ON PARTITIONING PLANAR GRAPHS
Stephen Hedetniemi

(received December 8, 1967)

In 1879 Kempe [5] presented what has become the most famous of
all incorrect proofs of the Four Colour Conjecture, but even though his
proof was erroneous his method has become quite useful. In 1890
Heawood [4] was able to modify Kempe's method to establish the Five
Colour Theorem for planar graphs. In this article we show that other
modifications of Kempe's method can be made which enable one to
establish more results about planar graphs. By this process we obtain
upper bounds for several parameters which involve partitioning the
point set of a graph. In particular, we show that the point set of any
planar graph can be partitioned into four or less subsets such that the
subgraph induced by each subset is either disconnected or trivial
(consists of a single point). We also show that the point set of any
planar graph can be partitioned into three or less subsets such that the
subgraph induced by each subset contains no cycles.

A graph G consists of a set V = V(G) of points together with a
set E = E(G) of unordered pairs [u,v] of distinct points of V(G),
called lines of G. A line [u,v] is said to join points u and v. A
graph G' is a subgraph of G, denoted G'CG, if V'C V and
E'CE. The subgraph <S> induced by a set S of points consists of
the set S together with the set of all lines of G which join two points
of S. Given a point ue V(G), by G-u we mean the graph obtained
from G by deleting point u and all lines [u,v] incident with it. A
complete graph Kp is a graph containing p points in which every

pair of distinct points are joined by a line.

Let m = {Vi’ V., ...,V } be apartition of the set of points of
m

2
a graph G. The factor graph G/w is the graph whose points are the
m subsets Vi’ and [Vi’ Vj] ¢ E(G/m) if and only if there exist points

ue V,ve V., and [u,v]e E(G). A partition 7 is complete if G/x
1 J

is a complete graph.

Let P denote any property of a graph G. A subset S CV(G) is
a P-setof G if {S} has property P. A P-colouring of G is an
assignment of colours to the points of G such that for any given
colour the set of points having this colour is a P-set. An (m, P)-
colouringof G is a partition 7 = {Vi’ Vo, Vm} of V(G) such that
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every subset Vi is a P-set. The P-chromatic number XP(G) of G is the

smallest integer m for which G has an (m, P)-colouring. In the
case where P denotes the property that a graph be totally disconnected,
the terms P-colouring, (m, P)-colouring, and P-chroma tic number
Xp(G) coincide with the traditional terms colouring, m-colouring, and

chromatic number x(G), respectively. For any other definitions not
given here, the reader is referred to [3].

Using our terminology the Four Colour Conjecture can be stated
as follows: if PO denotes the property that a graph be totally

disconnected, then for any planar graph G, Xp (G) < 4. Even though
0 =

Kempe's method apparently does not enable one to settle the Four

Colour Conjecture, his method does enable one to prove the following

modification of this conjecture. Let P1 denote the property that a

zraph be either disconnected or trivial.

THEOREM 1. For any planar graph G, we have Xp (G)<4.
’ =

Proof. We proceed by induction on the number p of points in G.
Clearly this holds for all graphs having p < 4 points. Suppose then
that it holds for all planar graphs having p-1 points and let G have
p points. Since G is planar it must have at least one point, say u,
of degree five or less (cf. Kempe [5]).

Let u have degree < 3, and consider the graph G-u. By
hypothesis Xp (G-u) < 4. ‘Therefore since u has degree <3, we
4 = =
can always assign a fourth colour to point u given any (4, P1)-colouring

of G-u to obtain a (4, Pi)-colouring of G, i.e., Xp (G) < 4.
1 =

Next let u have degree 4, and suppose there exists at least
one (4, P )-colouring of G-u which assigns only three colours to the
four points adjacent to u. We can then assign a fourth colour to point

u to obtain a (4, Pi)—colouring of G. Suppose then that every (4, P1)—

colouring of G-u assigns a different colour to each of the four points
adjacent to u. This situation is described by Figure 1 in which the

points adjacent to u are coloured C'l’CZ’C3’ and 04.
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Fig. 1

Consider in this case the number of points in G-u which have
colour ci in any given (4, Pi)-colouring of G-u. If for any colour
<, this number is greater than one, then by assigning colour < to
point u, the subgraph of G induced by the set of points coloured <
will still be disconnected. Thus we will obtain a (4, Pi)—colouring of
G. On the other hand, in every (4, Pi)-colouring of G-u, the number
of points coloured Ci’ CZ’ c3, or c4 is exactly one, i.e., G-u consists
only of the four points adjacent to u. But since G 1is planar at least

two of these points are not adjacent. Therefore we can assign the colour

c, to these two points, colours <, and N to the other points adjacent

to u, and colour c4 to point u. This produces a (4, Pi)—colouring of G.

