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Abstract. Understanding the physical mechanisms that play a role in the saturation of the
magnetorotational instability (MRI) has been an outstanding problem in accretion physics since
the early 90’s. Here, we present the summary of a study of the parasitic modes that feed off
exact viscous, resistive MRI modes. We focus on the situation in which the amplitude of the
magnetic field produced by the MRI is such that the instantaneous growth rate of the fastest
parasitic mode matches that of the fastest MRI mode. We argue that this ”saturation” amplitude
provides an estimate of the magnetic field that can be generated by the MRI before the secondary
instabilities suppress its growth significantly. We show that there exist two regimes, delimited
by a critical Elsasser number of order unity, in which saturation is achieved via secondary
instabilities that correspond to either Kelvin-Helmholtz or tearing modes.
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1. Introduction
Let us consider a homogeneous, incompressible plasma in differential rotation according

to Ω = Ω(r)ž and threaded by a vertical magnetic field B̄ = B̄z ž. The equations
governing the local dynamics of this MHD fluid in the shearing box approximation are

∂v

∂t
+ (v · ∇) v = −2Ω0×v + qΩ2
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+ ν∇2v,

(1.1)
∂B

∂t
+ (v · ∇) B = (B · ∇) v + η∇2B , with ∇ · B = 0 and ∇ · v = 0. (1.2)

Here, P is the pressure, ρ is the density, and the factor q ≡ −d ln Ω/d ln r parametrizes
the magnitude of the local shear; q = 3/2 in the Keplerian case. Non-ideal effects due
to a constant kinematic viscosity and resistivity are included in the terms proportional
to ν and η. We work with dimensionless variables defined in terms of the background
Alfvén speed and the local angular frequency and define the numbers Λν ≡ v̄2

Az /νΩ0 and
Λη ≡ v̄2

Az /ηΩ0, whose ratio is the magnetic Prandtl number, Pm ≡ ν/η ≡ Λη /Λν . The
quantity Λη is known as the Elsasser number, while Λν stands for its viscous counterpart.

The exact equations for the evolution of the secondary instabilities δv(x, t) and δB(x, t)
affecting an MRI mode are obtained by substituting in Equations (1.1) and (1.2) the
ansatz v = −qΩ0(r − r0)φ̌ + ∆v eΓt + δv and B = B̄z ž + ∆B eΓt + δB. The first term
in each of these equations accounts for the background Keplerian velocity and magnetic
field. The terms proportional to ∆v ≡ V 0 sin(Kz) and ∆B ≡ B0 cos(Kz) correspond
to the exact, exponential fluctuations due to the MRI (Balbus & Hawley 1991), and
Γ(ν, η,K) is the growth rate of the unstable MRI mode with wavelength λ = 2π/K (see
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Pessah & Chan 2008 for details). This substitution leads to partial differential equations
for δv(x, t) and δB(x, t). However, we can gain insight into the growth rates and phys-
ical properties of the secondary instabilities by assuming that the exact (primary) MRI
modes can be considered as a time-independent background from which the (secondary)
parasitic modes feed off (see, e.g., Goodman & Xu 1994, Pessah & Goodman 2009, Latter
et al. 2009, and Pessah 2010 for more details about this approach). In this framework,
the dynamics of the parasitic modes is determined by

[(s + ν(k2
h − ∂2

z )](k2
h − ∂2

z )δvz − i(kh · ∆v)(k2
h − ∂2

z − K2)δvz

+i(kh · ∆B)(k2
h − ∂2

z − K2)δBz = 0, (1.3)

[s + η(k2
h − ∂2

z )]δBz + i(kh · ∆B)δvz − i(kh · ∆v)δBz = 0. (1.4)

Here, as in Goodman & Xu (1994), we have further neglected the influence of the weak
vertical background field, the Coriolis force, and the background shear flow on the dy-
namics of the secondary modes. The wavenumber kh is the modulus of the horizontal
wavevector kh ≡ kxx̌ + ky y̌ ≡ kh(cos θ x̌ + sin θ y̌) associated with the parasites.

2. Parasitic Modes
Let us focus our attention on the stability of the fastest growing MRI modes, with

K = Kmax(ν, η) and Γ = Γmax(ν, η), and let us further consider their fastest growing
parasites. It is then possible to estimate the amplitude Bsat

0 such that the fastest parasitic
mode, for given values of Λν and Λη , grows as fast as the primary mode upon which it
feeds. The motivation to calculate this ”saturation” amplitude is that the parasite will
be able to drain an amount of energy of order (Bsat

0 )2 from the primary mode shortly
after their growth rates are comparable (see Pessah 2010 for more details).

