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GENERALISING THE GHS ATTACK ON THE ELLIPTIC CURVE
DISCRETE LOGARITHM PROBLEM

F. HESS

Abstract

The Weil descent construction of the GHS attack on the elliptic curve
discrete logarithm problem (ECDLP) is generalised in this paper,
to arbitrary Artin–Schreier extensions. A formula is given for the
characteristic polynomial of Frobenius for the curves thus obtained,
as well as a proof that the large cyclic factor of the input elliptic
curve is not contained in the kernel of the composition of the conorm
and norm maps. As an application, the number of elliptic curves that
succumb to the basic GHS attack is considerably increased, thereby
further weakening curves over F2155 . Other possible extensions or
variations of the GHS attack are discussed, leading to the conclusion
that they are unlikely to yield further improvements.

1. Introduction

The Weil descent technique, proposed by Frey [7], provides a way of mapping the discrete
logarithm problem on an elliptic curve (ECDLP) over a large finite field Fqn to a discrete
logarithm problem on a higher-dimensional abelian variety defined over the small finite
field Fq . Using this technique, it became feasible to study possible further constructions of
such abelian varieties, as well as the hardness of the discrete logarithm problem on such
varieties.

This was subsequently done by Galbraith and Smart [10], and by Gaudry, Hess and
Smart [13], in even characteristic (that is, for q a power of 2). The construction of [13]
yields a very efficient algorithm to reduce the ECDLP to the discrete logarithm in the
divisor class group of a hyperelliptic curve over Fq . Since subexponential algorithms exist
for the discrete logarithm problem in high-genus hyperelliptic curves, this gives a possible
method of attack against the ECDLP. We refer to the method of [13] as the GHS attack.

Menezes and Qu [20] analyzed the GHS attack in some detail, and demonstrated that it
does not apply to the case when q = 2 and n is prime. Since this is the common case in
real-world applications, the work of Menezes and Qu means that the GHS attack does not
apply to most of the systems that have actually been deployed. However, there are a few
deployed elliptic curve systems that use the fields F2155 and F2185 ; see [17]. Hence there
is considerable interest as to whether the GHS attack makes all curves over these fields
vulnerable. In [24], Smart examined the GHS attack for elliptic curves with respect to the
field extension F2155/F231 , and concluded that such a technique is unlikely to work for any
curve defined over F2155 .

Jacobson, Menezes and Stein [18] also examined the field F2155 , this time using the
GHS attack down to the subfield F25 . They concluded that such a strategy could be used in
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practice to attack around 233 isomorphism classes of elliptic curves defined over F2155 . Since
there are about 2156 isomorphism classes of elliptic curves defined over F2155 , however, the
probability that the GHS attack is applicable to a randomly chosen one is negligible. A
further very detailed analysis for many other fields was carried out by Maurer, Menezes
and Teske [19]. They identified all extension fields F2n , where 160 � n � 600, for which
there should exist a cryptographically interesting elliptic curve over F2n such that the GHS
attack is more efficient for that curve than for any other cryptographically interesting elliptic
curve over F2n . Ciet, Quisquater and Sica [5] discussed the security of fields of the form
F22d where d is a Sophie–Germain prime.

Galbraith, Hess and Smart [11] extended the GHS attack to isogeny classes of elliptic
curves. The basic idea is to check whether a given elliptic curve is isogenous to an elliptic
curve for which the basic GHS attack is effective. Then one computes the isogeny and
reduces the ECDLP to that curve. This greatly increased the number of elliptic curves that
succumb to the GHS attack for certain parameters.

The GHS attack has also been generalised to hyperelliptic curves, in even characteristic
by Galbraith [9], and in odd characteristic by Diem [6]. Thériault considers, in [26], a special
class of Artin–Schreier curves in any characteristic.

In this paper, we extend the GHS attack for elliptic curves in characteristic two even
further, thereby considerably increasing the number of curves for which the basic GHS
attack of [13] is applicable. In order to do so, we generalise the construction of [13] and [9]
to arbitrary Artin–Schreier extensions, and this enables us to utilise different Artin–Schreier
equations from those that had previously been considered. These new results are then
combined with the technique of [11].

For example, for the field extension F2155/F25 , among the 2156 isomorphism classes of
curves there are around 2104 that are vulnerable to attack under the extended method of [11].
Using the new construction, we find that around 2123 additional isomorphism classes should
now be attackable.

On the other hand, it should be noted that the curves produced by our generalised con-
struction, although they have the same genera as in [13], are no longer hyperelliptic. As
a consequence, solving the discrete logarithm problem in the divisor class group of these
curves is much more complicated, and is in general slower by a factor polynomial in the
genus. The precise efficiency and practical implications have yet to be determined.

In the paper we further give a formula for the characteristic polynomial of Frobenius
of the curves constructed using our method, and we discuss the conditions under which
the discrete logarithm problem is preserved when mapped to the corresponding divisor
class group by the norm-conorm homomorphism. Similar statements for the norm-conorm
homomorphism have been obtained by Diem [6]. We additionally discuss a number of
other possible variations of the construction, and conclude that they are unlikely to yield
any further improvements. We also address the algorithmic issues of computing the final
curves and solving the discrete logarithm on them.

The results of this paper show that curves defined over fields of composite extension
degree over F2, especially 155, may possibly be more susceptible to Weil descent attacks
than is suggested by previous methods. Our techniques do not, however, pose a threat for
prime extension degrees in small characteristic, or prime fields in large characteristic.

The remainder of the paper is organised as follows. In Section 2 we describe the general
setting that is considered throughout the paper. In Section 3 we provide statements on
Artin–Schreier extensions and base automorphisms. In Section 4 we explain the general
Weil descent construction for Artin–Schreier extensions, and we make statements about its
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main invariants – such as its genus, the kernel of the norm-conorm homomorphism, and
the characteristic polynomial of Frobenius. In Section 5 we specialise to the case of even
characteristic and elliptic curves, and we generalise the original construction of [13].

In Section 6 we are ready to apply the theory developed in the preceding sections, to
investigate alternative efficient constructions that can be carried out in the elliptic curve case
in even characteristic. In Section 7 we briefly address algorithmic issues of computing the
final curves and solving the discrete logarithm. In Section 8 we investigate various possibly
more effective extensions and variations, and in Sections 9 and 10 we provide general state-
ments on the norm-conorm homomorphism and the characteristic polynomial of Frobenius,
which are used in the earlier sections. Section 11 finally contains the conclusion.

2. Mapping the discrete logarithm problem

Let E be a function field of transcendence degree one over the finite exact constant field
K , let C/E be a finite extension, and let U1 be a finite subgroup of Aut(C). The fixed field
of U1 in C is denoted by CU1 . We are mainly interested in the case where E is the function
field of an elliptic curve.

We obtain a homomorphism of the divisor class groups φ : Cl(E) −→ Cl(CU1) by

NC/CU1 ◦ ConC/E,

the conorm from E to C followed by the norm from C to CU1 . The divisor class groups of
degree-zero divisors are denoted by Cl0(E) and Cl0(CU1). There are two main objectives:
first, the norm-conorm homomorphism φ should map a given discrete logarithm problem in
Cl0(E) sufficiently faithfully to Cl0(CU1); second, subject to the first condition, the genus
and the constant field of CU1 should be as small as possible.

The next four sections describe how such C and U1, not necessarily optimal in the
above sense, can be constructed from E in terms of Artin–Schreier extensions. We also give
statements about the kernel of φ, the L-polynomial of CU1 and its genus, based on general
theorems that are proved later, in Sections 9 and 10.

3. Artin–Schreier extensions with base automorphism

In this section we describe methods that lead to the Weil descent techniques for Artin–
Schreier extensions, as used in the next few sections, generalising those of [6] and [13]. For
the following theory about Artin–Schreier extensions, see [2, pp. 22–24], [22, pp. 275–281]
and [25, p. 115].

Let F/K be an algebraic function field of characteristic p and transcendence degree one
over the exact constant field K . Let ℘(x) = xp −x be the Artin–Schreier operator. We have
a 1–1 correspondence of Fp-modules � � F+ with ℘(F) ⊆ � and abelian extensions of
F of exponent p within a fixed separable closure F̄ of F , given by

� �→ C = F(℘−1(�)).

If � has finite dimension m, then [C : F ] = pm. Furthermore, there is a non-degenerate
bilinear form

〈·, ·〉 : G(C/F) × �/℘(F) −→ Fp, (1)

given by 〈τ, f 〉 = yτ − y, where y ∈ ℘−1(f ) and yτ = τ−1y = τ−1(y).
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Let σ ∈ Aut(F ) be an automorphism of finite order n, let U = 〈σ 〉 be the cyclic
group generated by σ , and assume from now on that � is σ -invariant: that is, an (additive)
Fp[σ ]-module. The extension C/FU is then Galois of degree pmn with exact sequence

1 −→ G(C/F) −→ G(C/FU) −→ G(F/FU) −→ 1. (2)

This means that G(C/FU) is of exponent np, and that σ can be extended to an automorphism
of C of order n or np, denoted by σ1. We let U1 = 〈σ1〉. The sequence is split if and only if
G(C/FU) contains an extension of σ of order n, and a sufficient condition for this is that
p � n. In other words, if σ1 is an extension of order np, then σ

pλ
1 is an extension of order n,

where pλ ≡ 1 mod n.
If �′ ⊆ � is an Fp-submodule of � and τ ∈ G(C/FU), we have τF (℘−1(�′)) =

F(℘−1(τ�′)); consequently,

G(C/F(℘−1(τ�′))) = τG(C/F(℘−1(�′)))τ−1.

