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SOME RESULTS ON

QUOTIENTS OF TRIANGLE GROUPS

MARSTON D.E. CONDER

Given positive integers k,l,m, the (k,l,m) triangle group

has presentation A(k,l,m) =< X,Y,Z \ Xk=Yl= Z™ = XYZ = 1> .

This paper considers finite permutation representations of

such groups. In particular it contains descriptions of

graphical and computational techniques for handling them,

leading to new results on minimal two-element generation of

the finite alternating and symmetric groups and the group of

Rubik's cube. Applications to the theory of regular maps

and automorphisms of surfaces are also discussed.

1. Introduction

Suppose G is a group which can be generated by two elements, say

x and y, such that x has order k and y has order I and their

product xy has order m. Quite naturally we call (x,j/) a (k,l,m)-

generating pair for G. In such a case, the group G must be a quotient

of the {k,l,m) triangle group A(k,l,m), that is, the abstract group

with presentation
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74 Marston D.E. Conder

There is an obvious symmetry in this presentation; hence, for

example, if {x,y) is a (k,l,m)-generating pair, then (z,y) is an

(m,l,k) -generating pair, and so on. Indeed, &(k,l,m) is isomorphic to

A{r,s,t) whenever (r,s,t) is a rearrangement of (k,l,m) . Hence we

normally assume that k^l^m .

The triangle groups are discussed in [5], [JO] and [12]. we

mention some of their important features below.

First, it is known that &{k,l,m) is finite precisely when

-r + y + — > 1 . In that case the triangle groups are as follows:

&(1,m,m) = C , the cyclic group of order m,

A(2,2,m) = D , the dihedral group of order 2m ,

A(2,3,3) = A^ , the tetrahedral group (of order 12) ,

A(2,3,4) s E^ , the octahedral group (of order 24) ,

A(2,3,5) s A , the icosahedral group (of order 60) .

If -T- + Y + — = 1 , namely in the cases of A(2,3,6), A(2,4,4) and

A(3,3,3) , then the group is infinite but soluble: its commutator

subgroup is a free Abelian group on two generators, and the associated

factor-commutator group is cyclic of order m .

In this paper our interest centres on insoluble permutation groups,

and therefore we consider mainly cases where 77 + y + — < 1 . Each such

triangle group is not just infinite and insoluble, but in fact

SQ-universal (of. [9]); that is, every countable group occurs as a

subgroup of some quotient of A(k,Z.,m) . In particular, these triangle

groups are 'enormously large', possessing a wealth of interesting finite

factor groups.

Suppose once again that the group G has a (k,l,m) -generating pair,

say (x,y) , and suppose further that G is a quotient of no triangle

group A(r,s,t) with — + — + —>•=- + -=- + — . Then we shall say (x ,y)
2? S "0 K If Tfl

is a minimal generating pair for G . In this sense, minimal means that

the orders of the elements x, y and xy are as small as possible (subject

to the condition that any two of these elements generate the group) . Our

definition is not quite the same as that adopted by McKay and Young
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(of. [8]), because of the applications which we discuss shortly, however

in many cases the two definitions give generating pairs which correspond

to the same triangle group!

We can obviously rank the triangle groups L(k,l,m) in terms of

descending value of the expression -r + •=- + — . First come the finite

and soluble ones, and these are followed by

A(2,3,7)

A(2,3,8)

A(2,4,5)

A(2,3,9)

A(2,3,10)

A(2,3,12), A(2,4,6) and A(3,3,4)

A(2,3,13)

and so on.

To find a minimal generating pair for a given finite group G , if

indeed G is a 2-generator group, one may search down this list for the

first triangle group which possesses G amongst its quotients. This is

seldom an easy task! There are, however, several means of assistance,

particularly in cases where G has a known faithful permutation

representation. We outline some of these techniques in Section 2.

In the special case where one generator has order two, the quotients

of the triangle groups have particular significance to the study of

regular maps on surfaces (e/. [7], [5]). A finite group G is

representable as the group of sense-preserving automorphisms of a regular

map having I edges incident to each of its vertices and m edges

bounding each of its faces, if and only if G is a quotient of A(2,Z-,m) .

