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RESTRICTED DETERMINANTAL HOMOMORPHISMS 
AND LOCALLY FREE CLASS GROUPS 

VICTOR SNAITH 

1. Introduction. Let K be a number field and let 0K denote the integers of 
K. The locally free class groups, Cl(0K[G]), furnish a fundamental collection of 
invariants of a finite group, G. In this paper I will construct some new, non-trivial 
homomorphisms, called restricted determinants, which map the NQH-invariant 
idèlic units of Of([Hab] to Cl(OK[G]). These homomorphisms are constructed by 
means of the Horn-description of C\(0K[G]), which describes the locally free 
class group in terms of the representation theory of G, and the technique of 
Explicit Brauer Induction, which was introduced in [5]. 

Let J*(0K[Hab]) denote the idèles of 0K[Hab] and let U*(0K[Hab]) denote 
the subgroup of unit idèles (see (2.3)/(2.4)). Let NGH denote the normaliser 
of the subgroup, / / , in G and let WGH = (NGH)/H act (by conjugation) on 
J*(0K[Hab]). For each subgroup, H of G there is a restricted determinant map 
(see 4 for details) 

(1.1) Dew : J*(0K[Hab]fGH — C1(0K[G]). 

When H = G (1.1) may be described simply without the use of Explicit 
Brauer Induction. As explained in 2, Cl(OK[G]) is describeable as a quotient of 
Hom^(#(G), /*(£)). If M G J*(0K[Gab]) we may define a map 

(1.2) DetG(w) : R(G) —• J\E) 

by sending a representation, v, to 

t 

(1.3) J{Uu)eJ\E) 
1=1 

where v decomposes into irreducibles asi/ = < £ i 0 . . . 0 0 r ® p i 0 . . . (dim(0i ) = 
1, dim(p/) =i= 2). In (1.3) <j>i(u) means the element of J*(E) (for some splitting 
field, E) obtained by evaluating </>, on the group elements in u — J2geG^gS-
In (1.1) Detc is given by sending u to the class represented by (1.2) (see 5.4 
(proof)). 

This paper is arranged in the following manner. In 2 we recall the Horn-
description of the class group and the classical determinantal homomorphisms. 
In 3 we summarise the properties of Explicit Brauer induction from [5] and 
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the improvements due to R. Boltje [1; 2]. In 4 the restricted determinants are 
constructed and their main properties are collected in Theorem 4.6. In 5 we 
study a simple example and deduce some further properties. In particular, in 5 
we study the quotient group 

(1.4) B(G) = C\(0K[G])/ l J2 i m (C1(^[//]) — C\(0K[G]) l . 

We show that there is a partially ordered filtration, F(H)B(G), on B(G), indexed 
by the poset of conjugacy classes of subgroups of G and we show that Det// 
induces a surjection 

(1.5) Dew : H°(WGH; f(0K[Hab]) — Gr {H)B(G) where G r w 

= F(H)/1 z2 F(Y) J • 
1 \(Y)>(H) J 

2. The locally free class group. Let G be a finite group and let 0K denote 
the algebraic integers in G number field, K. Let Cl(OK[G]) denote the class 
group of finitely generated 0K(G) - modules which are locally free [3, p. 219; 
4]. 

Let us recall from [3, p. 334; 4] Frohlich's Horn-description of Cl(0K[G]). 
Suppose that E/K is a Galois extension of number fields, where E is chosen 

large enough so as to be a splitting field for G. Let J(E) denote the idèle 
group of E. Suppose that E lies within a fixed algebraic closure, Kc, ofK and 
let QK = Gzl(Kc/K). Also let R(G) denote the Grothendieck ring of finite 
dimensional ^-representations of G. Hence £IK acts (on the left, say) on R(G) 
by means of its action entry by entry on GLnK

c and Q,K acts also on E and on 
J(E). 

Let J*(E) denote the multiplicative group of the idéles and consider the group 
of Q^-equivariant homomorphisms. 

(2.1) Hom^WG), J\E)) = {/ : R(G) — J\E)\f(w(X)) 

= wf(x)),wGfl*}. 

