chosen suitable. Next we recall some results from
[W2], where we relate the l-adic polylogarithms evaluated at roots of unity
to Soulé classes.

We show that the [-adic polylogarithms evaluated at n-th roots of unity
coincide with linear combinations of Soulé classes. We also express Soulé
classes by [l-adic polylogarithms evaluated at n-th roots of 1.

Using functional equations of [-adic polylogarithms we show that any
lm+1(&}) is a linear combination of l,,,11(£F) with 0 < k < % and (k,n) = 1.
We conjecture that the cohomology classes l,,11(£F) for O <k < 3 and
(k,n) = 1 are linearly independent over Q; in H'(G;Q;(m + 1)). This
conjecture is equivalent to the following one.

CONJECTURE G. The cyclotomic elements of Soulé generate Koy, 1

(Z[7](1n)) © Qu.

In fact we think that this is a theorem. However in the literature we
found only the result concerning K3 (see [S3, p. 246]). (There is however a
proof using motives in [HW].)

In Section 15 we study the Galois representation

—
GQun) — Autm (P {0, ttn, 00}; 01).

Let us set V := P}Q(un) \ {0, ptn, 00}. Let V={X,Yp,...,Y,_1}. Asin the

previous sections we embed 1 (Vg; (ﬁ) into a Q;-algebra Q;{{V}} mapping
x (loop around 0) onto e and each y; (loop around &) onto e¥i. Hence
we get a Galois representation

¢ : GQu,) — Aut(Qi{{ V1)
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We recall from Part I, Section 3 that
G (V. 01) := ker (G — Aut(m (Vg 01) /Ty (Vig; 01)))

— —
and Goo(V, 01) := M2, Gi(V, 00).

The filtration {G (V, 01)}m6N of G1(V, 01) induces a filtration {Lle
(G (V, 01)/G (V, 01))}m6N of the Lie algebra Lie(G1(V, 01)/G (V, 01))
Passing with the homomorphism ¢ to Lie algebras and then to associated
graded Lie algebras we get a morphism of associated graded Lie algebras

gr(Liep) : gr(Lie(G1(V,01)/Goo(V,01))) ® Q —> Der* Lie(V),
where Lie(V) is a free Lie algebra over Q; on the set V,

gr(Lie(Gl(V 01)/Ga(V,01))) © Q

= @ (Lie(G,(V,01)/Giz1 (V,01))) © Q

and

Der* Lie(V) = {D € Der Lie(V) |
Vk € {0,...,n— 1} 3u(X, Yo, ..., Y1) € Lie(V),
D(X) =0 and D(Yk) = [Ykaﬁk(X7Yb7 .- 7Yn—1)]}

(see Part I, Section 5).

THEOREM H. The image of the morphism of associated graded Lie
algebras gr(Lie ) is contained in the Lie algebra of derivations

Der, ,, Lie(V) := {D € Der" Lie(V) |

A6(X, Yy, ..., Yn_1) € Lie(V) Yk € {0,...,n — 1},
D(X) = 0 and D(Yk) = [Yk,ﬁ(X, Yk, e 7Yn—17 Yo, e 7Yk71)]}-

In the next theorem l-adic polylogarithms will appear. We recall that
L(V) := lim, (Lie(V)/I'" Lie(V)) is a free completed Lie algebra on the set
V.

We introduce the following notation. If A and B belong to a Lie al-
gebra then we define [[A, B|B°] := [A, B], [[A, B|B'] := [[A, B], B] and
[[A, B|B™] := [[[A, B]B™ 1], B] for m > 1.
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THEOREM J. Let 0 € G (V, (ﬁ). If m > 1 then
(log o)(Yp) = [Yo, Zz Yk.,X]Xm_Q]} mod I3 + T L(V),

where Iy is a closed Lie ideal of L(V) generated topologically by all Lie
brackets which contain at least three Y ’s. If m =1 then

(log o) (Yp) = [Yo, Zz )Yk] mod T2L(V).

Now we shall use functional equations of [-adic polylogarithms and the
assumption that for each m > 0 the [-adic polylogarithms [,,,41(£%) for 0 <
i < 2 and (i,n) = 1 are linearly independent over Q; in H'(G; Qi(m+1)).
We assume that n is a prime number and for traditional reason we denote
it by p. We get the following results.

THEOREM K. Let p be a prime number greater than 2 and different
from 1. Assume that for each m > 1 the l-adic polylogarithms lm(éll,f) for0 <
k < £ are linearly mdependent over Q; in H(Gr; Qi(m)). Then there are

elements o, ok ... n, (k=1 p21) in grLie(G1(V, 0_1>)/GOO(V, 0_1>))

® Q such that any O'Z 18 homogenous of degree i and
gr(Lie ) (01)(Yo) = [Yo, Vi + Yp-il;
gr(Liep)(05;)(Yo) = [Yo, [[Yi, X]X* 2] = [[Ypop, X]X*7?]] mod I
and
gr(Lie p)(05;41)(Yo) = [Yo, (1 — p*)[[Ve, X]X* 1]
+ (1 = p*)[[Ypoi X)X + 2p*([Yo, X]X* Y]] mod I.
Using Theorem K we show the following result.

THEOREM L. Let p be a prime number greater than 3 and different
from l. Assume that for each m > 1 the l-adic polylogarithms lm(f;f) for
0 < k <& are linearly independent over Q; in HY(Gk;Qi(m)). Let S be a
subset of {1,...,p — 1} satisfying the following conditions

i) ifkeS thenp—keS,
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ii) (S+8)NS =0 (the sum of two elements of S is calculated mod p).

Then the derivations gr(Liep)(ckt),. .., gr(Lie (p)(a,liq) for {ki,....kq} C
SN {1,...,1%1} and n = 1,2,... generate a free Lie subalgebra of the
image of the Lie algebra homomorphism

gr(Lie p) : grLie(G1(V, 0_1))/GOO(V, 0_1))) ® Q — Dery,,, Lie(V)
and moreover these derivations are free generators of this Lie subalgebra.

§14. Kummer characters

14.0. In this subsection we shall discuss some elementary properties
of Kummer characters. We shall show that an l-adic logarithm [(z) is
a Kummer character corresponding to z. We also calculate coeflicients in
degree 1 of the power series A,. These coefficients are expressed by Kummer
characters.

Let K be a number field. First we state some well known and elemen-
tary results about Kummer characters without proofs.

LEMMA 14.0.1. There is a bijection between compatible systems {€m}neN
_ —
of primitive I"-th roots of 1 and generators of m1(Spec K[[2]][2];01).

Let us fix a compatible system {&n }nen of prim_)itive ["-th roots of 1.
It corresponds to a generator x of my(Spec K[[z]][1];01). Let ¢ € K and let
{Cn}nen be a compatible system of ["-th roots of (. We define a function

Kkkn () : Gal(K/K) — pn
in the following way. Let o € Gal(K/K). We set

’i’in(C)(U) = O-(Cn)/Cn

The family {kk,(¢)(0)}nen is a compatible system of ["-th roots of 1.
Hence it follows from Lemma 14.0.1 that we get a function

kk(¢) : Gal(K/K) — Wl(SpecK[[z]][%];()_l)).

We have
AR (Q) (o) = 27O@)
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for some element k(¢)(o) € Z;. The function
k(¢) : Gal(K/K) — Z

we call a Kummer character associated to ¢ (and corresponding to a com-
patible system {(, }nen of {"-th roots of ¢). The function x(¢) depends on
a choice of a compatible system of ["-th roots of (.

LEMMA 14.0.2. Let 7,0 € Gg. The function k() satisfies
k() (o) = &(O)(7) + x(7)r(C) (o).
Hence the function k() defines a cohomology class k(¢) € HY(Gk; Zi(1)).

LEMMA 14.0.3. Let {yn}nen be another compatible system of 1"-th
roots of . Let k' be the corresponding Kummer character. Then we have
K = k(C) +a(x — 1) for some a € Z;. Moreover for any a € Z; there is a
compatible system of ["™-th roots of ¢ such that the corresponding Kummer
character is equal £(¢) + a(x — 1).

DEFINITION 14.0.4. Any function from G to Q; of the form x(¢) +
a(x — 1), where a € Q; we shall call also a Kummer character.

COROLLARY 14.0.5. i) The function

K (C)[Gal(R /K (o)) * CAL(K /K (o)) — Z

does not depend on a choice of a compatible family of I™-th roots of C.

ii) For any 7 € Gk and o € Gal(K /K (1)) we have
K(Q)(m o771 = x(1)K(0).
iii) Let o, 3 € K. Then after the restriction to Gal(K /K (u)) we have
K(Q)(a - B) = w(O)(@) + K(C)(B)
We denote by u(K) a subgroup of roots of unity in K*.

