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Abstract

Let V and U be the point sets of two independent homogeneous Poisson processes on R
d .

A graph GV with vertex set V is constructed by first connecting pairs of points (v, u) with
v ∈ V and u ∈ U independently with probability g(v − u), where g is a non-increasing
radial function, and then connecting two points v1, v2 ∈ V if and only if they have a joint
neighbor u ∈ U . This gives rise to a random intersection graph on R

d . Local properties
of the graph, including the degree distribution, are investigated and quantified in terms
of the intensities of the underlying Poisson processes and the function g. Furthermore,
the percolation properties of the graph are characterized and shown to differ depending
on whether g has bounded or unbounded support.
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1. Introduction

Random intersection graphs have been popular in network modeling to describe networks
arising from bipartite structures. In general, an intersection graph is constructed by assigning
each vertex a subset of some auxiliary space, and then connecting two vertices if their subsets
intersect; see [21]. In the context of network modeling, the auxiliary space typically consists
of an additional vertex set, so that the graph is constructed based on two disjoint vertex sets. A
bipartite graph is then generated by connecting vertices and auxiliary vertices in some random
way and, in the second step, connecting two vertices of the intersection graph if there exists an
auxiliary vertex to which they are both connected; see, e.g., [1, 8, 15, 19, 22]. In applications,
the vertex set can, for instance, consist of individuals while the auxiliary vertices represent
social groups, so that two individuals are connected when they share a social group. Other
examples include communication units connected via cell towers, and scientists related through
joint papers. However, we will throughout refer to the auxiliary vertices as groups.

Most models of random intersection graphs in the literature are non-geometrical. From
an empirical perspective, however, there are many examples where geographical aspects are
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likely to play a role in the formation of a network of this type. Children, for instance, are
more likely to join sports clubs close to their home, and wireless communication tends to take
place through cell towers in the geographical vicinity. Moreover, a notion of proximity can be
induced by other features, such as individuals sharing common interests or being part of the
same age group, when these features are modeled on a proper space. We hence study a model
where both vertices and groups have locations in space. Specifically, we model the two vertex
sets as realizations of independent homogeneous Poisson processes on R

d. A version of such a
model has been studied under the name of AB Poisson Boolean model in the special case when
a vertex connects to a group if and only if their distance is less than some constant; see [14].
Our purpose is to extend this model to more general connection probabilities, corresponding to
the generalization of the renowned Poisson Boolean model to the random connection model;
see [17].

The number of groups shared by two given vertices in our model turns out to be Poisson
distributed with a parameter that depends on the distance between the vertices. In non-spatial
versions of the random intersection graph, the probability for two given vertices to share more
than one group is typically very small, so that the fraction of vertices that share two or more
groups is negligible. The behavior of our model is in many cases more realistic, since multiple
joint groups are not unlikely for vertices that are geographically close. The downside is that
geometry induces heavy dependencies in the edge formation and makes it difficult to charac-
terize the degree distribution explicitly. Indeed, the degree of a vertex is not simply the sum of
the sizes of all groups the vertex is a member of, but overlaps between the groups need to be
subtracted. However, we provide a characterization of the degree distribution and illustrate its
behavior with simulations. We also study the percolation properties of the graph and, when the
connection probabilities have unbounded support, we observe qualitatively different behavior
compared to the AB Poisson Boolean model.

1.1. Description of the model

Let V and U denote the point sets of two independent homogeneous Poisson processes on
R

d with intensities λ and μ, respectively. The sets V and U represent the positions of vertices
and groups, respectively. We will often assume that V has a point at the origin. This is known
as the Palm version of the process and it is well known that, for a Poisson process, this has the
same distribution as the original process with an added point at the origin; see [5]. We think of
the origin point as a typical point of the process.

Let | · | denote the Euclidean norm. The connection probabilities will be based on a function
g(x) : Rd → [0, 1], with the properties that g(x) = g(y) if |x| = |y| and g(x) ≤ g(y) if |x| ≥ |y|,
that is, g is a non-increasing radial function. Our graph is constructed in two steps:

(i) Each pair of points (v, u) with v ∈ V and u ∈ U are connected independently with
probability g(v − u). This gives rise to a bipartite graph Gbi with vertex set V ∪ U .

(ii) Two points v1, v2 ∈ V are then connected if and only if there exists u ∈ U such that both
v1 and v2 are connected to u in Gbi. The resulting random intersection graph is denoted
by GV and has vertex set V .

It is straightforward to see that the U -points that the origin vertex in V is connected to in Gbi
constitute an inhomogeneous Poisson process with intensity μg(x); cf. [17, Proposition 1.3].
The expected number of groups that the origin is a member of is hence μ

∫
Rd g(x) dx and, to
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make the model non-trivial, we will throughout assume that 0 <
∫
Rd g(x) dx < ∞. This integral

is the L1-norm of g and we write
∫
Rd g(x) dx = ||g||.

Note that the edges in GV are not independent, since the presence of an edge between two
vertices gives information about the presence of a group at a suitable location causing the
connection, and this information in turn affects the presence of other edges. This causes a
substantial dependence between the connections of two vertices located close to each other,
while the dependence becomes weaker for vertices far apart. The fact that the edges are not
independently present is an important difference compared to the standard random connection
model, where each pair of points x and y in a homogeneous Poisson process is connected
independently with probability g(x − y); see [17].

