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1. Introduction. Professor Dresden called to our attention the following 
theorem :J 

If Si, S2, . . . , S m are m line segments parallel to the y-axis, all of equal 
lengths, whose projections on the x-axis are equally spaced, and if we assume 
that a straight line can be made to intersect every set of three among these segments, 
then there exists a straight line intersecting all the segments. 

This theorem was conjectured by M. Dresher; a first proof, unpublished, 
was communicated to us by T. E. Harris. Wide generalizations are possible. 
Dr. Harris noticed that we can dispense with the equidistance of the lines 
carrying our segments. We shall see in a moment that the equality of the 
lengths of the segments is likewise a superfluous assumption. A further gener­
alization, also due to Dr. Harris, is as follows: The intersecting straight lines 
can be replaced by general parabolic curves 

(1) y = a0x
n + aixn~l + . . . +an (n^. m — 2); 

again, if each set of n + 2 among our segments can be cut by such a parabola, 
then all may be simultaneously intersected by one such curve. 

In this note we wish to point out the close connection of this problem, and 
of the more general problem of best approximation in the sense of Tchebycheff, 
with two remarkable theorems on convex domains, due to E. Helly, which 
may be stated as follows;2 

THEOREM 1 (Helly). If C\, Co, . . . , Cm is a finite collection of convex sets, 
which need not be closed or bounded, in the n-dimensional Euclidean space En 

(m^ n + 1), such (hat every n + 1 among the sets have a common point, then 
all m sets have a common point. 

THEOREM 2 (Helly). Let [D\ be an infinite collection of closed and convex 
sets D, which need not be bounded, in En, such that every n + 1 among the sets 
have a common point. Then all the sets D have a common point, provided there 
exists a finite subcollection D'', D", . . . , D(k), (k^ I), of elements of {D\, such 
that their intersection A = D'D", . . . , D{k) is non-void and bounded. 

Let us first see howr very directly the Dresher-Harris theorem may be de­
rived from Helly's Theorem 1. Let 

Sv: x = xv, bv^. y^k c, 
{y = 1, . . . , m; x\ < x2 < . . . <Xm, m^ 3), 

Received March 22, 1949. 
^ e e [8], p. 4, where the theorem is stated without proof. 
2See [4], [6], and [7]. 
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be the m segments of the theorem. Consider the totality of lines y = a^x + a,\ 
intersecting the pth segment S„; the requirement of intersection is expressed 
by the inequalities 

(2) bv^ a0x„ + a i ^ cv. 

In the plane E2 of the variables (a0,ai), the double inequality (2) defines a 
parallel strip of slope — xv. This strip, which we denote by Cv, is certainly a 
convex set in E2. I et us now consider the collection of m convex sets C\, C2, 
. . • , Cm, corresponding to the segments Si, S2, . . . , Sm. From the assumption 
of the Dresher-Harris theorem we know that every three among these sets 
have a common point. Since all assumptions af Helly's Theorem 1 are satis­
fied in E«, we may conclude that all m sets Cv have a common point, hence all 
m segments Sv are intersected by a line. This proof clearly extends to the case 
of the parabolic curves (1) by applying Helly's Theorem 1 in the space En+i 
of the variables (a0, #i, . . . , an). 

As a second example of the versatility of Helly's ideas we shall again use 
Theorem 1 to give a new proof of the following separation theorem.3 

THEOREM OF PAUL KIRCHBERGER. Let S = {P} and S' = {Pr} be two finite 

sets of points in En. We shall say that a hyper plane -K separates strictly S from 
S', if all points of S are on one side of ir, while all points of S' are on the other 
side, with none of the points lying on ir. Such a strictly separating plane T exists 
if and only if the following condition is satisfied: For every set T of n + 2 
points chosen arbitrarily from S and S', there should exist a hyper plane TT which 
separates strictly the S-points of T from the Sr-points of T. 