The group G(C/F) can be viewed as a right Fp[σ1]-module via conjugation, τσ1 = σ1τσ−1
1

for τ ∈ G(C/F), and �/℘(F) can be viewed as a right Fp[σ1]-module (or Fp[σ ]-module)
by f σ1 = f σ = σ−1(f ). Under these conditions, the pairing 〈·, ·〉 in (1) is Fp[σ1]-linear:

〈τσ1 , f 〉 = 〈τ, f σ1〉 = 〈τ, f σ 〉.
By duality, the pairing 〈·, ·〉 leads to an Fp[σ1]-module isomorphism of G(C/F) and
�/℘(F).

The following theorem gives precise conditions under which (2) is split in the case where
� is a cyclic Fp[σ ]-module. For the general case, one can decompose � into a direct sum
of cyclic factors and then apply the theorem.

Theorem 3. Let f ∈ �, and assume that �/℘(F) is the cyclic Fp[σ ]-module generated by
f . Let mf ∈ Fp[t] be the monic polynomial of smallest degree such that f mf (σ ) ∈ ℘(F),
and let cf = (tn − 1)/mf ∈ Fp[t].

(i) Any extension of σ has order n or np; the exponent of G(C/FU) is np.

(ii) There are extensions of σ of order n and np if and only if f (σn −1)/(σ −1) 
∈ ℘(F).
In this case, if σ1 is an extension of order n, then σ1τ is an extension of order np for every
τ ∈ G(C/F) with 〈τ, f (σn − 1)/(σ − 1)〉 
= 0. Conversely, if σ1 has order np, then there
is τ ∈ G(C/F) with 〈τ, f (σn − 1)/(σ − 1)〉 
= 0 such that σ1τ has order n.

(iii) If f (σn − 1)/(σ − 1) ∈ ℘(F), then the extensions of σ have order n if and only if
vcf (σ ) = 0 where v ∈ ℘−1(f mf (σ )), and order np otherwise.

The conditions f (σn − 1)/(σ − 1) ∈ ℘(F), cf (1) = 0 and vt−1(mf ) 
= pvp(n) are
equivalent, and p � n implies that f (σn − 1)/(σ − 1) 
∈ ℘(F) or vcf (σ ) = 0.

Proof. Since σ has order n, we have mf | (tn − 1) and cf ∈ Fp[t]. Statement (i) follows
from sequence (2) and its exactness.

We prove statement (ii). If σ1 is an extension of σ , then every other extension can be
written in the form σ1τ with τ ∈ G(C/F), because (2) is exact. We have

(σ1τ)n = τ (σn
1 −1)/(σ1−1)σ n

1 (4)

by a straightforward calculation, and τσn
1 = τ because σn

1 ∈ G(C/F) by (2). If there are
extensions of order n and np, then there exists τ such that σ1 has order n and σ1τ has order
np, and hence

τ (σn
1 −1)/(σ1−1) 
= 1.
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Then 〈
τ (σn

1 −1)/(σ1−1), f
〉 
= 0,

since otherwise, as τ (σn
1 −1)/(σ1−1) is σ1-invariant,〈
τ (σn

1 −1)/(σ1−1), f σ i
〉 = 0, for 1 � i � n

and then 〈τ (σn
1 −1)/(σ1−1), w〉 = 0 for all w ∈ �/℘(F), which is impossible because 〈·, ·〉

is non-degenerate. We have〈
τ (σn

1 −1)/(σ1−1), f
〉 = 〈

τ, f (σn − 1)/(σ − 1)
〉 
= 0,

and thus

f (σn − 1)/(σ − 1) 
∈ ℘(F).

Conversely, assume that f (σn − 1)/(σ − 1) 
∈ ℘(F) holds true. If σ1 has order n, we
choose any τ with 〈τ, f (σn − 1)/(σ − 1)〉 
= 0. Then

τ (σn
1 −1)/(σ1−1) 
= 1

and σ1τ has order np by (4). If σ1 has order np, then τ1 = σn
1 ∈ G(C/F) by (2), τ1 
= 1

and τ1 is σ1-invariant. This implies that 〈τ1, f 〉 
= 0, using an analogous reasoning process
to that used above. We can find τ with 〈τ, f (σn − 1)/(σ − 1)〉 = −〈τ1, f 〉, and hence〈

τ (σn
1 −1)/(σ1−1)τ1, f

〉 = 0.

Now τ (σn
1 −1)/(σ1−1)τ1 is σ1-invariant, and we see that 〈τ (σn

1 −1)/(σ1−1)τ1, w〉 = 0 for all
w ∈ �/℘(F). Hence

τ (σn
1 −1)/(σ1−1)τ1 = τ (σn

1 −1)/(σ1−1)σ n
1 = 1

and σ1τ has order n by (4). This proves statement (ii).
We proceed to prove statement (iii) and the last statement. As in [13], we let v ∈

℘−1(f mf (σ )) ⊆ F and y ∈ ℘−1(f ). Then ymf (σ1) = v + λ for some λ ∈ Fp, and
σ1 has order n if and only if

y(σn
1 − 1) = ymf (σ1)cf (σ1) = vcf (σ ) + λcf (1) = 0. (5)

Note that vcf (σ ) ∈ Fp since ℘(vcf (σ )) = ℘(y)mf (σ )cf (σ ) = f (σn − 1) = 0. As in
[13], we see that for every λ ∈ Fp there is an extension σ1 with ymf (σ1) = v + λ. It
follows that extensions of order n and np exist if and only if cf (1) 
= 0. Thus cf (1) = 0
is equivalent to f (σn − 1)/(σ − 1) ∈ ℘(F) by statement (ii), and it is obviously equiv-
alent to vt−1(mf ) 
= pvp(n). If cf (1) = 0, then σ1 has order n precisely if vcf (σ ) = 0,
by (5). This proves statement (iii). Finally, if p � n, then we have extensions of order n, so
f (σn − 1)/(σ − 1) 
∈ ℘(F) or vcf (σ ) = 0 holds true by statements (ii) and (iii).

We remark that analogous results can be obtained for Kummer extensions.

4. Weil descent with Artin–Schreier extensions

We describe now how the discrete logarithm in the divisor class group of an Artin–
Schreier extension of small genus over a large finite field can be related to an equivalent
discrete logarithm problem in the divisor class group of a curve of larger genus but defined
over a smaller finite field.
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Let

q = pr, k = Fq and K = Fqn .

The exact constant field of F is assumed to be K . Let σ be a Frobenius automorphism of
F with respect to K/k. By this we mean that σ restricts to the Frobenius automorphism of
K/k and has order [K : k] on F such that F/FU with U = 〈σ 〉 is a constant field extension
of degree n. We could, for example, choose F = K(x) and σ to be the extension of the
Frobenius automorphism of K/k via σ(x) = x.

Let

� = f Fp[σ ] + ℘(F),

C = F(℘−1(�)),

Eh = F(℘−1(h)), for h ∈ �,

and

m = dimFp
�/℘(F) = deg(mf ).

The goal is to construct an extension σ1 of σ on C which is a Frobenius automorphism of
C with respect to K1/k where K1 is the exact constant field of C. We can then form CU1

where U1 = 〈σ1〉, and map the discrete logarithm problem in Cl0(Eh) to Cl0(CU1) using

φh : Cl(Eh) −→ Cl(CU1) defined by NC/CU1 ◦ ConC/Eh
.

It will not always be the case that the discrete logarithm problem in Cl0(CU1) is equivalent
to that in Cl0(Eh).

The extension C/K either is regular or involves a constant field extension of degree p,
since there are no two constant field extensions of degree p that are linearly disjoint over
F . We can thus distinguish two cases: K1 = K and [K1 : K] = p. We have FK1 =
F(℘−1(� ∩ K)), so K1 = K if and only if � ∩ K ⊆ ℘(F).

Case K1 = K . It suffices to find any extension of σ of order n, and Theorem 3 describes
how this can be achieved. If vt−1(mf ) = pvp(n), statement (ii) applies, and we can find such
an extension. Otherwise, statement (iii) applies, and we can find an extension of order n

only if vcf (σ ) = 0. This criterion is reformulated in Lemma 6. By Theorem 3, p � n or
m = n are sufficient conditions for the existence of an extension of σ of order n.

Case [K1 : K] = p. The extension FK1/F
U is cyclic of order np and

1 −→ G(C/FK1) −→ G(C/FU) −→ G(FK1/F
U) −→ 1

is exact. The Frobenius automorphism of FK1/F
U thus extends to C, and any such exten-

sion will have order np (see statement (iii) in Theorem 3).

Lemma 6. Let P be a σ -invariant place of degree one of F , and let π ∈ P be a σ -invariant
uniformiser. Let f = ∑∞

i=vP (f ) λiπ
i be the P -adic expansion of f .

If [K1 : K] = p, then TrK/Fp
(λ0) 
= 0 and vt−1(mf ) 
= 0, and σ extends to a Frobenius

automorphism of C with respect to K1/k.
If K1 = K , then σ extends to a Frobenius automorphism of C with respect to K/k if

and only if TrK/Fp
(λ0) = 0 or vt−1(mf ) = pvp(n).
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Proof. Corresponding to P , we have an embedding φ : F −→ K((π)); also, φ(x) =∑∞
i=vP (x) φi(x)πi, and σ extends to an automorphism of K((π)) that operates on the

coefficients and leaves π fixed. We can extend the Fp[σ ]-module structure of F to K((π))

accordingly, and φ0 : F −→ K will be Fp[σ ]-linear. For t0 transcendental over Fp, we
let t = t r0 and σ0 the Frobenius automorphism of K/Fp be such that Fp[t] ⊆ Fp[t0] and
σ = σ r

0 .
If [K1 : K] = p, then there is a ∈ f Fp[σ ] ∩ K with a 
∈ ℘(F). Since a(σ − 1) = 0,

we must have vt−1(mf ) 
= 0. Let w be a normal basis element for K/Fp. Then there is
h ∈ Fp[t0] such that a = wh(σ0). The conditions a 
∈ ℘(F), (t0 − 1) � h and (tnr

0 − 1) �
h(tnr

0 − 1)/(t0 − 1) are equivalent. Then

TrK/Fp
(a) = a(σnr

0 − 1)/(σ0 − 1)

= wh(σ0)(σ
nr
0 − 1)/(σ0 − 1),

which is non-zero if and only if (tnr
0 −1) � h(tnr

0 −1)/(t0 −1). Thus a 
∈ ℘(F) is equivalent
to TrK/Fp

(a) 
= 0. Now a ∈ λ0Fp[σ ], so that TrK/Fp
(a) 
= 0 implies that TrK/Fp

(λ0) 
= 0.
That the Frobenius automorphism extends follows from the discussion preceding Lemma 6.

