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ON l-ADIC ITERATED INTEGRALS, III

GALOIS ACTIONS ON FUNDAMENTAL GROUPS

ZDZIS LAW WOJTKOWIAK

Abstract. We continue to study l-adic iterated integrals introduced in the
first part. We shall calculate explicitly l-adic logarithm and l-adic polyloga-
rithms. Next we shall use these results to study Galois representations on the
fundamental group of P1

Q(µn)
\ {0, µn,∞}.

§13. Introduction to Part III

13.0. In Part I and II of our paper on l-adic iterated integrals we were

studying coefficients of the power series Λp(σ). We were trying to go as

far as possible without explicit calculations of these coefficients. (Only in

Section 7 we use explicitly the fact that the coefficients at degree one of

the power series Λp are Kummer characters, because it is well known that

the realization map from K∗ ⊗ Q to H1(GK ;Q(1)) associates to z ∈ K

the Kummer character corresponding to z. We could however use Proposi-

tions 11.0.17 and 11.1.0 to avoid explicit calculations in Proposition 7.1.0.)

We start this paper with an explicit calculations of l-adic logarithm.

We show that l(z) is a Kummer character κ(z) associated to z. Next we

shall calculate explicitly coefficients in degree 1 of the power series log Λp.

These coefficients are also expressed by Kummer characters. We have the

following result.

Theorem F. Let X = P1
K \ {a1, . . . , an,∞}, let z, v ∈ X̂(K) and let

p be a path from v to z. Let gi : X → P1
K \{0,∞} be given by gi(z) = z−ai

for i = 1, . . . , n. Let us fix a path qi from
−→
01 to gi(v) for i = 1, . . . , n. (If

v = −→aia then gi(v) = (a− ai)
−→
01 and gj(v) = ai − aj for i 6= j.) If

fp ≡ xα1
1 · · · · · x

αn
n mod Γ2π1(XK̄ ; v)

then
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2 Z. WOJTKOWIAK

i) if z, v ∈ X(K) then αi = κ(z − ai)gi(p)·qi
− κ(v − ai)qi

;

ii) if z ∈ X(K) and v = −→aia then αj = κ(z − aj)gj(p)·qj
− κ(ai − aj)qj

for

i 6= j and αi = κ(z − ai)gi(p)·qi
− κ(a− ai)qi

.

We give also an explicit formula for l-adic polylogarithms following

[NW]. We modify slightly the proof given in [NW] as we shall not use a

free differential calculus.

Next we are discussing l-adic polylogarithms evaluated at roots of unity.

Let n be a positive integer prime to l. We take K = Q(µn) as our basic

field. The l-adic polylogarithms evaluated at n-th roots of 1 are cocycles if

paths from
−→
01 to ξi

n are chosen suitable. Next we recall some results from

[W2], where we relate the l-adic polylogarithms evaluated at roots of unity

to Soulé classes.

We show that the l-adic polylogarithms evaluated at n-th roots of unity

coincide with linear combinations of Soulé classes. We also express Soulé

classes by l-adic polylogarithms evaluated at n-th roots of 1.

Using functional equations of l-adic polylogarithms we show that any

lm+1(ξ
i
n) is a linear combination of lm+1(ξ

k
n) with 0 < k < n

2 and (k, n) = 1.

We conjecture that the cohomology classes lm+1(ξ
k
n) for 0 < k < n

2 and

(k, n) = 1 are linearly independent over Ql in H1(GK ;Ql(m + 1)). This

conjecture is equivalent to the following one.

Conjecture G. The cyclotomic elements of Soulé generate K2m−1

(Z[1l ](µn))⊗Ql.

In fact we think that this is a theorem. However in the literature we

found only the result concerning K3 (see [S3, p. 246]). (There is however a

proof using motives in [HW].)

In Section 15 we study the Galois representation

GQ(µn) −→ Autπ1

(

P1
Q(µn)

\ {0, µn,∞};
−→
01

)

.

Let us set V := P1
Q(µn) \ {0, µn,∞}. Let V = {X,Y0, . . . , Yn−1}. As in the

previous sections we embed π1(VQ̄;
−→
01) into a Ql-algebra Ql{{V}} mapping

x (loop around 0) onto eX and each yi (loop around ξi
n) onto eYi . Hence

we get a Galois representation

ϕ : GQ(µn) −→ Aut(Ql{{V}}).
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We recall from Part I, Section 3 that

Gm(V,
−→
01) := ker

(

GQ(µn) → Aut(π1(VQ̄;
−→
01)/Γm+1π1(VQ̄;

−→
01))

)

and G∞(V,
−→
01) :=

⋂∞
i=1 Gi(V,

−→
01).

The filtration {Gm(V,
−→
01)}m∈N of G1(V,

−→
01) induces a filtration {Lie

(Gm(V,
−→
01)/G∞(V,

−→
01))}m∈N of the Lie algebra Lie(G1(V,

−→
01)/G∞(V,

−→
01)).

Passing with the homomorphism ϕ to Lie algebras and then to associated

graded Lie algebras we get a morphism of associated graded Lie algebras

gr(Lie ϕ) : gr
(

Lie(G1(V,
−→
01)/G∞(V,

−→
01))

)

⊗Q −→ Der∗ Lie(V),

where Lie(V) is a free Lie algebra over Ql on the set V,

gr
(

Lie(G1(V,
−→
01)/G∞(V,

−→
01))

)

⊗Q

:=

∞
⊕

i=1

(

Lie(Gi(V,
−→
01)/Gi+1(V,

−→
01))

)

⊗Q

'
∞

⊕

i=1

(

Gi(V,
−→
01)/Gi+1(V,

−→
01)

)

⊗Q

and

Der∗ Lie(V) = {D ∈ Der Lie(V) |

∀k ∈ {0, . . . , n− 1} ∃βk(X,Y0, . . . , Yn−1) ∈ Lie(V),

D(X) = 0 and D(Yk) = [Yk, βk(X,Y0, . . . , Yn−1)]}

(see Part I, Section 5).

Theorem H. The image of the morphism of associated graded Lie

algebras gr(Lie ϕ) is contained in the Lie algebra of derivations

Der∗Z/n Lie(V) := {D ∈ Der∗ Lie(V) |

∃β(X,Y0, . . . , Yn−1) ∈ Lie(V) ∀k ∈ {0, . . . , n− 1},

D(X) = 0 and D(Yk) = [Yk, β(X,Yk, . . . , Yn−1, Y0, . . . , Yk−1)]}.

In the next theorem l-adic polylogarithms will appear. We recall that

L(V) := lim←−i

(

Lie(V)/Γi Lie(V)
)

is a free completed Lie algebra on the set

V.

We introduce the following notation. If A and B belong to a Lie al-

gebra then we define [[A,B]B0] := [A,B], [[A,B]B1] := [[A,B], B] and

[[A,B]Bm] := [[[A,B]Bm−1], B] for m > 1.
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Theorem J. Let σ ∈ Gm(V,
−→
01). If m > 1 then

(log σ)(Y0) =

[

Y0,

n−1
∑

k=0

lm(ξn−k
n )(σ)[[Yk, X]Xm−2]

]

mod I3 + Γm+1L(V),

where I3 is a closed Lie ideal of L(V) generated topologically by all Lie

brackets which contain at least three Y ’s. If m = 1 then

(log σ)(Y0) =

[

Y0,

n−1
∑

k=1

l(1− ξn−k
n )(σ)Yk

]

mod Γ2L(V).

Now we shall use functional equations of l-adic polylogarithms and the

assumption that for each m > 0 the l-adic polylogarithms lm+1(ξ
i
n) for 0 <

i < n
2 and (i, n) = 1 are linearly independent over Ql in H1(GK ;Ql(m+1)).

We assume that n is a prime number and for traditional reason we denote

it by p. We get the following results.

Theorem K. Let p be a prime number greater than 2 and different

from l. Assume that for each m > 1 the l-adic polylogarithms lm(ξk
p ) for 0 <

k < p
2 are linearly independent over Ql in H1(GK ;Ql(m)). Then there are

elements σk
1 , σk

2 , . . . , σk
n, . . . (k = 1, . . . , p−1

2 ) in grLie(G1(V,
−→
01)/G∞(V,

−→
01))

⊗Q such that any σk
i is homogenous of degree i and

gr(Lie ϕ)(σk
1 )(Y0) = [Y0, Yk + Yp−k],

gr(Lie ϕ)(σk
2i)(Y0) ≡

[

Y0, [[Yk, X]X2i−2]− [[Yp−k, X]X2i−2]
]

mod I3

and

gr(Lie ϕ)(σk
2i+1)(Y0) ≡

[

Y0, (1− p2i)[[Yk, X]X2i−1]

+ (1− p2i)[[Yp−k, X]X2i−1] + 2p2i[[Y0, X]X2i−1]
]

mod I3.

Using Theorem K we show the following result.

Theorem L. Let p be a prime number greater than 3 and different

from l. Assume that for each m > 1 the l-adic polylogarithms lm(ξk
p ) for

0 < k < p
2 are linearly independent over Ql in H1(GK ;Ql(m)). Let S be a

subset of {1, . . . , p− 1} satisfying the following conditions

i) if k ∈ S then p− k ∈ S,
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ii) (S + S) ∩ S = ∅ (the sum of two elements of S is calculated mod p).

Then the derivations gr(Lie ϕ)(σk1
n ), . . . , gr(Lie ϕ)(σ

kq
n ) for {k1, . . . , kq} ⊂

S ∩
{

1, . . . , p−1
2

}

and n = 1, 2, . . . generate a free Lie subalgebra of the

image of the Lie algebra homomorphism

gr(Lie ϕ) : grLie(G1(V,
−→
01)/G∞(V,

−→
01))⊗Q −→ Der∗Z/p Lie(V)

and moreover these derivations are free generators of this Lie subalgebra.

§14. Kummer characters

14.0. In this subsection we shall discuss some elementary properties

of Kummer characters. We shall show that an l-adic logarithm l(z) is

a Kummer character corresponding to z. We also calculate coefficients in

degree 1 of the power series Λp. These coefficients are expressed by Kummer

characters.

Let K be a number field. First we state some well known and elemen-

tary results about Kummer characters without proofs.

Lemma 14.0.1. There is a bijection between compatible systems {ξln}n∈N

of primitive ln-th roots of 1 and generators of π1(Spec K̄[[z]][ 1z ];
−→
01).

Let us fix a compatible system {ξln}n∈N of primitive ln-th roots of 1.