The necessity of the condition is obvious; to prove its sufficiency let us 
assume that it is satisfied and prove the existence of a strictly separating plane. 
We introduce in En a coordinate system (xi, . . . , xn). In the space £ n +i of 
the variables (#i, a2, . . . , an+i), and corresponding to each point P = (x i , . . . , xn) 
of S, we define an open half-space HP by the inequality 

(3) HP: aiXi + a2x2 + . . . + anxn + an+i > 0. 

Likewise, corresponding to each point P' = (x'i, x'2, . . . , x'n) of S', we define 
in £ n +i an open half-space H?> by the inequality 

(4) HP>\ aix'i + a2x'2 + . . . + anx
f
n + an+i < 0. 

3See [5], where a proof of this theorem requires nearly 24 pages. The theorems of Kirch­
berger and Dresher-Harris are not unrelated. The following new generalization of the Dresher-
Harris theorem indicates the connection: Let S be a finite set of points Pi = {xi,yj) in the plane 
and let Sf be a second set of points P'j — {x'j,y'j). We say that a line y + aox + a\ separates 
the sets S and S', if y^ aoXi + aifor all points of S, and y'y ^ ao x'j + aifor all points of S'. 
There exists a line y = aox + a\ separating S from S' if and only if the following condition is 
satisfied : For every set T of three points chosen from S + S' there should exist a line separating 
the S-points of T from the S'-points of T. We obtain the Dresher-Harris theorem as a special 
case of this theorem if we take S to be the set of upper endpoints of the segments Sv, while 5 ' 
is the set of their lower endpoints. A proof of this generalization by means of Theorem 1 is 
obvious and so is its extension to parabolic curves (1). 
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In terms of the finite collection {HP} + \HP') of open half-spaces of £ n +i , 
Kirchberger's condition means that every n + 2 among these convex half-
spaces have a common point. By Helly's Theorem 1 we conclude that there 

n 

is a point (&i, . . . , an+i), with X|a„| > 0, common to all of these half-spaces.4 

l 

The corresponding plane a\X\ + . . . + anxn + an+i = 0 separates strictly 5 
from Sf, and the proof is concluded. That Kirchberger's theorem becomes 
false if the number n + 2 is replaced by n + 1 is seen by the example of the 
set S being the set of n + 1 vertices of a simplex, while Sr has only one element 
namely the centroid of the simplex. These two sets 5, 5 ' cannot be separated, 
though the points of S and 5 ' occurring in any (n + l)-tuple can be separated. 
We also wish to remark that the theorem becomes false if the sets S, Sf are 
allowed to be infinite. Indeed, if in £ 2 we take S to be the exponential curve 
y = exp x while S' is the x-axis, then clearly every n + 2 = 4 points of 5 + S' 
can be strictly separated by a line, but not the sets 5, S'. 

Concerning Kirchberger's theorem the following remark is of interest. Let us 
replace the "strict separation" of the theorem by "separation" in the weaker 
sense that points of 5 or 5 ' are also allowed to lie on the separating plane 7r. 
We may then state the following proposition ; 

Kirchberger's theorem in En remains true if in its statement "strict separation" 
is replaced by "separation" in the above wider sense, provided we replace in the 
theorem's condition the number n + 2 by 2n + 2. Also no number smaller than 
2n + 2 will do. Moreover the sets S and S' may now also be infinite. 

In order to prove this new result let us define in En+i, as we did above, 
the collection of closed half-spaces 
(5) HP: aixi + . . . + anxn + an+i^- 0, for P = (xi, . . . , xn) G 5, 

(6) Hp'i aix'i + . . . + anx'n + a n + i ^ 0, for P ' = (x\ , . . . , xf
n) Ç Sf. 
n 

We wish to prove the existence of a point (ai, . . . , a n + i ) , with X)|a„| > 0, 
l 

which is common to all of these half-spaces. Helly's theorem does not help 
us here any more, but we can apply the following remarkable theorem of L. L. 
Dines and N. H. McCoy:5 

A finite or infinite collection of closed half-spaces in £ n +i , each half-space 
having the origin 0 on its boundary, do have a common point different from 0, if 
every set of2n + 2 among our half-spaces have a common point different from 0. 