A special case of the random connection model is when g(x) = 1|x|<r for some r ∈R. This is
the well-known Poisson Boolean model, where a ball with radius r/2 is placed at each Poisson
point and two points are then connected if their balls intersect, i.e. if they are within distance
r. The percolation properties of the model in the present paper for this particular choice of g
were studied in [14]. The model was then motivated as a continuum analog of so-called AB
percolation on lattices, where sites are independently assigned the mark A or B and only edges
between sites with different marks are kept; see, e.g., [12, 23, 24] and references therein.

1.2. Basic properties

First, consider the number of groups that the origin vertex shares with another vertex v ∈
V . As pointed out above, the groups that the origin is connected to form an inhomogeneous
Poisson process with intensity μg(x). This process can be thinned further to include only those
groups to which v also belongs. The probability that v belongs to a group located at x is g(v − x),
and the doubly thinned process containing the groups where both the origin and v are members
is hence an inhomogeneous Poisson process with intensity μg(x)g(v − x).

Proposition 1. The groups shared by vertices located at 0 and v form an inhomogeneous
Poisson process on R

d with intensity μg(x)g(v − x).

For completeness, we include a formal proof of this in Section 2. Let N0,v denote the number
of groups shared by 0 and v. Then N0,v is Poisson distributed with parameter μ

∫
Rd g(x)g

(v − x) dx. We write

f (v) =
∫
Rd

g(x)g(v − x) dx, (1)

i.e. f is the convolution of g with itself, and note that f (v) ≤ ∫
Rd g(x) dx < ∞ for all v. Also note

that f inherits the properties of being a non-increasing radial function from g – this follows
immediately from the definition of f . Two vertices are connected in the random intersection
graph if they share at least one group, which gives an expression for the connection probability
by computing P(N0,v > 0).

Corollary 1. The probability that the vertices 0 and v in GV are connected is given by p0,v :=
1 − e−μf (v).

Note that p0,v = 0 if f (v) = 0. This occurs if g has bounded support and |v| is more than
double the radius of this support. If f (v) > 0, on the other hand, it follows from the expression
for p0,v that the connection probability can be made as close to 1 as we wish by increasing μ.
Intuitively, if it is possible for 0 and v to connect, the probability that they actually do so can
be made large by increasing the group intensity.

https://doi.org/10.1017/jpr.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.18


1346 M. DEIJFEN AND R. MICHIELAN

Corollary 2. If f (v) > 0, then p0,v → 1 as μ → ∞.

We now turn to the degree distribution in the random intersection graph. Let D denote the
degree of the origin vertex in GV , that is,

D =
∑
v∈V

1{0↔v}, (2)

where 0 ↔ v means that 0 and v are connected in GV . Since the edges in GV are not indepen-
dent, it is difficult to characterize the degree distribution precisely, but an upper bound is easily
obtained by ignoring overlaps between the groups that the origin is a member of. Below, the
variable N represents the number of groups of the origin, and {Xi}i≥1 represent their sizes.

Proposition 2. The degree D is stochastically dominated by
∑N

i=1 Xi, where {Xi}i≥1 are inde-
pendent and identically distributed (i.i.d.) Poisson variables with mean λ||g|| and N is a
Poisson variable with mean μ||g||, independent of {Xi}i≥1.

We give the short proof of Proposition 2 in Section 2. In Section 3, we give some examples
of choices of connection functions g, and illustrate the corresponding degree distributions with
the aid of simulations. Note that it follows from Proposition 2 that the degree distribution has
an exponentially decaying tail. In order to obtain a power-law tail, the connection probability
has to be made inhomogeneous; see Section 1.4 for further comments on this. Even though the
full degree distribution is complicated to characterize, the expected degree can be computed.

Proposition 3. E[D] = λ
∫
Rd

(
1 − e−μf (y)

)
dy.

Proof. An edge indicator in the expression (2) for the degree of the origin is a Bernoulli ran-
dom variable with success probability p0,v. The points connected to the origin hence constitute
a thinned version of a Poisson process with rate λ where a point at v is kept with probabil-
ity p0,v, i.e. an inhomogeneous Poisson process with intensity λp0,v. The expected number of
points in such a process is given by λ

∫
Rd p0,v dv, as claimed. �

Since 1 + r < er for r ∈R, we get the upper bound

E[D] ≤ λμ

∫
Rd

f (y) dy = λμ||g||2.

The expected degree can hence be made small by decreasing either λ or μ. It also follows from
the expression for E[D] in Proposition 3 that the expected degree grows large linearly with the
intensity λ of the vertex set. Indeed, groups are likely to be large if λ is large, and the origin has
a positive probability of belonging to at least one group. When λ is fixed and μ increases, on
the other hand, the expected degree grows to infinity if and only if g has unbounded support.
Indeed, if vertices beyond a certain range are unreachable, the degree stays bounded, but if all
vertices are potentially within reach, the expected degree becomes large when the number of
groups increases, since the connection probability between any two vertices then comes close
to 1; cf. Corollary 2. To see this from the expression for E[D], let �(r) denote the volume
of a d-dimensional ball with radius r, and define rs = sup{|v| : f (v) > s}. The integral in the
expression for E[D] can then be bounded as

�(r1/μ)
(
1 − e−1) ≤

∫
Rd

(
1 − e−μf (v)) dv ≤ �(r0),
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where r0 < ∞ when g has bounded support, while r1/μ → ∞ as μ → ∞ when g has
unbounded support. The different behavior of the expected degree for large μ depending on
the support of g gives rise to a different phase transition for percolation, as we will see in the
next subsection.

