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ON AN ARITHMETIC CONVOLUTION 

BY 

J. HANUMANTHACHARI 

1. Introduction and notation. In this paper the congruence (/°g)(n) = 0 
(mod n) and the functional equation / ° / ° - , , 0 / = g , are studied, where ° is an 
exponential regular convolution. For definitions, see below. 

We recall that an arithmetic convolution C is a map from the set N of 
positive integers into the power set &(N) such that for each neN, C(n) is a set 
of divisors of n. Following Narkiewicz [1], we say that C is regular if and only if 

(i) the statements "deC{m) and meC(n)" and "deC(n), and (m/d)e 
C{njdy are equivalent; 

(ii) d e C(n) implies (n/d)eC(n) 
(iii) 1, neC(n) for all neN; 
(iv) if (m, n) = 1, then C(mn) = {de:de C(m), ee C(n)} 
(v) for every prime power pa > 1, the set C(pa) is of the form 

{1, p\ p2\ . . . , pn - p a}, with some t^0f and more over p^Cip2'), p2t e 
C(p31),... 

We note that the Dirichlet convolution D, where D(n) is the set of all 
positive divisors of n, and the unitary convolution 17, where U(n) is the set of 
all positive divisors d of n such that (d, njd)- 1, are regular. 

Let si be the set of all arithmetic functions. We now introduce 

DEFINITION 1.1. For /, g e A, the exponential regular C-convolu-
tion of / and g, denoted by / ° g, is defined by 

(/°g)(D = /( l)g(l) 

and if n > 1 has the canonical form 

(1.1) n = p î ' P 2 ' - " P ? ' 

then, J , \ / r \ 

(/og)w=i/(npf'jg(nPi'j> 
where the summation is over bt e C(a,i) such that btCi = at, i = 1 ,2 , . . . , r. 

It is obvious that (si, °) is a commutative semi-group with |/x|, as the identity, 
where /LL is the Môbius function. We also recall that an arithmetic function / is 
said to be multiplicative if f(mn) = f(m)f(n), for all m, n such that (m, n) = 1 
and further it is said to be exponentially multiplicative if in addition whenever 
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(a, b) = 1, f(pab) = f(pa)f(pb) for all primes p [4]. We also note the following 
(for proofs, see [4]). 

LEMMA 1.1 The units of (si, °> are those f for which /(1)^0 and f(n)^0 
whenever n is a product of distinct primes. 

LEMMA 1.2. If f,gesi are exponentially multiplicative, then f°g is also 
exponentially multiplicative. 

LEMMA 1.3. If fe(si, °) is exponentially multiplicative and f~l exists, then 
f~l is also exponentially multiplicative. 

2. A congruence for a class of arithmetic functions. In this section we obtain 
a necessary and sufficient condition under which the congruence 

(2.1) (/og)(n)^0(modn) 

holds for all positive integers n, where / and g are integral valued arithmetic 
functions and / is a unit exponentially mulitplicative function in (si, °). Our 
result is akin to Subbarao's result [Theorem 1,2]. We write F(n) for the left 
member of (2.1). 

If / and g are multiplicative, then so is F. In this case (2.1) holds for all n if 
and only if F(pa) s 0 (mod pa) for all primes p and all integers a > 0. Further if 
/ and g are exponentially multiplicative, then from Lemma 1.2, F is exponen­
tially multiplicative. In this case the congruence (2.1) cannot hold for all n. For, 
suppose F(n) ^ 0 for some n given by (1.1), then F(p1p2 • • • pr) = 1 and hence 
F{pip2 ' • • p r)^0 (mod pip2 • • • pr). However we have the following. 

THEOREM 2.1. If f and g are integral valued arithmetic functions and f is a 
unit exponentially multiplicative function in (si, °) then (2.1) holds for all 
positive integers n if and only if 

(2.2) X f(pb)g(pcm)-0(modpa) (be C(a), be = a) 

for all primes p and all positive integers a and m with (p, m) = 1. 

Proof. (2.1) holds when n = l trivially. We can assume that n > l . Write 
n = pam, where p is a prime such that (p, m) = l. Taking m=Yls

j=iq"t, and 
using the exponential multiplicativity of /, we may write 

F(n) = I /(il qf) I f(p")g(pc II qj), 

where £i is the summation over all j8; G C(a}) satisfying that fty, = a; 

/ = 1,2,. . . , s, and £2 is the summation over all b e C(a) such that be = a. If 
(2.2) holds for all prime divisors of n, then 

F(n) = 0(modn) 

We now prove that condition (2.2) is also necessary for (2.1) to hold. 
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Let us assume that (2.1) holds for all positive integers n. Since / is a unit 
exponentially multiplicative function, from Lemma 1.3, f1 is exponentially 
multiplicative. Setting n = pam, with the same conditions on p, a, m what is 
mentioned earlier, writing g = f~loF, using exponentially multiplicative prop­
erty of /_ 1 and noting that \p{pe)\ = 1 or 0 according as e = 1 or e > 1, we may 
write 

(2.3) I f(pb)g(pcm) = I T 1 (il 4?')^° II qj) 
where fc 6 C(a), with bc = a\ and j3, 6 C(ay), with fty, = a, / = 1,2,.. . , s 

In view of (2.1), F(paU qj') = 0 (mod p a n q]1), which implies that 
F(panq70 = 0(modpa) for every Wqf which is of course relatively prime to 
pfl, yielding (2.2). 