In the case K1 = K , we prove the lemma as follows. By Theorem 3, the Frobenius
automorphism extends if and only if vt−1(mf ) = pvp(n) or vcf (σ ) = 0. Assume that
vt−1(mf ) 
= pvp(n); hence cf (1) = 0. In the proof of Theorem 3, it can be seen that
vcf (σ ) ∈ Fp; thus φ(vcf (σ )) ∈ Fp and φi(vcf (σ )) = 0 for all i 
= 0. We find that
vcf (σ ) = 0 if and only if φ0(vcf (σ )) = φ0(v)cf (σ ) = 0. Now cf = (t0 − 1)c′

f for some
c′
f ∈ Fp[t0] since cf (1) = 0, and φ0(v)(σ0 − 1) = φ0(v

p − v) = φ0(f )mf (σ ) since
vp − v = f mf (σ ). We obtain

φ0(v)cf (σ ) = φ0(v)(σ0 − 1)c′
f (σ0)

= φ0(f )mf (σ r
0 )c′

f (σ0)

= φ0(f )(σnr
0 − 1)/(σ0 − 1)

= TrK/Fp
(φ0(f )),

and thus vcf (σ ) = 0 if and only if TrK/Fp
(φ0(f )) = 0.

Theorem 7. Let h ∈ � and V = {τ ∈ U1 : hτ ∈ λh + ℘(F) for some λ ∈ Fp}. Then

N−1
Eh/(Eh)V

(0) ⊆ ker(φh)

⊆ N−1
Eh/(Eh)V

(
[pm−1]−1( Con(Eh)V /FV

(
Cl0(FV )

)))
,

where [pm−1] is the ‘multiplication-by-pm−1’ map.

Proof. The fields Eh and τEh = Eτh for τ ∈ U1 are either equal or linearly disjoint
over F . The definition of V implies that V Eh ⊆ Eh, and Eh = τEh if and only if τ ∈ V .
Furthermore, the kernel of the restriction map U1 −→ Aut(F ) is zero. The conditions of
Proposition 23 are therefore fulfilled. We obtain (Eh)

V ∩ τ(Eh)
V = FV for all τ ∈ U1 with

τ 
∈ V . Applying Theorems 18 and 24 with φ = φh gives the result.

Assume that Cl0(Eh) has a large prime factor greater than p, which is not present in
Cl0(F ). Theorem 7 says that if K1 = K and V = {1}, the large prime factor will not
be mapped to zero under φh. If V 
= {1} and the large prime factor is not present in
Cl0((Eh)

V ), then it will be mapped to zero. If, on the other hand, [K1 : K] = p, we see
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that σn
1 ∈ G(Eh/F) has order p and G(Eh/F) ⊆ V , and thus (Eh)

V ⊆ FV . This means
that the large prime factor will always be mapped to zero in this case.

We now state upper and lower bounds on the genus of C.

Theorem 8. Let f ∈ �, and assume that �/℘(F) is the cyclic Fp[σ ]-module, of Fp-
dimension m, generated by f . Then m � n and

gC �
{

(pm − 1)/(p − 1)
(
gEf

− gF

) + gF if f has σ -invariant poles,

(pm − 1)/(p − 1)
(
n · gEf

− gF

) + gF otherwise.

On the other hand, if m � 2 and F(℘−1(f, f σ)) has a genus greater than gEf
, then

gC � pm−2gEf
/[K1 : K] + 1.

Proof. Since σ has order n, we have at most n different elements f σ i , and because � is
generated by f , it then follows that m � n.

Using the genus formula of [25, III.7.8] we see that gEh
� ngEf

for any h ∈ � since h

is an Fp-linear combination of the conjugates f σ i , and the numbers mσi(P ) for h and any
given P are thus less than or equal to the maximum of the numbers mσi(P ) for f .Also, every
place has at most n conjugate places σ i(P ). If f has only σ -invariant poles, then gEh

� gEf
,

since the numbers mP for h and any given P are less than or equal to the numbers mP for f .
The upper bounds then follow from Corollary 38 with U1 = {1} and G = H = G(C/F).
Here, the subgroups Hν of H of index p correspond to one-dimensional Fp-vector spaces
contained in �/℘(F) via Hν = G(C/Efν ), where fν spans a non-trivial Fp-vector space
in �/℘(F). There are (pm − 1)/(p − 1) many fν and Hν . All the constant field extension
degrees occurring in Corollary 38 are 1 because U1 = {1}.

The lower bounds are obtained from the Riemann–Hurwitz genus formula, which gives
2gC − 2 � (2(gEf

+ 1) − 2)pm−2/[K1 : K].
The lower bound of Theorem 8 is not very sharp. However, the main point here is that it

shows that the genus of C is exponential in m.
If (2) is split, we can also apply Theorem 26 and compute the L-polynomial of CU1 ,

using the notation G = G(C/FU1) and H = G(C/F). Here, as in the proof of Theorem 8,
subgroups Hν of H of index p correspond to one-dimensional Fp-vector spaces contained
in �/℘(F) via Hν = G(C/Efν ), where fν spans a non-trivial Fp-vector space in �/℘(F).
There are (pm − 1)/(p − 1) many fν and Hν . Furthermore,

U1ν = {τ ∈ U1 : fντ ∈ λfν + ℘(F) for some λ ∈ Fp}.

5. Generalising the basic GHS attack

In [13], an Artin–Schreier construction has been applied to the case where Ef is the
function field of an elliptic curve and F is the rational function field, over a finite field
in characteristic two. We now describe a generalisation of this construction, obtained by
specialising and applying the techniques of the previous sections.

Let p = 2 and � = f F2[σ ] + ℘(F), where f = γ /x + α + βx for γ, α, β ∈ K and
γβ 
= 0. Furthermore, let F = K(x). We have

�/℘(F) ∼= F2[t]/(mf ) (9)

with mf as in Theorem 3, of degree m.
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More precisely, if mγ and mβ are polynomials in F2[t] of minimal degree such that
γmγ (σ ) = 0 and βmβ(σ) = 0, then

mf =
{

lcm(mγ , mβ), for α ∈ ℘(F),

lcm(mγ , mβ, t + 1), otherwise.
(10)

We remark that α ∈ ℘(F) is equivalent to TrK/F2(α) = 0.

Theorem 11. The Frobenius automorphism σ of F with respect to K/k extends to a
Frobenius automorphism of C with respect to K/k if and only if at least one of the conditions

TrK/F2(α) = 0, TrK/k(γ ) 
= 0 or TrK/k(β) 
= 0

holds.

Proof. We have K1 = K if and only if α lcm(mγ , mβ)(σ ) ∈ ℘(F), and this in turn is
equivalent to saying that at least one of the conditions (t + 1) | mγ mβ or TrK/F2(α) = 0
holds, which can be seen to be similar to the proof of Lemma 6.

In the case K1 = K , the Frobenius automorphism σ of F extends to a Frobenius
automorphism of C with respect to K/k if and only if TrK/F2(α) = 0 or vt+1(mf ) = 2v2(n),
by Lemma 6, using the place x = 0 and uniformiser x. Thus there exists a Frobenius
automorphism of C with respect to K/k if and only if TrK/F2(α) = 0, or both conditions
(t + 1) | mγ mβ and vt+1(mf ) = 2v2(n) hold.

Now, if n is even, then vt+1(mf ) = 2v2(n) implies that vt+1(mγ ) = 2v2(n) or vt+1(mβ) =
2v2(n), because of the definition of mf and (10); conversely, vt+1(mγ ) = 2v2(n) or
vt+1(mβ) = 2v2(n) implies that (t + 1) | mγ mβ and vt+1(mf ) = 2v2(n). If n is odd,
then (t + 1) | mγ mβ is equivalent to saying that vt+1(mγ ) = 2v2(n) or vt+1(mβ) = 2v2(n)

holds, and implies that vt+1(mf ) = 2v2(n). This shows that the Frobenius automorphism
extends if and only if TrK/F2(α) = 0, vt+1(mγ ) = 2v2(n) or vt+1(mβ) = 2v2(n) hold.

Finally, TrK/k(γ ) = γ (σn + 1)/(σ + 1), and vt+1(mγ ) = 2v2(n) is equivalent to
γ (σn + 1)/(σ + 1) 
= 0. This proves the theorem.

If σ1 is a Frobenius automorphism of C, then the genus of CU1 equals the genus of C, and
Theorem 8 yields appropriate bounds. For the special choice of f it is, however, possible to
determine the genus precisely. The following result can be applied whenever the conditions
in Theorem 11 are fulfilled.

Theorem 12. Assume that K1 = K . The genus of C = F(℘−1(�)) is given by

gC = 2m − 2m−deg(mγ ) − 2m−deg(mβ) + 1.