1.3. Percolation phase transition

We now turn to the question of whether there exists an infinite component in the random
intersection graph GV . To this end, let C denote the number of vertices in the component of
the origin vertex. A straightforward coupling argument shows that the percolation function
θ (λ, μ, g) = P(C = ∞) is increasing in μ, and we define

μc = μc(λ, g) = sup{μ : θ (λ, μ, g) = 0}. (3)

A graph is said to percolate if it contains an infinite component, and it follows from ergodicity
that GV percolates with probability 0 or 1 whenever μ < μc or μ > μc; see, e.g., [17, Section
2.1].

We will fix λ and investigate μc(λ, g). Another option would be to fix μ and investigate
λc(μ, g) defined in an analogous way. This would, however, give rise to a qualitatively similar
picture. Specifically, we have that μc(a, g) = λc(a, g) for all a > 0. To see this, let GU be the
graph obtained from Gbi in a similar way to GV , but projecting on the point set U instead of V .
That is, the sets V and U switch roles in part (ii) of the construction of the graph, so that two
groups are connected if and only if there is a vertex that is a member of both of them. We have
the following equivalence result.

Lemma 1. If ||g|| < ∞, then {GV percolates} ⇔ {Gbi percolates} ⇔ {GU percolates}.
Proof. Just note that, when ||g|| < ∞, each vertex (group) is connected to an almost surely

finite number of groups (vertices) in Gbi. Hence, percolation in Gbi is equivalent to the existence
of an infinite path where groups and vertices alternate. The existence of such a path implies
percolation in both GV and GU . On the other hand, an infinite component in GV (or GU ) implies
percolation in Gbi, since all vertices in a given component of GV (or GU ) belong to the same
component in Gbi. �

Note that GU is equivalent to a graph where the roles of λ and μ are interchanged, so that
μ is the intensity of the vertex set and λ of the auxiliary vertex set. Hence it follows from
the above lemma that, if there is percolation in GV for λ = a and μ = b, then there is also
percolation for λ = b and μ = a. It is thus enough to fix λ and vary μ.

The percolation properties of the standard random connection model (with one single ver-
tex set with intensity λ) are described in [17]. It is shown that, for d ≥ 2, there is a non-trivial
critical value λ̃c(g) ∈ (0, ∞) such that the graph percolates if λ > λ̃c(g) while it does not per-
colate if λ < λ̃c(g). Write λ̃c(r) for the critical value in the standard Poisson Boolean model,
that is, when g(x) = 1|x|<r for some r > 0. In [14], the same model as in the present paper is
analyzed in the Poisson Boolean setting. Let μc(λ, r) denote the critical value for this model,
as defined in (3). It is shown that μc(λ, r) = ∞ when λ < λ̃c(2r), while μc(λ, r) ∈ (0, ∞) when
λ is sufficiently large, where λ > λ̃c(2r) suffices for d = 2.

Our main result states that, when g has unbounded support, there is a non-trivial phase
transition in μ in the random intersection graph GV for any fixed value of λ. When g has
bounded support, the qualitative picture is the same as for the Poisson Boolean version. We
write smax = sup{|x| : g(x) > 0}.
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Theorem 1. Consider the graph GV with ||g|| < ∞ in dimension d ≥ 2.

(i) If g has unbounded support, then μc(λ, g) ∈ (0, ∞) for any λ > 0.

(ii) If g has bounded support, then μc(λ, g) = ∞ for λ < λ̃c(2smax), while μc(λ, g) ∈ (0, ∞)
if λ is sufficiently large, where λ > λ̃c(2smax) suffices in d = 2.

Non-percolation for small values of μ is established by dominating the exploration of our
graph with a subcritical branching process. When g has bounded support, our model is dom-
inated by a Poisson Boolean model with r = smax, so in this case non-percolation is also an
immediate consequence of the fact that the Poisson Boolean version does not percolate for
small values of μ. Percolation for large values of μ when g has unbounded support is estab-
lished by introducing a 1-dependent percolation process, which is shown to percolate for large
values of μ due to Corollary 2. The argument can be adapted to show percolation also when g
has bounded support, provided λ is sufficiently large. Finally, percolation for large values of μ

as soon as λ > λ̃c(2smax) is obtained by a generalization of the argument in [14].
Below we give some suggestions for further work. The rest of the paper is then organized

so that the proofs are collected in Section 2, and some examples and numerical illustrations are
given in Section 3.

1.4. Further work

In this section we list some open problems and possible generalizations of the model.

1.4.1. Critical λ for d ≥ 3. The percolation picture described in Theorem 1 leaves open
whether percolation is possible for any λ > λ̃c(2smax) in dimension d ≥ 3 when g has bounded
support. The proof in d = 2 does not extend to higher dimensions and it would be interest-
ing to understand if the statement is still true or if there is some interval (λ̃c(2smax), λ̄) where
percolation is not possible.