It corresponds to a generator x of π1(Spec K̄[[z]][ 1z ];
−→
01). Let ζ ∈ K and let

{ζn}n∈N be a compatible system of ln-th roots of ζ. We define a function

κκn(ζ) : Gal(K̄/K) −→ µln

in the following way. Let σ ∈ Gal(K̄/K). We set

κκn(ζ)(σ) := σ(ζn)/ζn.

The family {κκn(ζ)(σ)}n∈N is a compatible system of ln-th roots of 1.

Hence it follows from Lemma 14.0.1 that we get a function

κκ(ζ) : Gal(K̄/K) −→ π1(Spec K̄[[z]][ 1z ];
−→
01).

We have

κκ(ζ)(σ) = xκ(ζ)(σ)
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for some element κ(ζ)(σ) ∈ Zl. The function

κ(ζ) : Gal(K̄/K) −→ Zl

we call a Kummer character associated to ζ (and corresponding to a com-

patible system {ζn}n∈N of ln-th roots of ζ). The function κ(ζ) depends on

a choice of a compatible system of ln-th roots of ζ.

Lemma 14.0.2. Let τ, σ ∈ GK . The function κ(ζ) satisfies

κ(ζ)(τσ) = κ(ζ)(τ) + χ(τ)κ(ζ)(σ).

Hence the function κ(ζ) defines a cohomology class κ(ζ) ∈ H 1(GK ;Zl(1)).

Lemma 14.0.3. Let {yn}n∈N be another compatible system of ln-th

roots of ζ. Let κ′ be the corresponding Kummer character. Then we have

κ′ = κ(ζ) + a(χ − 1) for some a ∈ Zl. Moreover for any a ∈ Zl there is a

compatible system of ln-th roots of ζ such that the corresponding Kummer

character is equal κ(ζ) + a(χ− 1).

Definition 14.0.4. Any function from GK to Ql of the form κ(ζ) +
a(χ− 1), where a ∈ Ql we shall call also a Kummer character.

Corollary 14.0.5. i) The function

κ(ζ)|Gal(K̄/K(µl∞)) : Gal(K̄/K(µl∞)) −→ Zl

does not depend on a choice of a compatible family of ln-th roots of ζ.

ii) For any τ ∈ GK and σ ∈ Gal(K̄/K(µl∞)) we have

κ(ζ)(τ · σ · τ−1) = χ(τ)κ(σ).

iii) Let α, β ∈ K. Then after the restriction to Gal(K̄/K(µl∞)) we have

κ(ζ)(α · β) = κ(ζ)(α) + κ(ζ)(β).

We denote by µ(K) a subgroup of roots of unity in K ∗.

Proposition 14.0.6. We have:

i) If κ(ζ) = 0 on Gal(K̄/K(µl∞)) then ζ is a root of unity.
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ii) The homomorphism ϕ : K∗/µ(K) → Hom(Gal(K̄/K(µl∞));Ql) de-

fined by ϕ(ζ) := κ(ζ) is injective and it extends to an injective homo-

morphism ϕ : K∗/µ(K)⊗ Zl → Hom(Gal(K̄/K(µl∞));Ql).

We finish with a result that for a given finite number of z1, . . . , zn ∈ K∗

their Kummer characters from GK to Ql can be chosen in a compatible way.

Proposition 14.0.7. Let z1, . . . , zn ∈ K∗. Then we can chose Kum-

mer characters κ(z1), . . . , κ(zn) such that any relation
∑n

i=1 zi ⊗ qi = 0 in

K∗⊗Q implies
∑n

i=1 qiκ(zi) = 0 in the group of one-cocycles Z(GK ;Ql(1)).

Proof. We consider a vector subspace of K∗ ⊗ Q generated by
z1 ⊗ 1, . . . , zn ⊗ 1. Without lost of generality we can assume that z1 ⊗
1, . . . , zp ⊗ 1 are linearly independent. If zr ⊗ 1 =

∑p
i=1 qi(zi ⊗ 1) then

N(zr ⊗ 1) =
∑p

i=1 Qi(zi ⊗ 1), where N and Qi are integers. Observe
that Nκ(zr) =

∑p
i=1 Qiκ(zi) on Gal(K̄/K(µl∞)). Proposition 14.0.6 im-

plies that
(
∏p

i=1 zQi

i

)

· z−N
r is a root of unity. Hence

∑p
i=1 Qiκ(zi) =

Nκ(zr) + k(χ− 1) for some k ∈ Zl. We replace κ(zr) by κ(zr) + k
N (χ− 1).

Remark 14.0.8. If K = Q then we can choose Kummer characters
satisfying

κ(z1 · z2) = κ(z1) + κ(z2)

for any z1, z2 ∈ Q∗ in the following way. Let z ∈ Q \ {0}. Let |z|1/ln be the
positive real ln-th root of the absolute value of z. Let ξln = exp(2πi

ln ) and
let σ ∈ GQ. We set

σ(|z|1/ln)

|z|1/ln
= (ξln)κ(z)(σ).

Observe that for any x, y ∈ Q \ {0} we have

κ(x) + κ(y) = κ(x · y).

It rests to show that κ(z) is a Kummer character in the sense of Defini-
tion 14.0.4. Assume that z < 0. Then z = (−1) · |z|. If l is odd then
(−1) · |z|1/ln is a compatible family of ln-th roots of z, hence κ(z) is a Kum-
mer character. If l = 2 then e2πi/2·2n

· |z|1/2n
is a compatible family of 2n-th

roots of z. The associated Kummer character is equal κ(z)+ 1
2(χ−1), hence

κ(z) is also a Kummer character.
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14.1. We explain how a path p on P1
K \ {0,∞} from

−→
01 to ζ deter-

mines a compatible family of ln-th roots of ζ. Let z be a local parameter

at 0 corresponding to the tangential base point
−→
01. We consider Puiseux

elements {z1/ln}n∈N such that at 1 they are all equal 1. By analytic contin-

uation of Puiseux elements first from 1 to
−→
01 along the canonical path and

next along p to ζ we get a compatible family of ln-th roots of ζ. If ζ =
−→
0τ

is a tangential base point then a path p determines a compatible family of

ln-th roots of τ . We continue analytically, first from 1 to
−→
01, next along p

to ζ and finally to τ along the canonical path from
−→
0τ to τ .

The corresponding Kummer character we denote by κ(ζ)p to indicate

the dependence on the path p.

In the next proposition we show that the l-adic logarithm l(ζ)p coin-

cides with the Kummer character κ(ζ)p. Let x be a geometric generator of

π1(P
1(C) \ {0,∞};

−→
01). We recall from Part II, Corollary 11.0.7 that the

l-adic logarithm is defined by the following equality

p−1 · σ · p · σ−1 = fp(σ) = xl(ζ)p(σ).

Proposition 14.1.0. Let p be a path from
−→
01 to ζ on P1

K \ {0,∞}.
Then we have

l(ζ)p = κ(ζ)p.

If ζ =
−→
0τ then l(ζ)p = κ(τ)t·p, where t is a canonical path from

−→
0τ to τ .

Proof. Let z be a local parameter in 0 corresponding to a tangential
base point

−→
01. The loop fp(σ) = p−1 · σ(p) = p−1 · σ · p · σ−1 acts on z1/ln

as follows:

z1/ln σ−1

−→ z1/ln p
−→ ζ1/ln

(

1 +
z − ζ

ζ

)1/ln

σ
−→ ξ

κ(ζ)p

ln ζ1/ln
(

1 +
z − ζ

ζ

)1/ln p−1

−→ ξ
κ(ζ)p

ln z1/ln .

Now we assume that ζ =
−→
0τ . Let t be a local parameter corresponding to

−→
0τ . Then we have z = τ · t and z1/ln = τ1/ln · t1/ln (z1/ln is real positive
over the interval [0, 1] and t1/ln is real positive over the interval [0, τ ]). The
path p−1 · σ · p · σ−1 acts on z1/ln as follows:

z1/ln σ−1

−→ z1/ln p
−→ τ1/ln · t1/ln σ

−→ ξ
κ(τ)p

ln · τ1/ln · t1/ln p−1

−→ ξ
κ(τ)p

ln · z1/ln .
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Proposition 14.1.1. Let X = P1
K \ {a1, . . . , an,∞}, let z, v ∈ X̂(K)

and let p be a path from v to z. Let gi : X → P1
K \ {0,∞} be given by

gi(z) = z − ai for i = 1, . . . , n. Let us fix a path qi from
−→
01 to gi(v) for

i = 1, . . . , n. (If v = −→aia then gi(v) = (a − ai)
−→
01 and gj(v) = ai − aj for

i 6= j.) If

fp ≡ xα1
1 · · · · · x

αn
n mod Γ2π1(XK̄ ; v)

then

i) if z, v ∈ X(K) then αi = κ(z − ai)gi(p)·qi
− κ(v − ai)qi

;

ii) if z ∈ X(K) and v = −→aia then αj = κ(z − aj)gj(p)·qj
− κ(ai − aj)qj

for

i 6= j and αi = κ(z − ai)gi(p)·qi
− κ(a− ai)qi

;

iii) if z =
−→
ajb and v = −→aia then αi = κ(aj − ai)gi(p)·qi

− κ(a− ai)qi
,

αj = κ(b− aj)gj(p)·qj
− κ(ai − aj)qj

and αk = κ(aj − ak)gk(p)·qk
−

κ(ai − ak)qk
for k 6= i, j;

iv) if z =
−→
aib and v = −→aia then αi = κ(b− ai)gi(p)·qi

− κ(a− ai)qi
and

αj = 0 for j 6= i.

Proof. The proposition follows from Proposition 11.0.17 in Part II and
from Proposition 14.1.0.

Observe that we have just proved Theorem F.

14.2. In [S2] and [S3] Soulé has defined certain cohomology classes

associated to compatible families of l-units. If we take compatible families

of cyclotomic l-units then we get cyclotomic Soulé classes.

In this subsection we shall discuss relations of Soulé classes with l-

adic polylogarithms. In [NW] we have given an arithmetic formula for

l-adic polylogarithms. We present a proof of this result with some small

modifications. (The related result was obtained by O. Gabber a long time

ago using different methods.) Next we restrict our attention to the field

K = Q(µp), where p is relatively prime to l. We express cyclotomic Soulé

classes by l-adic polylogarithms evaluated at p-th roots of 1.