ProrosITION 14.0.6. We have:

i) If K(¢) = 0 on Gal(K /K (<)) then ¢ is a root of unity.
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ii) The homomorphism ¢ : K*/u(K) — Hom(Gal(K /K (u~)); Qi) de-
fined by (C) := k(Q) is injective and it extends to an injective homo-
morphism ¢ : K*/u(K) ® Z; — Hom(Gal(K /K (u)); Q).

We finish with a result that for a given finite number of z4,...,z, € K*
their Kummer characters from G g to Q; can be chosen in a compatible way.

ProrosITION 14.0.7. Let z1,...,2, € K*. Then we can chose Kum-
mer characters k(z1),...,K(zn) such that any relation > " | zi ® ¢; = 0 in

K*®Q implies Y, | qik(z;) = 0 in the group of one-cocycles Z(Gr; Qi(1)).

Proof. We consider a vector subspace of K* ® Q generated by

z1®1,...,2, ® 1. Without lost of generality we can assume that z; ®
1,...,2, ®1 are linearly independent. If z, ® 1 = Y% | ¢;(2; ® 1) then
N(z ®1) = Ql(zZ 1), where N and @); are integers. Observe

that Nk(z,) = Qik(2) on Gal(K /K (u)). Proposition 14.0.6 im-
plies that (JT/_ Q) 27N is a root of unity. Hence Y 7, Qir(z) =
Ne(z) + k(x — ) for some k € Z;. We replace £(z,) by k(z,) + %(X -1).

Remark 14.0.8. If K = Q then we can choose Kummer characters
satisfying
k(21 - 22) = K(21) + K(22)

for any 21,2y € Q* in the following way. Let z € Q\ {0}. Let |z|/"" be the
positive real {™-th root of the absolute value of z. Let &n = exp(2’”) and
let 0 € Gq. We set

g Zl/ln KR(Z)(O
% ()0

Observe that for any =,y € Q \ {0} we have

k(x) + K(y) = K(x - y).

It rests to show that k(z) is a Kummer character in the sense of Defini-
tion 14.0.4. Assume that z < 0. Then z = (—1) - |2|. If [ is odd then
(—=1)-|z|Y"" is a compatible family of I"-th roots of z, hence x(z) is a Kum-
mer character. If [ = 2 then e2™/22" .|2|1/2" is a compatible family of 2"-th
roots of z. The associated Kummer character is equal x(z)+ 3 (x — 1), hence
k(z) is also a Kummer character.
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14.1. We explain how a path p on P \ {0,00} from 01 to ¢ deter-
mines a compatible family of {"-th roots of (. Lei z be a local parameter
at 0 corresponding to the tangential base point 01. We consider Puiseux
elements {z'/!" },en such that at 1 they are all equal 1. By analytic contin-
uation of Puiseux elements first from 1 to 01 along the canonical path arii
next along p to ¢ we get a compatible family of {™-th roots of (. If { = 07
is a tangential base point then a path p determines a comp_a)tible family of
{"-th roots of 7. We continue analytically, first from_)l to 01, next along p
to ¢ and finally to 7 along the canonical path from 07 to 7.

The corresponding Kummer character we denote by x(¢), to indicate
the dependence on the path p.

In the next proposition we show that the l-adic logarithm [(¢), coin-
cides with the Kummer character x(¢),. Let x be a geometric generator of
71 (PY(C) \ {0,00}; ﬁ) We recall from Part II, Corollary 11.0.7 that the
[-adic logarithm is defined by the following equality

pil SO - p . 0—71 — fp(o—) — xl(C)P(U)

ProPOsITION 14.1.0. Let p be a path from 01 to ¢ on P\ {0,00}.
Then we have

— —
If ¢ =07 then [(¢)p = K(T)wp, where t is a canonical path from 0T to T.

Proof. _I;et z be a local parameter in 0 corresponding to a tangential
base point 01. The loop f,(0) =p~t-o(p) =p~t-0-p-o~! acts on A
as follows:

Zl/ln U__l)zl/ln Lgl/ln<1+z—c>l/ln
¢
. K n —_ 1/im -1 p n
o, §ln(opC1/l (1 L2 - C) ! éln(C)pzl/l '

1iow we assume that ( = 07. Let t be a local parameter corresponding to
07. Then we have z = 7 -t and 2'/1" = 71/ . ¢1/1" (311" is real positive
over the interval [0, 1] and t*/!" is real positive over the interval [0, 7]). The
path p~!-o-p-o~1 acts on 2" as follows:

-1 —1
PO VLA VL NS V] L VA fﬁl(T)p oL e p gl’ffﬂp Vi
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PROPOSITION 14.1.1. Let X = Pk \ {a1,...,an, 00}, let z,v € X(K)
and let p be a path from v to z. Let g; : X — P\ {0,00} be given by
gi(z) = z—a; fori =1,...,n. Let us fix a path q; from 0l to gi(v) for
. — —
i=1,...,n. (If v=aa then g;(v) = (a — a;)01 and g;(v) = a; — a; for
i) If

fp=alt..e 2o mod I (X g;v)

then

i) if z,v € X(K) then a; = k(2 — ai) g,(p).q, — K(V — i) g,
ii) if 2 € X(K) and v = a;a then o; = k(z — aj)g;(p)-q; — (@i — aj)g; for

i # J and a; = K(2 — @) g, (p)-g; — K(@ — @i)g;;

eee . — RN
iii) if 2 = ajb and v = a;a then o; = K(a; — ai)g,(p).q; — K(a@ — ai)g;,
a; = K(b— aj)gj(p)-qj — (a; — aj)qg' and oy = k(a; — ak)gk(p)'% -

k(a; — ag)q, for k #1,7;

. . H H
iv) if z = a;b and v = a;a then a; = k(b — a;)g,(p).q; — K(a@ — aj)q, and
aj =0 for j #i.

Proof. The proposition follows from Proposition 11.0.17 in Part IT and
from Proposition 14.1.0.

Observe that we have just proved Theorem F.

14.2. In [S2] and [S3] Soulé has defined certain cohomology classes
associated to compatible families of [-units. If we take compatible families
of cyclotomic [-units then we get cyclotomic Soulé classes.

In this subsection we shall discuss relations of Soulé classes with I-
adic polylogarithms. In [NW] we have given an arithmetic formula for
l-adic polylogarithms. We present a proof of this result with some small
modifications. (The related result was obtained by O. Gabber a long time
ago using different methods.) Next we restrict our attention to the field
K = Q(pp), where p is relatively prime to . We express cyclotomic Soulé
classes by [l-adic polylogarithms evaluated at p-th roots of 1.

Let us choose a compatible family (& ),en of primitive {"-th roots of
1. Let p be an integer prime to [ and let £, be a primitive p-th root of 1.

Let ( ;:ln)neN be a family of p-th roots of 1 such that ( ;/ln)l = g;/lnil,
( ;/l )l = &, and for any n, 5;/1 € fp-
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Let ¢ be an integer. We set

"—1 "—1
m

upg = [L(1=gho /)™ and o= [T (-89

k=0 k=0 (k,l)=1
where n,m € N. One checks that

(14.2.1) T VAR (Vi) L

m,q-l

We define Kummer characters

Fmgr Fmg * GQun ) — Z/1"
by
a((um)""™) et a((om)V")  mno
Tt g7 and T i),
(upp )M (COMEE

The characters (ky, ,)JneN and (Ky, ,)neN satisfy

n+l _— n =n+l _ =n n
Kmyg = Kmg mod " and kp' =k, modl

for any o € GQ(#mH.p)' We define

Km,q * GQ(MZOO-p) — 7Z; and Fm,gq : GQ( )y — Z,

Hioo.p

by Kmq(0) == (K13, 4(0))nen and Ky (o) = (Kj, 4(0))nen. It follows from
(14.2.1) that

(14.2.2) K = Fomsg + 1™ o g1
LEMMA 14.2.3. Let 0 € GQ(yeo.,)- Then we have

bt (6)(0) = T o).

