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Abstract

The dispersion relation of electrostatic waves with phase velocities smaller than the electron thermal velocity is investigated
in relativistic temperature plasmas. The model equations are the electron relativistic collisionless hydrodynamic equations
and the ion non-relativistic Vlasov equation, coupled to the Poisson equation. The complex frequency of electrostatic
modes are calculated numerically as a function of the relevant parameters kλDe and ZTe/Ti where k is the wavenumber,
λDe, the electron Debye length, Te and Ti the electron and ion temperature, and Z, the ion charge number. Useful
analytic expressions of the real and imaginary parts of frequency are also proposed. The non-relativistic results
established in the literature from the kinetic theory are recovered and the role of the relativistic effects on the dispersion
and the damping rate of electrostatic modes is discussed. In particular, it is shown that in highly relativistic regime the
electrostatic waves are strongly damped.
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1. INTRODUCTION

In this work, the dispersion relation of electrostatic modes in
relativistic plasmas is presented. The relativistic effects could
be defined by the ratio of the rest energy to the thermal
energy of particles, zs=msc

2/Ts where ms and Ts are the
mass and the temperature in energy units of particle specie s,
respectively, and c is the speed of light. The validity of
our model is restricted to wave phase velocities vφ= ω/k
smaller than the electron thermal velocity vte =

�������
Te/me

√
,

where ω and k are the frequency and the wavenumber of
electrostatic modes.
Electrostatic and electromagnetic modes are plasma eigen-

modes which have considerable importance in plasma phys-
ics and a great deal of attention has been paid to the study of
these modes in various plasmas (classical, degenerate, rela-
tivistic…). Although they often exist in the form of small am-
plitude waves, they can also be driven with large amplitude
by various linear and non-linear physical mechanisms. In
this work, we are interested in electrostatic waves with
small amplitude which can be accurately studied by the

linear response theory. The spatiotemporal evolution of such
plasma perturbations is studied about a global equilibrium.
In the literature, the electrostatic modes are investigated in

the whole collisionality regime from the collisional regime
defined in the wavenumber range kλmfp<< 1, to the colli-
sionless one (kλmfp>> 1) where λmfp is the particle mean
free path of the plasma particles. In the collisional regime
the damping of these modes occurs through collisions be-
tween particles, while in the collisionless regime, the damp-
ing takes place more subtly through the Landau damping
mechanism. In the latter case, the waves are damped when
they exchange energy with quasi-resonant particles whose
velocity component along the propagation direction (x-axis)
is very close to the phase velocity, that is, vx≈ω/k. This wave-
particle energy is exchanged at the expense of the wave which
is damped if the particle distribution function f �v( ) has a nega-
tive derivative in the resonant region (df/dvx< 0).
In this work, we deal with relativistic plasmas defined by

arbitrary values of zs. Such plasmas are for instance astro-
physical plasmas (gamma-ray bursts, galaxy clusters, super-
nova shock…) and those produced in laboratories by high
intensity laser pulses to achieve inertial confinement thermo-
nuclear fusion. In addition, we restrict our analysis to colli-
sionless plasma modes.
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In non-relativistic plasmas, electrostatic waves have been
studied extensively in the literature (Chen, 1984; Krall &
Trivelpiece, 1973; Stix, 1992). The dispersion relations of
these electrostatic modes were established from the Vlasov
equation, which describes collisionless plasmas at the micro-
scopic level. The phase velocity vφ and the Landau damping
rate γL were numerically calculated as functions of kλDe and
ZTe/Ti, where λDe, is the electron Debye length, Te and Ti the
electron and ion temperature, and Z, the ion charge number.
To our knowledge, the determination of vφ and γL with re-
spect to these two parameters is still an open problem in rel-
ativistic plasmas for low-frequency electrostatic waves. For
high-frequency electrostatic (plasma waves) and electromag-
netic modes recent work has been developed in Refs. (Ficht-
ner & Schlickeiser, 1995; Schlickeiser & Kneller, 1997;
Melrose, 1999; Bergman & Eliasson, 2001; Podesta, 2008;
Bers et al., 2009; Schlickeiser, 2010; Zhang et al., 2013;
López et al; 2014) in the context of laser thermonuclear
fusion. Our work is therefore an extension of these works
to low-frequency spectrum.
This paper is organized as follows. In Section 2, we pre-

sent the equations of the model and in Section 3, the disper-
sion relation of low-frequency electrostatic modes and
analytic solutions are proposed. Section 4 is dedicated to
the discussion of the numerical results and we summarize
the main results obtained in this work in the last section.