Let us choose a compatible family (ξln)n∈N of primitive ln-th roots of

1. Let p be an integer prime to l and let ξp be a primitive p-th root of 1.

Let
(

ξ
1/ln
p

)

n∈N
be a family of p-th roots of 1 such that

(

ξ
1/ln
p

)l
= ξ

1/ln−1

p ,
(

ξ
1/ln
p

)ln
= ξp and for any n, ξ

1/ln
p ∈ µp.
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Let q be an integer. We set

un
m,q :=

ln−1
∏

k=0

(

1− ξk
ln · (ξ

1/ln

p )q
)km

and vn
m,q :=

ln−1
∏

k=0 (k,l)=1

(

1− ξk
ln · (ξ

1/ln

p )q
)km

,

where n,m ∈N. One checks that

(14.2.1) un
m,q = vn

m,q · (u
n−1
m,q·l−1)

lm .

We define Kummer characters

κn
m,q, κ̄n

m,q : GQ(µln ·p) −→ Z/ln

by
σ((un

m,q)
1/ln)

(un
m,q)

1/ln
= ξ

κn
m,q(σ)

ln and
σ((vn

m,q)
1/ln)

(vn
m,q)

1/ln
= ξ

κ̄n
m,q(σ)

ln .

The characters (κn
m,q)n∈N and (κ̄n

m,q)n∈N satisfy

κn+1
m,q ≡ κn

m,q mod ln and κ̄n+1
m,q ≡ κ̄n

m,q mod ln

for any σ ∈ GQ(µ
ln+1 ·p). We define

κm,q : GQ(µl∞·p) −→ Zl and κ̄m,q : GQ(µl∞·p) −→ Zl

by κm,q(σ) := (κn
m,q(σ))n∈N and κ̄m,q(σ) := (κ̄n

m,q(σ))n∈N. It follows from

(14.2.1) that

(14.2.2) κm,q = κ̄m,q + lmκm,q·l−1 .

Lemma 14.2.3. Let σ ∈ GQ(µl∞·p). Then we have

lm+1(ξ
q
p)(σ) =

(−1)m

m!
κm,q(σ).

Proof. The lemma follows from [NW]. We give a brief sketch of the
proof following [NW].

Let π be a path from
−→
01 to z. Let x and y in π1(P

1
Q̄
\ {0, 1,∞};

−→
01) be

standard generators of the fundamental group. Let us set

Hn := ker
(

π1(P
1
Q̄
\ {0, 1,∞};

−→
01)→ Z/ln

)

,
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where x → 1 and y → 0. The group Hn is freely generated by xln and
xiyx−i (i = 0, . . . , ln − 1). Hence we have

(14.2.4) fπ(σ) · x−κ0
z(σ) ≡

ln−1
∏

i=0

(xiyx−i)α
n
i (σ) mod [Hn,Hn]

for some αn
0 (σ), . . . , αn

ln−1(σ) ∈ Zl. If m > n then αn
i =

∑

j≡i (ln) αm
j . Hence

we have a measure dα(σ) on Zl.
Let us define Kummer characters βn

j,N as follows

σ
(

(1− ξ
(j−κ0

z(σ))χ(σ−1)
ln · z1/ln)1/lN

)

= ξ
βn

j,N (σ)

lN
· (1− ξj

ln · z
1/ln)1/lN .

We have βn
j,M ≡ βn

j,N mod lN if M > N . We set βn
j := (βn

j,N )N ∈ Zl.

Studying transformations of functions (1−ξ i
ln ·z

1/ln)1/lN along fπ(σ)·x−κ0
z(σ)

one shows that αn
j = βn

j .

We recall that k : π1(P
1
Q̄
\ {0, 1,∞};

−→
01)→ Ql{{X,Y }} is a continuous

multiplicative embedding given by k(x) = eX and k(y) = eY . It follows
from (14.2.4) that

(14.2.5) log k(fπ(σ) · x−κ0
z(σ)) ≡

∞
∑

k=0

(−1)k

k!

(ln−1
∑

i=0

ikαn
i (σ)

)

[Y,Xk]

modulo logarithms of elements from k([Hn,Hn]), where [Y,X0] := Y and
[Y,Xk] := [[Y,Xk−1], X] for k > 0.

Therefore the coefficient at [Y,Xk] of log k(fπ(σ) ·x−κ0
z(σ)) is congruent

to (−1)k

k!

∑ln−1
i=0 ikαn

i (σ) modulo ln−n0 , where n0 is a positive integer not

depending on n. Hence this coefficient is equal (−1)k

k!

∫

Zl
xk dα(σ).

Let us take z = ξq
p and let π be a path from

−→
01 to ξq

p such that κ0
ξq
p
(σ) = 0

for any σ ∈ GQ(µp). For such a path π the factor x−κ0
z(σ) in the left hand

side of (14.2.5) is 1, hence we get

lk+1(ξ
q
p)π(σ) =

(−1)k

k!

∫

Zl

xk dα(σ).

Observe that
∫

Zl
xn−1 dα(σ) ≡

∑lN−1
i=0 in−1 · αN

i (σ) mod lN . We have
∑lN−1

i=0 in−1 · αN
i =

∑lN−1
i=0 in−1 · βN

i . Notice that
∑lN−1

i=0 in−1 · βN
i ≡ κN

n−1,q

mod lN . Hence we get
∫

Zl
xn−1 dα(σ) = κn−1,q(σ). This implies the lemma.
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14.3. Let m be an integer prime to l and let K = Q(µm). We recall

briefly the construction of the Soulé classes for the field K.

Let us set Kn := K(µln) and K∞ := K(µl∞). The extension K ⊂

Kn is unramified outside l. Let M be a maximal Galois extension of K

unramified outside l. Let us set G := Gal(M/K), Gn := Gal(M/Kn),

G∞ := Gal(M/K∞), Γn := Gal(Kn/K) and Γ∞ := Gal(K∞/K). The

groups Gn and G∞ are normal subgroups of G and we have G/Gn ' Γn and

G/G∞ ' Γ∞. Let us setRn := Z[1l ](µmln), Xn := SpecRn, X∞ := lim←−n
Xn

and X := SpecZ[ 1l ](µm).

The exact sequence of sheaves on Xn

1 −→ µln −→ Gm
ln
−→ Gm −→ 1

induces a long exact sequence of cohomology

0 −→ H0(Xn, µln) −→ H0(Xn,Gm) −→ H0(Xn,Gm)
δ
−→ H1(Xn, µln) · · · .

Let (ξln)n∈N be a compatible family of primitive ln-th roots of 1 as in 14.2.

The element ξln defines an element in H0(Xn, µln), which we also denote by

ξln . Let αn := ξln ∪ · · · ∪ ξln (i− 1 times) and let un ∈ R
∗
n = H0(Xn;Gm).

Observe that αn ∈ H0(Xn, µ
⊗(i−1)
ln ). Let

Nn : H1(Xn, µ⊗i
ln ) −→ H1(X,µ⊗i

ln )

be a transfer map associated to an étale covering pn : Xn → X. Let us set

xi
n := Nn(αn ∪ δ(un)).

Lemma 14.3.1. Let (un)n∈N, un ∈ R
∗
n be a family of l-units such

that Nn+1,n(un+1) = un, where Nn+1,n : R∗
n+1 → R

∗
n is a norm. Then

rn+1,n(xi
n+1) = xi

n, where rn+1,n : H1(X,µ⊗i
ln+1) → H1(X,µ⊗i

ln ) is induced

by the projection µln+1 → µln. Hence the family (xi
n)n∈N defines an element

xi = (xi
n)n∈N ∈ H1(X,Zl(i)).

Proof. One repeats the proof of Lemma 1 in [S2] replacing K-theory
by cohomology.

Let us set u
(q)
n := (1 − ξ

q/ln
m · ξln). It is clear that the system of l-

units (u
(q)
n )n∈N is compatible, i.e., it satisfies Nn+1,n(u

(q)
n+1) = u

(q)
n . Hence

https://doi.org/10.1017/S0027763000009090 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009090


ON l-ADIC ITERATED INTEGRALS, III 13

it defines an element xi(q) ∈ H1(X,Zl(i)). The elements xi(q) are called

cyclotomic Soulé elements.

The covering pn : Xn → X is Galois. It follows from [S1, Lemma 6]

that we have a commutative diagram

(R∗
n/(R∗

n)l
n
)⊗ µ

⊗(i−1)
ln

δ⊗id
µ
⊗(i−1)
ln

−−−−→ H1(Xn;µ⊗i
ln )







y

NΓn







y

p∗n◦Nn

(R∗
n/(R∗

n)l
n

)⊗ µ
⊗(i−1)
ln

δ⊗id
µ
⊗(i−1)
ln

−−−−→ H1(Xn;µ⊗i
ln )

where NΓn(c) =
∏

σ∈Γn
σ(c). Observe that

NΓn

(

(1− ξq/ln

m · ξln)⊗ ξ
⊗(i−1)
ln

)

=
∏

σ∈Γn

(1− ξq/ln
m · ξ

χ(σ)
ln )⊗ (ξ

χ(σ)
ln )⊗(i−1)

=
∏

0<k<ln, (k,l)=1

(1− ξq/ln
m · ξk

ln)k
i−1
⊗ ξ

⊗(i−1)
ln .

Hence the element

p∗n(xi
n) ∈ H1(Xn;µ⊗i

ln ) ≈ Hom(Gn;µln)⊗ µ
⊗(i−1)
ln

is given by κ̄n
i−1,q.

We summarize the above discussion in the following proposition.

Proposition 14.3.2. (see also [W2, Lemma 3.3]) The family of l-units

(1−ξ
q/ln
m ·ξln)n∈N defines an element xi(q) = (xi

n)n∈N ∈ lim←−n
H1(X;µ⊗i

ln ) =

H1(X;Zl(i)). The restriction of xi
n ∈ H1(X;µ⊗i

ln ) to H1(Xn;µ⊗i
ln ) ≈

Hom(Gn;µln)⊗µ
⊗(i−1)
ln is equal to the homomorphism κ̄n

i−1,q, i.e., it is equal

to the Kummer character associated to the element
∏

0<k<ln, (k,ln)=1(1 −

ξ
q/ln

m · ξk
ln)k

i−1
.

Corollary 14.3.3. After the restriction to GK(µl∞ ) we have the fol-

lowings identities:

i) (−1)n

n! xn+1(q) = ln+1(ξ
q
m)− lnln+1(ξ

q·l−1

m ).
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ii) Let s be an order of l in (Z/m)∗. Then we have

(1− ls·n)ln+1(ξ
q
m) =

s−1
∑

i=0

(−1)n

n!
li·nxn+1(q · l−i).

Proof. The part i) of the corollary follows from (14.2.2), Lemma 14.2.3
and Proposition 14.3.2. The part ii) is an immediate consequence of the
part i).