Finally, let point u have degree 5. Essentially we only have to
consider the case that every (4, P1)— colouring of G-u assigns four

colours to the points adjacent to u. In this case any (4, P'l)_ colouring

of G-u must colour the five points adjacent to u in one of the two
ways illustrated in Figure 2.

2
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Fig. 2
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As before, if any point adjacent to u is not the only point with

colour c., i=2,3, or 4, ina given (4, Pi)—colouring of G-u, then
i
we can assign colour c, to point u and produce a (4, P'l)-colouring
i

of G. Otherwise in every (4, P1)—colouring of G-u, the points with
colours €, Cao and 4 in Figures 2a or 2b are the only points so
coloured. Consider then, in either case, whether these three points
are mutually adjacent. If they are not, then at least two of them are

not adjacent and can be assigned colour c¢ the remaining point

2,
adjacent to u can be assigned colour <, and point u can be assigned
4

three points are mutually adjacent, we have a situation essentially
described by Figures 3a and 3b.

colour c¢,. This produces a (4,P1)—colouring of G. Finally, if these

Fig. 3

In the case of Figure 3a the two points coloured c, can be

assigned colour c3, and thus u can have colour cy- In the case of

Figure 3b, one point with colour c, can be assigned colour Cqo the
other point with colour c, can be assigned colour cy and point u can

be assigned colour <y This produces a (4, P )-colouring of G in
either case, completing the proof.
An interesting aspect of this theorem is its relation to the famous

conjecture of Hadwiger [2]: x(G) = n implies G has a connected
contraction onto Kn. Relatively few conditions are known which

guarantee that a given graph have a connected contraction onto K ;
n

it readily follows, however, that if XP (G) = n, then the complement
1
of G, G, has a connected contraction of order n.

‘ A planar graph G is said to be outerplanar (cf. Chartrand and
Harary [1]) if G can be drawn in the plane in such a way that every
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point lies on the exterior region. This class of planar graphs has been
studied by Tang [7], who showed among other things that if a graph is
outerplanar then its chromatic number does not exceed three. A simple
proof of this result can be given which is based on the observation in

[7] that every outerplanar graph contains at least one point of degree

< 2. We will now use this observation to obtain another result about
outerplanar graphs which closely parallels Theorem 1.

THEOREM 2. For any outerplanar graph G, Xp (G) < 3.
1

Proof. We proceed again by induction on the number p of points
in G. Clearly this holds for all outerplanar graphs having p< 3
points. Suppose then that it holds for all outerplanar graphs having p-1
points and let G have p points.

Since G is outerplanar it must contain a point, say u, of
degree < 2. Consider the graph G-u. Since G-u is outerplanar, it
follows by hypothesis that Xp (G-u) < 3. But clearly, since u has

1 =
degree < 2, we can always assign a third colour to u given any
(3, P'l)_ colouring of G-u, to obtaina (3, P1)—colouring of G.

Thus, xp, (G)< 3.
L =

The graphs in Figure 4 illustrate that the bound in Theorem 2 is
tight; each outerplanar graph in Figure 4 has Pi—chromatic number

equal to 3.

Fig. 4

It is interesting to observe that for any graph G which contains

no cycles, i.e., for any forest, Xp (G) < 2. This follows immediately
1 =
from two simple observations: for any graph G, Xp (G) < x(G), and
i =
for any forest G, x(G) < 2. Thus we observe that if a graph G is
totally disconnected, a forest, outerplanar, or planar, then Xp (G)
1

is less than or equal to 1,2,3, or 4, respectively, and each of these
bounds is tight.

A striking similarity among the graphs in Figure 4 serves to
illustrate the following result. The join G + G' of two graphs G and
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G' is the graph for which V(G+G') = V(G) U V(G') and
E(G+G') = E(G)U E(GHU {[u,v]|u ¢ V(G), v e V(G")}.

THEOREM 3. For any graphs G and G'

G+G') = G) + G").
Xp ( ) = xp (G +xp5 (GY)
1 1 1
1 1 3

Proof. Clearly, XP,l(G+G )S'XP1(G) +XP1(G ), for if

Xp (G) = m and Xp (G') = n, then any (m,Pi)—colouring of G
1 1

combined with any (n, P'l)-colouring of G' can produce an (m+n, Pi)_

colouring of G+G!'.