Proof. One-dimensional F2-subspaces of �/℘(F) are given by non-zero elements in
F2[t]/(mf ) under the isomorphism (9). Let v ∈ � correspond to w ∈ F2[t] of degree
less than m. Then v = f w(σ) and Ev has genus 0 if γw(σ) = 0 or βw(σ) = 0, and
genus 1 otherwise. Thus for genus 0 we know that w is divisible by mγ or by mβ . If
α ∈ ℘(F), then mf = lcm(mγ , mβ). If α 
∈ ℘(F), then (t + 1) | mγ mβ , because we
have assumed that K1 = K , which implies that αmγ (σ )mβ(σ ) ∈ ℘(F), and hence again
that mf = lcm(mγ , mβ). The two cases mγ | w and mβ | w thus lead to disjoint sets
of non-zero w, since no non-zero w ∈ F2[t] with deg(w) < m can be divisible by both
mγ and mβ , as this would imply that w is divisible by mf = lcm(mγ , mβ) and hence
that deg(w) � m. There are thus precisely (2m−deg(mγ ) − 1) + (2m−deg(mβ) − 1) non-zero
polynomials w ∈ F2[t], of degree less than m, which are divisible by mγ or by mβ .
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Since there are 2m −1 non-zero polynomials w ∈ F2[t] of degree less than m, we obtain
the number of one-dimensional F2-subspaces of �/℘(F) such that the associated degree-2
extensions have genus 1, by subtracting the number of genus-0 cases from all the cases;
that is, 2m − 1 − (2m−deg(mγ ) − 1)− (2m−deg(mβ) − 1). Using Corollary 38 and the remarks
at the end of Section 4, we finally obtain the result.

We want to link the results obtained so far to the results of [13]. Let γ ∈ k. Then
mγ = t + 1 and � ∩ K ⊆ K(σ + 1) ⊆ ℘(F), so that K1 = K and C/K is regular. For the
existence of the Frobenius automorphism with respect to K/k, we note that TrK/k(γ ) ≡
n mod 2 holds, and that TrK/k(β) 
= 0 is equivalent to (t + 1)u | mβ , where u = 2v2(n).
This shows that [19, Lemma 6, condition (2)] is necessary and sufficient, and that [13,
condition(†)] is sufficient for the existence of the Frobenius automorphism. The genus of
C is equal to 2m−1 − 2m−deg(mβ) + 1. Depending on whether or not (t + 1) | mβ , this gives
m − deg(mβ) = 0 or m − deg(mβ) = 1, and hence a genus of 2m−1 or 2m−1 − 1. Finally,
similarly to the proof of Theorem 12, we see that F(℘−1(�(σ + 1))) has genus 0 and
index 2 in C; hence C is hyperelliptic. This recovers the main results about the construction
in [13]. In addition, we now obtain the following, more precise, statement.

Corollary 13. Let γ ∈ k. The genus of C is 2m−1 − 1 if and only if TrK/Fqu (β) = 0,

where u = 2v2(n).

Proof. We have to prove that (t + 1) � mβ is equivalent to TrK/Fqu (β) = 0. We can write
β = wh(σ) with h ∈ k[t] and w ∈ K a normal basis element over k such that K = wk[σ ].
Also, vt+1(t

n + 1) = u.
If the genus is 2m−1 − 1, then (t + 1) � mβ . Because w(mβh)(σ ) = βmβ(σ) = 0 and

tn + 1 is the k[t]-minimal polynomial of w, we find that (tn + 1) | mβh and (tu + 1) | h.
Then β = w(σu + 1)h1 for some h1 ∈ k[t] such that h = (tu + 1)h1, and TrK/Fqu (β) =
β(σn + 1)/(σu + 1) = w(σn + 1)h1 = 0.

Conversely, if TrK/Fqu (β) = β(σn + 1)/(σu + 1) = 0, then mβ | ((tn + 1)/(tu + 1))

since mβ is the F2[t]-minimal polynomial of β. But (tn + 1)/(tu + 1) is coprime to t + 1,
so that (t + 1) � mβ . It follows that the genus is 2m−1 − 1.

For h ∈ � with h = c/x+a+bx, define s(h) = min{s � 1 : σ s(c) = c and σ s(b) = b}.
Then σ s(h) is the smallest power of σ that maps the one-dimensional subspace of �/℘(F)

generated by h to itself, or, in other words, such that σ s(h)
1 yields an automorphism of Eh. For

example, if n/s(h) is odd, then Eh = E
h̃
, where h̃ = c/x +TrK/F

qs(h)
(a)+bx ∈ Fqs(h) (x).

Theorem 14. For the homomorphism φh : Cl(Eh) −→ Cl(CU1) given by the composition
NC/CU1 ◦ ConC/Eh

, we have

N−1

Eh/(Eh)
〈σs(h)

1 〉(0) ⊆ ker(φh)

⊆ N−1

Eh/(Eh)
〈σs(h)

1 〉

(
Cl0

(
(Eh)

〈σ s(h)
1 〉)[2m−1]

)
.

Proof. This follows from Theorem 7 and Cl0(F ) = 0, since F is rational.

Assume that σ1 is a Frobenius automorphism of C with respect to K/k, as in Theorem 11.
Theorem 14 then means that the discrete logarithm problem in Eh will be preserved by φh in
practical applications if and only if s(h) = n; that is, if Eh does not come from a non-trivial
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constant field extension (is not defined by a subfield curve). Interestingly, CU1 is in a sense
universal, in that it preserves discrete logarithms in large prime subgroups for all Eh and
h ∈ � such that s(h) = n.

The L-polynomial of CU1 or the characteristic polynomial of Frobenius over k can be
computed as follows.

Theorem 15. Assume that σ1 is a Frobenius automorphism of C with respect to K/k. Let
S ⊆ f F2[σ ] be a system of representatives under the operation of U on �/℘(F). Then

LCU1 (t) =
∏
h∈S

L
(Eh)

〈σs(h)
1 〉(t

s(h)).

Proof. We want to apply Theorem 26 using the remarks at the end of Section 4. Since
Eσh = σ1(Eh) and G(C/σ1(Eh)) = σ1G(C/Eh)σ

−1
1 , a set of representatives Hν under

the operation of U1 on subgroups of G(C/F) of index 2 is given by

{G(C/Eh) : h ∈ S, h 
∈ ℘(F)}.
Then

U1ν = 〈σ s(h)
1 〉 and CHνU1ν = (Eh)

〈σ s(h)
1 〉 for ν corresponding to h ∈ S.

Let kh be the extension field of k of degree s(h). The constant field of (Eh)
〈σ s(h)

1 〉 is equal
to kh. Furthermore,

CG = k(x), CHU1ν = kh(x) and (Eh)
〈σ s(h)

1 〉 = k(x) for h ∈ ℘(F).

The result now follows from Theorem 26, since L-polynomials of rational function fields
are equal to 1.

6. Applications

A representative for each isomorphism class of ordinary elliptic curves defined over
K with p = 2 is given by Y 2 + XY = X3 + αX2 + β, with β ∈ K and α ∈ {0, ω},
where ω ∈ F2u for u = 2v2(nr) is a fixed element with TrF2u/F2(ω) = 1. The associated
Artin–Schreier equation is y2 + y = 1/x + α + β1/2x, obtained by the transformation
Y = y/x + β1/2, X = 1/x and multiplication by x2. The same normalisation of α is also
possible for the more general Artin–Schreier equations y2 +y = γ /x+α+βx of Section 5.

It is the equation y2 + y = 1/x + α + β1/2x that was used in [13] to perform the Weil
descent. However, since (ax + b)/(cx + d) for a, b, c, d ∈ K with ad − bc 
= 0 is also a
generator of F , we could make a substitution x �→ (ax+b)/(cx+d) and apply the results of
the previous sections to f = (cx +d)/(ax +b)+α+β1/2(ax +b)/(cx +d). Since we aim
at getting the smallest possible values of m = deg(mf ), because of Theorem 8, we require
f to have σ -invariant poles. However, this implies that b = λa and d = µc for λ, µ ∈ k.
Hence (ax + b)/(cx + d) = (a/c)(x + λ)/(x + µ). As (x + λ)/(x + µ) is σ -invariant, we
can substitute x for this. Writing γ = a/c, we obtain f = 1/(γ x) + α + β1/2γ x, and this
is precisely of the form considered in Section 5. Similar reasoning holds if a = 0 or c = 0.

The question now is whether, for β ∈ K , there is a γ ∈ K such that the polynomial
lcm(m1/γ , mβ1/2γ ) has small degree in comparison with n. If we were to find such a γ ,
we could apply the results of Section 5 and reduce the discrete logarithm problem on the
elliptic curve to that in the divisor class group of a higher-genus curve defined over k. The
only general algorithm known thus far to find such a γ works by computing all γ such
that m1/γ has small degree, and then individually checking whether mβ1/2γ also has small
degree.
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On the other hand, we can choose γ1, γ2 ∈ K such that lcm(mγ1 , mγ2) has small degree
in comparison with n, and define β = γ1γ2. Then y2 +y = γ1/x+α+γ2x and Y 2 +XY =
X3+αX2+β2 define isomorphic elliptic function fields. Heuristically, we would expect the
map (γ1, γ2) �→ γ1γ2 to be almost injective for the γ1, γ2 under consideration, except for
symmetry and scaling γ1 �→ λγ1, γ2 �→ λ−1γ2 by elements λ ∈ k×. This is also confirmed
by examples. It follows that we (heuristically) considerably increase the number of elliptic
curves that can be attacked by the basic GHS attack.