2. EQUATIONS OF THE MODEL

To study the electrostatic modes in plasmas, the kinetic
theory is the most appropriate approach used in the literature.
This approach is self-consistent, that is, it overcomes the de-
termination of closure relations as in the hydrodynamic equa-
tions. In particular, this theory accounts for the damping of
electrostatic modes via wave-particle resonance mechanism.
The kinetic equation used is the Vlasov equation (Bendib-
Kalache et al., 2004) that is adapted to describe collisionless
plasmas. In contrast to the kinetic approach, in this work we
use the hydrodynamic theory to study the electron gas in rel-
ativistic plasmas. It is well-known that fluid equations are
simpler to use than the kinetic equations. The latter includes
seven independent variables, namely the positions �ri, the ve-
locity �vi, and the time t, rather than only four (�ri and t) for the
fluid equations. Further, to study collisionless plasma modes,
the kinetic theory involves unavoidably pole integrals due to
the wave-particle resonance which are complicated to calcu-
late in the complex plane, whereas the fluid theory overcomes
this difficulty since the approach is macroscopic. Thus, the
fluid approach could simplify the calculations of the disper-
sion relations of the plasma modes and it constitutes a better
alternative to the full kinetic treatment of the problem. For the
electrons, the equations of the model are the three lower order
hydrodynamic equations and for the ions we use the Vlasov
equation. Both ion and electron equations are coupled to
the Poisson equation. In addition, we assume that the ion
gas is non-relativistic and therefore the contribution of ions

to the dispersion relation is known in the literature. To
study the dispersion relation of electrostatic waves we use
as usual their perturbed form about plasma equilibrium.
The non-perturbed form (Tsypin et al., 1999) of the colli-
sionless relativistic hydrodynamic equations is presented in
Appendix A. Their perturbed expression about equilibrium
in the spatial and temporal Fourier space (x↔ k, t↔ ω),
can be deduced from Eqs. (A2)–(A4). For the density
and momentum Eqs. (A2) and (A3), the results are
straightforward:

− iωδns + ikn0sδVs = 0, (1)

− iωmsn0sGsδVs = −ikn0sδTs − ikT0sδns

− ikδΠs + iω

c2
δqs + n0sqsδE,

(2)

where G= K3(ze)/K2(ze), Kn(ze) being the modified Bessel
function of nth order and ze =mec

2/Te, the electron relativ-
istic parameter. The other variables have their usual mean-
ing, that is, δns, δTs, δVs, δ�E, δΠs, and δqs represent the
density, the temperature, the fluid velocity, the electric
field, the stress tensor, and the heat flux, respectively.
For the energy Eq. (A4) the first term in the left hand
side requires some algebra. Its perturbed form is

δ ne
d

dt
mec

2G
( )[ ]

= nemec
2 dG

dze
−ze

1
T0

∂Te
∂t

( )
.

Using the recursive relations on the modified Bessel
functions,

zedK3/dze+ 3K3=−zeK2 and zedK2/dze− 2K2=−zeK3,
we easily deduce dG/dze=G2− 1− 5/zeG. With the use
of this transformation, the perturbed form of (A4) is readily
obtained

− iωhsn0sδTs + ikn0sT0sδVs = −ikδqs, (3)

where hs = z2s 1− G2
s

( )+ 5zsGs − 1. To be self-consistent
we add to Eqs. (1)–(3), Poisson equation

ikδE = 1
ε0

qeδne + qiδni
( )

. (4)

In Eqs. (1)–(4), the subscript s stands for electrons (e) and
ions (i), the subscript 0 for the background physical quanti-
ties and the perturbed quantities are denoted by δX. We
have supposed that the electric field is longitudinal, that is,
δ�E x, t( ) is along the x-axis and in the Fourier space the per-
turbed quantities stand as δX ∼ exp −iωt + ikx( ). The
plasma is assumed at rest �V s0 = 0

( )
and its equilibrium

state is defined by the electron Maxwell–Boltzmann–Jüttner
equation, fMBJ(γ) (Jüttner, 1911). His equilibrium function
valid from the non-relativistic limit (zs→∞) to the
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ultra-relativistic limit (zs→ 0), is

fMBJ p
( ) = n0szs

4πm3
s c

3K2 zs( ) exp −zsγ p
( )( )