This theorem assures the existence of a point (#i, . . . , an+i) ^ (0, . . . ,0) 
such that the inequalities (5) and (6) hold for all P € 5, and all P' £ S1', 

rc+i 
4Actually we know only that S \av\ > 0. However, all the points of sufficiently small 

spherical neighbourhood of the point (a0, . . . , an+i) likewise satisfy all conditions and among 
n 

them we can certainly find one for which S \av\ > 0. 
l 

BSee [3], pp. 61-63; see also [2], pp. 962-963, where there are also references to a paper by 
C. V. Robinson. 
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respectively. This would mean that d\X\ + . . . + anxn + a n + i = 0 is a separ-
n 

ating hyperplane as soon as we know that J^\av\ > 0. This last point, how-
l 

ever, is clear, for di= . . . =an=0 and (5) and (6) would imply a n + i ^ 0, 
a n + i ^ 0, hence an+i = 0, which is impossible. 

The following example shows that the number 2n + 2 of the new version 
of Kirchberger's theorem may not be replaced by 2n + 1: Let S consist of 
the n + 1 vertices Pi , . . . , Pw+i of simplex o-, and let S' consist of the same 
n + 1 points P\, . . . , P ' n+i, with P'„ = Pv. Choosing 2n + 1 points of 
5 + 5 ' amounts to leaving out P„, or perhaps P' v. The remaining 2n + 1 
points are clearly separated by the (^ — 1)-dimensional face of the simplex a 
which is opposite to the vertex Pv. Hence the conditions of the theorem are 
verified for every set of 2n + 1 points, while there is no hyperplane w separat­
ing S from S'. 

The connection of Helly's theorems with the idea of Tchebycheff approxi­
mation, i.e. the consideration of the minimum of a maximum, suggested to us 
a new proof6 which we claim to be the first proof of Helly's theorems to be 
entirely geometric, in the sense that every single one of its steps has an intuitive 
geometric meaning. This proof is given in the first part of the paper. The 
second and last part is devoted to an application of Helly's theorems to 
TchebychefFs approximation problem. 

A N E W PROOF OF HELLY'S THEOREMS 

2. On proximity points of convex domains. We shall see that the main 
point in proving Helly's theorems is to prove Theorem 1 for the special case 
when the convex sets Ci, . . . , Cm are also closed and bounded. A closed and 
bounded convex set in En will be referred to as a convex domain. Let D\, 
D2, . . . , Dm be such convex domains. If Q Ç En, we denote by d{Q,Dv) the 
distance from the point Q to the domain Dv. The point function 

f(Q) = max d(Q,D,) 

is evidently non-negative and continuous throughout En. Since f(Q)—-> °° as 
Q —•> oo y the function f(Q) assumes somewhere its absolute minimum value. 

DEFINITION. An absolute minimum point P , of f(Q), will be called prox­
imity point of our domains D\, . . . , Dm. It has the property 

max d(P,Dv) = min max d(Q,Du). 
V Q V 

6Three earlier proofs have come to our attention: By J. Radon [7], E. Helly [4], and D.. 
Kônig [6]. Radon's proof, which is the shortest, is analytic. The proofs by Helly and Konig, 
essentially equivalent to each other, are geometric. However, all three proofs use the method 
of mathematical induction, a fact which seems to obscure the intuitive background of the 
results. Our proof uses the metric of En and is therefore related to the ideas of Menger and 
Blumenthal (see [2]). 
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The minimal value f(P) = minf(Q) will be called the proximity of these domains 
and denoted by the symbol Prox (Dh . . . , Dm). 