Proof. The lemma follows from [NW]. We give a brief sketch of the
proof following [NW].
— —
Let m be a path from 01 to z. Let x and y in 7r1(P(1jz \{0,1,00};01) be
standard generators of the fundamental group. Let us set

H, = ker(m (P \ {0, 1,00} 01) — Z/1"),
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where  — 1 and y — 0. The group H,, is freely generated by z!" and

rlyr= (i =0,...,I" —1). Hence we have
. e U
(14.2.4) fr(0) - x7"=00) = H (zyz=")% ) mod [H,, H,]
=0
for some afj (o), ..., apm_y(0) € Z;. If m > nthenof =3 ., ;) ", Hence

we have a measure da(o) on Z;.
Let us define Kummer characters ﬁ;f ~ as follows

0o -1 ny 1N (o) j mN1/IN
(( fl] 2o)x(e™1) LU/ )l/l ) fzfiN (1_&]”'21/1 )1/1 '

We have 3, = B}y mod IV if M > N. We set B7 = (Bin)N € Zy.
Studying transformations of functions (1—¢/, .21/1")1/11\’ along f.(o) xR0
one shows that of = ﬂ?.

We recall that & : 7r1(P%jQ \{0,1,00}; 0_1>) — Qi{{X,Y}} is a continuous

multiplicative embedding given by k(z) = e and k(y) = e¥. It follows
from (14.2.4) that

00 m—1
(14.2.5) log k(f () EZ o (Z a~(a))[Y,Xk]

=0 =0

modulo logarithms of elements from k([H,, Hy,]), where [Y, X°] := Y and
[Y, X*] .= [[Y, X*¥~1], X] for k > 0.
Therefore the coefficient at [V, X*] of log k(f (o) - 272(°)) is congruent

to (7,{,) Zﬁnol i*a (o) modulo "™ where ng is a positive integer not

depending on n. Hence this coefficient is equal (7k1!)k le zF da(o).
Let us take z = &} and let 7 be a path from 01 to &4 such that mgq (0)=0
P

for any o € Gq(y,)- For such a path 7 the factor 27%2(%) in the left hand
side of (14.2.5) is 1, hence we get

_1\k
er(€)+(0) = | +*dato).

Observe that [, @ "“lda(o) = ZﬁNal vl aN(a) mod V. We have

)

S 1 OdV_ZZ o " 1 ﬂN Notice thatz it @N:’fgfl,q

mod V. Hence we get le 2" tda(o) = kn-1,4(0). ThlS implies the lemma.
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14.3. Let m be an integer prime to [ and let K = Q(p,,). We recall
briefly the construction of the Soulé classes for the field K.

Let us set K, := K(um) and Ko = K(u~). The extension K C
K, is unramified outside [. Let M be a maximal Galois extension of K
unramified outside [. Let us set G := Gal(M/K), G, = Gal(M/K,),
Geo = Gal(M/K), Ty, :== Gal(K,,/K) and 'y, := Gal(K«/K). The
groups G, and G, are normal subgroups of G and we have G/G,, ~T',, and
G/Goo = Too. Let usset Ry, := Z[7](pmin ) Xp := Spec Ry, Xoo :=lim X,
and X := Spec Z[}](tm).-

The exact sequence of sheaves on X,

1—>uln—>GmLGm—>1

induces a long exact sequence of cohomology
0 — HO(Xp, pun) — H(Xp, G) — H'(Xp, Gm) = H' (X, pn) -+

Let (§n)nen be a compatible family of primitive {™-th roots of 1 as in 14.2.
The element & defines an element in H°(X,,, ;»), which we also denote by
En. Let oy :=&nU---U&m (i — 1 times) and let u, € R = H°(X,,; Gm).
Observe that a,, € H(X,, ,ufi(ifl)). Let

Ny : H (X, pt) — HY (X, p)
be a transfer map associated to an étale covering p, : X;, — X. Let us set
xh = Ny (o Ud(uy)).

LEMMA 14.3.1. Let (up)neN, uUn € R be a family of l-units such
that Npi1pn(Unt1) = Upn, where Nyy14, @ Ry — Ry, is a norm. Then
7”n+1,n(332+1) = 2t where Tntin HY(X, uf?lil) — H(X, ulé?f) 15 induced
by the projection pyn+1 — pn. Hence the family (z},)nen defines an element
2’ = (x})nen € H' (X, Zy(3)).

Proof. One repeats the proof of Lemma 1 in [S2] replacing K-theory
by cohomology.

Let us set u'? := (1-— o/t ~&n). It is clear that the system of I-

units (u%q))neN is compatible, i.e., it satisfies Nn+17n(ugqll) = u%q). Hence
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it defines an element x%(q) € H'(X,Z;(i)). The elements x%(q) are called
cyclotomic Soulé elements.

The covering p, : X;, — X is Galois. It follows from [S1, Lemma 6]
that we have a commutative diagram

0Rid g (i—
v Hl@%(% )

* *\[™ i—1 I
(R /(R @ ™ —— HY(X,,; pu0)

J/Nrn J/p:;,ONn

6®id g
W80

* *\ ™ i—1 %
(Ri/ R @ ™ H' (X i)
where Nt (¢) = [[,¢r, o(c). Observe that

Nr, (1 - 4™ gn) @ :07Y)
= H (1— g™, l)fl(a)) ® (gﬁ(a))(@(i—l)

o€el'y,

n i—1 i—
0<k<im, (k,l)=1

Hence the element
* (0 1 ., Q0 ~ . ®(i—1)
pn(xn) €H (thuln ) ~ Hom(Gnv,ul”) ® Hn

is given by K’ 4 .
We summarize the above discussion in the following proposition.

PROPOSITION 14.3.2. (see also [W2, Lemma 3.3]) The family of l-units
(1—{%” & )neN defines an element 2°(q) = (2!,)neN € lim | HY (X pih) =
HY(X;Z(i)). The restriction of x%, € H'(X;uil) to HY(Xn;pull) =
Hom(Gy; ,uln)®,ufi(ifl) 1s equal to the homomorphism Riy g B-€., it s equal
to the Kummer character associated to the element Ho<k<ln,(k,ln):1(1 —

q mn i—1

COROLLARY 14.3.3.  After the restriction to G (y,..) we have the fol-
lowings identities:

_1)n -1
i) CV gy = 1, (€)= P (€51,
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ii) Let s be an order of l in (Z/m)*. Then we have

sfl

(1_l n 7’L+1 ém :Z

=0

(q-179).

Proof. The part i) of the corollary follows from (14.2.2), Lemma 14.2.3
and Proposition 14.3.2. The part ii) is an immediate consequence of the
part i).

The Soulé classes 21 (g) and the l-adic polylogarithms evaluated at m-
th roots of 1 are cohomology classes in H'(G; Q;(m+1)). The restriction
map

m—1
(G Q1)) — 1 () Hover (Pl \(0. 1,00k 60,00 Quom+1))

q=0

is injective by Lemma 3.0.8. Let d be a divisor of m. The l-adic polyloga-
rithms satisfy the distribution relations

d" (; ln+1<5)) = lp1(1)

and

d"<z lnt1(€- ffﬁ)) = Lny1(57)

gi=1

for any j such that 0 < j < “%, the inversion relation

b1 (E5) + (1) 1 (€0 7F) = 0

and the equality

—

l2n (10) = 0

on the subgroup ﬂq 0 ”+1(P%Q(um) \ {0,1700};§gna(i)) of GQ(Hm) (see
Part II, Section 11.2 and also [W2]).
Hence we get the following corollary.

COROLLARY 14.3.4. Let d be a divisor of m. The cyclotomic Soulé
classes satisfy the distribution relations

& (dg: g+ (2%)) — 2" (m)
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and
d—1 m
A" n+1(- _) — pntl i d
(L) =00
for any j such that 0 < j < %, the inversion relation
2" E) + (=) 2" (m — k) =0

and the equality
z*(0) = 0.

COROLLARY 14.3.5. The Q-vector subspace of H'(Gg; Qi(n+1)) gen-
erated by the cohomology classes 1, 1(EF) with 0 < k < m + 1 is generated
by the cohomology classes ly+1(€X,) with 0 < k < 2 and (k,m) = 1. This
vector space coincides with the Q-vector subspace of H' (Gx; Q;(n+1)) gen-
erated by cyclotomic Soulé classes x™ (k) with 0 < k < 2 and (k,m) = 1.

COROLLARY 14.3.6. The cyclotomic Soulé classes x" (k) in HY(G;
Qi(n+1)) for 0 <k <% and (k,m) =1 are linearly independent over Q
if and only if l-adic polylogarithms L1 (X)) for 0 <k <2 and (k,m) =1
are linearly independent over Q; in H'(G; Qi(n +1)).