, (5)

where p is the particle momentum and γ =
��������������
1+ p2/m2c2

√
is

the Lorentz factor. In Eqs. (2) and (3) two closure relations
are included, namely δΠs the x–x component of the stress
tensor and, δqs, the x-component of the heat flux. The mo-
mentum and energy exchanges between electrons and ions
due to the electron–ion collisions are not accounted for in
the collisionless limit. In using the hydrodynamic approach
the key of the problem is the determination of the closure re-
lations which include purely kinetic effects. This has been
performed in the previous work (Bendib-Kalache et al.,
2004) and the following expressions of the closure relations
were derived as:

δΠs = −ηsmsn0sc
ik

k| | δVs − αTsn0sδTs, (6)

δqs = −KTsn0sc
ik

k| | δTs − αVsn0sT0sδVs, (7)

where,

ηs=
I2 I3I20 − I4I30
( )+ I1 I4I40 − I3I30

( )
I1A1− I4A2( ) ×

I2 I30 − I10
( )− I1 I40 − I20

( )
I1I3− I2I4( )2 −

I3 I30 − I10
( )− I4 I40 − I20

( )
I1I3− I2I4( )

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦,
(8)

is the dimensionless viscosity coefficient,

KTs= 2
π

z3s
K2 zs( )×

I2( )2− I1I5
I1A1− I4A2( ), (9)

is the dimensionless thermal conductivity,

αTs=− z3s
3K2 zs( )

I2 I30 − I10
( )− I1 I40 − I20

( )
I1A1− I4A2( ) , (10)

and

αVs=−zs −Gs−
I2 I3I20 − I4I30
( )+ I1 I4I40 − I3I30

( )
I1A1− I4A2( )

[

×
I2( )2− I1I5
I1I3− I2I4( )2+

I2I3− I4I5
I1I3− I2I4( )

]
,

(11)

are off-diagonal dimensionless transport coefficients. The
coefficient (10) accounts for the temperature anisotropy
and coefficient (11) corresponds to the convective heat

transport. In Eqs. (8)–(11) we used the following notations,

I1=K2 zs( )/zs,I2=K2 zs( ) −1+ zsGs( )/z2s ,
I3=K2 zs( ) 1+ zs+ 3− zs( )Gs[ ]/z2s ,
I4=K2 zs( ) zsGs−1− zs( )/z2s ,
I5=K2 zs( ) zs+3Gs( )/z2s ,

A1=
I1 I40 − I30
( )+ I2 I20 − I30

( )
I1I3− I2I4( ) ,

A2= I1I30 − I2I20
I1I3− I2I4( ),and

Iji zs( )=
∫∞
1
xi x2−1
( )j

exp −zsx( )dx.

It is important to note that the transport coefficients (8)–(11)
were derived from the stationary Vlasov equation. The valid-
ity of the present model is therefore restricted to small
phase velocity with respect to the thermal velocity, that is,
ω/k <vts. In this range of validity, Eqs. (1)–(3) are the coun-
terpart to the perturbed relativistic Vlasov equation

− iωδf + px
ε
ikδf +qeδE

∂δf
∂px

= 0, (12)

since the closure relations (8)–(11) which include purely ki-
netic effects are exact expressions. Thus the dispersion rela-
tion could be calculated equivalently by using Eq. (12) or
Eqs. (1)–(3). To our knowledge, this equivalence between ki-
netic and hydrodynamic treatments in collisionless plasmas
was demonstrated for the first time by (Hammett & Perkins,
1990) in non-relativistic plasmas.

3. RELATIVISTIC DISPERSION RELATION AND
ANALYTIC SOLUTIONS

In this section, we deal with the dispersion relation of low-
frequency electrostatic waves. We assume that the ions are
non-relativistic (zi>> 1), while the electrons have arbitrary
relativistic regime that is, they are defined for arbitrary
values of the relativistic parameter ze. From Eqs. (1)–(4),
(6) and (7), and the well-known non-relativistic plasma dis-
persion function for ions Zi(ω/kvti), the derivation of the di-
electric function is straightforward and it reads

D ω, �k
( )

= 1− Aki

2k2λ2Di
− Ahe

2k2λ2De
, (13)

where

Ahs = 2/ 1− 2zsξ
2
s zsGs − i

����
2zs

√
ξszsηs + 2zsξ

2
sαVs

[

+
����
2zs

√
ξs 1− αVs( ) 1− αTs + i

����
2zs

√
ξsKTs

( )
hs

����
2zs

√
ξs + iKTs

]
,

(14)
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and

Aks = dZs
dξs

. (15)