Evidently we have Prox (Dh . . . , Dm) = 0 if and only if our m domains 
have a point in common and if this is the case, any point of their intersection 
is a proximity point.7 

3. A characteristic property of proximity points.8 The following theorem 
expresses a fundamental property of proximity points. 

THEOREM 3. Let D\, . . . , Dm, (m^ 2), be convex domains in En having no 
common point. Let P be a proximity point of these domains, the proximity 
p = Prox (Pi, . . . , Dm) being necessarily positive. Let Pv 6 Dv be such that 
PPV = d(P,Dv), hence we have p = max PPV. Then there are s among the m 
normals PPV from P to our domains, PP\, PPi, . . . , PPS, say, such that 

(i) 2 ^ 5 ^ n + 1. 

(ii) P P i = PP2 = . . . = PPS = p. 

(iii) The points Pi, P2, . . . , Ps are the vertices of a (s — 1)-simplex a, which 
simplex contains the point P in its (s — 1)-dimensional interior. 

(iv) The corresponding s domains Di, D2, . . . , Ds have no common point. 

The last conclusion is for us the important one. In fact we shall use this 
theorem only in the following abbreviated form: 

COROLLARY. If m convex domains, of En, have no common point, then some 
s among these domains have no common point, where 2 ^ s ^ n + 1. 

Proof of Theorem 3. Suppose that 
PPX = PP2 = . . . =PPh = p, PPh+1 < p, . . . , PPm < p ( K m). 

Clearly h^ 2; for if h = 1, then P could not be a proximity point. Indeed, 
then max d(P,Dv) could be diminished below its present value p by moving P 
slightly along PPi towards Pi . 

Consider now the convex hull of the points Pi , . . . , P^, which we denote by 

K = K(Pl,...,Ph). 
We claim that P G K, for otherwise let PPf be the shortest distance from P to 
K; we could then, again as before, diminish all distances PPV = d(P,Dv), 
(v — 1, . . . , h), by moving P slightly along PPf towards P'. Hence indeed 
P 6 K ( P i , ...,Ph). 

We shall now use the following known result :9 If P is a point of the convex 
7As illustrations of the notion of a proximity point we mention the following two proposi­

tions of elementary geometry: Let A, B, C,be the vertices of an acute-angled triangle in the plane. 
The proximity point of the three points A,B,C, is the circumcenter of the triangle. The proximity 
point of the three segments BC, CAf AB, is the incenter. 

8The properties (i), (ii), and (iii) of the point P , as described in Theorem 3 are indeed charac­
teristic for a proximity point, a fact which we mention without proof because we do not use it. 

9See [1], Satz IX on p. 607. This theorem is easily derived from a well known result of 
Caratheodory to the effect that every point of K(Pi, . . . , Ph) is a centroid with positive masses 
of a t most n + 1 points among the Pv. 
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hull K(Pi, . . . , Ph), then either P coincides with one of the points P„, or else we 
can find a simplex a, of dimension s — 1 ranging from 1 to at most ny having 
as vertices only points from among the points Pv, and such that P is in the (s — 1)-
dimensional interior of a. Returning to our proximity point P , we remark 
that P cannot possibly coincide with any of the points P y , since PPV = p > 0, 
(v = 1, . . . , h). Therefore the above result assures us of the existence of a 
simplex of vertices Pi , P2 , . . . , P s , say, satisfying the conditions (i), (ii), and 
(iii), of Theorem 3. 

There remains to prove the fourth and last statement of the theorem to the 
effect that DiD2, . . . , Ds = <£. We consider the 5 unit vectors 

a; = PPi/PPi (i = 1 4 
and the 5 half-spaces Hi defined by 

(7) Hn PQ.tè P (i= l , . . . , s ) . 
Since Di C H^ it is sufficient to show that 

(8) HiH2. . . H8 = 0. 
Suppose (8) were false and let Q Ç Hi, (i = 1, . . . , s) ; then all inequalities (7) 
hold. However, since P is in the interior of cr, we have a vector relation of 
the form 

(9) £ KiZi = 0, with all K% > 0. 
1 

But then, on multiplying (9) scalarly by PQ, in view of (7), we obtain 

0 = Z Ki(PQ • cti) ̂  L KiP = P E Ki, 
which clearly contradicts the positivity of p and /ct. This completes our proof. 