When this happens, the genus g of the map (and of the associated

orientable surface containing the map) is given by

that is,
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ff-i + i |C,(i-(i + | + i)).

One consequence of the latter formula is that any minimal (2,Z-,m)-

generating pair will correspond to a regular map of smallest possible

genus having the given group of sense-preserving automorphisms.

More generally, every triangle group is a Fuchsian group, and

therefore a discrete subgroup of PSL (2,IR) , the group of conformal

homeomorphisms of the upper-half complex plane. It follows that any finite

quotient G of &(.k,l,m) is representable as the group of orientation-

preserving automorphisms of a compact Riemann surface, whose genus g

is given by

that is.

being a consequence of the Riemann-Hurwitz equation (of. [10]).

Following Tucker [12] , we may define the strong syrrmetric genus

a" (G) of a finite group G to be the smallest genus of all such surfaces

on which G acts as a group of orientation-preserving automorphisms. It

is evident from the above formula that any minimal generating pair for G

(if one exists) will provide an upper bound for o° (G) . But in fact

Tucker proves much more than this - from his work we glean the following:

If G is a finite group with o°(G) > 1 , then

\G\ < 84(a°(G) - 1), and moreover, if \G\ > 12(a°(G) - 1) then G

is a quotient of at least one triangle group A(k,l,m) with

— <y- + Y + — < 1 , and o° (G) is correspondingly determined by the

largest achievable value of -r- + y + — . In other words, if G has a

minimal {k, I ,m) -generating pair such that — <j- + y + — < 1 , then
b K L m

a"(G) must equal

- £ • | • I)).

We have been able to use this fact to determine the strong symmetric

genus of each of the finite alternating and symmetric groups. Details are
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given in Section 3.

Consideration of orientation-reversing automorphisms of surfaces

leads naturally to Tucker's definition of the (more general) symmetric

genus of a group (of. [12]). In a separate paper we announce the

symmetric genus of the symmetric group Z for all positive integers n.

Finally we mention the following application of minimal generating

pairs. Given a finite group G , the smallest genus of all surfaces into

which can be embedded the Cayley graph corresponding to some presentation

for G is called simply the genus of the group ( of. [73]). Typically,

the genus of a particular finite group is not easy to calculate, even if

all its presentations are known. We can say, however, that if G is a

quotient of the triangle group &(k,l,m) , then at least one Cayley graph

for G embeds into a surface of genus

-(*•!•:)) •

This result (of. [72] or [7 3]) means that we can use minimal generating

pairs in order to obtain a reasonable upper bound on the genus of some

groups.

2. Machinery

In this section we describe some of the tools we have found useful

in obtaining results about two-element generation of certain permutation

groups.

Most of our work hinges on the construction and analysis of coset

diagrams for the appropriate triangle groups. Formally ( of. [5]),

a coset diagram corresponding to a subgroup H of finite index in a

finitely-generated group G , is a directed, edge-coloured graph, whose

vertices are the (right) cosets of H in G and whose edges are defined

as follows: we take a specific set of generators for G , and for each

generator x and each vertex Hg , draw an edge of colour C from. Hg

to Hg x . This is of course a generalization of the Cayley colour graph

corresponding to a (finite) presentation for G.

Now it is a well-known fact that every transitive permutation

representation of a group corresponds naturally to one on the cosets of a

subgroup (namely, the subgroup of elements fixing a particular point).

Consequently any transitive permutation representation of a finitely-
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generated group on a finite space can be depicted graphically by a coset

diagram. Indeed, this can be done even without specific knowledge of

the associated subgroup - one needs only the permutations induced by

specific generators on the points of the space.

In the case of a triangle group A(2,£,m) , we may simplify the

coset diagram by removing some of its edges, directions and even the

colours. If (x,y) is a (2,1 ,m)-generating pair, then we may represent

the cycles of y by polygons (whose vertices are permuted, say,

anticlockwise) or by heavy dots (indicating fixed points) , and then draw

lines to indicate the action of x (interchanging the points at the ends

of each line).

