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A Remark on a Modular Analogue of the
Sato–Tate Conjecture

Wentang Kuo

Abstract. The original Sato–Tate Conjecture concerns the angle distribution of the eigenvalues arising

from non-CM elliptic curves. In this paper, we formulate a modular analogue of the Sato–Tate Conjec-

ture and prove that the angles arising from non-CM holomorphic Hecke eigenforms with non-trivial

central characters are not distributed with respect to the Sate–Tate measure for non-CM elliptic curves.

Furthermore, under a reasonable conjecture, we prove that the expected distribution is uniform.

1 Introduction

Let E be an elliptic curve over Q and ∆E the discriminant of E. For a rational prime p,

coprime to ∆E, define

Np = p + 1 − ap = |E(Fp)|,

where E(Fp) is the set of rational points of E defined over the finite field Fp and

|E(Fp)| is the cardinality of E(Fp). For a rational prime p ∤ ∆E, a result of Hasse

[13, Theorem 1.1] states that

|ap| ≤ 2p1/2.

Thus, we can write

ap = 2p1/2 cos θp,

for a uniquely defined angle θp satisfying 0 ≤ θp < π. A natural question to ask is

how θp distributes in the interval [0, π]. For elliptic curves with complex multipli-

cation, the answer to this question is well known [9]. On the other hand, for elliptic

curves without complex multiplication, the problem remains open until today. Sato

and Tate independently conjectured that

lim
x→∞

1

π(x)
· #{p : p ≤ x, θp ∈ (α, β)} =

( 1

π

∫ β

α

2 sin2 θ dθ
)

,

where π(x) is the number of primes less than or equal to x. It is called the Sato–Tate

conjecture and it has many classical origins. For instance, it is related to how often

a quadratic form is a prime in a certain region [4] and the distribution of primes in

quadratic progressions [8].

We can also extend this conjecture to modular forms. Let

H = {z ∈ C, Im(z) > 0}, H∗
= H ∪ cusps,

Received by the editors January 15, 2005.
The author’s research was partially supported by an NSERC grant.
AMS subject classification: 11F03, 11F25.
Keywords: L-functions, Elliptic curves, Sato–Tate.
c©Canadian Mathematical Society 2007.

234

https://doi.org/10.4153/CMB-2007-025-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2007-025-7


A Remark on a Modular Analogue of the Sato–Tate Conjecture 235

be the upper half plane and the upper half plane with cusps, respectively. Let Γ be a

modular group.

Definition 1.1 Let ω be a non-trivial primitive Dirichlet character. A (holomorphic)

Hecke eigenform f of Γ with the Nebentypus ω is a complex valued function on H∗

satisfying

(i) There is an integer k ≥ 0 such that for each γ =
[

a b
c d

]

∈ Γ we have the modular

transformation law f (γz) = ω(d)(cz + d)k f (z).

(ii) The function f is holomorphic on H and extends holomorphically to every

cusp of Γ. It also vanishes on cusps.

(iii) By (i), we have the Fourier expansion

f (z) =

∞
∑

n=1

ane2πinz.

Define the L-function L(s, f ) of f as

L(s, f ) =

∞
∑

n=1

an · n−s.

Let P be the set of rational primes. Then there is a finite subset P( f ) of P such

that

L(s, f ) =

∏

p∈P\P( f )

(1 − ap p−s + ω(p)pk−1 p−2s)−1
∏

p∈P( f )

lp(s)−1,

where lp(s) are polynomials in p−s with lp(0) 6= 0. In other words, f admits an

Euler product.

We denote by H(Γ, ω) the set of all Hecke eigenforms of Γ with the Nebentypus ω.

The Ramanujan conjecture on H(Γ, ω) can be stated as follows:

Conjecture 1.2 (Ramanujan) For each f ∈ H(Γ, ω), we can rewrite the Euler product

as

L(s, f ) =

∏

p∈P\P( f )

(1 − αp · p(k−1)/2 p−s)−1(1 − βp · p(k−1)/2 p−s)−1
∏

p∈P( f )

lp(s)−1,

where αp and βp are the roots of the quadratic polynomial x2 − (ap/p(k−1)/2)x + ω(p).

Then |αp| = |βp| = 1.