The Soulé classes xn+1(q) and the l-adic polylogarithms evaluated at m-

th roots of 1 are cohomology classes in H1(GK ;Ql(m+1)). The restriction

map

H1(GK ;Q(m+1))→ H1

(m−1
⋂

q=0

Hm+1(P
1
Q(µm)\{0, 1,∞}; ξ

q
m ,
−→
01);Ql(m+1)

)

is injective by Lemma 3.0.8. Let d be a divisor of m. The l-adic polyloga-

rithms satisfy the distribution relations

dn

(

∑

ξd=1

ln+1(ξ)

)

= ln+1(1)

and

dn

(

∑

ξd=1

ln+1(ξ · ξ
j
m)

)

= ln+1(ξ
j·d
m )

for any j such that 0 < j < m
d , the inversion relation

ln+1(ξ
k
m) + (−1)n+1ln+1(ξ

m−k
m ) = 0

and the equality

l2n(
−→
10) = 0

on the subgroup
⋂m−1

q=0 Hn+1(P
1
Q(µm) \ {0, 1,∞}; ξ

q
m,
−→
01) of GQ(µm) (see

Part II, Section 11.2 and also [W2]).

Hence we get the following corollary.

Corollary 14.3.4. Let d be a divisor of m. The cyclotomic Soulé

classes satisfy the distribution relations

dn

(d−1
∑

i=0

xn+1
(

i
m

d

)

)

= xn+1(m)
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and

dn

(d−1
∑

i=0

xn+1
(

j + i
m

d

)

)

= xn+1(j · d)

for any j such that 0 < j < m
d , the inversion relation

xn+1(k) + (−1)n+1xn+1(m− k) = 0

and the equality

x2n(0) = 0.

Corollary 14.3.5. The Ql-vector subspace of H1(GK ;Ql(n+1)) gen-

erated by the cohomology classes ln+1(ξ
k
m) with 0 < k < m + 1 is generated

by the cohomology classes ln+1(ξ
k
m) with 0 < k < m

2 and (k,m) = 1. This

vector space coincides with the Ql-vector subspace of H1(GK ;Ql(n+1)) gen-

erated by cyclotomic Soulé classes xn+1(k) with 0 < k < m
2 and (k,m) = 1.

Corollary 14.3.6. The cyclotomic Soulé classes xn+1(k) in H1(GK ;
Ql(n + 1)) for 0 < k < m

2 and (k,m) = 1 are linearly independent over Ql

if and only if l-adic polylogarithms ln+1(ξ
k
m) for 0 < k < m

2 and (k,m) = 1
are linearly independent over Ql in H1(GK ;Ql(n + 1)).

14.4. We would like to show that the elements xi(q) for 0 < q < m
2 and

(q,m) = 1 are linearly independent and that they generate H 1(X;Zl(i))⊗
Q.

Let us set

E(i− 1) := lim←−
Nn,n−1⊗rln

(R∗
n ⊗ µ

⊗(i−1)
ln ),

where Nn,n−1 : R∗
n → R

∗
n−1 is a norm map and rln : µ

⊗(i−1)
ln → µ

⊗(i−1)
ln−1

is a reduction mod ln−1. The construction in 14.3 which to a compatible

family of l-units (un)n∈N associates an element x in H1(X;Zl(i)) defines a

morphism

ϕ : E(i− 1)Γ∞
−→ H1(X;Zl(i)),

such that ker ϕ and coker ϕ are finite (see [S2, p. 384]).

Let C(i−1) be a subgroup of E(i−1) generated by compatible families

of cyclotomic l-units. We consider the map

C(i− 1)Γ∞
−→ E(i − 1)Γ∞

.

If K = Q then this map has a finite cokernel (see [S3, Theoreme 3]).
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Observe that the families
(

(1 − ξ
q/ln
m · ξln) ⊗ ξ

⊗(i−1)
ln

)

n∈N
are in

C(i− 1). Let us set

u(q) :=
(

(1− ξq/ln

m · ξln)⊗ ξ
⊗(i−1)
ln

)

n∈N
.

Lemma 14.4.1. The elements u(q) (0 < q < m
2 and (q,m) = 1) are

linearly independent over Zl in C(i − 1)Γ∞
. Let C ′ be a Zl-submodule of

C(i− 1)Γ∞
generated by elements u(q) (0 < q < m

2 and (q,m) = 1). Then

the quotient group C(i− 1)Γ∞
/C ′ is finite.

Proof. Let Cn be a subgroup of Q(µmln)∗ generated by µmln and by
elements 1− ωn, where ωn ∈ µmln \ {1}. We recall that

C(i− 1) := lim
←−

Nn,n−1⊗rln

Cn ⊗ µ
⊗(i−1)
ln ,

where Nn,n−1 : Cn → Cn−1 is a restriction of the norm map Nn,n−1 :

Q(µmln)∗ → Q(µmln−1)∗ and rln : µ
⊗(i−1)
ln → µ

⊗(i−1)
ln−1 is a reduction mod

ln−1. Let (ωn)n∈N be a compatible system of mln-th roots of 1, i.e., ωn =

ξ
q/ln
m · ξα

ln , where α ∈ Zl. Assume that α ∈ Z∗
l . Then

(

(1− ωn)⊗ ξ
⊗(i−1)
ln

)

n∈N
=

1

αi−1

(

(1− ξq/ln

m · ξln)⊗ ξ
⊗(i−1)
ln

)

n∈N

in C(i − 1)Γ∞
. Let k > 0 and (p, l) = 1. Then the elements

(

1 − ξ
q/ln

m ·

ξplk

ln

)

∈ Cn are not in the image of the norm homomorphism Nn+1,n :

Cn+1 ⊗ Z/ln+1 → Cn ⊗ Z/ln. Observe also that ξ
q/ln
m · ξln ⊗ ξ

⊗(i−1)
ln = 0

in C(i− 1)Γ∞
. Hence the elements u(q) :=

(

(1 − ξ
q/ln
m · ξln) ⊗ ξ

⊗(i−1)
ln

)

n∈N

(m− 1 ≥ q ≥ 0) generate C(i− 1)Γ∞
as a Zl-module.

Let m = a · b. Then (1− ξak
m · ξ

a
ln) =

∏a−1
α=0(1− ξk+αb

m · ξln). This implies
that

(1 − ξak
m · ξln)⊗ ξ

⊗(i−1)
ln = ai−1

(a−1
∑

α=0

(1− ξk+αb
m · ξln)⊗ ξ

⊗(i−1)
ln

)

,

in C(i− 1)Γ∞
. Hence we get

u(ka) = ai−1
a−1
∑

α=0

u(k + αb)
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in C(i− 1)Γ∞
. The identity

1− ξq/ln
m · ξln = −ξq/ln

m · ξln(1− ξ−q/ln
m · ξ−1

ln )

implies u(q) = (−1)i−1u(m − q). Hence the elements u(q) (0 < q < m
2 ,

(q,m) = 1) generate C(i− 1)Γ∞
modulo torsion.

The projection of u(q) ∈ C(i−1)Γ∞
onto (Cn⊗µ

⊗(i−1)
ln )Γ∞

is equal (1−

ξ
q/ln

m ·ξln)⊗ξ
⊗(i−1)
ln . It follows from the Bass theorem (see [Wa, Theorem 8.9])

that the elements (1 − ξ
q/ln
m · ξln) ⊗ ξ

⊗(i−1)
ln (0 < q < m

2 , (q,m) = 1) are

linearly independent in (Cn ⊗ µ
⊗(i−1)
ln )Γ∞

.

If the map C(i − 1)Γ∞
→ E(i − 1)Γ∞

has a finite cokernel or finite

kernel then Lemma 14.4.1 will imply the following result stated below as a

conjecture.

Conjecture 14.4.2. The cyclotomic Soulé classes xn+1(k) in H1(GK ;
Ql(n + 1)) for 0 < k < m

2 and (k,m) = 1 are linearly independent over
Ql. Consequently l-adic polylogarithms ln+1(ξ

q
m) for 0 < q < m

2 and
(q,m) = 1 are linearly independent over Ql in H1(GK ;Ql(n + 1)) and

in H1
(
⋂m−1

i=0 Hn+1(P
1 \ {0, 1,∞}; ξi

m,
−→
01);Ql

)

.

The referee pointed to us that the linear independence over Ql of the

cyclotomic Soulé classes xn+1(k) for 0 < q < m
2 and (q,m) = 1 follows from

[HW]. However we still did not absorbed the motivic consideration in [HW]

so we prefer to left the needed result as a conjecture. It also seems to us

that a possible proof of 14.4.2 should be more elementary without using a

motivic machinary.

§15. Applications to Galois actions on fundamental groups

15.0. We shall use l-adic polylogarithms to study the Galois action

on the fundamental group of the projective line minus a finite number of

points.

Deligne on the conference on polylogarithms in Schloss Ringberg gave

a sketch of a proof of his result concerning P1 \ {0, 1,−1,∞} in the Hodge

context (see [D2]). He showed that the Lie algebra associated to the mixed

Hodge structures generated by the fundamental group of P1 \ {0, 1,−1,∞}
contains a free Lie algebra on one generator in each odd degree. Using his

ideas we are trying to show the analogous result in the Galois setting as well
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as to study some other interesting cases. The first presentation of our results

in this direction is in [W1]. In [W3] we study the Hodge analog and there

the classical polylogarithms appear. We recall also that the action of GQ

on π1(P
1
Q̄
\{0, 1,∞};

−→
01) was studied by Y. Ihara in [I1], [I2] and P. Deligne

in [D1]. The l-adic polylogarithm ln+1(
−→
10) in our notation appears in these

works (see also [IS]).

Let K be a number field. Let X = P1
K \ {a1, . . . , an+1} and let v ∈

X̂(K). Let x = (x1, . . . , xn+1) be a sequence of geometric generators of

π1(X(C); v) associated to a family Γ = {γi}i=1,...,n+1. Let X be a set

{X1, . . . , Xn}. We embed π1(XK̄ ; v) into Ql{{X}} mapping xi into eXi .

We recall that the action of the Galois group GK on the fundamental

group

GK −→ Autπ1(XK̄ ; v)

induces a Galois representation

ϕ : GK −→ Aut(Ql{{X}})

and a Lie algebra representation

Lie ϕ : Lie(G1(X, v)/G∞(X, v)) ⊗Q −→ Der∗ L(X)

(see Part I, Sections 4.0, 5.0 and 5.1).

Passing with the morphism Lieϕ to associated graded Lie algebras we

get a morphism of associated graded Lie algebras

gr(Lie ϕ) : grLie(G1(X, v)/G∞(X, v)) ⊗Q −→ Der∗ Lie(X).

Let us define Xn+1 by the equality

X1 + · · ·+ Xn + Xn+1 = 0.