The subscripts k and h stand for kinetic and hydrodynamic
descriptions. In Eqs. (13)–(15) we used the normalized
phase velocity ξs = ω/

��
2

√
kvts and we recall the expression

of the plasma dispersion function (Fried & Conte, 1961)

Zs ξs
( ) = 1��

π
√

∫+∞

−∞

exp −x2
( )

x− ξs
dx. (16)

For longitudinal electrostatic modes the dispersion relation is

D ω, �k
( )

= 1− Aki

2k2λ2Di
− Ahe

2k2λ2De
= 0, (17)

and we should mention that it is valid for ξe< 1 and arbitrary
values of ξi, kλDe, and kλDi.
We can transform analytically Eq. (13) by limiting the

spectrum to the phase velocity range, vti<<ω/k<< vte.
This limitation corresponds to the usual ion-acoustic and
ion plasma waves with arbitrary kλDe and kλDi. Performing
a Taylor expansion of the electron and ion parts of Eq. (13)
with the use of the ordering, ξe<< 1 and ξi>> 1 we obtain
the following real and imaginary parts of the dielectric
function

Dr(ω, k) = 1− ω2
pi

ω2
1+ 3

τ
(1+ k2λ2De)

[ ]

+ 1

k2λ2De
1− R

k2λ2De

ω2

ω2
pe

( )
,

(18)

Di(ω, k) =
��
π

2

√
ω2
pi

k3C3
s

× ω τ3/2exp − 1
2
τμ

1

k2λ2De

ω2

ω2
pe

( )
+

���
2
πμ

√
S

[ ]
,

(19)

where μ=mi/Zme, τ= ZTe/Ti, Cs =
��������
ZTe/mi

√
, and

R(ze) =
K2
T(1− Geze + η2z2e) + (αT − 1)(αV − 1)

× (1− G2
e)z2e + (5Ge + 2ηKT)ze + αT(αV − 1) − αV

[ ]
K2
Tze

,

(20)

S(ze) = ηKTze + (αT − 1)(αV − 1)
KT

��
ze

√ , (21)

are two coefficients that include relativistic contributions
through G and the transport coefficients. Throughout this
work we assume that the wavenumber k is real while the

frequency is complex (ω= ωr+ iωi). Within the approxima-
tion of a weak damped waves |ωi| ≪ωr, Eq. (17) becomes
Dr(ωr, k)= 0 and we get the analytic solution,

ω2
r

ω2
pe
= k2λ2De(1+ k2λ2De)

2R

× 1−
�������������������������������
1− 4

μτ
R

3(1+ k2λ2De) + τ

(1+ k2λ2De)
2

( )√√√√
⎡
⎣

⎤
⎦.

(22)

The damping rate of the electrostatic waves can be calculated
from the relation Dr(ωr, k)+ iDi(ωr, k)= 0. The weak damp-
ing approximation |ωi| <<ωr yields at the first order,

ωi = −Di ωr, k( )/ ∂Dr ωr, k( )
∂ωr

, (23)

which gives the expression

ωi

ωpe
= −

��
π

8

√
1

(1+ k2λ2De)
3/2

ωr

ωpe

( )

×

[
τ3/2exp − τμ

4R
(1+ k2λ2De)

(

× 1−
������������������������������
1− 4R

τμ

3(1+ k2λ2De) + τ

(1+ k2λ2De)
2

( )√√√√
⎡
⎣

⎤
⎦
⎞
⎠+

���
2
πμ

√
S

⎤
⎦

1+ 3
τ
(1+ k2λ2De) − μ

(1+ k2λ2De)
2

4R

[

× 1−
������������������������������
1− 4R

τμ

3(1+ k2λ2De) + τ

(1+ k2λ2De)
2

( )√√√√
⎛
⎝

⎞
⎠

2
⎤
⎥⎦

.