The above conjecture is proved by Deligne [1]. Therefore, for each f ∈ H(Γ, ω), we

have |αp| = |βp| = 1 for all rational primes p ∈ P\P( f ). Since |αp| = |βp| = 1, we

can write αp and βp as polar forms

αp = eiθp , βp = eiψp , 0 ≤ θp, ψp < 2π,

The question now is how θp, ψp distribute on [0, 2π].
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2 Distributions and L-Functions

Definition 2.1 ([10, Appendix to Ch. 1]) Let X be a compact topological space and

C(X) the set of all continuous functions on X. Let S be a sequence {xi}i∈I ⊆ X with

the index set I equipped with a norm map N : I → N satisfying the property that for

all n ∈ N, N−1(n) is a finite set. For all positive real numbers x, define

NS(x) := {i ∈ I | N(i) ≤ x}.

Let µ be a distribution on X and for all g ∈ C(X), define

µx(g) :=
1

|NS(x)|

∑

i∈NS(x)

g(xi).

We say that S is distributed with respect to a distribution µ on X, if for all g ∈ C(X)

lim
x→∞

µx(g) = µ(g).

In our case, X = S1 ∼= R/2π. We have the following handy criterion [10, Corol-

lary 2, Appendix to Chapter 1]:

Theorem 2.2 (Generalized Weyl Criterion) Let f be a piece-wise continuous func-

tion on R of period 2π whose the Fourier expansion is

f (θ) =
1

2π

m=∞
∑

m=−∞

cme−imθ, and

m=∞
∑

m=−∞

|cm|
2 <∞.

Let S be a sequence {xi}i∈I of real numbers between 0 and 2π with a norm map

N : I → N. Then S is distributed with respect to a distribution
∫

f (θ) dθ if and only if

for all m ∈ Z, x ∈ R+,

∑

i∈NS(x)

eimxi = cm|N
S(x)| + o

(

|NS(x)|
)

,

as x tends to infinity. In particular, if all cm = 0 except for m = 0, then S is distributed

with respect to the standard Lebesgue measure. In this case, we say that S is uniformly

distributed.

Let f be a Hecke eigenform with a non-trivial Nebentypus ω and

S f = {θp, ψp}p∈P\P( f ),

the set of angles arising from f , with the index set

⋃

p∈P\P( f )

{p, p},
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and the natural norm map N defined by

N(p) = p.

Thus, studying the distribution of S f is equivalent to studying the asymptotic behav-

ior of

Am(x) =

∑

p≤x
p∈P\P( f )

(eimθp + eimψp ) =

∑

p≤x
p∈P\P( f )

(αm
p + βm

p ),

where m is an integer. Note that

A−m(x) =

∑

p≤x
p∈P\P( f )

(e−imθp + e−imψp ) =

∑

p≤x
p∈P\P( f )

(eimθp + eimψp ) = Am(x).

Therefore, we only need to consider the case when m ≥ 0. We need the following

lemma.

Lemma 2.3 Let F(s) be a Dirichlet series of the Euler product

F(s) =

∏

p∈P\G

(

m
∏

i=1

(

1 − α(i)
p · p−s

)−1
)

, |α(i)
p | = 1,

where G is a finite subset of rational primes. If F(s) has an analytic continuation to

Re(s) ≥ 1 and is non-vanishing at Re(s) = 1, then

∑

p≤x
p∈P\G

(

m
∑

i=1

α(i)
p

)

= o(π(x)).

Proof Consider F ′(s)/F(s) = (log F(s)t) ′.

−F ′(s)/F(s) = −(log F(s)) ′

= −
(

∑

p∈P\G

(

m
∑

i=1

log(1 − α(i)
p · p−s)

)) ′

=

∑

p∈P\G

(

m
∑

i=1

(

∞
∑

k=1

k(α(i)
p )k(log p)p−ks

))

.

Using the condition |α(i)
p | = 1 to estimate the term for k ≥ 2 and applying a Taube-

rian theorem, we obtain our result.
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Let AQ be the ring of adeles of Q . Let π =
⊗

p πp be a cuspidal representation of

GL2(AQ ) with central character ωπ . Fix a positive integer m, and let

Symm : GL2(C) → GLm+1(C)

be the m-th symmetric power representation of GL2(C) on symmetric tensors of rank

m (cf. [11, 12]). By the local Langlands correspondence, Symm(πp) is well defined

for every p. The Langlands functoriality in this case is equivalent to the fact that

Symm(π) =
⊗

p Symm(πp) is an automorphic representation of GLm+1(AQ ). Let

P(π) be the set of places where π is ramified. One can define the L-function L(s, π)

associated to π as follows:

L(s, π) =

∏

p∈P\P(π)

(1 − αp p−s)−1(1 − βp p−s)−1
∏

p∈P(π)

hp(s)−1,

where lp(s) are polynomials in p−s with lp(0) 6= 0. Then it follows that

L(s, Symm(π)) =

∏

p∈P\P(π)

m
∏

i=0

(1 − αm−i
p βi

p p−s)−1
∏

p∈P(π)

gp(s)−1.

where gp(s) are polynomials in p−s with gp(0) 6= 0.