4. A proof of Helly's Theorem 1 concerning a finite collection of convex 
sets. We distinguish two cases. 

First case: We assume that the m convex sets Cv of the theorem are also 
closed and bounded, an assumption which we emphasize by writing Cv = DVj 

(v — 1, . . . , m). This case is now immediately disposed of, for if we assume 
to the contrary that our m convex domains DP have no common point, then, 
by the Corollary of Theorem 3, some 5 among them ( 2 ^ s ^ n + 1), have no 
point in common, a fact which contradicts the assumption of Theorem 1 to 
the effect that every n + 1 domains have a common point. 

Second case. We assume that the Cv are convex sets which need not be 
closed or bounded. By assumption every combination C^, C»lf . . . , dn of 
n + 1 distinct sets have a common point. Let such a point be Ai0. ix in 

and let it be regarded as a symmetric function of its n + 1 distinct subscripts. 
Corresponding to each C» we now define the convex domain 

Di = K(AUh y j 
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which is defined as the convex hull of the ( J points Ai, 3-lt . . . , yn where 

ju . . . , j n runs over all combinations of n among the m — 1 numbers 
1, . . . , i — 1, i + 1, . . . , m. Since Ai,jlt . . . t yn Ç C;, we have 

(10) A- C Ci9 

because d is convex. Every set of n + 1 among these domains, Dî0, Diu 

. . . , D»n, say, have a point in common, namely the point A^, tl in. By 
the i r s / case already established we conclude that all Di have a common point. 
In view of (10) we now obtain the desired conclusion to the effect that the 
sets d have a point in common. 

5. A proof of Helly's Theorem 2 concerning an infinite collection of closed 
convex sets. Let {D} be the given infinite collection of closed convex sets. 
By Theorem 1 we know that the elements of every finite subcollection of [D] 
have a common point. Consider the new collection {D* = AD}, where A is 
the non-void and bounded set defined in the statement of Theorem 2, while D 
ranges over the given collection {J9}. The elements of {D*} have the follow­
ing properties ; 

(i) They are closed, bounded and non-void convex sets, 
(ii) The elements of every finite set of .D*'s have a common point. The 

desired conclusion to the effect that all the Z>*'s, and therefore also all the 
Z)'s, have a common point now follows from the following general Theorem: 

THEOREM OF F. RIESZ:10 If a collection {A} of bounded and closed sets in En 

has the property that the elements of every finite subcollection have a common 
point, then all A1 s have a common point. 

AN APPLICATION OF HELLY'S THEOREM TO TCHEBYCHEFF'S 

APPROXIMATION PROBLEM11 

6. Approximations to discontinuous functions. We first derive somewhat 
differently a classical result concerning the following finite problem: Let there 
be given n + 1 points 

(11) (Xp,yv) (v = 0, 1, . . . , w; XQ< XI< . . . < xn); 

we wish to determine the polynomial 
(12) P(x) = a0x

n~l + alX
n~2 + . . . ' + an_! 

which minimizes the expression 
(13) max|;y„ - P(x,)\. 

We need the following lemma: If the real variables (u0l uh . . . , un) are connected 
by the linear relation with real constant coefficients 

10For the first published proof of Riesz's theorem see [6], p. 210; it is an almost immediate 
consequence of the Heine-Borel theorem. 

l lAn excellent reference to Tchebycheff's approximation problem is [9], Chapter VI. 
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(14) 60 u0 + 61 u\ + . . . + bnun 

then the expression max \uv\ has the minimal value 
(&0&1 bn * 0), 

(15) p = ^ , 

N+N+...+N 
which is reached for just one set of values uv = u*v given by 
(16) u*v = p sgn (cb9) (v = 0, . . . , n). 