14.4. We would like to show that the elements z°(q) for 0 < ¢ < 2 and
(g,m) = 1 are linearly independent and that they generate H'(X;Z;(i)) ®

Q.
Let us set
; : ®(i-1
Npn—1Qrn
where Ny, -1 : Ry, — Ry, _q is a norm map and 7 : ,ufi(ifl) — M?jﬁ;l)

is a reduction mod {"~!. The construction in 14.3 which to a compatible
family of [-units (u,)neN associates an element x in H'(X;Z;(i)) defines a
morphism

¢ B(i— Dr. — H'(X;Z(0)),

such that ker ¢ and coker ¢ are finite (see [S2, p. 384)).
Let C'(i—1) be a subgroup of F(i— 1) generated by compatible families
of cyclotomic [-units. We consider the map

Cli —1)r. — E(i — Dr..

If K = Q then this map has a finite cokernel (see [S3, Theoreme 3]).

https://doi.org/10.1017/50027763000009090 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000009090

16 Z. WOJTKOWIAK

Observe that the families ((1 — gﬁ,{ln ) ® Efi(i_l))neN are in
C(i—1). Let us set

u(g) = (1 — & &)@ eati™) .

LEMMA 14.4.1. The elements u(q) (0 < ¢ < % and (¢,m) = 1) are
linearly independent over Z; in C(i — V). Let C" be a Z;-submodule of
C(i — 1)r,, generated by elements u(q) (0 < q¢ < F and (qg,m) =1). Then
the quotient group C'(i — 1)p_ /C" is finite.

Proof. Let C,, be a subgroup of Q(f,n)* generated by pi,,» and by
elements 1 — w,, where w,, € fiyn \ {1}. We recall that

Nn,n—l@ﬁ”

where Ny 1 : C, — C,_1 is a restriction of the norm map Ny ,—1 :
Q(min)* — Q(Myyn—1)* and ryn uﬁ(z_l) — uﬁ(zl Y is a reduction mod
I"~1. Let (wn)nen be a compatible system of mi™-th roots of 1, i.e., w, =

?r{ln &, where a € Z;. Assume that o € Zj. Then

(1-wn)® 5[?1(2'71))%1\1 - ail (@ — " ) ® §®(Z Y )nGN

in C(i — 1)r... Let k> 0 and (p,l) = 1. Then the elements (1 — Q/l
&n lk) € (), are not in the image of the norm homomorphism N, i1, :
Cpi1 ® Z)I" — C,, ® Z/I™. Observe also that §Q/l e ® fln 26-1) _

in C(i — 1)r.,. Hence the elements u(q) := ((1 — 4" ) @ §®(l 2 )nGN
(m—12> g >0) generate C(i — 1)r._ as a Z;- module.
Let m = a-b. Then (1 — &%) = %24 (1 — €5+ &), This implies

that
' a—1 )
(1% gu) el ™) =o' <Z< —ghrab ) @ 52?1(”)>,
a=0
in C(i — 1)r, . Hence we get
. a—1
u(ka) = 't Z u(k + ab)
a=0
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in C(i — 1)r... The identity

Y g = €Y (1 - 6,97 601

implies u(g) = (—1)""'u(m — ¢). Hence the elements u(q) (0 < ¢ < %,
(g,m) = 1) generate C(i — 1)pr,, modulo torsion.

The projection of u(q) € C'(i—1)r, onto (Cn®uf?l(ifl))roo is equal (1—

o L )®§®(l Y 1t follows from the Bass theorem (see [Wa, Theorem 8.9])

that the elements (1 — o ~&m )®§®(Z 2 (0<qg< %, (¢ym) =1) are
linearly independent in (C), ® ,uléi(z 1))poo.

If the map C(i — 1)r,, — E(i — 1)r_, has a finite cokernel or finite
kernel then Lemma 14.4.1 will imply the following result stated below as a
conjecture.

CONJECTURE 14.4.2. The cyclotomic Soulé classes "1 (k) in H!(G;
Qi(n+1)) for 0 < k < F and (k,m) = 1 are linearly independent over
m

Q;. Consequently [l-adic polylogarithms l,11(&h) for 0 < ¢ < 2 and

(¢g;m) = 1 are linearly independent over Q; in H'(Gg;Qi(n + 1)) and
. —
in H (V2" Haa (PM\ {0, 1,00}, 01); Qu).

The referee pointed to us that the linear independence over Q; of the
cyclotomic Soulé classes 2" (k) for 0 < ¢ < 2 and (g, m) = 1 follows from
[HW]. However we still did not absorbed the motivic consideration in [HW]
so we prefer to left the needed result as a conjecture. It also seems to us
that a possible proof of 14.4.2 should be more elementary without using a
motivic machinary.

§15. Applications to Galois actions on fundamental groups

15.0. We shall use [l-adic polylogarithms to study the Galois action
on the fundamental group of the projective line minus a finite number of
points.

Deligne on the conference on polylogarithms in Schloss Ringberg gave
a sketch of a proof of his result concerning P!\ {0, 1, —1,00} in the Hodge
context (see [D2]). He showed that the Lie algebra associated to the mixed
Hodge structures generated by the fundamental group of P\ {0,1, -1, 00}
contains a free Lie algebra on one generator in each odd degree. Using his
ideas we are trying to show the analogous result in the Galois setting as well
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as to study some other interesting cases. The first presentation of our results
in this direction is in [W1]. In [W3] we study the Hodge analog and there
the classical polylogarithms appear. We recall also that the action of Gq
on Wl(Pé \{0,1,00}; 0_1>) was studied by Y. Ihara in [I1], [I2] and P. Deligne

in [D1]. The l-adic polylogarithm ln+1(ﬁ) in our notation appears in these
works (see also [IS]).

Let K be a number field. Let X = P} \ {a1,...,a,+1} and let v €
X(K) Let x = (z1,...,Zn41) be a sequence of geometric generators of
m1(X(C);v) associated to a family I' = {v;}i=1,. nt1. Let X be a set
{X1,...,X,}. We embed 7 (X ;) into Q;{{X}} mapping =; into e*:.

We recall that the action of the Galois group G i on the fundamental

group
Gk — Autm(Xg;v)

induces a Galois representation
¢ G — Aw(Q{{X}})
and a Lie algebra representation
Liep : Lie(G1(X,v) /G (X, v)) ® Q — Der* L(X)

(see Part I, Sections 4.0, 5.0 and 5.1).
Passing with the morphism Lie ¢ to associated graded Lie algebras we
get a morphism of associated graded Lie algebras

gr(Lie ) : grLlie(G1(X,v)/Gs (X, v)) ® Q — Der* Lie(X).
Let us define X, 1 by the equality
X1+ + X+ X1 =0.

Let us set

Der** Lie(X) = {D € Der Lie(X) | Vk € {1,...,n + 1} 3b; € Lie(X),
D(Xy) = [ X, b]}.

PROPOSITION 15.0.1. Let 0 € Gy, (X, v). Then we have

(log02) (Xn1) = [Xns1, (0872 5,1, )(1)] mod I 2L(X).
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Proof. In the proof we shall omit the subscript  and we shall write o
and o,, ., instead of o, and 044, ,. We have x, 1 = xfl e x;l. Hence
E(zpi1) = e X1 e = exp(X,41 + ¢), where ¢ = 0 mod T'?L(X). It
follows from Part I, Proposition 2.2.1 that o(Xn41 +¢) = Ay, (o) -

X(0)(Xng1+¢) - Ay, ., (0). Let 0 € G1(X,v). One computes that

(log O—’Yn+1)(1) = (A’Yn+1(0) - 1)
1 1
=5 (Aia(0) - 0(As 11 (0)) = 205, (0) + 1) 5
This implies that (log o, . ,)(Xnt1 +¢) = (Xngt1 +¢) - ((log oy, ,)(1)). It
follows from Part I, Proposition 5.1.7 that

(log 0)(Xnt1 + ¢) = [Xnt1 + ¢, (log oy, ) (1)].
If 0 € Gip(X,v) then (logo)(c) =0 mod I 2L(X) and [¢; (log o, )(1)]
=0 mod I'"™*2[(X). Hence we get
(108 ) (X 11) = [Xu 11,108 0., (1)] mod T™2L(X).
COROLLARY 15.0.2. The image of the homomorphism of Lie algebras
gr(Lie o) : grLie(G1(X,v)/Gs (X, v)) ® Q — Der™ Lie(X)
is contained in Der™* Lie(X).

15.1. In this subsection we shall study the action of the Galois group

1
GQ(u,) on the fundamental group of Pm\ {0, pip, 00}

Let us set V := P%Q(Hn) \ {0, ptn, 00}. Let us fix an embedding Q C C.