The left panel of Fig. 1 shows the MRI saturation amplitude as a function of mag-
netic Prandtl number and the viscosity, while the right panel shows the dimensionless
stress αsatβsat ≡ T̄rφ/(B2

0 /8π). For Λν � 10, the magnetic energy density presents two
asymptotic regimes that correspond to Λη larger or smaller than unity. The associated
modes correspond to Kelvin-Helmholtz and tearing modes respectively (see Fig. 2 and
the discussion below). Note that in the limit Λν , Pm � 1, αsatβsat → 0.4, while in the
inviscid, resistive limit, i.e., Λν � 1 and Pm � 1, αsatβsat → 0.5Λη . Thus, despite the

Figure 1. Predicted magnetic energy density (left) and dimensionless stress (right) for the
fastest MRI mode if saturation occurs when the fastest parasitic mode matches its growth rate.
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fact that the magnetic field at saturation asymptotes to a constant value, the dimension-
less stress decreases linearly with Λη for Λη � 1. This is in qualitative agreement with
the simulations in Sano & Stone (2002) (c.f., Pessah 2010; Longaretti & Lesur 2010).

In order to understand the nature of the fastest secondary modes it is useful to analyze
their structure along the directions associated with their fastest growth, i.e., θ ≡ θmax. For
fixed values of the dissipation coefficients, the growth rates of the secondary instabilities
peak around directions which are almost aligned with either the velocity or magnetic
fields of the primary MRI mode, i.e., θmax � θV for Λη � 1 and θmax � θB for Λη � 1.
Fig. 2 shows the physical structure of the fastest parasitic modes, including the velocity
and magnetic fields of the primary MRI modes, for Λη = {0.1, 1, 10}, from left to right,
with Λν � 1. The arrows in the upper and lower panels correspond to the projections
of the total (primary plus secondary) velocity and magnetic fields onto the plane defined
by the z-axis and the direction θmax. The color contours correspond to the total vorticity
and current density projected onto the direction perpendicular to θmax.

Tearing Modes — For the Elsasser number Λη = 0.1, the versor characterizing the
direction of fastest growth, ǩh , points in the direction θmax � θB. This mode, shown
in the leftmost (upper and lower) panels of Fig. 2, feeds off the current density of the
primary MRI mode. The current density of the secondary modes presents maxima and
minima along the planes z = ±nπ/2 where the magnetic field of the primary mode,
∆B = B0 cos(Kz), reverses sign. Thus, the fluctuations induced by these fastest resistive
secondary modes tend to promote reconnection of the MRI field. The observed mode
structure is qualitatively insensitive to the value of the Elsasser number as long as Λη < 1
and Λν � 1. We thus conclude that the fastest parasitic modes correspond to tearing

Figure 2. Physical structure of the fastest parasitic modes, including the velocity and
magnetic fields of the primary modes, for Λη = {0.1, 1, 10}, from left to right, with Λν � 1.
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modes for Λη < 1. These parasitic modes are enabled by non-zero resistivity and are thus
absent in the ideal MHD regime studied by Goodman & Xu (1994).

Kelvin-Helmholtz Modes — The two rightmost sets of panels in Fig. 2 show the fastest
secondary modes for the Elsasser numbers Λη = {1, 10}. The versors ǩh characterizing
the direction of fastest growth point in the direction θmax � θV . These modes feed off the
shear in the velocity field of the primary MRI modes. The velocity and vorticity fields
show a periodic structure similar to what is obtained in the stability analysis of a periodic
set of equidistant vortex sheets distributed along the ž direction and alternating sense.
The structure of these modes is quantitatively insensitive to the value of the Elsasser
number as long as Λη � 1 and Λν � 1. We thus conclude that the fastest parasitic
modes correspond to Kelvin-Helmholtz modes for Λη > 1. In the limit Λη � 1, these
correspond to the Kelvin-Helmholtz modes alluded to in Goodman & Xu (1994).

3. Discussion
In order to solve for the dynamics of the parasitic modes we have made a number of

assumptions which might affect the value of the saturation amplitudes presented here.
Despite these limitations, the properties of the parasitic modes that we described provide
valuable analytical guidance and a basic framework to design and interpret tailored nu-
merical experiments of the nonlinear saturation of the MRI. The following is a summary
of our findings†. When the magnetic fields involved are weak enough so that the incom-
pressible limit holds, the parameter driving the behavior of the growth rates of the MRI
and its parasites, and thus the magnetic energy density and stresses at saturation, is the
Elsasser number Λη . In particular, we found that, as long as viscous dissipation is small,
i.e., Λν � 10, then there exists two regimes: (i) quasi-ideal MHD, where the physical
properties of the MRI and its parasitic instabilities are insensitive to dissipation. This
holds as long as Λη > 1, which is applicable to the fully ionized regions of accretion disks
around compact objects. (ii) inviscid, resistive MHD, where all the relevant dependencies
on Λν and Pm are only through the product Pm Λν , i.e., the Elsasser number Λη . This
regime corresponds to Λη < 1, and characterizes poorly ionized regions of protoplanetary
disks. The Elsasser number for current Taylor-Couette MRI experiments is close to unity
and thus both types of modes present similar growth rates in this regime.
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† For reasons of space, it is not possible to make justice to a number of different approaches
addressing the saturation of the MRI. We refer the reader to the works by, e.g., Sano et al. (1998),
Umurhan et al. (2007), Jamroz et al. (2008), Vishniac (2009), Latter et al. (2009), Longaretti
& Lesur (2010), and the relevant references therein, for other perspectives into this problem.
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