1.4.2. Percolation in one dimension. Theorem 1 covers only d ≥ 2. When g has bounded sup-
port, it is not hard to see that percolation is not possible in d = 1. The case when g has
unbounded support is more subtle. Results for the standard random connection model indicate
that the decay of g is important. In particular, if g(x − y) ∼ |x − y|−δ , then there is a non-trivial
phase transition in the standard random connection model for δ ∈ (1, 2), while percolation is
not possible for δ > 2 nor if g decays faster than polynomially. This is shown for long-range
percolation on Z in [18, 20] and follows in the Poisson setting from the more general results
in [10, 11]. It could be worthwhile to analyze the present model in more detail in d = 1 for g
with unbounded support and derive conditions for both percolation and non-percolation.

1.4.3. Clustering. One reason why random intersection graphs have been popular in the non-
spatial setting is that they give rise to clustering in the graph, manifested in the presence of a
large number of triangles; see, e.g., [1, 6, 19]. Empirical networks arising from social interac-
tion often exhibit clustering, since two people with a joint friend often also make friends with
each other. In non-spatial random intersection graphs, clustering arises as a consequence of the
fact that, if two vertices both share a group with a third vertex, then there is a non-trivial prob-
ability that they all share the same group, which in that case means that they form a triangle.
Spatial graphs typically also exhibit clustering without the intersection effect, since connect-
ing vertices based on their distance in itself induces clustering. Therefore, clustering is not a
motivating factor for the spatial random intersection graph as much as in the non-spatial case.
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However, it could still be interesting to analyze the model in the present paper in this respect
and compare, for instance, to the standard random connection model.

1.4.4. Inhomogeneous versions. Empirical networks often exhibit large elements of inhomo-
geneity manifested, for instance, in power-law degree distributions. In order to achieve this in
the present model, the edge probabilities would have to be made more variable, for instance by
assigning random weights to the vertices and letting the edge probabilities be determined by
a combination of the weights and the distance between the vertices. Spatial graph models of
this type without the intersection effect have been extensively studied the last few years; see,
e.g., [4, 7, 9, 11, 13, 25]. Inhomogeneous versions of non-spatial random intersection graphs
have been studied in [2, 3, 6]. The present model could also be extended to such a setting,
and we could then analyze the effect of the weights on the degree distribution and percolation
properties.

2. Proofs

We first confirm that the number of groups shared by two vertices at 0 and v constitute an
inhomogeneous Poisson process, as claimed in Proposition 1.

Proof of Proposition 1. Fix a bounded Borel set B ⊂R
d, and let N0,v(B) denote the number

of groups in B shared by 0 and v. Clearly, N0,v(B) and N0,v(B′) are independent for disjoint
sets B and B′. We have to prove that N0,v(B) is Poisson distributed with parameter μ

∫
B g(x)g

(v − x) dx. Write U(B) for the number of groups in B, and note that U(B) is Poisson distributed
with parameter μ · �(B), where �( · ) denotes the Lebesgue measure on R

d. The groups are
uniformly distributed over B, and the probability that both 0 and v are members of a given
group is hence given by

p0,v(B) =
∫

B g(x)g(v − x) dx

�(B)
.

We then have that N0,v(B)
d= ∑U(B)

i=1 Zi, where {Zi} are i.i.d. Bernoulli variables with parameter
p0,v(B), independent of U(B). The generating function of N0,v(B) is thus given by

E
[
sN0,v(B)] =E

[
(1 + p0,v(B)(s − 1))U(B)] = exp

{
(s − 1)μ

∫
B

g(x)g(v − x) dx

}
,

which we recognize as the generating function of the stated Poisson distribution. �

Next, we observe that the degree of a given vertex in GV can be dominated as described in
Proposition 2.

Proof of Proposition 2. Let N denote the number of groups that the origin is connected
to. Then N is Poisson distributed with parameter μ||g||. Denote the groups of the origin by
u1, . . . , uN . The degree of the origin is given by the total number of vertices connected to
these groups. We will dominate this set with the help of a superposition of independent inho-
mogeneous Poisson processes. First consider u1 and let P1 be an inhomogeneous Poisson
process with intensity function λg(x − u1), representing the vertices connected to u1 (apart
from the origin). Then consider u2 and let P2 be an inhomogeneous Poisson process, inde-
pendent of P1 and with intensity function λ(1 − g(x − u1))g(x − u2), representing the vertices
that are connected to u2 but not to u1. Similarly, for i ≥ 3, the process Pi contains the points
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connected to ui but not to u1, . . . , ui−1. For any i ≥ 1, the intensity function of Pi is dominated
by λg(x − ui), and hence each process Pi can be coupled to an inhomogeneous Poisson process
P̄i with rate λg(x − ui) in such a way that the point set of the former is a subset of the latter.
Write Xi for the total number of points in P̄i. Then Xi is Poisson distributed with parameter
λ

∫
Rd g(x − ui) dx = λ||g||, and the proposition is established. �

We now turn to the percolation properties of our graph, and split the proof of Theorem 1
into a few lemmas, the first one stating that the graph does not percolate for small values of μ.

Lemma 2. If ||g|| < ∞ and d ≥ 1, then μc(λ, g) ∈ (0, ∞] for any λ > 0.