Let &, = exp(%). We chose a tangent vector 01 as a base point of the
fundamental group. At each point ¥ of the projective line PlQ(,U«n) we choose
—

a tangential base point vy = 0. We choose a family T' = {vx} k=0, n_1 U
{7} as on Picture 1. The path 7y is a path from 01 to V.

Let (x,y0,-.-,Yn—1,u) be a sequence of geometric generators of
m1(V(C); (ﬁ) corresponding to the family I'. We have

Yn—1"Yn—2" """ Yy1-Yo-u-x =1

Let fr : V — V be given by f(z) = ¢~ - z. Then

(15.1.1) (fi)+F20 (0) = T30 (@)-
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w G

71
V/ ‘f n
Yo VYoo

Picture 1

k
fn

Picture 2

— —
Observe that fi(7o) is a path (an interval) from 0&X to €80. Let s; be a

N —
path from 01 to 0£* as on Picture 2.

We have
(15.1.2) 8,;1 (fr)s(x) - s = x, slzl (fe)«) sk =wyrr if kK+l<n
and
(15.1.2) st (fe)e(u) - sk=a"" yppn-x if K+1>n—1.
It follows from (15.1.2) that

(15.1.3)  sp ' (fa)s(Fao (@) (@905 s Yn1)) - s

= f’yo(a)(x7yk7 ce 7yn—17$_1 Yo T, ... ax_l *Yk—1- l’)

for k=0,1,...,n — 1. Observe that v = fx(70) - sg. It follows from Part I,
Lemma 1.0.6 and the equality f,, (o) = 2nX@)=1) hat

- k(v (o)—
(15.1.4) fop (o) = 57,1 Ffir0)(0) Sk - pn(x(@)—1)
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It rests to calculate o(u). Let g : V — V be given by g(z) = 1 and let

1 . = —
d:=g(yy ). Observe that vo = d -t -y, where ¢ is a path from 10 to loo
as on Picture 3.

Picture 3

One checks that

X 1

(15.1.5) froe =%t ge(00 - (o) 70 D) 0 Yo S - o
Observe that

ot gz )t =,
-g+(%0 Yo% ) 70 = Yo

Yo
Yo

(15.1.6) R

and

(15.16) % -t g0 wk- )t 0
=T Yn—1 yn—k‘-‘,—lyn—ky;ikJrl ..... y;ﬁlx_

fork=1,...,n—1.

—
PROPOSITION 15.1.7.  The action of Ggy,) on Wl(P(IQ\{O’Mm o0}; 01)

s given by
o(z) = zX(),
_ =k x(e)-1) -1 -1 -1
J(yk) =T n 'f’YO(O—)(wayka'-wyn—lax Yo T,..., T 'ykfl'x)
_ _ kE _
'y]z;((a)'f’yo(o-)(xvyku"'vynflux 1'90'%~~71‘ 1‘yk—1'$)'$"(X(U) 1
fork=0,...,n—1 and
_1 1—x(o)
( ) ( )(1:7y07°“)yn71) Yo 2

f
f’YO( )(U Yo, L -Yn—1-T 17---,95'yn71"'3/2'91'9271”‘3/;}1’75_1)'“)((0)
( YUy Y0, T Y1 T T Y1 Yoy Yy eyt )T

—1
2

’?/0 fvo(a)(f'?ay07-~,yn—1)-
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Proof. Tt follows follows from Part I, Proposition 2.2.1 and from the
equalities (15.1.1)—(15.1.6) that o(x), o(yx) and o(u) are given by the for-
mulas of the proposition.

15.2. Let usset V:={X,Yy,...,Y,_1}. Let
—
k:m (Pm\ {0, 1, o0} 01) — Q{{V}}

be a continuous multiplicative embedding given by k(z) = e* and k(y;) =
e¥i for j = 0,...,n — 1. We denote by Lie(V) (resp. L(V)) a free Lie
algebra (resp. a completed free Lie algebra) over Q; on the set V. We
define U by the equality X + Yy + -+ 4+ Y,—1 + U = 0. We shall study
elements A, (0)(X,Yo,...,Y,-1).

N

LEMMA 15.2.1. Let 0 € G,,,(V,01). Then we have

log(A, (o) (X, Yo, ..., Yn_1))
= log(Ay (o) (X, Vi, -, Y1,Y0, ..., Yk_1)) mod T T1L(V).

Proof. We recall that Ay (0)(X,Y0,...,Yn—1) = k(4 (0)(2, 0, .-,

Yn—1)) and Ay, (0)(X, Y0, ..., Y1) = k(Jy,. (o) (2,90, - - -, Yn—1)). It follows
from (15.1.4), (15.1.1) and (15.1.3) that

AWk(J)(X7 Yo,. .. ,Yn_l)
_ _ E(vig)—
:k(f’YO(U)(J%yk‘a"'vyn*lux 1'90'337"'a$ l'yk—l'ﬁ)'ﬂf"(X() 1))

Hence for 0 € G1(V, ﬁ) we have

Awk(a)(X,Yo,...,Yn_l)—AWO(J)(X,Yk,...,Yn_l,
Yo+z Yo, X]XP7Y),..., Y 1+Z Vi1, XP1]>.

If ¢ € Gp(V,01) then log(As, (0)(X,Yp,...,Y,u 1)) = 0 mod T™L(V).
Hence log(A,, (0)(X,Yy,..., Y1) = log( o () (X, Ygy oo Y1, Yo,
Yi_1)) mod I™1L(V) for any o € G (V,01).

LEMMA 15.2.2. Let o € Gp(V, 0—1>) Then we have
(log 0., )(1) = log(Asy (0)(X, Vi, -+ Y1, Y0,. .., Ys_1)) mod T T1L(V).
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Proof. Let w € Qi {{V}}. We recall that o, (w) = Ay, (0)(X, Y0, ...,

Y,—1) - o(w). Hence logo,, = Llog(A% (0)(X,Yo,....Yn_1)) O loga, where O is
the BCH multiplication. We have

log 0, = Liog(A,, (0)(X,Yo,....Yn-1)) T 1080

1
+ 5L log ) (108(Asy () (X Yo, Yo 1)) T

Observe that log(A, (0)(X,Yp,...,Y,—1)) =0 mod ' L(V). Hence
(log o) (log (A, (0)(X, Yo, ..., Yn—1))) =0 mod " L(V).

This implies that the term —(log o) (log(A+, (0)(X, Y, ..., Y,_1))) vanishes
mod I+ L(V). One shows that other terms also vanish mod I'*1L(V)
except the first two terms. This implies that

(log 0, )(1) = log(A, (0)(X, Yo, ..., Yy—1)) mod I L(V).
Now the lemma follows from Lemma 15.2.1.
We recall that we have a morphism of Lie algebras
— —
Liep : Lie(G1(V,01) /G (V,01)) ® Q — Der™ L(V)
and a morphism of associated graded Lie algebras

gr(Lie ) : grLie(G1(V,01)/Guo(V,01)) ® Q —> Der* Lie(V).

—

PROPOSITION 15.2.3. For any o € grLie(Gl(K(ﬁ)/Gw(K 1)) we
have gr(Lie p)(c)(X) =0 and

gr(Lie (p)(U)(Yk) = [Yk, )\(U)(X, Yk, ce ,Yn_l, YE), . 7Yk71)]
(k=0,1,...,n—1) for some element A\(c)(X,Yp,...,Y,_1) € Lie(V).
Proof. If 0 € G1(V, (ﬁ)) then log o is a derivation of the Lie algebra
L(V) such that (logo)(X) = 0 and (logo)(Yx) = [Yi, (log oy, )(1)] for k =

0,...,n —1 (see Part I, Proposition 5.1.8). Hence the proposition follows
from Lemma 15.2.2.

DEFINITION 15.2.4. We set
Dery,,, Lie(V) := {D € Der” Lie(V) |

B(X, Yo, ..., Yy 1) € Lie(V) Vk € {0,...,n — 1},
D(X) =0 and D(Y}) = [Yi, B(X,Ye, ..., Yo 1, Yo, ..., Y1)}
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LEMMA 15.2.5. The image of the homomorphism gr(Lie ¢) is contained
in Derg,,, Lie(V).

Proof. 1t follows from Proposition 15.2.3 that the image of gr(Lie ¢)
is contained in Dery ,, Lie(V).