The diagonal embedding of E* = E — {0} into J*(E) induces an inclusion of 
abelian groups 

(2.2) HomcfcWG), E*) — HomQ,(/?(G), /*(£)). 

For each prime, P (finite or infinite), of K let OKP and KP denote the com­
pletions of OK and K at P. When P is infinite we adopt the familiar convention 
that 0Kp = Kp. 
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Define the group ring unit idéles by 

(2.3) U\0K[G]) = Y[(0Kp[G]T. 
p 

The group, U*(OK[G]), is a subgroup of the group-ring idèles 

(2.4) J*(OK[GJ) = {(up) e H(Kp[G])*\up e (0^[G])*a.e.} 
p 

If {uP} E J*(OK[G]) we may define a homomorphism 

(2.5) Dct{uP} € HomQK(R(G\ /*(£)) 

in the following manner. Let 

(2.6) x'G^GLnE 

denote a representation of G. If up = ^2gec ^g8 m e n 

(2.7) det [$>*x(s) ) £E*Q 

for each prime, Q, of E lying over P. 
The homomorphism of (2.5) is defined by setting the Q-component of 

Det{«/>}(x) equal to (2.7). Hence we obtain a homomorphism 

(2.8) Det : J*(0K[G]) — HomQ,(fl(G), /*(£)). 

With the notation introduced above there is an isomorphism [3, p. 334] 

HomQK(R(G), /*(£)) 
(2.9) Cl(0K[G]) • 

Hom^WG), E*) Dct(U*(0K[G])) 

Remark 2.10. 
When G is abelian the map Det : U*(0K[G]) —> Det(t/*(0^[G])) is an 

isomorphism. Later we will require the following consequence of this observa­
tion. Suppose that H is a subgroup of G and that NQH is its normaliser. Set 
WQH = NQH/H. If Hab denotes the abelianisation of H then the conjugation 
action of NQH on H induces a WQH -action on Hab. Det induces an isomorphism 
on the WQH-invariant elements 

(2.11) Det : U*(0K[Hab])WcH -=• Det(U*(0K[Hab]))WGH. 

3. Explicit Brauer Induction. Explicit Brauer Induction is a canonical form 
of Brauer's induction theorem. The first such canonical form appeared in [5] 
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(see also [2; 4; 6; 7]). However, in this paper it will be convenient to use a 
related construction due to R. Boltje. Since the latter construction has not yet 
appeared in print I will describe it in terms of [5; 6; 8]. 

Denote by i?+(G, (Kc)*) the free abelian group on the G-conjugacy classes 
of subhomomorphisms. 

(3.1) GZ)H^(KCT 

where Kc is as in 2. /?+(G, (Kc)*) is a ring-valued functor when endowed with 
the following structure. 

The product is defined by 

(3.2) (GDH^ (KC)*)(G DJ^ (Kc)*) 

Z<EH\G/J 

where (z~1)*(vF)(a) = *¥(z-
laz). 

If H is a subgroup of G the restriction homomorphism 

(3.3) Resg : R+(G, (Kc)*) — fl+(tf, (Kc)*) 

is given by the formula 

Resg(G D J -t (JT)*) = £ (H D H f l ^z" 1 £ ! ™ l (*<)*). 
Z£H\G/J 

Induction 

(3.4) Indg : R+(H, (Kc(*) — R+(G, (KCT) 

is given by 

Ind£(tf D / i (/T)*) = (GDJ^ (KCT). 

If Ft : P —> G is a surjection then we have an inflation map 

(3.5) Inf£ : R+(G, (Kcf) -> tf+(P, (tfc)*) 

given by 

inf̂ (G D 7 -*» (/rn = P D i rV) - ^ (*e)*). 

With the structure of (3.2) - (3.5) R+(—, (Kc)*) is a Mackey functor in the sense 
of [1]. 
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There is a canonical homomorphism, which is surjective, to the representation 
ring, 

(3.6) bc.R+iG, (KCT)^R(G) 

bG(G DJ-^ (KCT) = Indy((/>). 