For example, the triangle group A(2,6,14) has a transitive

permutation representation on the space {1,2,3,4,5,6,7,8,9,10}, with the

usual generators x and y acting as (1,2) (3,5) (6,8) (9,10) and

(2,3,4)(5,6,7,8,9,10) respectively. The associated coset diagram may

be drawn simply as below:

Once we have constructed such a diagram, it is quite easy to

read off the permutation action of any particular word in the group

generators, using a form of 'diagram chasing1. For example, in the

above representation one can find that the element xy xxy acts as

(1,2,3,10,7,9,5)(4,6,8), by following the 'path' corresponding to the

word xy xy from each vertex in turn. This is much quicker than

dealing with the permutations alone.

For a particular group, the construction and analysis of coset

diagrams on a chosen number of vertices can be carried out by hand. This

of course requires care and imagination. Alternatively, the work can be

performed by a suitably programmed machine. In particular, there are a
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couple of algorithms available which are ideally suited to each task.

We outline them briefly:

The Lowindex algorithm

Given a presentation for a group G with a small (finite) number

of generators and defining relations, it is possible to determine all

subgroups - or just a representative from each conjugacy class of

subgroups - of index less than some specified integer n. This algorithm

(described in detail in [6] , for example) first sets up a partial coset

table, indicating the action of each generator of G on each numbered

coset, in a way similar to the well-known Todd-Coxeter algorithm. Once

a certain pre-set number of cosets have been defined, a branching process

is begun. At each level of this process, the algorithm forces

coincidences between pairs of cosets - equivalent to producing new

generators for a subgroup - and updates the coset table accordingly. If

the table becomes 'complete', with fewer than n cosets defined, then a

new subgroup has been determined; otherwise the process jumps to the next

level and examines all possible branches (new coincidences) there. A

test can be included to check whether any current branch will lead only

to conjugates of subgroups already found, in which case that branch is

abandoned; otherwise the algorithm continues and outputs any new subgroups.

Termination occurs when all possible branches (at the first level) have

been exhausted.

From the complete coset table corresponding to any outputted

subgroup, say H , it is a simple matter to obtain explicit generators

for the subgroup H as words in the generators for G , together with

those permutations induced by the generators of G on the cosets of H .

Using the latter permutations, one can then draw the associated coset

diagram (which, incidentally, will be the same for any subgroup from the

same conjugacy class). In particular, this algorithm gives us a

systematic method of enumeration of all coset diagrams for G on fewer

than n vertices.

The Schreier-Sims algorithm

Given a small (finite) number of permutations on a small (finite)

space, it is possible to determine the order of the group they generate.

The algorithm we refer to was conceived by Charles Sims, and based on
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Schreier's theorem for subgroup generators. It produces not only the

order of the generated permutation group, but also a base and a strong

generating set (as explained in [7] for example).

Roughly speaking, the base and strong generating set give an

indication of the (multiple) transitivity and/or imprimitivity of the

group generated by the given permutations, and are therefore helpful in

the task of recognising the group itself.

For example, if we have a coset diagram corresponding to a subgroup

H of low index in a finitely-presented group G (such as a triangle

group) , we can read off the permutations induced by the generators of G

on the cosets of H , and attempt to identify the group they generate.

Of course the latter group will be a finite quotient of G,

corresponding to the normal subgroup fl g Eg of G (often called

the core of E in G ) .

Consequently the Schreier-Sims algorithm can be used (together with

the Lowindex algorithm) to help us determine those finite quotients of

G which have transitive permutation representations of small degree.

The author of this paper has successfully implemented PASCAL

versions of these algorithms (and others) on a microcomputer, but would

like to point out that more sophisticated (and probably more efficient)

packages are available - notably John Cannon's CAYLEY group system at

the University of Sydney.