DEFINITION 15.2.6. We set
Der*z’;’fl Lie(V) = {D € Der" Lie(V) |
I6(X, Yo,...,Y,—1) € Lie(V) Vk € {0,...,n — 1},

D(X) = 07 D(Yk) = [Yk‘)ﬂ(X) Yk, s 7YTL*17 }/0) v 7Yk‘—1)] and
D(U) = [U, —,B(U, Yo,Y,_1,... ,Yl) + ﬁ(X, Yo,... ,Ynfl)]}.
LEMMA 15.2.7. The image of the homomorphism gr(Lie ¢) is contained

in Der;’;’z Lie(V).

Proof. The lemma follows from the formula for o(u) in Proposition
15.1.7. The detail proof requires analogs of Lemmas 15.2.1 and 15.2.2 for
Yoo We left details to the reader.

We denote by Im(gr(Lie ¢)) the image of the morphism
gr(Lie) : grLie(G1(V,01)/Goo(V, 01)) ® Q — Dery, Lie(V).

Observe that Im(gr(Lie ¢)) is a Lie subalgebra of Dery, ,, Lie(V).

The derivation D € Dery, . Lie(V) such that D(Yy) = [Yo, 5] we denote
by Dg. Observe that Dery , Lie(V) =~ Lie(V)/(Yy) as vector spaces. We
introduce a new bracket { } on Lie(V) by setting

{88} = [8,81+ Ds(8') — Dg (B).

This new Lie algebra we denote by (Lie(V),{ }). Observe that (Yp) is a
Lie ideal of (Lie(V),{ }). Hence we can form a quotient Lie algebra which
we denote by (Lie(V)/(Yo),{ }).

LEMMA 15.2.8. The Lie algebras Dery , Lie(V) and (Lie(V)/(Yo),{ })
are isomorphic.

Proof. The isomorphism associates to Dg the class of 3 in Lie(V)/(Yp).
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DEFINITION 15.2.9. We denote by I a Lie ideal of Lie(V) generated
by Lie brackets which contain at least k elements (with repetitions) among
Yo,Yi,.... Y1,

Let S be a subset of {0,...,n —1}. We denote by I,.(S) a Lie ideal of
Lie(V) generated by Lie brackets which contain at least r elements (with
repetitions) among Yy, Y7,...,Y,—1 and at least one of these elements is Yy,
with k € § and at least one of these elements is Y; with j ¢ S.

We denote by A(S) a Lie subalgebra of Lie(V) generated by elements
Y (k€ S), and by A(S), the degree r part of A(S).

Recall that ™! Lie(V) is the (m+1)-st component of the lower central
series of the Lie algebra Lie(V). In the following discussions, we often look
at elements of Lie(V) modulo the Lie ideal I} + T Lie(V).

LEMMA 15.2.10. Let S be a subset of {0,...,n—1} such that (S+S)N
S =0 (the sum of two elements of S is calculated mod n). Let w € I,.(S),
w' € I/(S) and a € A(S)¢. Then Dy(w) € I 44(S), Dy(a) € I,44(S) and
w(W') € Ly (S).

15.3. We shall calculate coefficients of log(A,, (0)(X, Yy, ..., Yn_1)).
We shall show that they are expressed by l-adic polylogarithms evaluated
at elements of p,,.

LEMMA 15.3.1. Let o € Gp(V, (ﬁ) If m > 1 then

n—1
10g(Asg (0) (X, Yo, -+, Yo1) = D Ln (€17 F) (o) [V, XX
k=0
mod I + I L(V).
If m =1 then
n—1
10g(Ayy (0)(X, Y, ..., Yyo1)) = ) 11 = &77F)(0)Ys mod T?L(V).

k=1

Proof. It follows from the definition of [-adic polylogarithmi that the
coefficient of log(A~, (0)(X, Yo, ..., Yn_1)) at [Yo, X]X™ 2] is 1,,(10)(0) and
the coefficient of log(A~, (0)(X, Yo, .., Yn_1)) at [[Yo, X]X™ 2] is 1, (£8) (o)
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—

for 0 < k < n. It follows from Lemma 15.2.1 that for o € G,,(V,01)

n—1
10g(Arg (0) (X, Yo, -+, Yoo1) = Y L&) (o) [V, X]X ™)
k=0
mod Iy + T L(V).

If m =1 then the coefficient of log(A+,(0)(X, Yo, ..., Yn—1)) at Yy vanishes
and the coefficient of log(A, (0)(X, Yo, ..., Yn—1)) at Yo is {1(€X). To finish

the proof we observe that 1;(z) = I(1 — z) on G1(V, 0_1>)

—

LEMMA 15.3.2. Let 0 € G, (V,01). Then

n—1
or(Liee) (o)1) = Yo, 3 bn(E (o) Vi XIX")
k=0
mod I3 + T 2L(V)

form > 1. If m = 1 then gr(Liey)(o)(Yo) = [Yo, Z;il(l — &Ry
mod I"L(V).

Proof. The lemma follows from Part I, Proposition 5.1.8 and from
Lemmas 15.2.2 and 15.3.1.

15.4. We shall study the image of the homomorphism of Lie algebras
— —
gr(Lie p) : grLie(G1(V,01)/Goo(V, 01)) ® Q — Dery,, Lie(V).

First we assume that n is a prime number and for traditional reason we shall
denote it by p. Hence V' = P}Q(Hp) \ {0, p1p, 00}. We recall that fundamental
groups considered in this paper are pro-finite [-groups. Now we shall use
Conjecture 14.4.2. We shall assume that p is different from [. We have not
express in this paper [-adic polylogarithms evaluated at [-th roots of 1 by
Soulé classes, hence we have to suppose that p # [.

PROPOSITION 15.4.1. Let p be a prime number greater than 2 and dif-

ferent from . Assume that for each m > 1 the cyclotomic Soulé classes
x™(k) in Hl(GQ(W); Qi(m)) fork=1,2,..., P=L are linearly independent

2
over Q. Then there are elements o¥, 05 ... ok ... (k = 1,...,p—;1) n
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grlie(G1(V, (ﬁ))/Gw(V,(ﬁ)) ® Q such that any o¥ is homogenous of degree
i and

gr(Lie ) (a1)(Yo) = [Yo, Vi + Yy,
gr(Lie ¢)(c5;)(Yo) = [Yo, [V, X]X*7%] = [[Yp—, X]X*7?]] mod I3

and

gr(Lie ¢)(0%;11)(Yo) = [Yo, (1 — p*)[[¥e, X]X*']
+ (1 —in)[[Y};,k,X]XQiil] + Qin[[Yo,X]XQiil]] mod Ig.

Proof. Assume that m > 1. After the restriction of l-adic polyloga-
rithms to G, (V, 01) we have the following identities:

p! — —

() pml(zzm@;ﬁ)):zm(l) (& = T0)
k=0

and

() Ln(€5) + (1), (€07%) =0 and Iy (10) = 0

(see Part II, Corollaries 11.2.3 and 11.2.6). It follows from the identities (x)
and (xx) that

p—1
(15.4.2) I (€07 %) () [[Ye, X]X ™2
0

-
=l

p

= > 1l ) @) ([[¥es XIX™ ] + (=1)"H [¥op, X]X™ 7))

(Z (@) (0) + (1) (&) (0 >)>[[%,X]Xm21.

=1

It follows from the assumption that the cyclotomic Soulé classes ™ (k) in
Hl(GQ(Hp);Ql(m)) for k = 1,2,...,10—51 are linearly independent over Q;

and from Corollary 14.3.6 that there are elements o', . .. ,aprl in G, (V, (ﬁ))
such that Ly, (€27%)(67) = 0if k # j and 1, (€2 %) (c*) # 0. Hence it follows
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from Lemma 15.3.2 and the equality (15.4.2) that
gr(Lie )(a")(Yo)
Yo, bn (€57 (0®) [V, XIX 2] + (= 1) [V, X]X2)

m—1

p — m— m—
T ()0 + ()™ (&) () Yo, XX 2]
mod I3 + T2 Lie(V).
— —
Now we set oF := Wak in grLie(G1(V,01)/G(V,01)) @ Q if m
m\Sp g
is even and oF := _Lp Gk grLie(G1(V, 0_1>)/GOO(V, 0_1>)) ®Qif mis

I (€577) (o)
odd.

Let us consider the case m = 1. It follows from the equality —5571{
(15 =1-¢" that

(1-¢&)—11-¢¢™M=0

on G1(V,01). It follows from [Wa, Theorem 8.9] that the p-units 1—55 (k=
1, ..,p%l) are linearly independent in Q(up)*. Hence Proposition 14.0.6
implies that the functions l(l—ﬁ;f) (k=1,. ) restricted to GQ(u, 1) =
G1(V, ﬁ) are linearly independent over Ql. Novv we finish the proof as for
m > 1.