Proof. Fix λ > 0. We will explore the graph in generations, starting from the origin, and
show that this exploration process is almost surely finite when μ is small. Specifically, let Gn

denote the number of vertices at graph distance n from the origin. We claim that the process
{Gn}n≥1 is dominated by a branching process with offspring distribution

∑N
i=1 Xi, where N is

a Poisson variable with parameter μ||g|| and {Xi} are i.i.d. copies of a Poisson random variable
X with parameter λ||g||, independent of N. Indeed, it follows from Proposition 2 that G1 is
bounded in the claimed way, since G1 is equal to the degree of the origin.

For n ≥ 2, we iterate the same construction as in the proof of Proposition 2 and extend it
to the groups. To be more precise, let

{
v(n−1)

j : j = 1, . . . , Gn−1
}

denote the vertices at graph

distance n − 1 from the origin and write N(n−1)
j for the number of groups that v(n−1)

j is a mem-
ber of but where no vertex of any previous generation is a member and, for j ≥ 2, also none of
the vertices v(n−1)

1 , . . . , v(n−1)
j−1 in the same generation is a member. Those groups constitute an

inhomogeneous Poisson process, independent of the succeeding quantities, with an intensity

function that is dominated by μg
(

x − v(n−1)
j

)
, where the bound is obtained by ignoring factors

stemming from the exclusion of groups that have already been visited by the process. Hence
the process can be coupled to an inhomogeneous Poisson process where the total number of
points N̄(n−1)

j is Poisson distributed with parameter μ||g|| in such a way that N(n−1)
j ≤ N̄(n−1)

j .

Note that N̄(n−1)
j

d= N.

Denote the groups that vertex v(n−1)
j is a member of by

{
u(n−1)

j,i : i = 1, . . . , N(n−1)
j

}
and let

X(n−1)
j,i be the number of vertices that are connected to the group u(n−1)

j,i and that have not been
visited before in the process. Those vertices constitute an inhomogeneous Poisson process,
independent of previous quantities, with an intensity that is bounded by λg

(
x − u(n−1)

j,i

)
. We

can hence couple the process to an inhomogeneous Poisson process where the total number of
points X̄(n−1)

j,i is Poisson distributed with parameter μ||g|| in such a way that X(n−1)
j,i ≤ X̄(n−1)

j,i .

Note that X̄(n−1)
j,i

d= X.

The contribution of each vertex v(n−1)
j to the next generation is

∑N(n−1)
j

i=1 X(n−1)
j,i . Above, we

have shown that this can be bounded above by coupling the variables to independent ones
with the same distributions as N and X. It follows that the exploration of the graph can be
coupled to a branching process with offspring distribution

∑N
i=1 Xi in such a way that the

total number of vertices in the component of the origin is bounded by the total progeny in the
branching process. The offspring mean is λμ||g||2 and, if λ is fixed and ||g|| < ∞, this can be
made smaller than 1 by picking μ small. The total progeny of the branching process is then
finite with probability 1, and we conclude that the component of the origin is almost surely
finite. �
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FIGURE 1. Geometrical construction in the proof of Lemma 3.

We continue by establishing percolation for large values of μ when g has unbounded
support.

Lemma 3. If g has unbounded support and ||g|| < ∞, then μc(λ, g) < ∞ for any λ > 0 and
d ≥ 2.

The proof uses a result on domination of k-dependent bond percolation by product measure,
which is an immediate consequence of the general result in [16]. Let E denote the set of nearest-
neighbor edges of the Zd-lattice. A process {Ye}e∈E is k-dependent if, for any two sets E1, E2 ⊂
E at l∞-distance at least k, the variables {Ye}e∈E1 and {Ye}e∈E2 are independent.

Lemma 4. ([16].) For any d ≥ 2 and k ≥ 1, there exists pc = pc(d, k) < 1 such that, for any
k-dependent process {Ye}e∈E with P(Ye = 1) = 1 − P(Ye = 0) > pc, the 1s in {Ye}e∈E percolate
almost surely.

Proof of Lemma 3. We will define a 1-dependent bond percolation model on Z
d with the

property that percolation in this model implies the existence of an infinite component in our
graph GV . The marginal probabilities in the percolation model can be made arbitrarily close
to 1 by picking μ large, which will imply percolation. To define the model, for z ∈Z

d, let Cm
z

denote the cube with side length m/2 centered at mz and, for neighboring sites z and z′, let
Cm

z,z′ denote the cube with side length m/2 centered at m(z + z′)/2, in between Cm
z and Cm

z′ ; see
Figure 1. Note that the maximal Euclidean distance from a point in Cm

z to a point in Cm
z,z′ is

bounded from above by, for instance, dm.
Say that a site z is open if Cm

z contains at least one point of the vertex set V . We then want
to declare an edge between two sites z and z′ open if both sites are open and, in addition, there
is a connection between a vertex in Cm

z and a vertex in Cm
z′ . This would, however, lead to long-

range dependencies between edges, since we would not have control over the location of the
group(s) that causes the vertices to be connected. To circumvent this, we add a restriction on
the location of the connecting group. For an open cube Cm

z , let vz denote the vertex closest to
the center zm of the cube. An edge between two neighboring sites z and z′ is said to be open
if both sites are open and there exists a group u in the intermediate cube Cm

z,z′ such that vz and
vz′ are both connected to u. Note that percolation of the open edges implies the existence of an
infinite component in GV , since open edges emanate from the same vertex vz in a given open
cube Cm

z .
The states of adjacent edges are not independent, since the edges share a vertex. However,

the states of edges that do not share a vertex are defined based on Poisson configurations
in disjoint regions and are therefore independent. The classification of the edges is hence 1-
dependent, and it follows from Lemma 4 that the open edges percolate if the probability that
an edge is open is larger than some value pc < 1. We have that