We now want to combine our results with the results of [11]. Assume, for simplicity, that
r and n are odd, and that n is prime so that α ∈ F2 according to the above normalisation.
Over F2, we have the factorisation into irreducible polynomials tn + 1 = (t + 1)h1 · · · hs

and deg(hi) = d such that n = sd + 1; see [20]. In this situation, the first non-trivial
m satisfies d � m � d + 1, yielding mf = hi or mf = (t + 1)hi by equation (10).
Due to our generalisation we do not necessarily have m = d + 1 as in [11, 13], and
in fact we are now concentrating on m = d . The number of Artin–Schreier equations
as in Section 5 with α ∈ F2 and d � m � d + 1 is approximately equal to 2sq2d+2,
whereas the number of equations among these with m = d (which implies that α = 0) is
approximately equal to sq2d . From theseArtin–Schreier equations, we expect to obtain about
min{qn, sq2d−1/2} associated elliptic curve equations, using the above transformations,
and a system of representatives under the action of the 2-power Frobenius of cardinality
min{qn/(nr), sq2d−1/(2nr)}. Furthermore, as in [11], we expect these representatives to
be distributed over the isogeny classes like arbitrary elliptic curves with a = 0.

If m = d, we have mf = mγ = mβ , (t + 1) � mγ mβ and α = 0. It follows that
TrK/k(γ ) = TrK/k(β) = 0, and by the Theorems 11 and 14 the Weil descent technique
does work because TrK/F2(α) = 0 and γ and β are not in a subfield of K since n is prime.
The resulting genus then satisfies gC = 2d − 1, by Theorem 12. Note that in [11, 13] it is
always the case that m = d +1 but deg(mγ ) = 1, so that the genus is of similar size, namely
2d − 1 or 2d . Going back to the case m = d , we observe that if α = 0, then the group
order of the elliptic curve is congruent to 0 modulo 4, and if α = 1, then it is congruent to 2
modulo 4 (see [3, p. 38]). This means that curves with α = 0 represent half of all the (about
2qn/2) isogeny classes. Taking this into account, we discover from [11] that a proportion
of min{1, sq2d−1/(2qn/2nr)} of all elliptic curves over K with α = 0 leads to curves of
genus 2d −1 defined over k with the equivalent discrete logarithm problem. Given a random
elliptic curve with α = 0, we can find the associated elliptic curve (from which such a curve
of genus 2d − 1 can be computed) in running time O(n log(q)N) + O(qn/4+ε) and with
probability min{1, N/qn/2}, where N � sq2d−1/(2nr) and ε > 0.

The case n = 31 and r = 5 is particularly interesting, since there is an IPsec curve [17]
with α = 0, defined over F2155 . This case has d = 5 and s = 6, and thus yields genus 31;
these are feasible parameters, according to [18]. The heuristic probability that a random
elliptic curve will give rise to a curve of genus 31 has been taken as approximately 2−52

with the method given in [11], whereas now we obtain

sq2d−1/(2qn/2nr) ≈ 2−38.

The only algorithm known so far to find the elliptic curves from which the corresponding
higher-genus curves are computed requires in the order of sq2d−1/(2nr) ≈ 239 many
operations in F2155 (qn/4 ≈ 239 here). This is not as efficient, but is still much faster than
using the Pollard methods on the original curves. One can, however, additionally argue that
the security of elliptic curves over F2155 does now at least partially depend on the difficulty
of the problem of finding such higher-genus curves.

178https://doi.org/10.1112/S146115700000108X Published online by Cambridge University Press

https://doi.org/10.1112/S146115700000108X


Generalising the GHS Attack on the elliptic curve discrete logarithm problem

7. Algorithmic issues

Thus far, our main objective has been to investigate whether there exist curves of suffi-
ciently small genus, to whose divisor class group the discrete logarithm problem could be
faithfully transferred. In this section we briefly discuss how to obtain explicit models for
the resulting curves of Sections 4 and 5, and how to perform an index calculus method for
solving the discrete logarithm problem. Note that the curves that we are considering are no
longer necessarily hyperelliptic. Also, the most expensive step will be solving the discrete
logarithm, and not the computation of the final curve and mapping the discrete logarithm.

7.1. Explicit models and mapping the discrete logarithm

We first exhibit an explicit model for C. Let m = deg(mf ). Note that the classes of
σ i(f ) for 0 � i � m − 1 form an Fp-basis of �/℘(F). It follows that C is obtained by
adjoining one root of every yp − y −σ i(f ) to F . In other words, C = F [y0, . . . , ym−1]/I ,
where I is the ideal of the polynomial ring F [y0, . . . , ym−1] generated by the polynomials
y

p
i − yi − σ i(f ) for 0 � i � m − 1. We write ȳi for the images of the yi in C, and we use

the abbreviation ȳ = ȳ0.
Assume that σ extends to a Frobenius automorphism of C with respect to K/k, again

denoted by σ . After possibly replacing yi by yi + µi for some µi ∈ Fp, we have

σ(ȳi) = ȳi+1, for 0 � i < m − 1.

Also,

σ(ȳm−1) = v −
m−1∑
i=0

λiȳi

holds, where the λi ∈ Fp are the coefficients of

mf =
m∑

i=0

λit
i ,

and v ∈ F satisfies

vp − v =
m∑

i=0

λiσ
i(f ).

Such v will be determined up to the addition of an element in Fp, and usually only one of
the p choices of v will be the correct choice, so that σ has order n on C (see the proof of
Theorem 3). We obtain an explicit representation of the operation of σ on C.

The field CU1 is the fixed field of σ in C, and FU = k(x) is the fixed field of σ in
F = K(x). Define

ỹ =
n−1∑
i=0

σ i(µȳ),

where µ is a normal basis element of K over Fp. Then CU1 = FU(ỹ), because ỹ ∈ CU1 and
C = F(ỹ), which in turn holds because ỹ has [C : F ] different conjugates under G(C/F).
To see the last statement, let τ ∈ G(C/F) and observe that στσ−1 ∈ G(C/F). Define

λ(τ) = τ(ȳ) − ȳ ∈ Fp.

The map τ �→ ( λ(σ−iτσ i) )0�i�n−1 is injective because the right-hand-side values deter-
mine τ on all conjugates σ i(ȳ).
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Then

τ(ỹ) =
n−1∑
i=0

τσ i(µȳ)

=
n−1∑
i=0

σ i(µ)τσ i(ȳ)

=
n−1∑
i=0

σ i(µ)σ i(σ−iτσ i)(ȳ)

=
n−1∑
i=0

σ i(µ)σ i(ȳ + λ(σ−iτσ i))

=
n−1∑
i=0

σ i(µ)σ i(ȳ) +
n−1∑
i=0

σ i(µ)λ(σ−iτσ i)

= ỹ +
n−1∑
i=0

σ i(µ)λ(σ−iτσ i).

Since µ is a normal basis element, we can conclude that ỹ indeed has [C : F ] different
conjugates. By computing the characteristic polynomial of ỹ over F in C, we thus obtain a
defining polynomial for CU1 in FU [t]. The discrete logarithm can be mapped from Ef to
CU1 , using the conorm map ConC/Ef

followed by the norm map NC/CU1 . We give a very
rough description of how this can be accomplished. It is best to work with suitable subrings
(Dedekind domains) REf

, RC and RCU1 , and with ideals in these rings such that the ideal
class groups are similar enough to the divisor class groups (preserving the large prime factor,
for example). The conorm of a given ideal in REf

then becomes the ideal generated in RC by
the given ideal included in RC . Using general techniques, we can compute a representation

ȳ = h(ỹ), with h ∈ F [t].
For the norm ideal, we then form the product of the conjugated ideals in RC using σ . The
substitution of h(ỹ) for ȳ and some further steps yield generators of the norm that are ideal
in RCU1 .

7.2. Index calculus

Index calculus methods are employed for solving the discrete logarithm in the multi-
plicative group of finite fields or the divisor class group of hyperelliptic curves. They also
apply to the divisor class group of general curves. We outline some of the main issues in
our situation.

The basic observation is that every divisor class of CU1 of degree gCU1 can be represented
by an effective divisor of the same degree. Such a divisor decomposes uniquely into a sum
of places of certain degrees and multiplicities, just as the case of rational integers and
prime factorisations, and smoothness probabilities hold. These divisor class representatives
can be computed by reduction techniques as described in [15], and this leads also to a
mathod of computing in the divisor class group of CU1 that generalises the Cantor method
for hyperelliptic curves. We remark that for hyperelliptic curves, addition takes O(g2

CU1
)

operations in k, whereas for a general CU1 , addition takes O(g4
CU1

) operations in k, and is
hence considerably slower.
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The number of effective divisors of degree less than or equal to gCU1 containing places
of degree less than or equal to d can usually be expressed as some explicit proportion of
q

g
CU1 . For example, for gCU1 → ∞ and q fixed, we see that this number of smooth divisors

is approximately at least

q
g
CU1 exp(−(gCU1 /d) log(gCU1 /d)), for g

c1

CU1
� d � g

c2

CU1
and 0 < c1 < c2 < 1 fixed.

From our formula for the characteristic polynomial of Frobenius of CU1 in Theorem 15, we
see that

gCU1 =
∑
h∈S

s(h)

by taking degrees, and then for the cardinality of the divisor class group

#Cl0(CU1) = q
g
CU1

∏
h∈S

(
1 + O(q−s(h)/2)

)
by evaluating at 1. For every h ∈ S we find that s(h) | n, and the number of h ∈ S

with s(h) | s for given s | n is less than or equal to ps . If the number of divisors of n is
O(log(gCU1 )) and q � p2, it follows that

#Cl0(CU1) =
∏
s|n

∏
s(h)=s

(
1+O(p−s(h))

) = O(q
g
CU1 gc

CU1
), for some constant c > 1,

and we expect this to be essentially true for q = p because of possible alternating signs of
the trace terms. If we divide the number of smooth divisors by the class number, it is hence
reasonable to expect that a proportion of exp(−(1 + o(1))(gCU1 /d) log(gCU1 /d)) of all the
divisor classes of degree gCU1 will be representable by a smooth divisor, thus leading to the
usual smoothness probability. This would allow for a running time that is subexponential in
gCU1 , with parameter 1/2, for solving the discrete logarithm. For more details on computing
discrete logarithms for general curves, see [14, 16].