(24)

We can go a step further by limiting the analysis to ion acous-
tic waves in the spectrum range kλDe <<1 and to the ion
plasma waves in the spectrum range λ−1

De<< k<< λ−1
Di . We

perform the corresponding Taylor expansion obtaining for
the ion-acoustic waves

ω2
r = k2C2

s 1+ 3
τ

( )
, (25)

ωi

ωpe
= −

��
π

8

√
kλDe

��
1
μ

√ τ3/2exp − 3
2
− τ

2

( )
+

���
2
μπ

√
S

[ ]
������
1+ 3

τ

√
1− 1

μ
R 1+ 3

τ

( )[ ] , (26)

and for the ion plasma waves

ω2
r = ω2

pi 1+ 3k2λ2Di
( )

, (27)
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ωi

ωpe
= −

��
π

8

√
kλDe

��
1
μ

√

×

τ3/2 exp − 3
2
− 1

2k2λ2Di

( )
+

���
2
πμ

√
S

[ ]
������������
1+ 3k2λ2Di

√
k4λ4De −

1
μ
R 1+ 3k2λ2Di
( )[ ] .

(28)

For practical purposes we propose numerical fits for the co-
efficients R and S involving the relativistic contributions

R(ze) = 0.83− 0.125
ze + 0.03

− 2.21
ze + 3.6

− 0.45
ze

, (29)

S(ze) = 1.25+ 1.6��
ze

√ − 4.3
ze + 3.75

− 10.6
ze + 85.55

− 53.3
ze + 945.5

.

(30)

The numerical fits of R and S by expressions (29) and (30) are
obtained numerically with the quasi-Newton algorithm. The
non-relativistic asymptotic values are analytically calculated,
R(ze >>1) → 7π/12 − 1 ≈ 0.83 and S ze >>1( ) � ����

π/2
√

≈ 1.25, and used also to build the numerical fits. In
Figure 1 we represent these two coefficients as a func-
tion of ze. We have checked that they fit accurately
the numerical results with a precision better than 5%
in the range, 10−4 <ze <103.

4. NUMERICAL SOLUTIONS AND DISCUSSION

We have solved numerically in the complex plane (ωr, ωi) the
dispersion relation (17). The results obtained are displayed in
Figures 2 and 3.

1. First, we present in Figure 2, the numerical results in
the non-relativistic limit. This limit is accurately
reached for ze >100. We can see that the results are
in good agreement with those obtained from the

usual non-relativistic kinetic dispersion relation for lon-
gitudinal modes,

1− 1

2k2λ2Di

dZi
dξi

− 1

2k2λ2De

dZe
dξe

= 0. (31)

For ωr/ωpe, the numerical fits of Krall and Trivelpiece
(1973) agree well with numerical results in the range kλDe
<<1, whereas for ωi/ωr, large discrepancy is observed.
Moreover the numerical fits of (Ichimaru, 1973; McKinstrie
et al. 1999) are accurate for kλDe< 0.4. We should note that
in Figure 2 we have used a large value of τ, for strongly iso-
thermal plasmas and small Z, the difference between the nu-
merical fits and the numerical results increases significantly.

2. For lower values of the relativistic parameter (ze<100),
the relativistic effects should be accounted for. We can

Fig. 1. Numerical results of the coefficients R(ze) and S(ze) given by the fits
(29) and (30) (square) and by Eqs. (20) and (21) (solid curve).

Fig. 2. (a) Normalized frequency (ωr/ωpe) as a function of the normalized
wavenumber kλDe. The blue curve corresponds to the present numerical re-
sults, the dashed red curve to the non-relativistic results (Eq. 31). The Krall
and Trivelpiece (green curve), Ichimaru (dotted curve), and McKinstrie et al.
(orange curve) formulas are also represented. The plasma parameters are τ=
10 and ze= 1000. (b) Damping rate (− ωi/ωr) as a function of the normal-
ized wavenumber kλDe. The blue curve corresponds to the present numerical
results, the dashed red curve to the non-relativistic results (Eq. 31). The
Krall and Trivelpiece (green curve), Ichimaru (dotted curve), and McKinstrie
et al. (orange curve) formulas are also represented. The plasma parameters
are τ= 10 and ze= 1000.
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see in Figure 3a that the contribution of the relativistic
effects to the real part of the frequency ωr(kλDe) is not
significant [typically for kλDe= 0.1, we have found
that ωr/ωpe(ze= 0.1)≈ ωr/ωpe(ze= 100) with a preci-
sion about 1%]. This weak difference is even less im-
portant when kλDe is increased. This behavior is
corroborated by Eqs. (25) and (27) which shows that
the dependence on ze is negligible.