We lose no generality in assuming that c > 0, for if c = 0 the result is 
trivial and if c < 0 we may multiply both sides of (14) by — 1. In view of 
(15), the relations (16) indeed define a solution of (14); (16) also imply that 
\u*v\ = p, hence p = max \u*v\. Let now (uv) be an arbitrary set satisfying 
the two relations 

HbvUy and max w, l£ 

This set (wv) must be of the form 

uv = e„«*„ = €„psgn (by), where — 1 ^ e„^ 1, (v = 0, . . . , 1). 

Now c* = Z) fr"^ = L M , P sgn (&„) = £ €,p|i, | , or X) £„p|i„| = c. 
In view of (15) or £ p|è„| = cy the last relation implies that e„ = + 1 for all 
v, and therefore uv = w*„. This completes the proof of our lemma. 

Returning to the problem of minimizing (13), let uv = yv — P(xv) be the 
discrepancies between the points (11) and the polynomial (12). These dis­
crepancies are not independent variables, for they are obviously connected by 
the single linear relation 

^n—l 

-1 

u0 — 3>o 1 x 0 . . 
Ui — yi 1 Xi . . 

X0" 

Xi" 

or 

un 

UQ 1 . 

U\ 1 . 

un 1 . 

yn 1 xn 

. x0 

. xi 

» - l 

n—1 
__ 

n—1 

yo l 
yi 1 

Jn 1 

= 0, 

x0" 
X i n 

Since the coefficients of (uv) on the left-hand side of this linear relation alter­
nate in sign, we obtain by (15) for the minimal value of (13) the explicit 
expression 

n— 1 

(17) p = abs. val. 

?0 1 XQ . . 

y\ 1 xi . . 

yn 1 xn . . 

Xo" 

Xi" 

1 Xo 
1 Xi 

Xo" 

Xin 

( ~ l ) n l x n 

By (16) we also know that this minimal value p is reached iov just one poly­
nomial P(x) for which the discrepancies uv — yv— P(xv) are all equal in abso­
lute value to p and alternate in sign. 
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Concerning the analytical problem of best approximation of functions we 
wish to prove the following 

THEOREM 4. Let f(x) be a real function defined in a ̂  x ^ P about which we 
only assume that it is bounded. Given n (n^ 1), there exists a real polynomial 
P*(x), of degree not exceeding n — 1, which minimizes the expression 
(18) sup \f(x) - P(x)\, 

giving it its minimal value 

p = sup \f(x) -P*(x)\. 
a£x^8 

For this minimal value p we have the relation 

(19) p = sup p(x0, xi, . . • , xn) for a^ x0 < Xi < . . . < x m ^ P, 

where 

1 1 XQ . . . XQ
n~l j 

- 1 l X i - . - X i 7 1 - 1 

\ J-J I Xn . . . Xn j 

In words, (19) means that the best approximation p of our function is the 
supremum of its best approximation p(x0, . . . , xn) over sets of n + 1 distinct 
points of the range [a,/3]. 

Proof. Since fix) is bounded, so are the best approximations (20). Let 
(21) po = sup p(x0,Xi, . . . , xn) for a^ x0 < Xi < . . . < x n ^ 0. 

In the space En of the variables (a0,#i, . . . , an-i) and corresponding to each 
value of x in the range [a,P], we consider the parallel layer of space Dx defined 
by 

(22) Dx: \f(x) - aoxn~l - a^'2 - . . . - an_x |^ Po. 

We claim that the collection {Dx} of convex domains in En satisfies both 
assumptions of Helly's Theorem 2. Indeed, if a^ £i < £2 < . . . < £ n ^ P, 
then A = D^ D%21 . . . , D^n is evidently non-void and bounded; in fact A is a 
proper parallelepiped, except in the case p0 = 0 when A reduces to a point. 
Let us now consider n + 1 distinct abscissae 

(23) a^ x0 < Xi < . . . < xn^ p. 