We shall also use the following notation. If A and B belong to a Lie
algebra then we define [A, B%] := A and [A, B¥] := [[A, B*~!], B] for k > 0.

THEOREM 15.4.3. Let p be a prime number greater than 3 and different
from . Assume that for each m > 1 the cyclotomic Soulé classes ™ (k) in
Hl(GQ(up); Qi(m)) fork =1,2,..., p—gl are linearly independent over Q.
Let S be a subset of {1,...,p— 1} satisfying the following conditions

i) ifkeS thenp—keS,
i) (§+8)NS =10 (the sum of two elements of S is calculated mod p).

Then the derivations gr(Liep)(ck1), ..., gr(Lie (p)(a,ljf) for {ki,...,kq} C
SN {1,...,1%1} and m = 1,2,... generate a free Lie subalgebra of the
image of the Lie algebra homomorphism

gr(Lie p) : grLie(G1(V, 0_1>)/GOO(V, 0_1>)) ® Q — Dery,,, Lie(V)

and moreover these derivations are free generators of this Lie subalgebra.
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Proof. We recall that gr(Liep)(ck)) € Derz , Lie(V) and gr(Lie )
(ck) (Vo) = [Yo, BE (X, Y0, ..., Y,_1)] for some BF, = BF (X, Y0, ..., Y, 1) €
Lie(V). To show the theorem it is enough to show that a Lie subalgebra of
(Lie(V),{ }) generated by g¥,85,....6% ... (keSn{1l,..., p—gl}) is free
and that ¥, 85,..., 6% ... (keSN{1,..., p%l}) are free generators of it.

Let us set

m = Y, XM 4 (1) Yo, XM,

Observe that 85 = 2& + pyk + 1(2)F, where y¥, € I and (2)F, € I5. For
any arrangement of brackets of length 7 in (Lie(V),{ }) we have

(15.4.4)
kr
{- {ﬁmaﬁ b Bn }"'}
E{ { +pyn17 ng +pyn ey nr+pynr}} mOdITJrl-

Let us set z := {--- {21 4 pykt 2k 4 pyh2y 0 2k 4opyke})
We denote by Lie(V; Z) a Lie subalgebra over Z of Lie(V) generated by
the set V.

The elements z*, and y*, have integer coefficients with respect to a base
of Lie(V) given by basic Lie elements in free generators X,Yp,...,Y,_1,

hence we can view them as elements of Lie(V;Z). Therefore z has also
integer coefficients with respect to this base. Observe that

(15.4.5) p={ {22y 0 25} mod pLie(V; Z).

TL17 TLQ

The quotient Lie algebra Lie(V;Z)/pLie(V;Z) is a free Lie algebra over
Z/p freely generated by the set V. We consider [,(S) as a Lie ideal of
Lie(V;Z)/pLie(V;Z).

It follows from Lemma 15.2.10 that in Lie(V;Z)/pLie(V;Z) we have

(15.4.6)
{ {z nio TLQ} s nr} }—[ [kiazsi]aﬂﬁi]] mOdIT(S)'
The elements 2§, 25, ... (k€ SN{1,..., p—gl}) are free generators of a free Lie

subalgebra of Lie(V;Z)/p Lie(V; Z). Hence basic Lie elements in 2§, 25, ...
(ke SnA{y,..., pgl ) are linearly independent in Lie(V;Z)/p Lie(V;Z).
Therefore it follows from congruences (15.4.4), (15.4.5) and (15.4.6) that

basic Lie elements in elements 3%, 35,... (k € SN {1,...,1”—51 ) in the
Lie algebra (Lie(V),{ }) are linearly independent in Lie(V). Hence the
elements BY, 85, ... (k€ SN{1,..., p—gl ) generate a free Lie subalgebra of

(Lie(V),{ }) and these elements are free generators of this subalgebra.
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Now we shall consider the case p = 3.

THEOREM 15.4.7. Let p = 3 and let | be different from 3. Assume that
the cyclotomic Soulé classes x"(1) € H' (Gquy); Qu(n)) are different from
zero for n > 1. Then the derivations gr(Liep)(ci),..., gr(Liep)(a}t),...
generate a free Lie subalgebra of Im(gr(Liey)) and these derivations are
free generators of this Lie subalgebra.

Proof. We must modify the proof of Theorem 15.4.3 for p = 3. Let
I(Yy,Y2) be a Lie ideal of Lie(V;Z)/3Lie(V;Z) generated by Yy and Y5.
Then we have

(15.4.8)

{'”{Zrlmzrlzg}"”7271LT}'”}E ["'[ZrleZTng]"”vZ?lzr]'”] mod I(}/(MY?)
and
(15.4.9)

[ [ZrleZTng]v"' vZ}zr] ] = [ [‘9#175#2]7"'7571%] ] mod I(Y07Y2)7

where sl = [Y1,X™7!]. The congruences (15.4.8) and (15.4.9) replace

the congruence (15.4.6). The rest of the proof is the same as the proof of
Theorem 15.4.3.

CONJECTURE 15.4.10. Let p be a prime number greater than 2 and
different from [. The derivations gr(Lie ¢)(c¥), gr(Lie ¢)(c%), gr(Lie p)(a¥),
cgr(Lieg)(ok), ... fork=1,..., p—gl generate Im(gr(Liep)).

15.5. Now we shall consider the case when p = 2. In fact the proof
will repeat the arguments from [D2] with necessary modifications for the
l-adic case. Let us set V := P%Q\{O, 1,—1,00}. Let 01 be a base point of the
fundamental group. We choose a family I' = {70, 71,700} as on Picture 4.

st / 5 Yo Yoo
0 1

Picture 4

Let (z,y0,y1,2) be a sequence of geometric generators of 71 (V (C); (Tl)) cor-

responding to the family I'.
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LEMMA 15.5.1. Let o € Gy, (V, (ﬁ) If m > 1 then

log(Aso (0)(X, Y0, Y1) = L (10)(0)[[Yo, X]X™2]

+ (2ml_1 1)lm(1_>)(a)[[Y1,X]Xm*2] mod I + "™ L(V).

If m =1 then
log(Asy () (X, Yo, Y1) = [(2)(0)Y; mod T2L(V).
Proof. The lemma follows from Lemma 15.3.1 and the identity
2m=1 (1, (10) + Ly (—1)) = L, (10)
(see Part II, Corollary 11.2.3).

— —
LEMMA 15.5.2. In the Lie algebra grLie(G1(V,01)/G(V,01)) @ Q

there are elements o1,03,0%5,...,02m+1,- .. such that any o is homogenous
of degree k, gr(Lie¢)(o1)(Yo) = [Yo, Y1] and
gr(Lie p)(o2m+1)(Yo)

= [Yo, 22™[[Yo, X]X*" 1 + (1 — 22™)[[V1, X]X*™ )] mod Is.

Proof. The homomorphism l (10) for n odd and greater than 1 is
a generator of Homz: (Gque)i Zi(n)) ~ Z; (see [IS]). Hence it follows
from Part I, Lemma 3.0.8 that ln(ﬁ) restrlcted to Gy (V, (ﬁ)) is different

—
from zero. Therefore there is o(n) € G (V,Ol) such that [,,(10)(o(n)) #
271,71

0 for n odd and greater than 1. We set o, = e o(n) in

grLie(G1(V, 0_1))/GOO(V,O—1>)) ® Q if n is odd and greater than 1.
The homomorphism [(2) is a Kummer character associated to 2. Hence
—
there is o(1) € G1(V,01) such that 1(2)(c(1)) # 0. We set 0] = 15~

o he = @)
o(1) in grLie(G1(V,01)/G(V,01)) ® Q.

THEOREM 15.5.3. The derivations gr(Liey)(o1), gr(Liep)(os),...,
gr(Liep)(oam+1),- .. generate a free Lie subalgebra of Im(gr(Liey)) and
these derivations are free generators of this Lie subalgebra.

Proof. 'We have gr(Lie p)(01)(Yp) = [Yo, Y1] and gr(Lie ¢)(o2,+1)(Y0)
= [Y0, B2n+1] for n > 0, where (3,41 € Lie(V) is homogenous of degree
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2n+ 1. The Lie algebra Der?, , Lie(V) is isomorphic to (Lie(V)/(Yo),{ }).
Hence it is enough to show that a Lie subalgebra of (Lie(V),{ }) generated
by 61,03, -, 02n+1, - - - is free and it is freely generated by these elements.
Observe that o141 = 2241 + Yont1 + Lont1 Where 29,01 = [Y1, X2 (21 =
Yl), Yon+1 = 22n[Yb,X2n] — 22n[Y1,X2n] (yl = 0) and Lon+1 € Ir.