Remarks 1

(1) The generalized Ramanujan conjecture predicts that if π is a cuspidal repre-

sentation of GL2(AQ ), then for all p ∈ P\P(π), |αp| = |βp| = 1.

(2) Let ω be a non-trivial primitive Dirichlet character. By Deligne [1], for any

f ∈ H(Γ, ω), f is attached to a cuspidal representation π of GL2(AQ ) such that

L(s, f ) = L(s, π).

3 Main Theorems

Definition 3.1 Let f be a Hecke eigenform with the Nebentypus ω, where ω is a

non-trivial primitive character. We say that f is non-CM if there is no Grössen-

character χ such that L(s, χ) is equal to L(s, f ).

As in the case of elliptic curves, we consider only those f ’s which are non-CM.

Now we can state and prove our theorems.

Theorem 3.2 Let f be a non-CM Hecke eigenform with the Nebentypus ω, for a non-

trivial primitive character ω. Then the sequence S f = {θp, ψp}p∈P\P( f ) is not dis-

tributed with respect to the Sato–Tate measure (1/2π)
∫

2 sin2 θ dθ.

Remark 2 Note that in the original Sato–Tate conjecture, the values of the se-

quences are between 0 and π. However, in our setting, those are between 0 and 2π.

Therefore, the corresponding Sato–Tate measure is (1/2π)
∫

2 sin2 θ dθ.
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Proof Suppose that S f is distributed with respect to the Sato–Tate measure

(1/2π)

∫

2 sin2 θ dθ.

Since 2 sin2 θ = 1 − cos 2θ, and |NS f (x)| = 2π(x) + O(1), we have

A0(x) = 2π(x) + o(π(x)), A1(x) = o
(

π(x)
)

, and A2(x) = −π(x) + o(π(x)),

For m = 0,

A0(x) =

∑

p≤x
p∈P\P( f )

(α0
p + β0

p) = |NS f (x)| = 2π(x) + O(1).

For m = 1, let π be the cuspidal representation of GL2(AQ ) attached to f . By [3, 5],

L(s, π) is entire and non-vanishing at Re(s) = 1. We can ignore the ramified places

since there are only finitely many of them. Therefore, by Lemma 2.3,

A1(x) =

∑

p≤x
p∈P\P( f )

t(αp + βp) = o(π(x)).

For m = 2, we claim first that π is not monomial, i.e., there is no non-trivial Grössen-

character η such that π ⊗ η ∼= π. If there is such a Grössencharacter η, then η2
= 1

and η determines a quadratic extension E. According to [7], there is a Grössencharac-

ter χ of E such that L(s, π) = L(s, χ), which is impossible since f is non-CM.

Since π is not monomial, by [2], Sym2(π) is cuspidal. Therefore, by [3, 5],

L(s, Sym2(π)) is entire and non-vanishing at Re(s) = 1. Thus, by Lemma 2.3

∑

p≤x
p∈P\P( f )

(α2
p + αpβp + β2

p) = o(π(x)).

Then

A2(x) =

∑

p≤x
p∈P\P( f )

(α2
p + β2

p)

=

∑

p≤x
p∈P\P( f )

(α2
p + αpβp + β2

p − αpβp)

= o
(

π(x)
)

−
∑

p≤x
p∈P\P( f )

ω(p).
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By classical theorems, L(s, ω) is entire and non-vanishing at Re(s) = 1. Thus, apply-

ing Lemma 2.3, we get

A2(x) = o(π(x)) −
∑

p≤x
p∈P\P( f )

ω(p) = o(π(x)) 6= −π(x) + o(π(x));

it contradicts the fact that A2(x) = −π(x) + o(π(x)) if the set {θp, ψp} distributes

with respect to the Sato–Tate measure. This completes the proof of the theorem.

Now it is natural to ask what is the expected distribution of the sequence S f =

{θp, ψp}p∈P\P( f ) arising from a Hecke eigenform f with non-trivial Nebentypus.

We need the following lemma.

Lemma 3.3 Let π =
⊗

p πp be a cuspidal automorphic representation of GL2(AQ )

with central character ωπ . For two positive integers m and n, define

Sm(x) =

∑

p≤x
p∈P\P(π)

m
∑

i=0

αm−i
p βi

p, and S̃n(x) =

∑

p≤x
p∈P\P(π)

ω(p)
(

n
∑

i=0

αn−i
p βi

p

)

.