P(z open) = P
(
Cm

z ∩ V �= ∅) = 1 − e−λ�(Cm
z ). (4)
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This probability can be made larger than p1/3
c by picking m large. Fix such an m. For two open

sites z and z′, by Proposition 1, the groups where both vz and vz′ are members constitute an
inhomogeneous Poisson process with intensity function μg(x − vz)g(x − vz′ ). The number of
such groups in the intermediate cube Cm

z,z′ is hence Poisson distributed with parameter

μ

∫
Cm

z,z′
g(x − vz)g(x − vz′ ) dx ≥ μ�

(
Cm

z,z′
)
g(dm)2,

where the bound follows since |x − vz| ≤ dm and |x − vz′ | ≤ dm for x ∈ Cm
z,z′ . Hence,

P(edge (z, z′) open | z and z′ open) ≥ 1 − e−μ�
(

Cm
z,z′

)
g(dm)2

. (5)

If g has unbounded support, then g(dm) > 0 and thus the above probability can be made larger
than p1/3

c by picking μ large. For m and μ chosen in this way we have

P(edge (z, z′) open) = P(z open) · P(z′ open) · P((z, z′) open | z and z′ open) > pc. (6)

It follows that the open edges percolate, which enforces an infinite component in GV . �

Next, we observe that an analogue of Lemma 3 also holds when g has bounded support, but
with the additional requirement that λ must be sufficiently large.

Lemma 5. For any d ≥ 2, if g has bounded support and ||g|| < ∞, then μc(λ, g) < ∞ when λ

is sufficiently large.

Proof. We adapt the proof of Lemma 3 to the case when g has bounded support. Recall that
smax = sup{|x| : g(x) > 0}. We use the same construction as in the proof of Lemma 3 but with
m = smax/(2d). The probability (4) that a cube Cm

z contains at least one vertex from V can then

be made larger than p1/3
c by picking λ large, while the conditional edge probability (5) can

be made larger than p1/3
c by picking μ large, since g(smax/2) > 0. It follows as in (6) that the

probability of an edge being open is larger than pc, and we conclude that our graph percolates
almost surely. �

Finally, we adapt the proof of [14, Theorem 2.1] to show that, when d = 2, the model
percolates for large values of μ as soon as λ > λ̃c(2smax).

Lemma 6. If d = 2 and g has bounded support, then μc(λ, g) < ∞ for λ > λ̃c(2smax).

Proof. In the proof of [14, Theorem 2.1], the result is proved for the Poisson Boolean version
of the model, where two vertices within distance 2smax of each other are for sure connected
if there is a group in the intersection of the balls with radius smax centered at the respective
vertices. We need to adapt the argument to take into account that such a connection in our
case exists only with a certain probability, which can be made as close to 1 as necessary by
increasing the number of groups in the intersection. To this end, consider the two-dimensional
lattice with vertex set mZ

2. Let e = (z, z′) be an edge of the lattice and consider the rectangle
Re formed by the two squares Sz and Sz′ with side length m centered at z and z′.

Fix λ > λ̃c(2smax). By [17, Theorem 3.7], the critical value λ̃c(r) is continuous in r. It fol-
lows that there exists s1 < smax such that λ > λ̃c(2s1). Let s2 ∈ (s1, smax). Also, write G̃V (λ, r)
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FIGURE 2. Geometrical constructions in the proof of Lemma 6.

for the graph generated by the standard Poisson Boolean model on V . Next, we define some
events associated with the edge e:

Ae = {there exists a crossing of Re along its longest side and crossings of Sz and Sz′

along the perpendicular sides by a component of G̃(λ, 2s1)},
Be = {for any two vertices x, y ∈ V ∩ Re such that Bx(s1) ∩ By(s1) �= ∅ there exists

a group in U ∩ Bx(s2) ∩ By(s2) to which both x and y are connected in Gbi}.
See Figure 2(a) for an illustration of the event Ae. The edge e is declared open if both Ae

and Be occur. The rest of the proof is divided into two steps. First we prove that the model just
defined percolates provided that μ and m are large enough, and then we show that this implies
percolation in GV .

Step 1. Observe that the edges in the lattice form a 2-dependent process. Therefore, from
Lemma 4 we know that percolation in the lattice is achieved whenever P(Ae ∩ Be) > pc. To
prove the latter, we introduce an auxiliary event associated to the edge e: Ve = {the number of
vertices |V ∩ Re| is smaller than k}. Trivially,

P(Ae ∩ Be) > P(Ae ∩ Be ∩ Ve) = P(Be | Ae ∩ Ve) · P(Ae ∩ Ve).

Observe that P(Ae ∩ Ve) > P(Ae) + P(Ve) − 1. From [17, Corollary 4.1] we know that for
any ε > 0 there exists m = m(ε) such that P(Ae) > 1 − ε, since λ > λ̃c(2s1) and the graph
G̃(λ, 2s1) percolates. Moreover, the number of vertices in the rectangle |V ∩ Re| is Poisson
distributed with mean λ · �(Re) = 2λm2. Thus, there exists k = k(ε) such that P(Ve) > 1 − ε.
Therefore, P(Ae ∩ Ve) > 1 − 2ε for any choice of ε, provided that m and k are large enough.