8. Further variations and observations

It is of interest to see whether there are further variations or extensions of the GHS attack
that would lead to smaller genera. In this section we investigate a number of such variations.

8.1. Iterative descent

Assume that n = n1n2. Instead of performing one descent from K to k, we could consider
descending first to Fqn1 , and then to k. The problem here is that CU1 is in general no longer
an Artin–Schreier extension, so our techniques would not immediately apply. If, however,
we start with an elliptic curve as in Section 6 and consider an associated Artin–Schreier
model with γ ∈ Fqn1 , we do find that CU1 is hyperelliptic, or in other words that it is an
Artin–Schreier extension. In this way, we obtain the following interesting result.

Assuming the generic cases, a descent from K to k leads to a hyperelliptic curve of genus
of about 2n−1, whereas a descent from K to Fqn1 gives 2n1−1. Using Theorem 8, the descent
from Fqn1 to k finally results in a curve of genus about

(2n2 − 1)n22n1−1 � n22n1+n2−1.

Thus, if n1 ≈ n2, this final curve has subexponential genus approximately 2(2+o(1))
√

n,
instead of exponential genus 2n.
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Let us look at the non-generic cases for n = 155, n1 = 5 and n2 = 31. The smallest
non-trivial descent from F2155 to F2 leads to a genus of about 220. On the other hand, there
are descents from F2155 to F25 that result in genus 25 − 1. Assuming the generic case m = 5
for the descent from F25 to F2 then gives a genus at most 5(25 − 1)2.

While theoretically interesting, we do not expect these results to have any practical
implications, because the resulting genera are still large.

8.2. Descent from extensions

If the descent from Fqn to Fq does not yield a small enough genus, one could apply a
change of variable to obtain a defining equation of Ef defined over an extension field Fq̃ ñ

and descend to Fq̃ , thereby possibly yielding a smaller genus over another small base field
for some suitable q̃ and ñ.

At least for prime n, however, this approach will give no improvement. To see this, we
note that for any n, the degrees of the irreducible factors in Fp[t] of tn −1 corresponding to
primitive nth roots of unity are equal to the multiplicative order m of p modulo n. This m is
the smallest value of deg(mf ) that can occur for an elliptic curve over Fqn that is not already
defined over a subfield. For prime n, this m is usually very big. Let m̃ be the multiplicative
order of p modulo ñ. The genus for a descent by ñ is then approximately at least pm̃. Thus,
if n | ñ, then m̃ � m and the genus can only be bigger than before. Otherwise, if n � ñ, then
n | [Fq̃ : Fp] because n is prime, and thus Fq̃ is too big.

For composite n, improvements may be possible. Again, there are descents from F2155

to F2 that yield genus approximately 220, whereas the corresponding descents from F2155

to F25 yield genus about 25 while F25 is still fairly small.

8.3. Subfields and automorphisms

A possible way of improving the construction in Sections 4 and 5 would be to con-
sider subfields L of CU1 and use φf,L = NCU1/L ◦φf to map the discrete logarithm problem
from Cl0(Ef ) to Cl0(L). If the kernel of φf,L is small enough, this would lead to
a very substantial improvement, because the genus of subfields is usually much smaller.

To approach this question, we first consider intermediate fields of the extension CU1/FU1 .
This extension is in general not Galois, and any intermediate field L leads to an intermediate
field LK of C/F with σ1(LK) = LK . Thus LK = F(℘−1(�L)) for a unique �L with
℘(F) ⊆ �L ⊆ � and σ(�L) = �L. If �L 
= �, then f 
∈ �L, and Ef and LK

are thus linearly disjoint over F . Now NC/LK ◦ ConC/Ef
= 0 by Lemma 16, and since

NCU1/L ◦ NC/CU1 = NLK/L ◦ NC/LK , we obtain φf,L = 0. Thus φf,L and intermediate

fields of CU1/FU1 are of no use. We could still search for other subfields L of CU1 that do
not contain FU1 and yield a small kernel of φf,L. One way of obtaining such subfields could
be via the fixed fields of automorphism groups of C containing the Frobenius automorphism.
Indeed, if we had automorphisms ρ ∈ Aut(F/K) with ρ(�) ⊆ �, it should be possible to
extend ρ to C in a similar way as was done with σ , under not too restrictive conditions. We
have not found such automorphisms for F = K(x) and Ef defined by non-subfield curves.
Even if no such automorphisms exist, there could still be useful subfields L, but this appears
unlikely to happen, except perhaps in very rare cases.

Although automorphisms of CU1/FU1 may not be useful to find suitable subfields L as
shown above, they could be of use to speed up the discrete logarithm computation in CU1 .
We are given 2m automorphisms in G(C/F). For τ ∈ G(C/F) with τ 
= 1, to restrict to
an automorphism of CU1 we need τσ1τ

−1 ∈ U1. We have τσ1τ
−1 = τ 1−σ1σ1, and thus

τ 1−σ1 = τσ1τ
−1σ−1

1 ∈ G(C/F) ∩ U1. As G(C/F) ∩ U1 = {1}, we obtain τ 1−σ1 = 1.

182https://doi.org/10.1112/S146115700000108X Published online by Cambridge University Press

https://doi.org/10.1112/S146115700000108X


Generalising the GHS Attack on the elliptic curve discrete logarithm problem

Since G(C/F) and �/℘(F) are Fp[σ1]-isomorphic, it follows that if mf (1) = 0, then
there is precisely one such τ , and otherwise there is no such τ . We remark that τ is the
hyperelliptic involution in the case where CU1 is hyperelliptic. Thus G(CU1/FU1) consists
either of the identity only, or of the identity and the hyperelliptic involution. However, it is
still possible that CU1 could have non-trivial automorphisms, obtained in a different way.

8.4. Other composita

The field composita in Sections 4 and 5 depend on the choice of the base field F = K(x)

within the function field Ef . We want to investigate what happens if other subfields (or
none) are used, in the case of elliptic function fields Ef in characteristic two.

If K(x1) and K(x2) are any two rational subfields of index 2 of the elliptic function field
Ef , then there is an automorphism τQ ∈ Aut(Ef /K) induced by a point translation map
P �→ P + Q such that τQ(K(x1)) = K(x2). In other words, we may assume that x1 and
x2 are x-coordinates of Weierstrass models. Then Q is the point where x2 has its pole. We
conclude that Ef /K(x1) and Ef /K(x2) are isomorphic, and hence it does not matter which
rational subfield of index two is taken in Sections 4 and 5.

The methods of Sections 4 and 5 do not apply readily to other subfields of Ef . We make
a few comments on what can be expected in terms of arbitrary field composita.

Elliptic subfields as common base fields F are of no use. The extensions Ef /F are
abelian and unramified, so any compositum C will be unramified over F as well. This
means, however, that C has genus 1 and is again an elliptic function field. The corresponding
elliptic curves are all isogenous. Should there be a Frobenius automorphism on C, then this
would mean that the elliptic curve corresponding to Ef is isogenous to an elliptic curve
defined over the small finite field k. Other aspects of isogenous elliptic curves have been
exploited in [11].

All other subfields F must be rational, and of index at least 3, and such fields will indeed
lead to alternative constructions. In order to estimate the resulting genus, we remark that
the lower bound in Theorem 8 essentially remains valid in more general situations: as in
Section 4, assume that we are given C with a Frobenius automorphism σ with respect to
K/k and an elliptic function field E with E ⊆ C such that C = E(σE) · · · (σm−1E)

for m � n minimal. If E(σE) does not have genus at least 2, then it has genus 1, and
both E(σE)/E and E(σE)/σE are unramified. This yields an unramified pyramid of
fields. It follows that C is unramified over E, and is hence elliptic, which reduces us to
the uninteresting case discussed above. So we assume that E(σE) has genus at least 2.
Using the Riemann–Hurwitz genus formula, we find that the genus of C is then bounded
by gC � [C : E(σE)] + 1 and [C : E(σE)] � 2m−2. If the fields σ iE are linearly disjoint
over a common base field F with σF ⊆ F , we even have [C : E(σE)] � [E : F ]m−2. The
genus is thus exponential in m.

The main objective is hence again to minimise m in comparison with n. A possible
generalisation of the Artin–Schreier construction could be to use additive polynomials over
a common rational base field F . This would lead to values of m similar to those in Section 5,
but could apply in more (or additional) cases. However, as F would have index 2s in E

for s � 2, the genus bound would be gC � 2s(m−2) + 1, which is much larger than the
construction of Section 5.

Theoretically, there could also be completely different constructions of C, given E and
its conjugated fields. To be effective they would need to achieve a good ‘compression’ rate
(that is, small values of m), because of the above lower bound for the genus. We do not
know whether such constructions exist.
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8.5. Characteristic three

Weil descent with Artin–Schreier extensions as in Section 4 can also be carried out for
elliptic curves in characteristic three. Here, Artin–Schreier equations that define elliptic
curves have to be of the form y3 − y = ax2 + b with a, b ∈ K . We thus expect to map the
discrete logarithm problem to curves of genus �(3deg(mf )) with f = ay2 + b. We remark
that if a = 1, we would again obtain an Artin–Schreier extension of degree 3.

Elliptic curves defined in this way are always supersingular and admit subexponential
attacks via the MOV and FR reductions anyway [8, 21] (with subexponential parameter 1/3
instead of 1/2). We would expect these attacks to be more efficient than the GHS attack.
Of course, analogous remarks hold for elliptic curves in even characteristic.