Assume that the L-functions L(s, Symm(π)) and L(s, Symn(π)⊗ωπ) have analytic con-

tinuation for Re(s) ≥ 1, and are non-vanishing for Re(s) ≥ 1. Then

Sm(x) = o(π(x)), S̃n(x) = o(π(x)).

Proof It is an application of Lemma 2.3. Note that we can ignore the contribution

from ramified places.

Then we have the following theorem.

Theorem 3.4 Let π be a cuspidal representation of GL2(AQ ) which satisfies the Ra-

manujan conjecture. Assume that for all positive integers m, the L-functions

L(s, Symm(π)) and L(s, Symm(π) ⊗ ω)

have analytic continuation for Re(s) ≥ 1, and are non-vanishing for Re(s) ≥ 1. Then

the sequence S f = {θp, ψp}p∈P\P(π) is uniformly distributed.

Proof According to Theorem 2.2, we need to prove c0 = 1 and cm = 0 for all

positive integers m’s. For c0, we have

A0(x) =

∑

p≤x
p∈P\P(π)

(α0
p + β0

p) = 1 · |NS f (x)|.

Thus, c0 = 1.
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For m = 1, by [3, 5], L(s, π) is entire and non-vanishing at Re(s) = 1. By Lemma 2.3,

A1(x) =

∑

p≤x
p∈P\P(π)

(αp + βp) = o(π(x)) = o
(

|NS f (x)|
)

= 0 · |NS f (x)| + o
(

|NS f (x)|
)

.

It implies that c1 = 0.

For m = 2, by our assumption, L(s, Sym2(π)) has analytic continuation for Re(s)≥1,

non-vanishing at Re(s) = 1. Therefore, by Lemma 2.3,

A2(x) =

∑

p≤x
p∈P\P(π)

(α2
p + β2

p) = o(π(x)) = o
(

|NS f (x)|
)

.

We obtain c2 = 0. Now we consider m ≥ 3. We have the following identity

am + bm
=

m
∑

i=0

am−ibi −

m−1
∑

i=1

am−ibi
=

m
∑

i=0

am−ibi − ab

m−2
∑

i=0

am−2−ibi .

Therefore, for m ≥ 3

Am(x) = Sm(x) − S̃m−2(x) = o(π(x)) = o
(

|NS f (x)|
)

.

This completes the proof of the theorem.

It is widely believed that the Ramanujan conjecture is true for cuspidal represen-

tations of GL2(AQ ). However, the assumption in Theorem 3.4 is not always true. For

instance, by [6], there is a cuspidal representation of GL2(AQ ) such that the L-func-

tions of its symmetric powers might have poles at s = 1. Yet, for the L-functions

attached to Hecke eigenforms, it is expected to be true. More precisely,

Conjecture 3.5 Let π be a cuspidal automorphic representation of GL2(AQ ) attached

to a Hecke eigenform with the Nebentypus ωπ . Then for all positive integer m, the

L-functions L(s, Symm(π)) and L(s, Symn(π) ⊗ ωπ) have analytic continuation for

Re(s) ≥ 1, and are non-vanishing for Re(s) ≥ 1.

Combining Theorem 3.4 and the conjecture above, we have

Theorem 3.6 Let ω be a non-trivial primitive Dirichlet character and f a Hecke

eigenform with the Nebentypus ω. Let π be a cuspidal automorphic representation

of GL2(AQ ) attached to f . Assume that for all positive integers m, the L-functions

L(s, Symm(π)) and L(s, Symm(π) ⊗ ω) have analytic continuation for Re(s) ≥ 1, and

are non-vanishing for Re(s) ≥ 1. Then the sequence S f = {θp, ψp}p∈P\P( f ) is uni-

formly distributed.

We conclude this paper with several remarks.
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(1) Our results can be extended to any number field.

(2) The Ramanujan conjecture in Theorem 3.4 is a part of the Langlands pro-

gram. It is conjectured to be held for any cuspidal representation of GL2(AQ ).

(3) For Conjecture 3.5, the existence of the meromorphic continuation of L-func-

tions for symmetric powers is also a part of the Langlands program. Therefore, it is

conjectured to be true in general. As we remarked before, the holomorphic condition

on Re(s) = 1 is not true in general. However, a deeper conjecture predicts that if π is a

cuspidal representation attached to a non-CM Hecke eigenform, then for all positive

integers n, Symn(π) are cuspidal as well. This explains why it is a general belief that

Conjecture 3.5 should be true even if it is not true in general.

(4) In the cases of non-CM elliptic curves, by [9], the assumption of non-vanish-

ing can be removed. It should be possible to remove this assumption from Theo-

rem 3.6. We plan to investigate it in future work.
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