Next, we bound P(Be | Ae ∩ Ve). Given the event Ae ∩ Ve, we know that inside Re there are
at most k2/2 pairwise intersections of the balls {Bx(s1)}x∈V∩Re . Furthermore, if the balls Bx(s1)
and By(s1) intersect, the area |Bx(s2) ∩ By(s2)| can be bounded from below by b(s1, s2), where
b(s1, s2) is the area of the lens of intersection of two balls with radius s2 whose centers are
at distance 2s1; see Figure 2(b). Also, observe that, for a group located in Bx(s2) ∩ By(s2), the
probability that there is a connection to both x and y (in Gbi) is bounded below by g(s2)2,
since the distance to both x and y is at most s2. The number of groups in a given intersection
Bx(s2) ∩ By(s2), with x, y ∈ V ∩ Re, is hence stochastically larger than a Poisson variable with
parameter μg(s2)2b(s1, s2), implying that

P(Be | Ae ∩ Ve) ≥ (
1 − exp

(−μg(s2)2b(s1, s2)
))k2/2.
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It follows that P(Be | Ae ∩ Ve) can be made as close to 1 as we wish by increasing μ. Summing
up, for any ε > 0, there exist m, μ, k such that P(Ae ∩ Be ∩ Ve) > 1 − ε.

Step 2. Fix m and μ such that the edge percolation model on mZ
2 defined above percolates.

Suppose e1, e2 are two adjacent edges in the infinite component, that is, suppose the events Ae1 ,
Ae2 , Be1 , and Be2 occur. Write Le1 and Le2 for the crossings of the respective rectangles along
the longest side. Then, as a consequence of the existence of crossings (induced by balls with
radius s1) stipulated by Ae1 and Ae2 , we have that either the two crossings Le1, Le2 intersect (if
the edges e1 and e2 have different orientations) or they both intersect a perpendicular crossing
in the square Re1 ∩ Re2 (if e1 and e2 have the same orientation). Now draw balls of radius s2
around each vertex of the crossings Le1 , Le2 (and eventually the perpendicular crossing). The
events Be1 and Be2 imply that every pairwise intersection of these balls contains a group that
is connected to the vertices at the center of the two balls in the graph Gbi. It follows that all
vertices in the crossings Le1 and Le2 , as well as the perpendicular crossing, belong to the same
component in GV . Therefore, GV percolates whenever the edge percolation model on mZ

2

does. �

Remark 1. Lemma 6 can also be applied when g has unbounded support to conclude that
μc(λ, g) < ∞ for any λ > 0 in d = 2 (that is, the conclusion of Lemma 3 in d = 2). Indeed,
for a fixed λ > 0, we can take r < ∞ such that λ > λ̃c(2r), and Lemma 6 then shows that a
model with the connection function g truncated at r gives rise to percolation, which implies
percolation in the non-truncated model as well.

Theorem 1 now follows by combining the above lemmas.

Proof of Theorem 1. Part (i) follows from Lemma 2 and Lemma 3. As for part (ii), the fact
that percolation is not possible when λ < λ̃c(2smax) follows by recalling from Lemma 1 and
its proof that, if there is an infinite component in GV , then there is an infinite component in
Gbi where vertices and groups alternate. This means that there is an infinite component in the
Poisson Boolean model with vertex set V and r = 2smax, since two consecutive vertices (with
one intermediate group) on the infinite path in Gbi must be within distance 2smax from each
other. But such a component does not exist when λ < λ̃c(2smax). The fact that μc(λ, g) < ∞
for any d ≥ 2 when λ is large follows from Lemma 5, and Lemma 6 asserts that λ > λ̃c(2smax)
suffices in d = 2. �

3. Examples and simulations

In this section we give some examples of connection functions g(x) and illustrate the behav-
ior of the model with the help of simulations. Recall that the expected number of groups that a
vertex is a member of is μ||g|| and that the expected group size is λ||g||. The magnitude of ||g||
hence plays an important role in determining the sparsity/density of the graph. To provide a fair
qualitative comparison of different profile functions, we will therefore sometimes normalize g
so that ||g|| = 1. Recall the definition (1) of the self-convolution f and the role of f in the con-
nection probability and the expected degree described in Corollary 1 and Proposition 3. Note
that, when ||g|| = 1, the function g can be interpreted as the probability density function (PDF)
of a random vector Y on R

d, and f is then the PDF of the sum of two independent realizations
of Y .
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We discuss three examples of profile functions:

(i) Poisson Boolean model. We first recall the Poisson Boolean model, where g(x) =
1{|x|<r}, r > 0. The corresponding random intersection graph GV is the AB Poisson
Boolean model studied in [14]. Write Br(v) for the ball with radius r centered at v.
For any v ∈ V , we have

g(x)g(v − x) =
{

1 if x ∈ Br(0) ∩ Br(v),

0 otherwise.

Hence, f (v) = |Br(0) ∩ Br(v)| and the probability that 0 and v are connected is p0,v =
1 − exp{−μ|Br(0) ∩ Br(v)|}, which equals 0 when |v| > 2r.