We remark that the main use of elliptic curves in characteristic three appears to be in
identity-based cryptography [4]. For efficiency reasons, one usually considers supersingular
curves. An alternative Weil descent construction for ordinary elliptic curves in characteristic
three is described in [1].

9. The kernel of the norm–conorm homomorphisms

In this section, we prove the main results about the norm-conorm homomorphism that
have been used in the proofs of Theorems 7 and 14.

Lemma 16. Let C/F be a finite extension of function fields, and let E1 and E2 be two
intermediate function fields that are linearly disjoint over F . We have

NC/E2(ConC/E1(x)) = [C : E1E2] ConE2/F (NE1/F (x))

for all divisor classes x ∈ Cl(E1).

Proof. We have NC/E1E2(ConC/E1E2(y)) = [C : E1E2] y, so by the transitivity of the
norm and conorm we can assume that C = E1E2. Furthermore, it suffices to prove the
assertion for all but finitely many places x = P of E1. In other words, given any finite set of
places of E1, every divisor class in E1 has a representing divisor whose support is disjoint
from this set of places, by the approximation theorem.

Because E1 and E2 are linearly disjoint over F , we have [E1E2 : E1] = [E2 : F ] and
E1 ∩ E2 = F . Furthermore, for almost all places P of E1, the splitting behaviour of P in
E1E2 is the same as that of P ∩ F in E2 (that is, their respective conorms ConE1E2/E1(P )

and ConE2/F (P ∩ F) consist of the same number of places, with the same relative degrees
and ramification indices). If P ′ is any place of E1E2 above such a P , then by symmetry we
have for the relative degrees,

f (P ′/P ′ ∩ E2) = f (P/P ∩ F).

Since

NE1E2/E2(P
′) = f (P ′/P ′ ∩ E2)(P

′ ∩ E2)

and

NE1/F (P ) = f (P/P ∩ F)(P ∩ F),

this gives

NE1E2/E2(ConE1E2/E1(P )) = f (P/P ∩ F) ConE2/F (P ∩ F)

= ConE2/F (NE1/F (P )).
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The multiplication-by-m map for m ∈ Z is denoted by [m]. In the following we use the
notation and situation of Section 2, and view the norm and conorm maps as maps of the
corresponding divisor class groups. Let V denote a subgroup of U1 such that V E ⊆ E; that
is, V restricts to a subgroup of Aut(E). Let W denote the largest subgroup of V such that
EW = E. We define

φV : Cl(EV ) −→ Cl(CU1) (17)

via the composition φV = NCV /CU1 ◦ ConCV /EV .

Theorem 18. We have

φ = φV ◦ [#W ] ◦ NE/EV . (19)

The kernel of φ thus consists at least of all elements contained in the kernel of the map
[#W ] ◦ NE/EV .

Proof. The extensions CW/CV and E/EV are Galois with group V/W , since W is the
kernel of the restriction map V −→ Aut(E), and is hence normal in V . The fields E and
CV are then linearly disjoint over EV because E ∩ CV = EV , [E : EV ] = (V : W),
ECV = CW and [ECV : CV ] = [CW : CV ] = (V : W) by the definition of W

and Galois theory. From Lemma 16, the transitivity of the norm and conorm maps and
NC/CW ◦ ConC/CW = [#W ], we obtain

φ = NC/CU1 ◦ ConC/E

= [#W ] ◦ NCW /CU1 ◦ ConCW /E

= [#W ] ◦ NCV /CU1 ◦ ConCV /EV ◦NE/EV

= [#W ] ◦ φV ◦ NE/EV

= φV ◦ [#W ] ◦ NE/EV ,

which proves (19). The statement about the kernel of φ is clear.

We remark that Theorem 18 can basically be applied recursively in the following way.
Let CV be the normal closure of CV over CU1 , and let

φV : Cl(EV ) −→ Cl(CU1)

be defined by

φV = NCV /CU1 ◦ ConCV /EV .

Then φV = [[CV : CV ]] ◦ φV and Theorem 18 can be applied to φV with V replaced by
any larger group V ′ such that V ′EV ⊆ EV .

Let U1//V denote a set of coset representatives such that U1 = ∪σ∈U1//V σV and
1 ∈ U1//V , and denote the restriction of σ to E by σE . We assume in the following that
E ∩ σE is a function field, and that E and σE are linearly disjoint over E ∩ σE for every
σ ∈ U1. The latter will, for example, be the case if at least one of E and σE is Galois over
E ∩ σE.

Theorem 20. Abbreviating Z = ConE/EV (NE/EV (ker φ)), we have

[C : E](V : W)Z ⊆
∑

σ∈U1//V
σ 
=1

[C : E σE] (V : W) ConE/E∩σE(NσE/E∩σE(σE(Z))). (21)
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Proof. The extensions C/CU1 and E/EV are Galois, with groups U1 and V/W respectively.
We have ConC/CU1 ◦ NC/CU1 =

∑
σ∈U1

σ,

σ ◦ ConC/E = ConC/σE ◦σE,∑
τ∈V

τE = [(V : W)] ◦ ConE/EV ◦ NE/EV ,

for any σ ∈ U1. Using Lemma 16 in the fifth equation, we obtain

NC/E ◦ ConC/CU1 ◦φ = NC/E ◦ ConC/CU1 ◦ NC/CU1 ◦ ConC/E

= NC/E ◦
( ∑

σ∈U1

σ

)
◦ ConC/E

=
∑
σ∈U1

NC/E ◦σ ◦ ConC/E =
∑
σ∈U1

NC/E ◦ ConC/σE ◦σE

=
∑
σ∈U1

[[C : E σE]] ◦ ConE/E∩σE ◦ NσE/E∩σE ◦σE

=
∑

σ∈U1//V

[[C : E σE]] ◦ ConE/E∩σE ◦ NσE/E∩σE ◦σE ◦
( ∑

τ∈V

τE

)

=
∑

σ∈U1//V

[[C : E σE]] ◦ ConE/E∩σE ◦ NσE/E∩σE ◦σE

◦ [(V : W)] ◦ ConE/EV ◦ NE/EV . (22)

If x ∈ ker φ and z = ConE/EV (NE/EV (x)), writing the summand for σ = 1 separately, we
thus have

NC/E(ConC/CU1 (φ(x)))

= [C : E](V : W) · z +
∑

σ∈U1//V
σ 
=1

[C : E σE] (V : W) ConE/E∩σE(NσE/E∩σE(σE(z)))

= 0,

thereby proving equation (21) and the theorem.

Proposition 23. Assume that V is normal in U1. Then σ(EV ) = (σE)V , and EV ∩σEV =
(E ∩ σE)V is a function field for every σ ∈ U1. Furthermore, if the kernel of the restriction
map V −→ Aut(E) is equal to the kernel of the restriction map V −→ Aut(E ∩σE), then
EV and σEV are linearly disjoint over EV ∩ σEV .

Proof. Since V is normal in U1, it is an automorphism group of E and σE, and we have
σ(EV ) = (σE)V . Thus

EV ∩ σ(EV ) = EV ∩ (σE)V ⊆ (E ∩ σE)V

because EV ∩(σE)V is contained in E∩σE and fixed by V . Conversely, (E ∩ σE)V ⊆ EV

and (E ∩ σE)V ⊆ (σE)V , and hence

(E ∩ σE)V ⊆ EV ∩ (σE)V ;
in conclusion

EV ∩ σEV = (E ∩ σE)V .
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By Galois theory, E ∩ σE is of finite degree over EV ∩ σEV since V is finite, and thus
EV ∩ σEV is a function field because E ∩ σE is a function field.

The group W is the kernel of the restriction map V −→ Aut(E), and is normal in V . Fur-
thermore, σWσ−1 ⊆V for any σ ∈ U1, and WσWσ−1 ⊆ ker(V −→ Aut(E∩σE)) = W ,
where the last equation holds by assumption. It follows that σWσ−1 = W , and that W is
normal in U1.

We have EV σEV ⊆ (EσE)V , and we want to show equality. Extension EσE/(EσE)V

is Galois with groupV/W , using the fact that ker(V −→ Aut(EσE)) = W ∩σWσ−1 = W .
Thus

(V : W) = [EσE : (EσE)V ] � [EσE : EV σEV ].
On the other hand, we obtain (V : W) � [EσE : EV σEV ] as follows. We have
E = EV (E ∩ σE), because EV (E ∩ σE) is an intermediate field of the Galois extension
E/EV with group V/W , and its fix group is W/W , using the fact that W = ker(V −→
Aut(E∩σE)). Similarly, σE = σEV (E∩σE). It follows that EσE = EV σEV (E∩σE).
Then

(V : W) = [E ∩ σE : (E ∩ σE)V ]
� [EV σEV (E ∩ σE) : EV σEV (E ∩ σE)V ]
= [EσE : EV σEV ],

as desired. We see that [(EσE)V : EV σEV ] = 1, and thus (EσE)V = EV σEV .
The linear disjointness of EV and σEV over EV ∩σEV now follows, because E and σE

are linearly disjoint over E∩σE and the indices [E : EV ], [σE : σEV ], [EσE : EV σEV ]
and [E ∩ σE : EV ∩ σEV ] are all equal to (V : W), observing that (EσE)V = EV σEV

and (E ∩ σE)V = EV ∩ σEV .

Theorem 24. Under the assumptions of Proposition 23, we have

[CV : EV ] · ker φV ⊆
∑

σ∈U1/V
σ 
=V

ConEV /EV ∩σEV

(
Cl0(EV ∩ σEV )

)
, (25)

and the kernel of φ is contained in the preimage of the right-hand side under the map
[[C : E]] ◦ NE/EV .