3. An arithmetical equation. The object of this section is to find certain 
solutions of the functional equation 

for a given unit exponentially multiplicative function g, where /(s) = fofo-...of 
is the sth iterate of /. This is analogous to a result of Subbarao [3]. For n given 
by (1.1) 

fs\n) = lf{Up>)---f(Up^, 
where the summation is over bue C(Oi), b2i^C(aJbu),..., b(S-i)iG 
C(ajbii • • • fc(s-2)i) such that bub2i • * * bsi = ai9 i = 1,2,.. . , r. 

In view of Lemma 1.2, the exponential multiplicativity of / implies that of 
fs\ But the converse of this is not true. For example, choose / = n and C = D. 
Though /Lt(2) is exponentially multiplicative, fi is not exponentially multiplica­
tive. In fact /Lt(2s) is exponentially multiplicative. The following conditional 
converse is useful in the sequel. 

LEMMA 3.1. If fs) is a unit exponentially multiplicative function, then f is a 
unit exponentially multiplicative function if and only if /(1)= 1 and f(y(n))= 1 
for every n, where y(n) is the product of distinct prime factors of n. 

Proof. Since fs\l) = (f(l))s and fs\y(n)) = (f(y(n)))\ it is clear that fs) is a 
unit if and only if / is a unit. Suppose, the exponential multiplicativity of fs) 

also implies the exponential multiplicativity of /. Then /(1) = 1 and f(y(n)) = 1 
for every n. Now assume that fs) is a unit exponentially multiplicative with 
/(l) = 1 and f(y(n)) = 1 for every n. Suppose there is a pair of relatively prime 
positive integers m and n such that f(mn)^f(m)f(n). From the well ordering 
principle, there exists a pair of relatively prime positive integers with this 
property such that their product is the smallest element in the set of all such 
products. Let mu nx be this pair. If m2 and n2 are relatively prime positive 
integers such that m2n2<min1, then /(m2n2) = /(m2)/(n2). It is obvious that 
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neither mt nor nx is equal to 1. Let mi = n!c=i pV and ni = ri/=i qf1 Then, 

(3.1) f)(m1n1)= sfim^myiminW1 

-sf(m1)f(nl){f(y(m1))y-1(f(y(n1))Y-1 

+z/(npf-)---/(nPf-) 

xi/(n^)---/(n^) 
where £i is the summation over 8U e C(ai),..., 5(s-i)iG (ail8u • • • 8(S-2)i) such 
that on • • • Ssi = ab i = 1,2,. . . , k and £2 is the summation over Aly e 
C(ft) , . . . , A(s_1)ye CCjSy/Axy • • • A(s_2);) such that A1; • • • As/ = ft, ; = 1,2,. . . , t. 
Using /(y(n)) = l for every n and the multiplicativity of /(s) in (3.1), we get 
/(mini) = /(m!)/(ni). This leads to the multiplicativity of /. Similarly, using (iv) 
and the exponential multiplicativity of /(s), f(pab) = f(pa)f(pb) for every prime p 
whenever (a, b) = 1. 

THEOREM 3.1. Let g be a unit exponentially multiplicative function. Then the 
equation fs) = g has a unit exponentially multiplicative solution. Denoting this 
solution by h, fs) = g has a countably infinite number of solutions given by 

(3.2) f(n) = co(n)h(n), 

where co(n) is an s-th root of unity such that a)(n) = (o(y(n)). 

Proof. Since g is a unit exponentially multiplicative function from the 
equation fs) = g, one has (/(l))s = 1 and (f(y(n)))s = 1 for every n. Let the 
solution corresponding to the case /(1) = 1 and f(y(n)) = l for every n be 
denoted by h. Then from Lemma 3.1, h is a unit exponentially multiplicative 
function. Using the mathematical induction, h is determined for any n = [lj=i P?' 
by the equation, / \ / \ 
(3.3) g(n) = sh(n) + 1 h(ll Pilj ' ' ' h(ll Pij 
where X! is the summation over bxt € C(aj),..., fc^-i^e C(aj/btj • • • b(S-2)i) such 
that fciy • - - bSj = ah j = 1, 2 , . . . , u and bki^aj for at least one value of / = 
1, 2 , . . . , v and for every fc = 1,2,. . . , s. Now it is clear that / given by (3.2) 
satisfies the equation /(s) = g. 
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