(ii) Normal distribution. An example of connection probabilities with unbounded support is
provided by

g(x) = 1

(2πσ 2)d/2
e−|x|2/2σ 2

.

Here, g is the PDF of a normal random vector with ||g|| = 1, and f is hence the PDF of
the sum of two independent normal random vectors with PDF g, i.e.

f (v) = 1

(4πσ 2)d/2
e−|v|2/4σ 2

.

The probability that two vertices 0 and v are connected is p0,v = 1 − e−μf (v), and we
note that p0,v → 1 as μ → ∞ and decays faster than exponentially to 0 when |v| → ∞.

(iii) Power-law decay. A connection probability function with polynomially decaying tail is
given by g(x) = 1 ∧ |x|−dα , α > 1. In the (discrete version of the) standard random con-
nection model, this is known as long-range percolation; see the references in Section 1.4.
The function f is given by

f (v) =
∫
Rd

(
1 ∧ |x|−dα

)(
1 ∧ |v − x|−dα

)
dx.

We do not have an explicit expression for f in this case, but it can easily be estimated
numerically.

3.1. Visualization

Figure 3 contains visualizations of the random intersection graph GV for the above choices
of connection probabilities, scaled so that the average degree in the graphs is similar. The model
has been simulated on the torus T, represented as a square where opposite sides are identified.
Vertices and groups are positioned on the torus according to two independent Poisson processes
with intensity λ = 2 and μ = 1. For the Poisson Boolean function and the normal distribution
most edges are relatively short, due to the fact that the connection probability g decays expo-
nentially fast with the distance. For the power-law distribution with α = 3

2 , we observe more
long-range connections in the graph.

https://doi.org/10.1017/jpr.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.18


1356 M. DEIJFEN AND R. MICHIELAN

(a) (b)

(c) (d)

FIGURE 3. Visualization of GV for different choices of connection probabilities. The vertices and groups
are sampled with intensities λ = 2, μ = 1 on a torus of size 3 × 102. (a) shows the positions of vertices
(black dots) and groups (red crosses). (b) (c), (d) then show the graph GV for the indicated connection

probabilities.

3.2. Degree distribution

Figures 4 and 5 show the degree distribution for a few different instances of the normal dis-
tribution. Again, the model is simulated on a torus. Figure 4 illustrates the importance of ||g||:
in Figure 4(a) we have ||g|| = 1, while ||g|| = 4 in Figure 4(b), resulting in a degree distribu-
tion shifted towards larger degrees. In both cases, the degree distribution appears Poisson-like,
apart from the spike at degree 0, most evident in Figure 4(a). This spike is explained in that
a vertex that does not belong to any groups is for sure isolated, giving rise to the bound
P(D = 0) ≥ 1 − e−μ||g||, which is larger for smaller values of ||g|| and μ. Figure 5 shows the
degree distribution for ||g|| = 1, with the roles of λ and μ reversed in the two pictures. Indeed,
the proportion of isolated vertices is larger for the smaller value of μ in Figure 5(a).
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(a) (b)

FIGURE 4. Degree distribution of GV sampled on a torus of size 2 × 103. The solid line is the value of
the empirical expected degree, whereas the dotted line is the value of the theoretical expected degree
numerically computed from the expression in Proposition 3. The intensities λ and μ are the same in (a)

and (b), but the value of ||g|| is different.

(a) (b)

FIGURE 5. Degree distribution of GV sampled on a torus of size 2 × 103. The solid line is the value of
the empirical expected degree, whereas the dotted line is the value of the theoretical expected degree
numerically computed from the expression in Proposition 3. The intensities λ and μ are different in (a)

and (b).

3.3. Percolation properties

Next, we illustrate the critical value μc as a function of λ and g. We simulate GV on a torus
and compute the size of the largest component of GV , expressed as a proportion of the total
number of vertices, hoping that this provides an approximation of the component structure
in infinite space. Large values of this proportion indicate percolation, whereas small values
indicate no percolation. When we vary λ and μ, the critical value μc is approximated by the
curve separating the two regions in the λ–μ plane. In Figure 6, the function g is the standard
normal distribution on R

2, and λ and μ vary between 0 and 4. We note that the two percolation
phases are clearly visible and observe that μc(λ) looks symmetric with respect to the bisector
of the plane, which is consistent with the exchangeability of λ and μ from Lemma 1.
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FIGURE 6. Percolation phases for GV , simulated on the torus of size 103 using g(x) ∝ (1/2π )e−|x|2/2.
The value in each square is the proportion of vertices in the largest component of the graph, obtained as
an average over 10 samples: in the blue region the proportion of vertices in the largest component is large

(percolation); in the white region the proportion is small (no percolation).

(a)

(b)

FIGURE 7. Percolation phases for GV , simulated on the torus of size 103 averaging the proportion of
vertices in the largest component over 10 samples of the graph. In (a) g has unbounded support; in (b) the

support of g is bounded.

According to Theorem 1, the critical value μc is always finite if g has unbounded support,
whereas μc = ∞ for small values of λ if g has bounded support. This is reflected in Figure 7.
Indeed, when g is the standard normal distribution on R

2, we see that percolation also seems
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achievable for small values of λ by increasing μ sufficiently, while in the Poisson Boolean,
there is a value of λ below which percolation seems unfeasible.
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