Finally we mention a result which has proved most useful in deciding

that certain finite groups are not quotients of a given triangle group

A(2,l,m). By putting a strong restriction on the possible cycle

structures of the permutations induced by the group generators, it tells

us that some coset diagrams cannot be constructed, or, if they can, then

they must take a certain form.

THEOREM. Suppose a and b are permutations of N points such

that a has A cycles of length u (for 1 < u < I) and b has u

cycles of length v (for 1 < v < m) and their product ab is an

involution having k transpositions and N-2k fixed points. If a and

b generate a transitive group on these N points, then there exists a

non-negative integer p such that
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k = 2p - 2 + Z A + Z y .

This i s actual ly a special case of Theorem 2 from [10], for

N = Z A « = Z yl> and so on. The following proof, however,
Z U Kv<m V

does not require the strength of the Riemann-Hurwitz equation.

Proof. (Due to Graham Higman.) Write ab as t t ,,.t, 3 the
1 2 /£

product of fe d i s jo in t t ranspos i t ions , and l e t s = Z A •

We can arrange the transpositions such that a t t ..,t. has s - i

cycles, for l<i<j , where j is some integer less than both s and

k , as postmultiplication by a transposition always increases or

decreases the number of cycles by one. Indeed, let j be the largest

integer for which this is possible. We claim that 3=8-1 .

To see this, consider any orbit A of the permutation

a t1t2..,t . . This must be a union of orbits of a , and must also

be fixed by each of the remaining transpositions t . , ... ,tv (otherwise
J+l K

we can choose t. such that a t,t2...t.t. has one cycle fewer

than a-1t t ...t. )• Hence ha = A and also
1 2 0

hb = ha ab = ha~ t t ...t, = At. ...t, = A so that A is an orbit
1 2 K J"*"-*- ^

for the group generated by a and b . By transitivity, A must have

size N, hence a~ t t ...t. is a single W-cycle. In particular,
1 2 Q

S ~~ 3 "™* J- •

Now when we postmultiply a t t ...t. by the remaining k- s + 1
1 2 3

transpositions t. , ...tt, in turn, some (say q) will increase the
3+1 K

number of cycles by one, and others (say p) will decrease the number by

one, so that b = a t t ...t, will have 1 + q - p cycles.

1 2 K

But this means
1 - i . / 7 _ n = Z 11

and as we know on the other hand

q+p=k-s

we obtain (by subtraction)
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l - 2 p = Z \i - k + Z X - 1 ,
m V Ku<l U

from which the desired equality follows.

COROLLARY. If A(2,3,7) has a transitive permutation

representation of degree N , then

[!]•'[!]••[!]>» - » •
and in fact there exist non-negative integers p, e} f, g satisfying

N = 84 (p - 1) + 21e + 28/ + 26g .

Proof. Take a and b such that a3 =£>7= (ab)z = 1 , the group

generated by a and b acting transitively on a set of N points.

For the first part, notice

z xu=x1 + x3>

and

f]
while

For the second part, let e, f and g denote the numbers of fixed

points of ab, a and b respectively. The theorem tells us there is a

non-negative integer p such that

\(n - e) = 2p - 2 + f + |(tf - f) + g + jW - g) ,

therefore

21{N - e) = 84p - 84 + 42/ + 14{N - f) + 42g + 6{N - g) ,

which simplifies to the given formula. (These results were cited without

proof in [2].)
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3. Alternating and symmetric groups

Some years ago Graham Higman discovered that for all sufficiently

large integers n the alternating group A can be generated by elements

x, y satisfying x2 = y3 = (xy)7 = 1 . He proved this by using a method

for construction of transitive permutation representations of the triangle

group A (2, 3, 7) of arbitrarily high degree, together with a clever

argument based on a theorem of Jordan. The work was never properly

published; however Professor Higman very kindly allowed the author of this

paper to use it as the basis for a doctoral thesis; and consequently

refinements and extensions of the theorem have appeared in print.