The homomorphism, bG, commutes with the usual restriction, induction and 
inflation maps of R(G) so that 

^Resg(z) - Resg(Mz))(z G R+(G, (Kc)*)\ 

MndgOO - ln4bH(y)(y E R+(H, (Kc)*)), 

and 

bplnfG(z) = lnfGbG(z). 

The explicit Brauer induction map of R. Boltje is a homomorphism 

(3.7) aG : R(G) - • R+(G, (Kc)*) 

which is characterised by the following properties. 
(3.8) (i) If H is a subgroup of G then 

Res^G = an Res#, 

(ii) Let v : G —• GLn(K
c) be a representation and write ^GO7) = !C/ ai(G D 

Jt -A (#c)*). For each / such that G — Jt then at = (i/, </>;) = {multiplicity of 
<t>i in i/}, 

(iii) If v is one-dimensional then aG(y) — (G D G —> (^fc)*). 
(iv) Z7GaG = l:/?(G)-^/?(G). 

(3.9) The relation between #G and the Explicit Brauer induction formulae of 
[5; 7; 8] is as follows. Each «-dimensional representation of G, i/, over Kc 

determines a unique complex, unitary representation 

v : G -+ t/(/i). 

Let /?+(G, 7VTn) denote the free abelian group of G- and 7Vr"-conjugacy 

classes of subhomomorphisms, (G D J —+ NTn), where 7VTn is the normaliser 
of the torus, Tn, of diagonal matrices in the unitary group, U(n). G acts, via z/, 
on U(n) Tn and from this action an element 

(3.10) rG(i/)€tf+(G, AfT) 
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is defined in [5]. The map from NTn to the trivial group induces a map 

R+(G,NTn)-+R+(G, {1}) 

which sends TG(V) to eG(i/). Also /?+(G, {1}) is naturally a subring of #+(G, S1), 
where S1 is the 1-torus. In [5] I defined a homomorphism 

(3.11) pG : R+(G, NTn)^R+(G, Sl)^R+(G, (Kc)*). 

The following properties summarise the results of [2; 5; 9]:-

(3.12) (i) Define TG(v) = pG(rG{y)) G R+(G, (Kcf) then TG{v) and eG{v) are 
well-defined and natural in G. If dim v = 1, TG{v) = (G > G ^+ (Kc)*). 

(ii) In R(G), bGTG{v) = v and bGeG{v) = 1. 
(iii) eG(i/0/i) = eG(i/)eG(/i)G/?+(G, {1}). 
(iv) 7b(i/ 0 ii) = rG(i/)eG(/x) + eG(is)TG(n) in tf+(G, (tfc)*), and 
(v) aG(y)eG(y) = TG(v) in R+(G, (Kc)*)-

Adams operations 3.13. (see [2; 8]). 
Let *F* : R(G) —• /?(G) be the fc-th Adams operation. If v is a representation 

*F*(i/) is the &-th Newton polynomial in the exterior powers of i/, {Az(i/)}. 
In terms of characters, if \ v is the character function of v then Xvk(v)(g) — 
X(8k) (g£G). 

If aG(v) or TG(i/) is equal to £ \ «/(G > // -^ (iT)*) G #+(G, (Kcf) then, for 
all it ^ 0, 

(3.14) ¥*(i/) = Ç a / Ind£.(#) G *(G) 

(where </>f is the k-ih power, $ — *F*((/>,)). 
The formula of (3.14), first proved in [8], is used in [10] to prove a conjecture 

of M. J. Taylor on determinantal congruences [9, p. 469, Remark 2] (see also 
[3, p. 364 (54.12); 4, p. 79, 1. 6]). 

PROPOSITION 3.15. Let Q.K = Gdl(Kc/K) act on /?+(G, (Kc)*) via its action 
on {Kc)\ Then aG : R(G)-+R+(G, (Kcf) is QK-equivariant. 

Proof. It is shown in [1] that aG is uniquely characterised by the properties of 
3.8(i)-(iv). However, if w G £&#, then the homomorphism {y —* w(aG(w~l(i/)))) 
also satisfies §3.8(i)-(iv) so that aG(v) = waG(w~l(i/)) for all representations, 
i/, in R(G). 