If P(x) is the polynomial of best approximation to the points (x„, f(xv)) 
{v = 0, . . . , w), we have by (21) 

\f(xv) — aoXy
n~l — . . . — an_i| = p(x0,Xi, . . . , xn) ^ p0 (v = 0, . . . , n). 

Geometrically this means that the n + 1 convex domains J9Xo, DZl, . . . , DXn 

have the common point (a0, . . . , a n - i ) . By Helly's theorem we conclude the 
existence of a point (a*0> . . . , a*n-i) which is common to all the domains £>*, 
hence there exists a polynomial P*(x) satisfying the inequality (22) for all 
x. For this polynomial P*(x) we therefore have 

(24) sup \f(x) - P * ( x ) | ^ po. 
a £xSP 

(20) p(x0,Xi, . . . , xn) = abs. val. 

f(x0) 1 x0 . . . x0
n * 

f(Xi) 1 Xi . . . X i " " 1 

Xn. • • • Xn 
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On the other hand, for an arbitrary polynomial P(x) we have 

SUp \f(x) — P(x) ^ SUp \f(Xv) — P{Xv)\^ p(x0, . . . , Xn), 

or 
Slip \f(x) — P(x)\^ p(x0, . . . , Xn). 

Taking the supremum of the right-hand side we find 

(25) sup \f(x) — P(x)\^ p0, for every P(x), 

in particular also 

(26) sup \f(x) -P*(x)\ Ï po. 

Now by (24) and (26) we find that 

(27) sup \f(x) - P * ( * ) | = PO. 
*^XSP 

From (25) and (27) we see p0 is the minimum value of (18), hence p = p0, 
which is what we wanted to prove. 

REMARKS. 1. The polynomial P*(x), whose existence has just been proved, 
need not be unique. Thus, if n = 2 and 

(28) f(x) = [x] ( 0^ * ^ 1), 
then a graph will show that every polynomial of the family 

P(x) = a 0 ( * - 1) + i ( 0 ^ a0^ 1), 
minimizes the expression (18), giving it its minimal value p = J. 

2. The existence part of Theorem 4 is also easily established directly by 
familiar continuity arguments; however, a proof of the relation (19), which 
seems to be new at least for a discontinuous/(x), would be difficult or at least 
involved without the use of Helly's theorem which bridges most naturally the 
gap between the finite (algebraic) best approximation problem for n + 1 
points and the analytical problem for an interval [a,/3]. 

3. Theorem 4 immediately generalizes to the case when the interval [a,/3] 
of definition olf(x) is replaced by an arbitrary bounded point-set of the x-axis. 
A further possible extension of Theorem 3 is as follows: The inequality (22) 
means that the curve y = P(x) intersects the family of vertical segments 
f(x) — po^ y^ f{x) + po, which are all of the same length 2p0. As in the 
Dresher-Harris theorem, this length could be required to vary with x. 

7. The classical case of continuous functions. We now add the important 
additional assumption that the function f(x) is continuous in the range [a}/3]. 
Then it is clear that p(x0, . . . , xn), defined by (20), is a continuous function 
of (x0, . . • , xn) as long as the inequalities (23) hold. We now extend the defi­
nition of the function p(x0, . . . , xn) throughout the closed domain 

(29) a ^ xo ^ xi$ . . . ^ xn ^ 0, 
by the convention that 
(30) p(x0,xi, . . . , xn) = 0 if the xv are not all different. 
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We claim that the extended function p(x0, . . . , xn) is continuous throughout 
the closed domain (29). Indeed, let (x0, . . . ,xn) be a point of (29) for which at 
least two x„'s coalesce, hence p(x0, . . . , xn) = 0. Let this point (x0, . . . , xn) 
be the limit of a sequence of points (xo(k\ . . . , xn

(&)) with 

a^ x0
{k) < X!ik) < . . . < xn

w ^ p (k = 1,2, . . .)• 
We have to show that 

(31) lim p ( * 0
( * \ . . . , *»<*>) = 0 . 