In [2] we showed how all but 64 of the finite alternating groups are

quotients of A(2, 3, 7). Incidentally, there is an error in the statement

of the theorem in Section 5 of [2] : the integer 139 is missing from the

list (a) of those n which fail to satisfy the inequality

2 n ~ 2 ' ^In Pa r ti c u l a r there is no coset diagram for

A(2, 3, 7) on 139 vertices; hence i5 is not a Hurwitz group.)

We adapted Higman's methods in a sequel [ 3 ] to achieve the following

generalization:

THEOREM. Given any integer m greater than 6, all but finitely many

alternating groups A occur as quotients of the triangle group L(2, Z, m).

Moreover, if m is even, then all but finitely many symmetric groups E

occur as well.

An immediate consequence of these results is that we need look only

at A(2, 3, 7) and A(2, 3, 8) to obtain minimal generating pairs for

almost all alternating and symmetric groups.

In fact Z has a (2, 3, 8)-generating pair for all integers n

except for those in the range 1 < n < 17 and for n = 22, 23, 26 and 29.

We have proved this using the methods of [2] and [3], and our results

match those obtained by machine computation. The exceptional cases are

as follows:

(a) n = 1, 2, 3, 4 : here £ is a quotient of A(2, 3, 8), but of

course £ has no element of order 8;
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(b) n = 5, 7, 11, 23 : here A(2, 3, 8) has no transitive

permutation representation on n points ,-

(c) n = 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 22, 26, 29 : here

elements x, y satisfying x1 = y3 = (xj/)e = 1 in E always generate a

proper, often imprimitive subgroup of E .

Our computations have indicated also that A has a (2, 3, 8 ) -

generating pair except when 3 < n < 9 or n = 11, 12, 14, 15, 18, 19, 20,

21, 23, 24, 31, 35, 47. In particular, of the 64 alternating groups which

are not quotients of A(2, 3, 7 ) , all but 17 have a minimal (2, 3, 8 ) -

generating pair.

It turns out that these remaining cases, together with the cases of

the 21 exceptional symmetric groups above, can be dealt with almost

entirely by examining the quotients of the triangle groups

A(2, 4, 5)

A(2, 3, 9)

A(2, 3, 10)

A(2, 3, 11)

A(2, 3, 12) and A(2, 4, 6 ) .

We summarize the results in the following theorem.

THEOREM. Except for the oases listed below, every alternating group

A has a minimal (2, 3, 7)-generating pair and every symmetric group E

has a minimal (2, 3, 8)-generating pair.

The exceptional values of n are:

(a) 25, 27, 30, 32, 33, 34, 38, 39, 40, 41, 44, 46, 48, 53, 54, 55,

59, 60, 61, 62, 67, 68, 69, 74, 75, 76, 82, 83, 89, 90, 95, 97, 103, 104,

110, 111, 118, 125, 131, 139, 146, 167, for here both An and E^ have

minimal (2, 3, 8)-generating pairs;

(b) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 22, 23, 24, 26, 29, 31, 47, for in these cases minimal generating

pairs are obtainable for A and E from the triangle groups h(k, I, m)

as given in the following list:
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n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

IS

16

17

18

19

20

22

23

24

26

29

31

47

A(l,

A(l,

L(l,

A(2,

A(2,

A(2,

A(2,

A(2,

A(2,

A (2,

A (2,

A(2,

A(2,

A(2,

A(2,

A (2,

A (2,

A (2,

A (2,

A (2,

A (2,

A (2,

A (2,

A (2,

A (2,

A (2,

A (2,

A
n

1,

1,

3,

3,

3,

4,

4,

5,

4,

3,

3,

3,

3,

3,

3,

3,

3,

3,

3,

4,

3,

3,

3,

3,

3,

4,

4,

1)

1)

3)

3)

5)

S)

7)

7)

6)

8)

11)

11)

8)

12)

7)

8)

8)

9)

9)

5)

7)

11)

10)

8)

7)

5)

5)