Let us set

Der∗,∗ Lie(X) = {D ∈ Der Lie(X) | ∀k ∈ {1, . . . , n + 1} ∃bk ∈ Lie(X),

D(Xk) = [Xk, bk]}.

Proposition 15.0.1. Let σ ∈ Gm(X, v). Then we have

(log σx)(Xn+1) = [Xn+1, (log σx,γn+1)(1)] mod Γm+2L(X).
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Proof. In the proof we shall omit the subscript x and we shall write σ
and σγn+1 instead of σx and σx,γn+1 . We have xn+1 = x−1

1 · · · x
−1
n . Hence

k(xn+1) = e−X1 · · · e−Xn = exp(Xn+1 + c), where c = 0 mod Γ2L(X). It
follows from Part I, Proposition 2.2.1 that σ(Xn+1 + c) = Λγn+1(σ)−1 ·
χ(σ)(Xn+1 + c) · Λγn+1(σ). Let σ ∈ G1(X, v). One computes that

(log σγn+1)(1) = (Λγn+1(σ)− 1)

−
1

2

(

Λγn+1(σ) · σ(Λγn+1(σ))− 2Λγn+1(σ) + 1
)

+
1

3
· · · .

This implies that (log σγn+1)(Xn+1 + c) = (Xn+1 + c) · ((log σγn+1)(1)). It
follows from Part I, Proposition 5.1.7 that

(log σ)(Xn+1 + c) = [Xn+1 + c, (log σγn+1)(1)].

If σ ∈ Gm(X, v) then (log σ)(c) = 0 mod Γm+2L(X) and [c; (log σγn+1)(1)]
= 0 mod Γm+2L(X). Hence we get

(log σ)(Xn+1) = [Xn+1, log σγn+1(1)] mod Γm+2L(X).

Corollary 15.0.2. The image of the homomorphism of Lie algebras

gr(Lie ϕ) : grLie(G1(X, v)/G∞(X, v)) ⊗Q −→ Der∗ Lie(X)

is contained in Der∗,∗ Lie(X).

15.1. In this subsection we shall study the action of the Galois group

GQ(µn) on the fundamental group of P1
Q(µn)

\ {0, µn,∞}.

Let us set V := P1
Q(µn) \ {0, µn,∞}. Let us fix an embedding Q̄ ⊂ C.

Let ξn = exp(2πi
n ). We chose a tangent vector

−→
01 as a base point of the

fundamental group. At each point ξk
n of the projective line P1

Q(µn) we choose

a tangential base point vk =
−→
ξk
n0. We choose a family Γ = {γk}k=0,...,n−1 ∪

{γ∞} as on Picture 1. The path γk is a path from
−→
01 to vk.

Let (x, y0, . . . , yn−1, u) be a sequence of geometric generators of

π1(V (C);
−→
01) corresponding to the family Γ. We have

yn−1 · yn−2 · · · · · y1 · y0 · u · x = 1.

Let fk : V → V be given by fk(z) = ξk
n · z. Then

(15.1.1) (fk)∗fγ0(σ) = ffk(γ0)(σ).
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Picture 1

Picture 2

Observe that fk(γ0) is a path (an interval) from
−→
0ξk

n to
−→
ξk
n0. Let sk be a

path from
−→
01 to

−→
0ξk

n as on Picture 2.

We have

(15.1.2) s−1
k · (fk)∗(x) · sk = x, s−1

k · (fk)∗(yl) · sk = yl+k if k + l < n

and

(15.1.2) s−1
k · (fk)∗(yl) · sk = x−1 · yl+k−n · x if k + l > n− 1.

It follows from (15.1.2) that

s−1
k · (fk)∗(fγ0(σ)(x, y0, . . . , yn−1)) · sk(15.1.3)

= fγ0(σ)(x, yk, . . . , yn−1, x
−1 · y0 · x, . . . , x−1 · yk−1 · x)

for k = 0, 1, . . . , n− 1. Observe that γk = fk(γ0) ·sk. It follows from Part I,

Lemma 1.0.6 and the equality fsk
(σ) = x

k
n

(χ(σ)−1) that

(15.1.4) fγk
(σ) = s−1

k · ffk(γ0)(σ) · sk · x
k
n

(χ(σ)−1).
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It rests to calculate σ(u). Let g : V → V be given by g(z) = 1
z and let

δ := g(γ−1
0 ). Observe that γ∞ = δ · t · γ0, where t is a path from

−→
10 to

−→
1∞

as on Picture 3.

Picture 3

One checks that

(15.1.5) fγ∞ = γ−1
0 · t−1 · g∗(γ0 · (fγ0)

−1 · γ−1
0 ) · t · γ0 · y

χ−1
2

0 · fγ0 .

Observe that

γ−1
0 · t

−1 · g∗(γ0 · x · γ
−1
0 ) · t · γ0 = u,

γ−1
0 · t

−1 · g∗(γ0 · y0 · γ
−1
0 ) · t · γ0 = y0

(15.1.6)

and

γ−1
0 · t−1 · g∗(γ0 · yk · γ

−1
0 ) · t · γ0(15.1.6)

= x · yn−1 · · · · · yn−k+1 · yn−k · y
−1
n−k+1 · · · · · y

−1
n−1 · x

−1

for k = 1, . . . , n− 1.

Proposition 15.1.7. The action of GQ(µn) on π1(P
1
Q̄
\{0, µn,∞};

−→
01)

is given by

σ(x) = xχ(σ),

σ(yk) = x− k
n

(χ(σ)−1) · fγ0(σ)(x, yk, . . . , yn−1, x
−1 · y0 ·x, . . . , x−1 · yk−1 ·x)−1

· y
χ(σ)
k · fγ0(σ)(x, yk, . . . , yn−1, x

−1 · y0 ·x, . . . , x−1 · yk−1 ·x) ·x
k
n

(χ(σ)−1)

for k = 0, . . . , n− 1 and

σ(u) = fγ0(σ)(x, y0, . . . , yn−1)
−1 · y

1−χ(σ)
2

0

· fγ0(σ)(u, y0, x · yn−1 ·x
−1, . . . , x · yn−1 · · · y2 · y1 · y

−1
2 · · · y

−1
n−1 ·x

−1) ·uχ(σ)

· fγ0(σ)(u, y0, x · yn−1 ·x
−1, . . . , x · yn−1 · · · y2 · y1 · y

−1
2 · · · y

−1
n−1 ·x

−1)−1

· y
χ(σ)−1

2
0 · fγ0(σ)(x, y0, . . . , yn−1).
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Proof. It follows follows from Part I, Proposition 2.2.1 and from the
equalities (15.1.1)–(15.1.6) that σ(x), σ(yk) and σ(u) are given by the for-
mulas of the proposition.

15.2. Let us set V := {X,Y0, . . . , Yn−1}. Let

k : π1

(

P 1
Q(µn)

\ {0, µn,∞};
−→
01

)

−→ Ql{{V}}

be a continuous multiplicative embedding given by k(x) = eX and k(yj) =

eYi for j = 0, . . . , n − 1. We denote by Lie(V) (resp. L(V)) a free Lie

algebra (resp. a completed free Lie algebra) over Ql on the set V. We

define U by the equality X + Y0 + · · · + Yn−1 + U = 0. We shall study

elements Λγk
(σ)(X,Y0, . . . , Yn−1).

Lemma 15.2.1. Let σ ∈ Gm(V,
−→
01). Then we have

log(Λγk
(σ)(X,Y0, . . . , Yn−1))

≡ log(Λγ0(σ)(X,Yk, . . . , Yn−1, Y0, . . . , Yk−1)) mod Γm+1L(V).

Proof. We recall that Λγ0(σ)(X,Y0, . . . , Yn−1) = k(fγ0(σ)(x, y0, . . . ,
yn−1)) and Λγk

(σ)(X,Y0, . . . , Yn−1) = k(fγk
(σ)(x, y0, . . . , yn−1)). It follows

from (15.1.4), (15.1.1) and (15.1.3) that

Λγk
(σ)(X,Y0, . . . , Yn−1)

= k
(

fγ0(σ)(x, yk, . . . , yn−1, x
−1 · y0 · x, . . . , x−1 · yk−1 · x) · x

k
n

(χ(σ)−1)
)

.

Hence for σ ∈ G1(V,
−→
01) we have

Λγk
(σ)(X,Y0, . . . , Yn−1) = Λγ0(σ)

(

X,Yk, . . . , Yn−1,

Y0 +

∞
∑

p=1

1

p!
[[Y0, X]Xp−1], . . . , Yk−1 +

∞
∑

p=1

1

p!
[[Yk−1, X]Xp−1]

)

.

If σ ∈ Gm(V,
−→
01) then log(Λγk

(σ)(X,Y0, . . . , Yn−1)) ≡ 0 mod ΓmL(V).
Hence log(Λγk

(σ)(X,Y0, . . . , Yn−1)) ≡ log(Λγ0(σ)(X,Yk, . . . , Yn−1, Y0, . . . ,

Yk−1)) mod Γm+1L(V) for any σ ∈ Gm(V,
−→
01).

Lemma 15.2.2. Let σ ∈ Gm(V,
−→
01). Then we have

(log σγk
)(1) ≡ log(Λγ0(σ)(X,Yk , . . . , Yn−1, Y0, . . . , Yk−1)) mod Γm+1L(V).
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Proof. Let w ∈ Ql{{V}}. We recall that σγk
(w) = Λγk

(σ)(X,Y0, . . . ,
Yn−1) · σ(w). Hence log σγk

= Llog(Λγk
(σ)(X,Y0 ,...,Yn−1))© log σ, where © is

the BCH multiplication. We have

log σγk
= Llog(Λγk

(σ)(X,Y0 ,...,Yn−1)) + log σ

+
1

2
L−(log σ)(log(Λγk

(σ)(X,Y0 ,...,Yn−1))) + · · · .

Observe that log(Λγk
(σ)(X,Y0, . . . , Yn−1)) = 0 mod ΓmL(V). Hence

(log σ)
(

log(Λγk
(σ)(X,Y0, . . . , Yn−1))

)

= 0 mod Γm+1L(V).

This implies that the term −(log σ)
(

log(Λγk
(σ)(X,Y0, . . . , Yn−1))

)

vanishes
mod Γm+1L(V). One shows that other terms also vanish mod Γm+1L(V)
except the first two terms. This implies that

(log σγk
)(1) ≡ log(Λγk

(σ)(X,Y0, . . . , Yn−1)) mod Γm+1L(V).

Now the lemma follows from Lemma 15.2.1.