4. Restricted determinants. Let H be a subgroup of G. In the notation of 
2 we will define a restricted determinant homomorphism 

(4.1) Det„ : P(0K[Hab]))WGH — C\(0K[G]). 
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Here, as in (2.10), WGH is the Weyl group of H in G, WGH = (NGH)/H. 
Give an idèle 

veJ\oK[Hab])WGH 

we may assign to it the homomorphism which assigns to v G R(G) 

(4.2) Det(v) (J2 <*i(Hab ^ (Kc)*)) G J\E) 

where the sum in (4.2) is over all the terms of aG(v) = Ylj aj(G > Hj ~^ (KCY) 
for which Hj is conjugate to H. This is well-defined because v is WGH-invariant 
and the homomorphisms 

(4.3) (H - • Hab ^ (KCT) 

which appear in aG(y) are well-defined up to conjugation by elements of G so 
that, once we have chosen H to represent ///, then (4.3) is defined up to the 
action by NGH. By 3.15 the resulting homomorphism, which will be denoted 
by Det//(i/) : R(G) —• J*(E)) actually lies in Hom^(/?(G), J*(E)). Passing to 
class groups via (2.8) we obtain 

Det!*(i/) G C\(0K[G]) 

and obtain the required homomorphism of (4.1). 
Suppose the H is a subgroup of G then we have canonical maps of represen­

tation groups 

(4.4) R(Hab) —• R(H) —^ R(G) 

which may be assembled to induce, via (2.9), a map 

(4.5) (3G : Cl(0K[G]) - 0 a ( f t [ i / Y c f l 

(H) 

where (H) denotes the G-conjugacy class of H and the sum in (4.5) runs over 
all conjugacy classes of subgroups of G. 

We are now ready to state and prove our main result on restricted determinants. 

THEOREM 4.6. With the notation introduced in 2 there is for each subgroup, 
H, of G a homomorphism 

Det^ : J\0K[Hab])WGH — C1(0K[G]). 

(i) The images of the {Det^ : H ^ G} generate C\(0K[G]). 
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(ii) If (3 is not injective in (4.5) then at least one of the homomorphisms (from 
the unit ideles) Det# : U*(0K[Hab])WcH - • C\(0K[G]) is non-trivial. 

(iii) Suppose that J is a subgroup of G then for each subgroup, H, of J the 
following diagram commutes: 

DetH 
/*(cDK[//ab])w'H " • C1((DK[7]) 

Y 
Ind? 

SDety 
e/*(cDK[rab])w«H —1 • ci((DK[G]) 

//ere, I /II G / " (CM/ /^ ] )^" , tfie/i 

N?(u) = [ J (Z"1 M Z)
 G J\0K[Yab])WGY. 

Z<EJ\G/Y 
zYz-lC\J=H 

Also Ind^ is the map induced, via (2.9), by the map Res^ of representation 
rings. 

Proof. The isomorphism of (2.9), as described in [4, p. 20] for exam­
ple, is given by constructing from locally free 0£[G]-module an element, 
u G J*(OK[G]), and then taking its image under determinant homomorphism 
of (2.8). Hence {Det(w)|ii G J*(0K[G])} generates C\(0K[G]). 

Using the homomorphism, aG, of (3.7) we may refine this fact to establish 
part (i). Let the subgroup, / / , vary through a set, J ] , of conjugacy class repre­
sentatives. Write, for \ G R(g), 

<*G(X) = X]flG,ff(x) 

where aG,H(\) is the s u m °f a ^ the terms in aG(x) = J2i at(G D /// —• (A^)*) 
for which (//;) = (//). We may express 3.8 (iv) as 

(4.7) X = J2 Ind/k«G,*(x)) G *(G), 

where Ind#(aG,//(x)) — bG(aG,H(x)) m terms of (3.6). Hence Cl(0K[G]) is 
generated by the images of the homomorphisms 

(4.8) {x — Det(u)(lnd%(aG,H(X)))\u G AQrfG]), H G ̂ } . 