For any arrangement of brackets of length r in (Lie(V),{ }) we have

(15.5.4) {--{Bny,Bnots--sOn,t- -}
E{”'{Zm + Yni» Zno +yn2}w~7znr+ynr}"‘} mod I,41.

Let usset z := { - {2n; + Yny» Zno + Yns}s -+ » 2n. +Yn,} - -+ }. The elements
zm and y,, have integer coefficients with respect to a base of Lie(V) given
by basic Lie elements in free generators X, Yy and Y;. Hence z has integer
coefficients with respect to this base. We consider these elements as ele-
ments of Lie(V;Z), where Lie(V;Z)is a Lie subalgebra over Z of Lie(V)
generated by X, Yy and Y;. Observe that

(15.5.5) 2= A{2n,%n2 s+ 2n. -} mod 2Lie(V;Z).

The quotient Lie algebra Lie(V;Z)/2Lie(V;Z) is a free Lie algebra over
Z/2 on free generators X, Yy and Y;. Let S = {1}. We recall that I,.(S) is
a Lie ideal of Lie(V;Z)/2Lie(V; Z) generated by Lie brackets which contain
at least r Y’s and at least one of them is Y7 and at least one of them is Yj.
Observe that
(15.5.6)
{ Az 2nots - zn. b F =1 [2ngs Znaly - oo 20, ) -] mod I.(S).

The elements zi,23,...,2m+1,-.. are free generators of a free Lie sub-
algebra of Lie(V;Z)/2Lie(V;Z). Hence basic Lie elements of degree r
in z1,23,...,2m+1,... are linearly independent in Lie(V;Z)/2Lie(V;Z).
Therefore it follows from congruences (15.5.4), (15.5.5) and (15.5.6) that
basic Lie elements of degree r in elements (1, fs,. .., B2n+1,- .. in the Lie
algebra (Lie(V),{ }) are linearly independent in Lie(V). Hence the ele-
ments 31,03, ...,02n+1,... generate a free Lie subalgebra of (L(V),{ })
and these elements are free generators of this Lie subalgebra. (This proof
is essentially the repetition of the proof given by Deligne for the Hodge
realization (see [D2]).)

CONJECTURE 15.5.7. The derivations l(01),(03), ..., l(02n+1), - - - gen-
erate Im(gr(Lie p)).
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15.6. Now we shall assume that n is a power of a prime number. Let
p be a prime number different from [ and let n = p". Let V = P}Q(u ) \

{0, pin, 00}

PROPOSITION 15.6.1.  Assume that for each i > 1 the cyclotomic Soulé
classes 2" (k) € HY(Gq(u,): Qu(i)) for 0 < k < % and (k,p) = 1 are linearly
independent over Q. Then in the Lie algebra grLie(G1(V, 0_1>)/GOO(V, 0_1>))®
Q there are elements am+1 form =1,2,... and for 0 < k < § and (k,p) =
1 such that Jerl is homogenous of degree m—|— 1 and gr(Lie <p)( m+1)(Y0) =
[Yo,ﬂmH] where

ﬂm‘i’l ﬂm+1(X’Y07 . Yn 1)
= (1 —p"™)([Vi, X™] + (=)™ [V, X™])
n—1 '
+p" &y V5, X 4"y, 4 4 [Yo, X mod I
J=1(j,p)>p

and where dﬁnﬂ . are integers.

PROPOSITION 15.6.2. Assume that for each i > 1 the cyclotomic Soulé
classes 2" (k) € HY(Gq(u,): Qu(i)) for 0 < k < % and (k,p) = 1 are linearly
independent over Q. Let S be a subset of {i | 0 <i<mn and (i,p) =1}
satisfying the following conditions

i) ifkeS thenn—keS,
ii) (§+8)NS =10 (the sum of two elements of S is calculated mod n).

Then the derivations gr(Lie <p)(a7]j;+1), ..., gr(Lie (p)(a:jfﬂ) for {ki,... kq}
Cc SN,5] and for m = 1,2,... generate a free Lie subalgebra of
Im(gr(Lie¢)) and these derivations are free generators of this Lie subal-
gebra.

COROLLARY 15.6.3. Let n = 2". Assume that for each i > 1 the cy-
clotomic Soulé classes x'(k) € H' (Gq(p,): Qi) for 0 < k < % and k odd
are linearly independent over Q;. Then the derivations gr(Lie )(o¥ 1) for
m = 1,2,... and for 0 < k < § and k odd generate a free Lie subalge-
bra of Im(gr(Liey)) and these derivations are free generators of this Lie

subalgebra.
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The proofs of 15.6.1-15.6.3 are the same as proofs of 15.4.1 and 15.4.3.
We do not include in our considerations derivations in degree 1 because
working modulo p we are not able to eliminate Y; for (j,p) > p.

COROLLARY 15.6.4. Let n = 4. Assume that for each m > 0 the
cyclotomic Soulé class z2 ( ) € H(Gq); Qi(2m)) does not vanish. Then
the derivations gr(Lie¢)(ol) (m = 1,2, 3 ..) are free generators of a free
Lie subalgebra of Im(gr(Lie p)).

Proof. We have (1 —i)(1 +1¢) =2 and (1 —4) = 1+ ¢. This implies
that [(2) = 2{(1 — ). Hence we can include also the derivations in degree 1
in our considerations.

PROPOSITION 15.6.5. Let n = 8. Assume that for any m > 1 the I-
adic polylogarithms 1, (¢s) and 1,,(€3) are linearly independent. Then the
derivations gr(Lie p)(ol,), gr(Liey)(a3,) for m =1,2,3,... are free gener-
ators of a free Lie subalgebra of Im(gr(Lie)).

Proof. 1Tt follows from Corollary 15 6.3 that the most interesting deriva-
tions are in degree 1. Let o € G1(V, 01) Lemma 15.3.1 implies that

7
log(Ang (0)(X, Yp, Y1,...,¥7)) = > (1 - (0)Y;, mod T2L(V).
k=1

Observe that (1 —&8) = (1— &) (1— &), (1 - &) = (1 - &) - (1 — &),
(1-65) = (1-&)-(1-€8)- (1= ) (1= &) and —g5~"-(1-¢f) = (1-&7").
The 2-units (1—&3) and (1 —&3) are linearly independent in Q(us)*. Hence
in degree 1 we have two linearly independent derivations gr(Lie ¢)(o1) and
gr(Lie ¢)(o}) such that

gr(Liep)(o1)(Yo) = [Yo, Y1 + Y7 + Yo + Y + 2]
and
gr(Lie ) (07)(Yo) = [Yo,Ys + Y5 + Yz + Y5 + 2Y)).

After passing to Lie algebra (Lie(V;Z)/2Lie(V;Z),{ }) we need to study
a Lie subalgebra generated by elements 2 := Y] + Y7 + Yo + Y5, 2§ := Y3 +
Y5+Yo+Ys and 2}, i= [Vi, X+ (1) Yy, X714 23 = [Va, X1+
(=)™ Y5, X™ Y form =2,3,4,....

https://doi.org/10.1017/50027763000009090 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000009090

ON I-ADIC ITERATED INTEGRALS, III 35

Let Lie(X,Y1,Y5;Z/2) be a Lie subalgebra of Lie(V;Z)/2Lie(V;Z)
generated by X, Y7 and Y5. Let J be a Lie ideal of Lie(V;Z)/2Lie(V;Z)
generated by Yy, Y2, Y3, Yy, Y5 and Y7. Observe that

Lie(V;Z)/2Lie(V; Z) ~ Lie(X, Y1, Y5: Z/2) & J.

Let us set
sb= [V, X™ 1 and s :=[V5 X!
for m =1,2,3,.... One shows that for any Lie bracket of elements zrln, 27%1
form=1,2,3,... of length r we have
({2l 22 2 = [sD s ], st ] mod .

The elements s’ and s3 for m = 1,2,3,... are free generators of a free
Lie subalgebra of Lie(X, Y1, Ys;Z/2). This implies that the elements z},,
23 for m = 1,2,3,... are free generators of a free Lie subalgebra of

(Lie(V;Z)/2Lie(V;Z),{ }). This implies the proposition.

Remark 15.6.6. According to [G, p. 427], the results for n = 3 and
n = 4 are also given in Deligne’s letter to Goncharov.
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