We recall that we have a morphism of Lie algebras

Lieϕ : Lie(G1(V,
−→
01)/G∞(V,

−→
01))⊗Q −→ Der∗ L(V)

and a morphism of associated graded Lie algebras

gr(Lie ϕ) : grLie(G1(V,
−→
01)/G∞(V,

−→
01))⊗Q −→ Der∗ Lie(V).

Proposition 15.2.3. For any σ ∈ grLie(G1(V,
−→
01)/G∞(V,

−→
01)) we

have gr(Lie ϕ)(σ)(X) = 0 and

gr(Lie ϕ)(σ)(Yk) = [Yk, λ(σ)(X,Yk, . . . , Yn−1, Y0, . . . , Yk−1)]

(k = 0, 1, . . . , n− 1) for some element λ(σ)(X,Y0, . . . , Yn−1) ∈ Lie(V).

Proof. If σ ∈ G1(V,
−→
01) then log σ is a derivation of the Lie algebra

L(V) such that (log σ)(X) = 0 and (log σ)(Yk) = [Yk, (log σγk
)(1)] for k =

0, . . . , n − 1 (see Part I, Proposition 5.1.8). Hence the proposition follows
from Lemma 15.2.2.

Definition 15.2.4. We set

Der∗Z/n Lie(V) := {D ∈ Der∗ Lie(V) |

∃β(X,Y0, . . . , Yn−1) ∈ Lie(V) ∀k ∈ {0, . . . , n− 1},

D(X) = 0 and D(Yk) = [Yk, β(X,Yk, . . . , Yn−1, Y0, . . . , Yk−1)]}.
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Lemma 15.2.5. The image of the homomorphism gr(Lie ϕ) is contained

in Der∗Z/n Lie(V).

Proof. It follows from Proposition 15.2.3 that the image of gr(Lie ϕ)
is contained in Der∗Z/n Lie(V).

Definition 15.2.6. We set

Der∗,∞
Z/n Lie(V) = {D ∈ Der∗ Lie(V) |

∃β(X,Y0, . . . , Yn−1) ∈ Lie(V) ∀k ∈ {0, . . . , n− 1},

D(X) = 0, D(Yk) = [Yk, β(X,Yk, . . . , Yn−1, Y0, . . . , Yk−1)] and

D(U) = [U,−β(U, Y0, Yn−1, . . . , Y1) + β(X,Y0, . . . , Yn−1)]}.

Lemma 15.2.7. The image of the homomorphism gr(Lie ϕ) is contained

in Der∗,∞
Z/n Lie(V).

Proof. The lemma follows from the formula for σ(u) in Proposition
15.1.7. The detail proof requires analogs of Lemmas 15.2.1 and 15.2.2 for
γ∞. We left details to the reader.

We denote by Im(gr(Lie ϕ)) the image of the morphism

gr(Lie ϕ) : grLie(G1(V,
−→
01)/G∞(V,

−→
01))⊗Q −→ Der∗Z/n Lie(V).

Observe that Im(gr(Lie ϕ)) is a Lie subalgebra of Der∗Z/n Lie(V).

The derivation D ∈ Der∗Z/n Lie(V) such that D(Y0) = [Y0, β] we denote

by Dβ. Observe that Der∗Z/n Lie(V) ≈ Lie(V)/〈Y0〉 as vector spaces. We

introduce a new bracket { } on Lie(V) by setting

{β, β′} := [β, β′] + Dβ(β′)−Dβ′(β).

This new Lie algebra we denote by (Lie(V), { }). Observe that 〈Y0〉 is a

Lie ideal of (Lie(V), { }). Hence we can form a quotient Lie algebra which

we denote by (Lie(V)/〈Y0〉, { }).

Lemma 15.2.8. The Lie algebras Der∗Z/nLie(V) and (Lie(V)/〈Y0〉, { })
are isomorphic.

Proof. The isomorphism associates to Dβ the class of β in Lie(V)/〈Y0〉.
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Definition 15.2.9. We denote by Ik a Lie ideal of Lie(V) generated
by Lie brackets which contain at least k elements (with repetitions) among
Y0, Y1, . . . , Yn−1.

Let S be a subset of {0, . . . , n− 1}. We denote by Ir(S) a Lie ideal of
Lie(V) generated by Lie brackets which contain at least r elements (with
repetitions) among Y0, Y1, . . . , Yn−1 and at least one of these elements is Yk

with k ∈ S and at least one of these elements is Yj with j /∈ S.

We denote by A(S) a Lie subalgebra of Lie(V) generated by elements
Yk (k ∈ S), and by A(S)r the degree r part of A(S).

Recall that Γm+1 Lie(V) is the (m+1)-st component of the lower central

series of the Lie algebra Lie(V). In the following discussions, we often look

at elements of Lie(V) modulo the Lie ideal Ik + Γm+1 Lie(V).

Lemma 15.2.10. Let S be a subset of {0, . . . , n−1} such that (S+S)∩
S = ∅ (the sum of two elements of S is calculated mod n). Let w ∈ Ir(S),
w′ ∈ Ir′(S) and a ∈ A(S)t. Then Da(w) ∈ Ir+t(S), Dw(a) ∈ Ir+t(S) and

Dw(w′) ∈ Ir+r′(S).

15.3. We shall calculate coefficients of log(Λγk
(σ)(X,Y0, . . . , Yn−1)).

We shall show that they are expressed by l-adic polylogarithms evaluated

at elements of µn.

Lemma 15.3.1. Let σ ∈ Gm(V,
−→
01). If m > 1 then

log(Λγ0(σ)(X,Y0, . . . , Yn−1)) ≡
n−1
∑

k=0

lm(ξn−k
n )(σ)[[Yk, X]Xm−2]

mod I2 + Γm+1L(V).

If m = 1 then

log(Λγ0(σ)(X,Y0, . . . , Yn−1)) ≡
n−1
∑

k=1

l(1− ξn−k
n )(σ)Yk mod Γ2L(V).

Proof. It follows from the definition of l-adic polylogarithms that the
coefficient of log(Λγ0(σ)(X,Y0, . . . , Yn−1)) at [[Y0, X]Xm−2] is lm(

−→
10)(σ) and

the coefficient of log(Λγk
(σ)(X,Y0, . . . , Yn−1)) at [[Y0, X]Xm−2] is lm(ξk

n)(σ)
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for 0 < k < n. It follows from Lemma 15.2.1 that for σ ∈ Gm(V,
−→
01)

log(Λγ0(σ)(X,Y0, . . . , Yn−1)) ≡
n−1
∑

k=0

lm(ξn−k
n )(σ)[[Yk , X]Xm−2]

mod I2 + Γm+1L(V).

If m = 1 then the coefficient of log(Λγ0(σ)(X,Y0, . . . , Yn−1)) at Y0 vanishes
and the coefficient of log(Λγk

(σ)(X,Y0, . . . , Yn−1)) at Y0 is l1(ξ
k
n). To finish

the proof we observe that l1(z) = l(1− z) on G1(V,
−→
01).

Lemma 15.3.2. Let σ ∈ Gm(V,
−→
01). Then

gr(Lie ϕ)(σ)(Y0) ≡

[

Y0,
n−1
∑

k=0

lm(ξn−k
n )(σ)[[Yk, X]Xm−2]

]

mod I3 + Γm+2L(V)

for m > 1. If m = 1 then gr(Lie ϕ)(σ)(Y0) ≡
[

Y0,
∑n−1

k=1 l(1 − ξn−k
n )Yk

]

mod Γ3L(V).

Proof. The lemma follows from Part I, Proposition 5.1.8 and from
Lemmas 15.2.2 and 15.3.1.

15.4. We shall study the image of the homomorphism of Lie algebras

gr(Lie ϕ) : grLie(G1(V,
−→
01)/G∞(V,

−→
01))⊗Q −→ Der∗Z/n Lie(V).

First we assume that n is a prime number and for traditional reason we shall

denote it by p. Hence V = P1
Q(µp) \ {0, µp,∞}. We recall that fundamental

groups considered in this paper are pro-finite l-groups. Now we shall use

Conjecture 14.4.2. We shall assume that p is different from l. We have not

express in this paper l-adic polylogarithms evaluated at l-th roots of 1 by

Soulé classes, hence we have to suppose that p 6= l.

Proposition 15.4.1. Let p be a prime number greater than 2 and dif-

ferent from l. Assume that for each m > 1 the cyclotomic Soulé classes

xm(k) in H1(GQ(µp);Ql(m)) for k = 1, 2, . . . , p−1
2 are linearly independent

over Ql. Then there are elements σk
1 , σk

2 , . . . , σk
n, . . . (k = 1, . . . , p−1

2 ) in
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grLie(G1(V,
−→
01)/G∞(V,

−→
01))⊗Q such that any σk

i is homogenous of degree

i and

gr(Lie ϕ)(σk
1 )(Y0) = [Y0, Yk + Yp−k],

gr(Lie ϕ)(σk
2i)(Y0) ≡

[

Y0, [[Yk, X]X2i−2]− [[Yp−k, X]X2i−2]
]

mod I3

and

gr(Lie ϕ)(σk
2i+1)(Y0) ≡

[

Y0, (1 − p2i)[[Yk, X]X2i−1]

+ (1− p2i)[[Yp−k, X]X2i−1] + 2p2i[[Y0, X]X2i−1]
]

mod I3.

Proof. Assume that m > 1. After the restriction of l-adic polyloga-
rithms to Gm(V,

−→
01) we have the following identities:

(∗) pm−1

(p−1
∑

k=0

lm(ξk
p )

)

= lm(
−→
10) (ξ0

p =
−→
10)

and

(∗∗) lm(ξk
p ) + (−1)mlm(ξp−k

p ) = 0 and l2k(
−→
10) = 0

(see Part II, Corollaries 11.2.3 and 11.2.6). It follows from the identities (∗)
and (∗∗) that

(15.4.2)

p−1
∑

k=0

lm(ξp−k
p )(σ)[[Yk, X]Xm−2]

=

p−1
2

∑

k=1

lm(ξp−k
p )(σ)

(

[[Yk, X]Xm−2] + (−1)m−1[[Yp−k, X]Xm−2]
)

+
pm−1

1− pm−1

(

p−1
2

∑

k=1

(

lm(ξp−k
p )(σ) + (−1)m−1lm(ξp−k

p )(σ)
)

)

[[Y0, X]Xm−2].