We must show that each of these maps is given by applying aG^(x) to a 
^//-invariant unit of J*(0K[Hab]). It suffices for this to examine each local 
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component separately. However, the Q-component (Q lying over P) of the deter­
minant map factors through the algebraic A'-group, K\(Sp[G]\ where SP — KP 

or 0Kp. Furthermore, the following diagram of canomical maps commutes, since 
it is the adjoint of [3, p. 340]. 

1 <g)Ind 
(4.9): KX(SV[G])®R(H) • KX(SV[G})® R{G) 

t 
tf ,(SP[G]) ® /?(//*) 

Res® 1 

£,(S P [ / / ] ) N G H ® R(Hib) 

I 
^(Spt/ /*])^" (8) /?(//ab) 

However, in (4.9), £i(SP [#"*]) ^ (S/>[//a/7])* by [3, (46.24)]. Therefore, if we 
start with u <g> «G,//(X) € 7*(OA:[G]) 0 #(#a/?) then the image via the clockwise 
route in (4.9) is just the map of (4.8). Since the final map in the anticlockwise 
route is the g-component of Det# we have established part (i). 

Now we turn to the proof of part (ii). Let A be a Z[G]-module and let AG 

denote the group of coinvariants 

AG = A/{g(a) -a\g G G, a<E A}. 

We have a homomorphism, which is split injective, 

(4.10) aG : R(G) — @R(Hab)WcH 

given by 

where 

When X = E* or J*(E) there is an induced (surjective) map 

(4.11) a*G : @Homn ,(R(Ha b), X)WcH -» HomQ,(/?(G), X) 

•> A: . (S P [ / / ] ) N G H ®/?( /^ 
Det > (*<)* 

Det 
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since 

HomnK(R(Hab)wGH, X) * HomQK (R(Hab), X)WGH. 

The map, aG, of (4.11) is split by the maps induced by (4.4). Therefore, if we 
temporarily set 

A(G) = YLomnK{R(G), 7*(£))/HomQ,(R{G\ E*) 

we obtain a split surjection 

(4.12) aG : 0 A(Hab)WcH -» A(G). 
/ /el 

To prove part (ii) we need to show that the groups aG(Det(U*(0K[Hab])WGH))) 
do not all lie within the image of Det(U*(0K[G])) Hom^(/?(G), E*) in A(G). 
However, if this were not so we would receive an induced map 

(4.13) aG : 0 A(Hab)w<H /Det(U*(0K[Hab])WcH -* Cl(0K[G]). 

The //-summand of the domain of (4.13) is a subgroup of C\(0K[Hab])WcH and 
the map, aG, of (4.13) would be a left inverse to flG of (4.5). This is impossible, 
since (3G is not injective, by hypothesis. 

Finally, consider part (iii). Let u G J*(0K[Hab])WjH be an idèle. In 
HomQK(R(G), J*(E)) the image of this element by the clockwise route in the 
diagram sends \ G R(G) to 

Det(«)(flG,i/(Res^(x)))G7*(£). 

However, if aG(\) = E r e x ^ K x ) then> b v 3-8(i), 

(4.14) «y(Resy(X)) = £ ) ] T a ^ D / n z F z - 1 ^ ^ ) * ) 
reize/\G/r 

where aG,r(x) - £ / a,-(G D ^ (#c)*). Therefore 

Det(W)(aG5//(Resy(X))) = I J I I Det(z~ V)(tfG, r(x)) 
K€Z zG/\G/K 

= JjDety (<(«)), 
Y 

as required. This completes the proof of Theorem 4.6. 
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5. The class group of G versus those of its subgroups In this section we 
will study the manner in which we may filter the group of (1.5) 

(5.1) B(G) = Cl(0K[G])/ I ^ im(CKOK[H])) — Cl(0K[G]) l 

by means of restricted determinants. 
Firstly let us pause for an elementary example. 

Example 5.2. Let Q% denote the quaternion group of order eight 

08 = {*, y\x2 = y2, x4 = 1, xyx-1 = y - 1 } . 