Clearly there exists a polynomial P(x), of degree n — 1 or less, so that 

/(*,) - P{xv) = 0 (v = 0, . . . , » ) , 
hence by the continuity ol f(x) and P(x) 

max |/(xv
(/k)) - P(x„(fc))| -> 0, as jfe -> « . 

V 

This, together with the inequality 

max \f(xv
w) - P(*,<*>)|£ p(xo(*\ . . • , xn™), 

V 

implies (31). 
Let us now return to our Theorem 4 to note the effect of the continuity of 

f(x). Let us assume that the best approximation p is positive. The continuous 
function p(xo, . . . , xn) assumes its maximum value p at a point (x*0, . . . , x*n) 
and because p is positive we must have 

a^ x*0 < x*i < . . . < x* n ^ 13. 
We may now readily establish contact with the classical oscillation properties 
of the polynomial P*(x) of best approximation12 p. In the first place P*(x) 
is now uniquely defined: Indeed, a polynomial P(x) of best approximation 
p = p(x*0, . . . , x*n) must satisfy the inequalities 

(32) \f(x\) - P(x*,)\ $ p = p(x*o, . . . , x*n) fr = 0 n), 
while we know from the discussion of the case of n + 1 points that there is 
only one polynomial satisfying (32); since P*(x) does satisfy (32), P*(x) is 
uniquely defined. Secondly, we know that the sequence 

u*„ - /(**„) - P*(x*,) (v = 0, . . . , »), 
has all its elements of absolute value equal to p and that they alternate in 
sign. These are the classical oscillation properties referred to above. Our 
example (28) shows that no such properties, beyond the general relation (19) 
hold in the case of discontinuous functions. 

APPENDIX (Added July 1, 1949). The authors are much indebted to the 
referee for the following two valuable references; 

1. The theorem of Dines and McCoy of our Introduction is an immediate 
corollary of a theorem of E. Steinitz, Bedingt konvergente Reihen und konvexe 
Système II, Journal fur Mathematik, vol. 144 (1941), pp. 1-40. On pp. 12-13 

12See [9], pp. 76-78. 
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Steinitz defines a family of rays in En, with common initial point 0, to 
be all-sided provided there are rays of the family on each side of every hyper-
plane through 0. An all-sided family is irreducible if no proper sub-family 
is all-sided. Steinitz then proves the following 

THEOREM. In any all-sided family of rays, there is contained at least one 
irreducible sub-family, such a sub-family has at least n + 1 and at most 2n rays. 

The Dines-McCoy theorem for the space En, rather than En+i, follows thus: 
Let {HV\ be the collection of half-spaces of the theorem and let Rv denote 
the interior ray through 0 normal to the hyperplane bounding Flu. Suppose 
that these half-spaces have no common ray. Then for every ray p through 0, 
for some v we must have Z (Rv,p) > TT/2; applying this remark to p and — p, 
we see that {Rv} is an all-sided family of rays. By Steinitz's theorem there 
is an all-sided sub-collection Rx, R2, . . . ,RS, say, with n + 1 ̂  s ^ 2n. But 
then the corresponding Hi, H2, . . . , Hs have no ray in common, in contra­
diction to the assumption of the theorem. 

2. The Dresher-Harris theorem of our Introduction was fully discussed (for 
n = 1) by L. A. Santalô, Complemento a la nota: Un teorema sobre conjuntos de 
paralelepipedos de aristas paralelas, Publicaciones del Institute de Matematica 
de la Universidad Nacional del Litoral, vol. 3 (1942), pp. 203-210. Also its 
proof by means of Helly's theorem is found in footnote 4 on page 207 and 
attributed by Santalô to J. Rey Pastor. 
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