It follows from the assumption that the cyclotomic Soulé classes xm(k) in
H1(GQ(µp);Ql(m)) for k = 1, 2, . . . , p−1

2 are linearly independent over Ql

and from Corollary 14.3.6 that there are elements σ1, . . . , σ
p−1
2 in Gm(V,

−→
01)

such that lm(ξp−k
p )(σj) = 0 if k 6= j and lm(ξp−k

p )(σk) 6= 0. Hence it follows
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from Lemma 15.3.2 and the equality (15.4.2) that

gr(Lie ϕ)(σk)(Y0)

≡

[

Y0, lm(ξp−k
p )(σk)([[Yk, X]Xm−2] + (−1)m−1[[Yp−k, X]Xm−2])

+
pm−1

1− pm−1
(lm(ξp−k

p )(σk) + (−1)m−1lm(ξp−k
p )(σk))[[Y0, X]Xm−2]

]

mod I3 + Γm+2 Lie(V).

Now we set σk
m := 1

lm(ξp−k
p )(σk)

σk in grLie(G1(V,
−→
01)/G∞(V,

−→
01)) ⊗Q if m

is even and σk
m := 1−pm−1

lm(ξp−k
p )(σk)

σk in grLie(G1(V,
−→
01)/G∞(V,

−→
01))⊗Q if m is

odd.
Let us consider the case m = 1. It follows from the equality −ξp−k

p ·

(1− ξk
p) = 1− ξp−k

p that

l(1− ξk
p )− l(1− ξp−k

p ) = 0

on G1(V,
−→
01). It follows from [Wa, Theorem 8.9] that the p-units 1−ξk

p (k =

1, . . . , p−1
2 ) are linearly independent in Q(µp)

∗. Hence Proposition 14.0.6

implies that the functions l(1−ξk
p ) (k = 1, . . . , p−1

2 ) restricted to GQ(µp·l∞ ) =

G1(V,
−→
01) are linearly independent over Ql. Now we finish the proof as for

m > 1.
We shall also use the following notation. If A and B belong to a Lie

algebra then we define [A,B0] := A and [A,Bk] := [[A,Bk−1], B] for k > 0.

Theorem 15.4.3. Let p be a prime number greater than 3 and different

from l. Assume that for each m > 1 the cyclotomic Soulé classes xm(k) in

H1(GQ(µp);Ql(m)) for k = 1, 2, . . . , p−1
2 are linearly independent over Ql.

Let S be a subset of {1, . . . , p− 1} satisfying the following conditions

i) if k ∈ S then p− k ∈ S,

ii) (S + S) ∩ S = ∅ (the sum of two elements of S is calculated mod p).

Then the derivations gr(Lie ϕ)(σk1
m ), . . . , gr(Lie ϕ)(σ

kq
m ) for {k1, . . . , kq} ⊂

S ∩ {1, . . . , p−1
2 } and m = 1, 2, . . . generate a free Lie subalgebra of the

image of the Lie algebra homomorphism

gr(Lie ϕ) : grLie(G1(V,
−→
01)/G∞(V,

−→
01))⊗Q −→ Der∗Z/p Lie(V)

and moreover these derivations are free generators of this Lie subalgebra.
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Proof. We recall that gr(Lie ϕ)(σk
m) ∈ Der∗Z/p Lie(V) and gr(Lie ϕ)

(σk
m)(Y0) = [Y0, β

k
m(X,Y0, . . . , Yp−1)] for some βk

m = βk
m(X,Y0, . . . , Yp−1) ∈

Lie(V). To show the theorem it is enough to show that a Lie subalgebra of
(Lie(V), { }) generated by βk

1 , βk
2 , . . . , βk

n, . . . (k ∈ S ∩ {1, . . . , p−1
2 }) is free

and that βk
1 , βk

2 , . . . , βk
m, . . . (k ∈ S ∩ {1, . . . , p−1

2 }) are free generators of it.
Let us set

zk
m := [Yk, X

m−1] + (−1)m−1[Yp−k, X
m−1].

Observe that βk
m = zk

m + pyk
m + ι(2)k

m, where yk
m ∈ I1 and ι(2)k

m ∈ I2. For
any arrangement of brackets of length r in (Lie(V), { }) we have

{· · · {βk1
n1

, βk2
n2
}, . . . , βkr

nr
} · · · }

(15.4.4)

≡ {· · · {zk1
n1

+ pyk1
n1

, zk2
n2

+ pyk2
n2
}, . . . , zkr

nr
+ pykr

nr
} · · · } mod Ir+1.

Let us set z := {· · · {zk1
n1

+ pyk1
n1

, zk2
n2

+ pyk2
n2
}, . . . , zkr

nr
+ pykr

nr
} · · · }.

We denote by Lie(V;Z) a Lie subalgebra over Z of Lie(V) generated by
the set V.

The elements zk
m and yk

m have integer coefficients with respect to a base
of Lie(V) given by basic Lie elements in free generators X,Y0, . . . , Yp−1,
hence we can view them as elements of Lie(V;Z). Therefore z has also
integer coefficients with respect to this base. Observe that

(15.4.5) z ≡ {· · · {zk1
n1

, zk2
n2
}, . . . , zkr

nr
} · · · } mod pLie(V;Z).

The quotient Lie algebra Lie(V;Z)/pLie(V;Z) is a free Lie algebra over
Z/p freely generated by the set V. We consider Ir(S) as a Lie ideal of
Lie(V;Z)/pLie(V;Z).

It follows from Lemma 15.2.10 that in Lie(V;Z)/pLie(V;Z) we have
(15.4.6)
{· · · {zk1

n1
, zk2

n2
}, . . . , zkr

nr
} · · · } ≡ [· · · [zk1

n1
, zk2

n2
], . . . , zkr

nr
] · · · ] mod Ir(S).

The elements zk
1 , zk

2 , . . . (k ∈ S∩{1, . . . , p−1
2 }) are free generators of a free Lie

subalgebra of Lie(V;Z)/pLie(V;Z). Hence basic Lie elements in zk
1 , zk

2 , . . .
(k ∈ S ∩ {1, . . . , p−1

2 }) are linearly independent in Lie(V;Z)/pLie(V;Z).
Therefore it follows from congruences (15.4.4), (15.4.5) and (15.4.6) that
basic Lie elements in elements βk

1 , βk
2 , . . . (k ∈ S ∩ {1, . . . , p−1

2 }) in the
Lie algebra (Lie(V), { }) are linearly independent in Lie(V). Hence the
elements βk

1 , βk
2 , . . . (k ∈ S ∩{1, . . . , p−1

2 }) generate a free Lie subalgebra of
(Lie(V), { }) and these elements are free generators of this subalgebra.
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Now we shall consider the case p = 3.

Theorem 15.4.7. Let p = 3 and let l be different from 3. Assume that

the cyclotomic Soulé classes xn(1) ∈ H1(GQ(µ3);Ql(n)) are different from

zero for n > 1. Then the derivations gr(Lie ϕ)(σ1
1), . . . , gr (Lie ϕ)(σ1

n), . . .
generate a free Lie subalgebra of Im(gr(Lie ϕ)) and these derivations are

free generators of this Lie subalgebra.

Proof. We must modify the proof of Theorem 15.4.3 for p = 3. Let
I(Y0, Y2) be a Lie ideal of Lie(V;Z)/3Lie(V;Z) generated by Y0 and Y2.
Then we have
(15.4.8)
{· · · {z1

n1
, z1

n2
}, . . . , z1

nr
} · · · } ≡ [· · · [z1

n1
, z1

n2
], . . . , z1

nr
] · · · ] mod I(Y0, Y2)

and
(15.4.9)

[· · · [z1
n1

, z1
n2

], . . . , z1
nr

] · · · ] ≡ [· · · [s1
n1

, s1
n2

], . . . , s1
nr

] · · · ] mod I(Y0, Y2),

where s1
m = [Y1, X

m−1]. The congruences (15.4.8) and (15.4.9) replace
the congruence (15.4.6). The rest of the proof is the same as the proof of
Theorem 15.4.3.

Conjecture 15.4.10. Let p be a prime number greater than 2 and
different from l. The derivations gr(Lie ϕ)(σk

1 ), gr (Lie ϕ)(σk
2 ), gr (Lie ϕ)(σk

3 ),
. . . , gr(Lie ϕ)(σk

n), . . . for k = 1, . . . , p−1
2 generate Im(gr(Lie ϕ)).

15.5. Now we shall consider the case when p = 2. In fact the proof

will repeat the arguments from [D2] with necessary modifications for the

l-adic case. Let us set V := P1
Q\{0, 1,−1,∞}. Let

−→
01 be a base point of the

fundamental group. We choose a family Γ = {γ0, γ1, γ∞} as on Picture 4.

Picture 4

Let (x, y0, y1, z) be a sequence of geometric generators of π1(V (C);
−→
01) cor-

responding to the family Γ.
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Lemma 15.5.1. Let σ ∈ Gm(V,
−→
01). If m > 1 then

log(Λγ0(σ)(X,Y0, Y1)) = lm(
−→
10)(σ)[[Y0, X]Xm−2]

+
( 1

2m−1
− 1

)

lm(
−→
10)(σ)[[Y1, X]Xm−2] mod I2 + Γm+1L(V).

If m = 1 then

log(Λγ0(σ)(X,Y0, Y1)) = l(2)(σ)Y1 mod Γ2L(V).

Proof. The lemma follows from Lemma 15.3.1 and the identity

2m−1(lm(
−→
10) + lm(−1)) = lm(

−→
10)

(see Part II, Corollary 11.2.3).

Lemma 15.5.2. In the Lie algebra grLie(G1(V,
−→
01)/G∞(V,

−→
01)) ⊗ Q

there are elements σ1, σ3, σ5, . . . , σ2m+1, . . . such that any σk is homogenous

of degree k, gr(Lie ϕ)(σ1)(Y0) = [Y0, Y1] and

gr(Lie ϕ)(σ2m+1)(Y0)

=
[

Y0, 2
2m[[Y0, X]X2m−1] + (1− 22m)[[Y1, X]X2m−1]

]

mod I3.

Proof. The homomorphism ln(
−→
10) for n odd and greater than 1 is

a generator of HomZ∗
l
(GQ(µl∞ );Zl(n)) ' Zl (see [IS]). Hence it follows

from Part I, Lemma 3.0.8 that ln(
−→
10) restricted to Gn(V,

−→
01) is different

from zero. Therefore there is σ(n) ∈ Gn(V,
−→
01) such that ln(

−→
10)(σ(n)) 6=

0 for n odd and greater than 1. We set σn = 2n−1

ln(
−→
10)(σ(n))

· σ(n) in

grLie(G1(V,
−→
01)/G∞(V,

−→
01))⊗Q if n is odd and greater than 1.

The homomorphism l(2) is a Kummer character associated to 2. Hence

there is σ(1) ∈ G1(V,
−→
01) such that l(2)(σ(1)) 6= 0. We set σ1 = 1

l(2)(σ(1)) ·

σ(1) in grLie(G1(V,
−→
01)/G∞(V,

−→
01))⊗Q.