Hence Qf = Z/2 x Z/2 and the subgroups of Q% are cyclic of order 1, 2 or 4. 
The class group of Z[H] is trivial for Z/2 x Z/2, Z/4,Z/2 and {1} so that 

DetÔ8 : U\Z[Z/2 x Z/2]) — C1(Z[G8]) =" Z/2 

must be non-trivial. From [3, p. 349 (53.17)] the nontrivial element of this class 
group is the Swan module (3, a) C Z[g8] where a = (1 +x + x2 +x3)(l +y). 
By [3, p. 335 (52.13)] (3, a) = (—3, o) is represented by the homomorphism 
which sends the trivial to the idèle which equals (—3) in the 2-adic coordinate 
and 1 elsewhere; all other irreducibles are sent to 1. 

InZ2[Z/2 x Z/2] let u2 = x +xy + y 

where JC, y are generators. Since u2 has augmentation 3 G Z:£ we see that w2 G 
(Z2[Z/2 x Z/2])*. Defining M̂  = 1 for all places different from 2 we obtain 
u = (M/,) G U*(Z[Z/2 x Z/2]). 

From [6, p. 186 and p. 207] one finds the following formula for 7Q 8 (X)(= 
aQ*(x)) f° r X irreducible. 

(5.3) aQ%{<f>) = (QS ^ (Kc)*) if dim 0 = 1 , 

*<&(") = Z ) (08 D <S> = Z/4 ± (/T)*) - (08 3 {x2) A (*<)*) 

where fi(x2) = — 1 and A(g) = i(i2 — — 1). 
Therefore, from (5.3), Detg8(«)(x) = 1 unless dimx = 1 (x irreducible) and 

when dim% = 1? X 7̂  1 it is a l s o trivial but Detg8(w)(l) = w which equals (—3) 
at the 2-adic place and 1 elsewhere. 

Hence Detg8(w) = (3, a). 
A similar calculation shows that the Swan modules for the generalized quater­

nion 2-group, Q2«, all lie in DetÔ2n([/*(Z[Z/2 x Z/2])). 
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PROPOSITION 5.4. If H^G then the composition J*(Ok[Hab]) 
—> Cl( OK[G]) —• Cl( Ox[Gab]) is trivial If H — G this composition is surjective 
and annihilates U*(0K[Gab]). 

Proof Let v be an irreducible representation of G. If ac(y) = J2( oti(G D 

Hi —> (Kc)*) then no Hi equals G unless dim(V) = 1 in which case ac(v) = 
(G —> (Kc)*). From this the statement for the case H = G follows at once. 
Furthermore, if \ is a representation inflated from Gab then adx) = ^2 aj(G ~ 

G ^ (Kc)x) so that Dete(w)(x) is trivial for all such \ if H ± G. 
5.5 Let B(G) denote the quotient of Cl(0K(G)) by the images of the class 

groups of the proper subgroups, as in (5.1). Consider the poset whose elements 
are conjugacy classes, (H), of subgroups of G. We set (//) ^ (J) if zHz~l ^ J 
for some z G G. Define a filtration on #(G), indexed by this poset. 

(5.6) F(H)B(G) = ] T im(Dety : / * ( C W ^ ] ) ^ y — B(G) . 
l(F)^(//) J 

Define an associated graded object 

(5.7) GrmB(G) = FmB{G) I I J2 F(Y)B(G) ) • 

THEOREM 5.8. With the notation introduced above 
(0 \J(H)FiH)B(G) = B(G). 
(ii) Det# induces a surjection 

Dew : H°(WGH; J\0K[Hab])) — GrmB(G). 

In (ii) H° denotes Tate cohomology. 

Proof Part (i) follows from 4.6(i). Recall that H°(Z\ A) = Az/{UzeZ ^a)\a € 
A}. By definition Det# will induce a surjection 

J*(0K[Hab])WGH -^Gr(H)B(G) 

and, by 4.6(ii) (with H = J ^ G), this surjection kills im(A^f) which is the 
image of map which averages over WQH. This completes the proof of 5.8. 
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