Conversely, let XP (G+G') = k. Then in any (k,Pi)-colouring
1
of G +G' no point of G can be assigned the same colour as any point
of G' and conversely. For if a pointin G 1is assigned the same colour,
say c,, asa point in G', then no matter what other points are coloured

N in G + G', the set of points having <, will induce a connected

subgraph of G + G'. Therefore Xp (G+G?) ZXP (G) +XP (G").
1 1 1

The arboricity arb (G) of a graph G is the minimum number
of line-disjoint, acyclic subgraphs which contain all the lines of G.
In [6] Nash- Williams established a formula for the arboricity of any
graph, a consequence of which is the result that the arboricity of
every planar graph is three or less. We define the point-arboricity
of a graph G as the minimum number of induced, point-disjoint,
acyclic subgraphs which contain all the points of G. Using our
terminology above it can be seen that if P_ denotes the property that

2
a graph contain no cycles, then the point arboricity of G equals
Xp (G).

PZ

Again using Kempe's method, we now obtain a result, a corollary
of which asserts that the point-arboricity of every planar graph is
also three or less. A property P is treelike if K{1 has property P,

and whenever a subset S of points is a P-set and there exists a point
v ¢ S which is adjacent to at most one point of S, then SU{v} is
also a P-set. The property P2 that a graph contain no cycles is

treelike, for example.

THEOREM 4. If P denotes any treelike property of a graph,
then for every planar graph G, XP(G) < 3.
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Proof. We proceed in much the same way as in the proof of
Theorem 1, and assume that G contains a point u of degree five or
less. If u has degree 1 or 2, then since by hypothesis
XP(G—u) < 3, we can always assign a third colour to point u, given

any (3, P)-colouring of G-u, to obtain a (3, P)-colouring of G.
If point u has degree 3,4, or 5, and every (3, P)-colouring of
G-u assigns three colours to the points adjacent to u, then in every

(3, P)-colouring of G-u, at least one point adjacent to u will have a
colour, say c,, different from all other points adjacent to u. But
i

then since P 1is treelike, we can assign colour ¢, to u and obtain a
i

(3, P)-colouring of G; it will still be the case that the subgraph induced
by the set of points having colour < will have property P.

COROLLARY 4a. If P_ denotes the property that a graph contain

2
no cycles, then for every planar graph G, Xp (G)< 3, i.e., the
2

point-arboricity of G is < 3.

Since the property that a graph be outerplanar is treelike, we
obtain

COROLLARY 4b. The points of every planar graph G can
be partitioned into three or less subsets such that the subgraph induced

by each subset is outerplanar.

The following result, which follows immediately from Theorem 4,
is also a corollary of Nash- William's result on the arboricity of
planar graphs.

COROLLARY 4c. Every planar graph can be decomposed into a
line disjoint union of at most three bipartite graphs.

Proof. From Corollary 4a, let 7 = {V1,V2, V3} be a partition

of the points of G into three subsets, each of which induces a subgraph
of G which contains no cycles. The set of lines of G can be
decomposed as follows:
E(G) = EKV,)))UEV EWV U E

(@) = BV UEQNHUEW))UE ,UE UE,,, where

Eij denotes the set of lines of G connecting points of V., and Vj.
i

It follows therefore that the partition {E((V17 YU E23 E((V27) U E13,
E((V3\]) U EiZ} of E(G) determines a decomposition of G into at
most 3 subgraphs each of which contains no odd cycles, and hence

is bipartite.

The last result of this paper is a straightforward extension of
the proof of Corollary 4c. Consider for any graph G the minimum
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number of bipartite subgraphs of G whose union is G, and denote
this number by Xl':)(G)'

THEOREM 5. Let P2 denote the property that a graph contain
Xp (G)
-2+ 1.

no cycles; then for any graph G,X".D(G) < >

Proof. Let x_ (G) =m and let w ={V _,V
—_— P‘2 1
partition of V(G) such that every subset Vi is a Pz—set. It can be

2,...,Vm} be a

seen that the factor graph G/m is complete and has m points,
V(G/m) = {Vi’ . ,Vm} . Consider then the arboricity of G/m = Km

By the result of Nash- Williams [6], arb(Km) = {%l‘} . Thus we

can construct {?} line disjoint subgraphs (forests), say

F1, FZ, P F{%} , each of which contains no cycles, whose union is

G/w. Corresponding to each of these subgraphs Fi of G/m we can
uniquely construct a bipartite subgraph Gi of G such that V(Gi) = V(G)
and [u,v]e E(Gi) if and only if u e Vi’ Ve Vj and [Vi’vj] € E(Fi)'

Since any two subgraphs Fi’ Fj of G/m have no lines in common, it
follows that the corresponding subgraphs Gi' G. of G have no lines

in common. Finally consider the subgraph H = <V17 U <V2>U. . U<Vm>
i.e., V(H) = V(G) and [u,v]e E(G) if and only if for some 1i,u,v ¢ Vi

and [u,v] e E(G). Since each subset V. isa P, -set, H is clearly

2
bipartite. It follows now that Gi’ GZ, ey G{%} ,H is a collection of

{%} + 1 line disjoint bipartite subgraphs whose union is G.
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