Theorem 15.5.3. The derivations gr(Lie ϕ)(σ1), gr(Lie ϕ)(σ3), . . . ,
gr(Lie ϕ)(σ2m+1), . . . generate a free Lie subalgebra of Im(gr(Lie ϕ)) and

these derivations are free generators of this Lie subalgebra.

Proof. We have gr(Lie ϕ)(σ1)(Y0) = [Y0, Y1] and gr(Lie ϕ)(σ2n+1)(Y0)
= [Y0, β2n+1] for n > 0, where β2n+1 ∈ Lie(V) is homogenous of degree
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2n+1. The Lie algebra Der∗Z/2 Lie(V) is isomorphic to (Lie(V)/〈Y0〉, { }).

Hence it is enough to show that a Lie subalgebra of (Lie(V), { }) generated
by β1, β3, . . . , β2n+1, . . . is free and it is freely generated by these elements.
Observe that β2n+1 = z2n+1 + y2n+1 + ι2n+1 where z2n+1 = [Y1, X

2n] (z1 =
Y1), y2n+1 = 22n[Y0, X

2n]− 22n[Y1, X
2n] (y1 = 0) and ι2n+1 ∈ I2.

For any arrangement of brackets of length r in (Lie(V), { }) we have

{· · · {βn1 , βn2}, . . . , βnr} · · · }(15.5.4)

≡ {· · · {zn1 + yn1 , zn2 + yn2}, . . . , znr + ynr} · · · } mod Ir+1.

Let us set z := {· · · {zn1 +yn1 , zn2 +yn2}, . . . , znr +ynr} · · · }. The elements
zm and ym have integer coefficients with respect to a base of Lie(V) given
by basic Lie elements in free generators X, Y0 and Y1. Hence z has integer
coefficients with respect to this base. We consider these elements as ele-
ments of Lie(V;Z), where Lie(V;Z)is a Lie subalgebra over Z of Lie(V)
generated by X, Y0 and Y1. Observe that

(15.5.5) z ≡ {· · · {zn1 , zn2}, . . . , znr} · · · } mod 2Lie(V;Z).

The quotient Lie algebra Lie(V;Z)/2Lie(V;Z) is a free Lie algebra over
Z/2 on free generators X, Y0 and Y1. Let S = {1}. We recall that Ir(S) is
a Lie ideal of Lie(V;Z)/2Lie(V;Z) generated by Lie brackets which contain
at least r Y ’s and at least one of them is Y1 and at least one of them is Y0.

Observe that
(15.5.6)
{· · · {zn1 , zn2}, . . . , znr} · · · } ≡ [· · · [zn1 , zn2 ], . . . , znr ] · · · ] mod Ir(S).

The elements z1, z3, . . . , z2n+1, . . . are free generators of a free Lie sub-
algebra of Lie(V;Z)/2Lie(V;Z). Hence basic Lie elements of degree r
in z1, z3, . . . , z2n+1, . . . are linearly independent in Lie(V;Z)/2Lie(V;Z).
Therefore it follows from congruences (15.5.4), (15.5.5) and (15.5.6) that
basic Lie elements of degree r in elements β1, β3, . . . , β2n+1, . . . in the Lie
algebra (Lie(V), { }) are linearly independent in Lie(V). Hence the ele-
ments β1, β3, . . . , β2n+1, . . . generate a free Lie subalgebra of (L(V), { })
and these elements are free generators of this Lie subalgebra. (This proof
is essentially the repetition of the proof given by Deligne for the Hodge
realization (see [D2]).)

Conjecture 15.5.7. The derivations l(σ1), l(σ3), . . . , l(σ2n+1), . . . gen-
erate Im(gr (Lie ϕ)).
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15.6. Now we shall assume that n is a power of a prime number. Let

p be a prime number different from l and let n = pr. Let V = P1
Q(µn) \

{0, µn,∞}.

Proposition 15.6.1. Assume that for each i > 1 the cyclotomic Soulé

classes xi(k) ∈ H1(GQ(µn);Ql(i)) for 0 < k < n
2 and (k, p) = 1 are linearly

independent over Ql. Then in the Lie algebra grLie(G1(V,
−→
01)/G∞(V,

−→
01))⊗

Q there are elements σk
m+1 for m = 1, 2, . . . and for 0 < k < n

2 and (k, p) =
1 such that σk

m+1 is homogenous of degree m+1 and gr(Lie ϕ)(σk
m+1)(Y0) =

[Y0, β
k
m+1], where

βk
m+1 = βk

m+1(X,Y0, . . . , Yn−1)

= (1− prm)([Yk, X
m] + (−1)m[Yn−k, X

m])

+ pm
n−1
∑

j=1 (j,p)≥p

dj
m+1,k[Yj, X

m] + prmd0
m+1,k[Y0, X

m] mod I2

and where dj
m+1,k are integers.

Proposition 15.6.2. Assume that for each i > 1 the cyclotomic Soulé

classes xi(k) ∈ H1(GQ(µn);Ql(i)) for 0 < k < n
2 and (k, p) = 1 are linearly

independent over Ql. Let S be a subset of {i | 0 < i < n and (i, p) = 1}
satisfying the following conditions

i) if k ∈ S then n− k ∈ S,

ii) (S + S) ∩ S = ∅ (the sum of two elements of S is calculated mod n).

Then the derivations gr(Lie ϕ)(σk1
m+1), . . . , gr (Lie ϕ)(σ

kq

m+1) for {k1, . . . , kq}
⊂ S ∩ [1, n

2 ] and for m = 1, 2, . . . generate a free Lie subalgebra of

Im(gr (Lie ϕ)) and these derivations are free generators of this Lie subal-

gebra.

Corollary 15.6.3. Let n = 2r. Assume that for each i > 1 the cy-

clotomic Soulé classes xi(k) ∈ H1(GQ(µn);Ql(i)) for 0 < k < n
2 and k odd

are linearly independent over Ql. Then the derivations gr(Lie ϕ)(σk
m+1) for

m = 1, 2, . . . and for 0 < k < n
2 and k odd generate a free Lie subalge-

bra of Im(gr (Lie ϕ)) and these derivations are free generators of this Lie

subalgebra.
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The proofs of 15.6.1–15.6.3 are the same as proofs of 15.4.1 and 15.4.3.

We do not include in our considerations derivations in degree 1 because

working modulo p we are not able to eliminate Yj for (j, p) ≥ p.

Corollary 15.6.4. Let n = 4. Assume that for each m > 0 the

cyclotomic Soulé class x2m(1) ∈ H1(GQ(i);Ql(2m)) does not vanish. Then

the derivations gr(Lie ϕ)(σ1
m) (m = 1, 2, 3, . . .) are free generators of a free

Lie subalgebra of Im(gr(Lie ϕ)).

Proof. We have (1 − i)(1 + i) = 2 and i(1 − i) = 1 + i. This implies
that l(2) = 2l(1− i). Hence we can include also the derivations in degree 1
in our considerations.

Proposition 15.6.5. Let n = 8. Assume that for any m > 1 the l-
adic polylogarithms lm(ξ8) and lm(ξ3

8) are linearly independent. Then the

derivations gr(Lie ϕ)(σ1
m), gr(Lie ϕ)(σ3

m) for m = 1, 2, 3, . . . are free gener-

ators of a free Lie subalgebra of Im(gr(Lie ϕ)).

Proof. It follows from Corollary 15.6.3 that the most interesting deriva-
tions are in degree 1. Let σ ∈ G1(V,

−→
01). Lemma 15.3.1 implies that

log(Λγ0(σ)(X,Y0, Y1, . . . , Y7)) ≡
7

∑

k=1

l(1− ξ8−k
8 )(σ)Yk mod Γ2L(V).

Observe that (1 − ξ2
8) = (1 − ξ1

8) · (1 − ξ5
8), (1 − ξ6

8) = (1 − ξ3
8) · (1 − ξ7

8),
(1−ξ4

8) = (1−ξ1
8)·(1−ξ3

8 )·(1−ξ5
8 )·(1−ξ7

8 ) and −ξ8−k
8 ·(1−ξk

8 ) = (1−ξ8−k
8 ).

The 2-units (1− ξ1
8) and (1− ξ3

8) are linearly independent in Q(µ8)
∗. Hence

in degree 1 we have two linearly independent derivations gr(Lie ϕ)(σ1
1) and

gr(Lie ϕ)(σ3
1) such that

gr(Lie ϕ)(σ1
1)(Y0) = [Y0, Y1 + Y7 + Y2 + Y6 + 2Y4]

and

gr(Lie ϕ)(σ3
1)(Y0) = [Y0, Y3 + Y5 + Y2 + Y6 + 2Y4].

After passing to Lie algebra (Lie(V;Z)/2Lie(V;Z), { }) we need to study
a Lie subalgebra generated by elements z1

1 := Y1 + Y7 + Y2 + Y6, z3
1 := Y3 +

Y5+Y2+Y6 and z1
m := [Y1, X

m−1]+(−1)m−1[Y7, X
m−1], z3

m := [Y3, X
m−1]+

(−1)m−1[Y5, X
m−1] for m = 2, 3, 4, . . . .
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Let Lie(X,Y1, Y5;Z/2) be a Lie subalgebra of Lie(V;Z)/2Lie(V;Z)
generated by X, Y1 and Y5. Let J be a Lie ideal of Lie(V;Z)/2Lie(V;Z)
generated by Y0, Y2, Y3, Y4, Y6 and Y7. Observe that

Lie(V;Z)/2Lie(V;Z) ' Lie(X,Y1, Y5;Z/2) ⊕ J.

Let us set
s1
m := [Y1, X

m−1] and s3
m := [Y5, X

m−1]

for m = 1, 2, 3, . . . . One shows that for any Lie bracket of elements z1
m, z3

m

for m = 1, 2, 3, . . . of length r we have

{· · · {zi1
m1

, zi2
m2
}, . . . , zir

mr
} ≡ [· · · [si1

m1
, si2

m2
], . . . , sir

mr
] mod J.

The elements s1
m and s3

m for m = 1, 2, 3, . . . are free generators of a free
Lie subalgebra of Lie(X,Y1, Y5;Z/2). This implies that the elements z1

m,
z3
m for m = 1, 2, 3, . . . are free generators of a free Lie subalgebra of

(Lie(V;Z)/2Lie(V;Z), { }). This implies the proposition.

Remark 15.6.6. According to [G, p. 427], the results for n = 3 and
n = 4 are also given in Deligne’s letter to Goncharov.
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Département de Mathématiques
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