A(l,

A<%

A(2,

Af2,

A(2,

A(2,

A(2,

A(2,

A(2,

A (2,

A(2,

A(23

A(2,

A(2,

A(2,

A (2,

A (2,

A (2,

A (2,

A (2,

A (2,

A (2,

A (2,

A (2,

A (2,

A 12,

A (2,

I
n

1,

2,

2,

3,

4,

5,

3,

4,

4,

3,

4,

3,

3,

4,

4,

4,

4,

3,

3,

3,

3,

3,

3,

4,

3,

3,

3,

1)

2)

3)

4)

5)

6)

10)

7)

6)

10)

5)

12)

12)

6)

5)

5)

6)

8)

8)

8)

10)

10)

8)

S)

12)

8)

8)
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COROLLARY. For all but 69 positive integers n, the strong symmetric

n' n'genus of A is -r^ + 1 and that of Z is —rj- + 1.
n loo n 4o

The exceptional cases are given in the theorem, and for each n we

can easily compute a° (A ) and a°(E ) using the earlier formula.

One should perhaps also notice that every A and Z has a minimal

(2, I, m)-generating pair for some I and m, that is, one of the minimal

generators is always an involution. Hence in particular the theorem gives

(indirectly) the regular maps of minimum genera with A and/or Z as

automorphism group.

4. The group of Rubik's cube

By the group of Rubik's cube we mean the group of 43, 252, 003, 274,

489, 856, 000 patterns achievable by natural manipulations of a standard

six-coloured Rubik's cube. The structure of this group is quite well-known

{of. [77] for example). In particular, it may be viewed as an intransitive

group of permutations on the 48 coloured labels of the edge and corner

pieces of the cube, acting (imprimitively) on each of two orbits of size

24. One of these orbits corresponds naturally to the labels of the edge

pieces: there are 12 blocks each of size 2, and the group acts on these

as a split extension of an elementary Abelian 2-group of order 211 by the

symmetric group E12 . We will call the latter group the edges group.

On the other orbit, with 8 blocks each of size 3, the cube group acts as a

split extension of an elementary Abelian 3-group of order 3 by the

symmetric group Z . This group (of order 3 .81) can be known as the

corners group. The group of the cube is a subdirect product of these two

imprimitive groups, that is, a subgroup of index two in the direct product

of the edges group and the corners group. As such, it has order

^•(211.12! 37.8I), which is the number stated above.

This view was adopted in [4], where we showed that the group of the

cube can be generated by elements x and y satisfying

x2 = y1* = (xy)1260 = 1, with the orders 2 and 4 of the generators

being 'minimal' in a certain sense. Well, we can now state that the group

of Rubik's cube has a (2, 4, 12)-generating pair, which is minimal in the

sense described earlier (cf. Introduction).
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The proof of these claims goes as follows.

First we label the coloured stickers on the edge and corner pieces

as 1, 2, ...» 48 in any way such that the blocks of imprimitivity are of

the form:

Corner blocks {m, m + 8, m + 16} for 1 < m < 8 ,

Edge blocks {m, m + 12} for 25 < m < 36 ,

with the added condition that the corner pieces are labelled according to

a consistent (say clockwise) orientation.

Now consider the following pair of permutations:

X = (1, 20) (2, 5) (3, 14) (4, 9) (6, 19) (10, 13) (11, 22) (12, 17)

(18, 21) (25, 26) (27, 31) (28, 30) (29,35)(32, 33) (37, 38)

(39, 43) (40, 42) (41, 47)(44, 45);

y = (1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12)(13, 14, 15, 16)

(17, 18, 19, 20)(21, 22, 23, 24)(26, 27, 28, 29)(30, 42)

(31, 32, 43, 44)(33, 34, 45, 46)(35, 48, 47, 36)(38, 39, 40, 41).

One may observe immediately that these permutations satisfy the

relations x = y1* = 1, and a little further investigation yields

{xy)1 = 1. (Indeed, the reader may wish to draw the associated coset

diagrams in order to verify these and other details.)
<

Also it is not difficult to show that both x and y are achievable

by natural manipulations of the cube. For example, one could dismantle

the cube and reassemble it into the state prescribed by the action of the

appropriate permutation, and then use one's favourite algorithm to return

the cube to its original state! In particular x and y may be taken as

elements of the group of Rubik's cube.