Proof. By Proposition 23, we can apply Theorem 20, replacing φ by φV and V by {1}.
Then W = {1} and relation (25) follows from Theorem 20, relation (21). Observing that
[C : E](V : W) = #V [CV : EV ], and hence that [CV : EV ]#W = [C : E], we obtain

[[CV : EV ]#W ] ◦ NE/EV = [[C : E]] ◦ NE/EV .

The statement about the kernel of φ then follows from (25) and Theorem 18.

10. L-polynomials

In this section, we prove a general theorem about the L-polynomials of certain subfields
of a Galois extension of global function fields with Galois group a semidirect product. The
theorem and its corollary are used in the proofs of Theorems 12 and 15. We remark that the
L-polynomial of a global function field is the characteristic polynomial of Frobenius with
the coefficients in reverse order.
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Let G be a finite subgroup of Aut(C), and let H and U1 be subgroups of G such that H is
normal in G, H ∩U1 = {1} and G = HU1. The subgroup U1 operates on H by conjugation.
Assume further that H is elementary abelian of prime exponent l, and let {Hν : ν ∈ I } be
a system of representatives under the operation of U1 on the subgroups of H of index l for
some index set I . Let U1ν be the largest subgroup of U1 that leaves Hν invariant, and for
any subgroup A of G denote the degree of the exact constant field of CA over that of CG

by dCA .

Theorem 26. Under the above assumptions, the L-polynomials satisfy

LCU1 (t
d
CU1 ) / LCG(t) =

∏
ν∈I

LCHνU1ν (t
d
C

HνU1ν ) / LCHU1ν (t
d
C

HU1ν ). (27)

Proof. Since conjugation by elements of U1ν maps Hν and H to themselves, HνU1ν and
HU1ν are subgroups of G. Furthermore, HU1ν is in fact the normaliser of Hν in G, because
G = HU1 and Hν is normal in H . The factor group HU1ν/Hν is then a semidirect product
of H/Hν and HνU1ν/Hν .

We start with a statement on (non-abelian) characters. The following notation is used:
principal characters are denoted by 1, induced characters are prefixed by ‘ind’ with the
subgroup and group as subscript and superscript, and χ(ν) denotes the character obtained
by lifting a character χ of HU1ν/Hν to HU1ν . We claim that

indG
U1

(1) − 1 =
∑
ν∈I

indG
HU1ν

((
indHU1ν/Hν

HνU1ν/Hν
(1) − 1

)(ν)
)
. (28)

We postpone the proof of (28) and continue to prove (27). Using Artin L-series and their
functorial properties (see [22, VII.10]), it is straightforward to obtain

ζCU1 (s) / ζCG(s) = L
(
C/CU1 , 1, s

)
/ L

(
C/CG, 1, s

)
= L

(
C/CG, indG

U1
(1) − 1, s

)
=

∏
ν∈I

L
(
C/CG, indG

HU1ν

((
indHU1ν/Hν

HνU1ν/Hν
(1) − 1

)(ν))
, s

)

=
∏
ν∈I

L
(
C/CHU1ν ,

(
indHU1ν/Hν

HνU1ν/Hν
(1) − 1

)(ν)
, s

)

=
∏
ν∈I

L
(
CHν /CHU1ν , indHU1ν/Hν

HνU1ν/Hν
(1) − 1, s

)

=
∏
ν∈I

L
(
CHν /CHνU1ν , 1, s

)
/ L

(
CHν /CHU1ν , 1, s

)
=

∏
ν∈I

ζCHνU1ν (s) / ζCHU1ν (s).

Let q denote the cardinality of the exact constant field of CG. The switch from the
s-definition to the t-definition of the Zeta function of a global function field
over the full constant field of qd elements happens by composing ζ (t) = ζ (s) ◦ (− logqd ).
Observing that logqd (td) = logq(t) = −s, we obtain (under a slight abuse of notation)

ζCU1 (t
d
CU1 ) / ζCG(t) =

∏
ν∈I

ζCHνU1ν (t
d
C

HνU1ν ) / ζCHU1ν (t
d
C

HU1ν ). (29)
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In general, ζ (t)(td) = L(td)/
(
(1 − qdtd)(1 − td )

)
, where L(t) is the L-polynomial of a

global function field over the full constant field of qd elements. Furthermore, L(ad) 
= 0
for |a| = 1 or |a| = q−1. Bringing the denominators (1 − qdtd)(1 − td ) to one side and
the L-polynomials to the other in (29), and comparing zeros and poles on each side, we see
that the denominators of the Zeta functions cancel out, so that we obtain (27).

It remains to prove (28). If A is a finite group, then we denote by C[A] the regular repre-
sentation space with character rA, by IA = {∑a∈A λaa : ∑

a∈A λa = 0} the augmentation
representation space with character rA − 1, and by C NA for NA = ∑

a∈A a the trivial
representation space with character 1 of A.

In the discussion that follows, all the modules will be left modules. Assume that N is a
normal subgroup of a finite group A with complement B (such that NB = A is a semidirect
product). The subgroup B operates by conjugation on N , and from this the N -module
structure of C[N ] can be extended to an A-module structure, via (nb)x = nbxb−1 for
n ∈ N , b ∈ B and x ∈ C[N ]. As A-modules, we have

C[N ] ∼= IN ⊕ C NN and C[N ] ∼= C[A] ⊗C[B] C NB = IndA
B(C NB), (30)

where the second isomorphism is given by x �→ x ⊗ NB ; we observe that N is a set of
coset representatives for B in A, and that B operates trivially on NB . The equality holds by
definition. We apply these observations to our case, and obtain as G-modules

IH ⊕ C NH
∼= IndG

U1
(C NU1), (31)

and as HU1ν/Hν-modules

IH/Hν ⊕ C NH/Hν
∼= IndHU1ν/Hν

HνU1ν/Hν
(C NHνU1ν/Hν ), (32)

taking the remarks at the beginning of the proof into account.
Next, let {Hν : ν ∈ J } be the set of all subgroups of H of index l for some index set J

such that I ⊆ J . Since H is elementary abelian, we have

rH − 1 =
∑
ν∈J

(rH/Hν − 1)(∗), (33)

where (∗) denotes the pull-back character with respect to H −→ H/Hν . This can be seen
as follows. The characters rH and rH/Hν are the sums of all the irreducible characters of
H and H/Hν respectively, and these characters are homomorphisms into µl , the group of
lth roots of unity in C. Now every non-trivial irreducible character of H has precisely one
of the Hν as kernel, due to the assumptions on H , and is hence the pull-back of a uniquely
defined non-trivial character of H/Hν . Grouping together irreducible characters with the
same kernel and summing up yields (33).

Using (33), we see that, as H -modules,

IH
∼=

∑
ν∈J

IH/Hν

(∗) (34)

where IH/Hν
(∗) is IH/Hν viewed as an H -module. In fact, IH/Hν is even an HU1ν-module,

and we denote this by IH/Hν
(ν). Let C[H ]Hν and I

Hν

H be, respectively, the submodules of
C[H ] and IH fixed by Hν . For a system of coset representatives H//Hν , it holds that

C[H ]Hν =
{ ∑

h∈H//Hν

λhh NHν : λh ∈ C

}
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and

I
Hν

H =
{ ∑

h∈H//Hν,h
∈Hν

λhh NHν : λh ∈ C

}
;

hence C[H ]Hν ∼= C[H/Hν] as HU1ν- and HU1ν/Hν-modules and I
Hν

H
∼= IH/Hν

(ν) as
HU1ν-modules. The images of the IH/Hν

(∗) under (34) in IH are contained in (and are in

fact equal to) the I
Hν

H , because Hν operates trivially on these images and IH/Hν
(∗) ∼= I

Hν

H .
Equation 34 translates into the inner direct sum

IH =
∑
ν∈J

I
Hν

H . (35)

Now U1 operates on the left- and right-hand sides of (35) by conjugation, permuting the
direct summands. More precisely, we have

σI
Hν

H = I
σHνσ−1

H for σ ∈ U1.

The group HU1ν is the largest subgroup of G that fixes Hν , and a system U1//U1ν of coset
representatives for U1ν in U1, such that U1 = ∪σ∈U1//U1ν

σU1ν , is also a system of coset
representatives for HU1ν in G, because H is normal in G. From these statements and the
definitions of I and J , we find that, as G-modules,

IndG
HU1ν

(I
Hν

H ) ∼=
∑

σ∈U1//U1ν

I
σHνσ−1

H

and

IH
∼=

∑
ν∈I

IndG
HU1ν

(I
Hν

H ), (36)

all sums being direct. Substituting IH/Hν
(ν) for I

Hν

H in (36) gives

IH
∼=

∑
ν∈I

IndG
HU1ν

(IH/Hν

(ν)) (37)

as G-modules. Combining (31), (32) and (37), we obtain (28).

Corollary 38. The genera satisfy the equation

dCU1 gCU1 − gCG =
∑
ν∈I

(
dCHνU1ν gCHνU1ν − dCHU1ν gCHU1ν

)
. (39)

Proof. This follows if we take the degrees on both sides of (27), since the degree of an
L-polynomial is twice the genus.

The proof of Theorem 26 simplifies greatly for U1 = {1} using (28) only in the form (33),
and then gives an alternative, short proof of the genus formula given in [12].

11. Conclusion

Using statements for extensions with certain automorphism groups, we have investigated
the Weil descent methodology for general Artin–Schreier extensions. We have given a for-
mula for the resulting genera and the zeta function, and have discussed the kernel of the
norm-conorm homomorphism. Our results apply in particular to hyperelliptic and elliptic
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curves in characteristic two. We have obtained a generalisation of the GHS attack, showing
more elliptic curves to be vulnerable. The precise practical implications of the new con-
struction have yet to be determined. We have also given a brief discussion of index calculus
in the divisor class groups of the resulting curves, and of further possible generalisations
and applications of our techniques.
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