The subgroup generated by x and y is transitive on

{1, 2, , 24} and also on {25, 26, , 48}, and of course acts

imprimitively on each of these two orbits.

The commutator xyxy is the permutation (1, 11, 22, 20, 8)

(2, 18, 10) (3, 14, 12, 24, 17)(4, 16, 9, 19, 6)(5, 13, 21)

(25, 44, 45, 26, 29, 35)(27, 46, 31, 42, 48, 40)(28, 39, 34, 43, 30, 36)

(32, 33, 38, 41, 47, 37).

Now (xyxy ) 6 acts as a 5-cycle on the corner blocks, fixing all
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the other labels, so the group <x, y> generated by x and y must act

primitively on the corner blocks, and indeed it acts as E8, by a theorem

of Jordan (of. Theorem 13.10 of [14]). On the other hand, (xyxy~ ) 5

'twists' the corner blocks {2, 10, 18} and {5, 13, 21} in opposite

directions, and multiple transitivity of <x, y > gives all such twists of

corner blocks. Consequently <x, y> acts in exactly the same way as the

corners group, inducing 37.8! permutations on the labels 1, 2, ..., 24.

Similarly (xyxyxy xy ) 1 5 acts as a 7-cycle on the edge blocks,

fixing all the other labels, so <x, y > acts as £12 on the edge blocks;

and as (y2 {.xyxyxy7-xy" ) 2 8 ) 2 'flips' the two edge blocks {27, 39} and

{29, 41}, we obtain all possible rearrangements of the edge labels. Hence

<X, y> acts in the same way as the edges group on the orbit

{25, 26, ..., 48}.

It now follows easily that <x, y> is a subdirect product of the

edges group and corners group, of order — (37.8I 2U.12!) since both x

and y induce even permutations on the 20 blocks of imprimitivity. That

is, x and y generate the group of Rubik's cube.

We now proceed to justify our claim that this generating pair (x, y)

is minimal.

First, as we pointed out in [4], the symmetric group E8 cannot be

generated by elements u, V which satisfy either u2 = V3 = 1 or

u3 = V3 = 1. Well, neither can it have a {k, I, m)-generating pair for

(k, I, m) = (2, 4, 6), (2, 4, 9), (2, 4, 11), (2, 5, 5), (2, 5, 6) nor

(2, 5, 7). This leaves just the possibilities (2, 4, 7), (2, 4, 8) and

(2, 4, 10), if we seek a Ik, I, m)-generating pair with

1 1 1 . 1 1 1 5

k + l+m>2+H+T2= 6 .

The symmetric group E12 has no (2, 4, 7)-generating pair; it can,

however, be generated by elements u, V satisfying u2 = U1* = (uv) = 1

where m = 8 or 10. Also Za can be generated in this way. But it is
O

impossible to generate the corners group (of order 37.8!) by such

elements, for neither A(2, 4, 8) nor A(2, 4, 10) has a transitive

permutation representation of degree 24 with 8 blocks of imprimitivity

(each of size 3).
Hence (2, 4, 12) is the best possible.
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In fact the pair (x,y) of permutations given above leads to a sort

of 'minimal presentation' for the group of Rubik s cube. These elements

also satisfy the relations

1 = (xyz)e

= (xyxy2)12

= (xyxyxy2)36

= (xyxyxy*1)3*

= (xyxy2xy2)60

and so forth.

The resulting presentation (obtained by continuing until enough

relations are found in order to define the group) is minimal in the sense

that if we write x, y, xy, xy2, xyxy2 (and so on) as a sequence of words

of increasing length, then the order of each word is as small as possible

subject to the condition that x and y generate the group and subject

to the relations corresponding to the orders of all earlier words in the

sequence. We do not, however, know how many of these relations must be

included in order to obtain a defining presentation for the group. That

seems to be an open problem.
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