For the damping rate of electrostatic waves (Fig. 3b) the rel-
ativistic effects aremore significant only in strongly relativistic
regime. We note that the relativistic effects tend to reduce the
damping rate for weakly or moderately relativistic plasmas
(typically for ze> 5). This reduction is however weak and it
is even weaker for large ion charge number (τ>>1). This
weak dependence on ze is due to the weak modification
of the reduced electronMaxwell–Boltzmann–Jüttner function
FMBJ vx( ) = $+c

−c fMBJ �v( )dvydvz by the relativistic effects for
small resonant velocities vx≈ ω/k<< vte. Besides in
Figures 3a and 3b, the approximate analytic solutions (25)
and (26) are also represented and we can observe the very
good agreement with the numerical solutions.

In contrast, for strongly relativistic plasmas (ze< 5) the rel-
ativistic effects tend to increase the electrostatic mode damp-
ing. This can be explained by the contribution of the
viscosity dissipative effects to the electron Landau damping
which increases considerably when ze decreases. This could
be explained by the behavior of the parameter S(ze) (see
Fig. 1) which presents a minimum about ze≈ 5. We can
see that S(ze) decreases very slowly for decreasing ze in the
moderate relativistic range and this makes clear the weak de-
creasing of the damping rate in this regime. From ze≈ 5 it
grows rapidly due to the rapid increase in the viscosity coef-
ficient and correlatively this yields an increase of the damp-
ing rate in strongly relativistic range. In the article by Bers
et al. (2009) the spectrum of electronic plasma waves in mod-
erately relativistic plasmas is calculated. They found similar
results for ωr(kλDe), that is, the relativistic effects do not sig-
nificantly affect the real part of the dispersion relation. For
the damping rate they found still the same behavior, that is,
the damping rate decreases with decreasing ze. But in contrast
to our results they found for these high-frequency modes an
important reduction of the damping rate about one order of
magnitude or more. Although it is not possible to compare

Fig. 3. (a) Normalized frequency (ωr/ωpe) as a function of the normalized
wavenumber kλDe. The blue curve corresponds to the present numerical
results (Eq. 17), the dashed red curve to the analytical solution (Eq. 22)
and the dotted curves to the approximate analytic solution (Eq. 25).
The plasma parameters are τ= 10 and ze= 100, 30, and 0.3. (b) Damping

rate (− ωi/ωr) as a function of the normalized wavenumber kλDe. The blue
curves correspond to the present numerical results (Eq. 17), the dashed red
curves to the analytical solution (Eq. 24) and the dotted curves to the approxi-
mate analytic solution (Eq. 26). The plasma parameters are τ= 10 and ze=
100, 30, and 0.3. (c) Normalized frequency (ωr/ωpe) as a function of the nor-
malized wavenumber kλDe. The blue curve corresponds to the present numeri-
cal results (Eq. 17), the dashed red curve to the analytical solution (Eq. 22) and
the dotted curves to the approximate analytic solution (Eq. 25). The plasma pa-
rameters are τ= 1 and ze= 100, 50, and 0.3. (d) Damping rate (−ωi/ωr) as a
function of the normalized wavenumber kλDe. The blue (ze= 100, 50) and
dashed red (ze= 0.3) curves correspond to the present numerical results
(Eq. 17). The plasma parameters are τ= 1 and ze= 100, 50, and 0.3.
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the damping of high- and low-frequency electrostatic modes
this difference could be partially explained by the slope of the
electronic distribution function in the resonance region (pro-
portional to the damping rate), which is significantly lower
for low-frequency waves than for high-frequency waves.
To be more complete, we give also in Figures 3c and 3d a

numerical application for electron–proton plasmas in global
equilibrium (Z= 1, Te= Ti) which could be more relevant
for cosmic plasmas. The results show that the damping is par-
ticularly strong while the phase velocity is close to the previ-
ous results. We should note that in Figure 3d we do not
represent the analytic results because they present a large dis-
crepancy from the numerical solution since they are derived
within |ωi/ωr|<< 1, which is not fulfilled in this case.
The damping of low-frequency electrostatic waves is due

to resonant interaction of waves with both ion and electron
particles. Typically, the damping rate is proportional to
∂f (vx)MBJe,i/∂vx and therefore for ions, the resonant particles
vx≈ ω/k>> vti give very small contribution to the total
damping rate. This is due to the exponentially small
amount of particles in this velocity range. On the other
hand for electrons, vx≈ ω/k<< vte, thus the number of res-
onant particles is more important but the damping is still
small, though not exponentially, since the derivative of
fMBJe in this range of velocity is not significant. It results
that the relative contribution of electrons and ions to the
damping of electrostatic waves depend strongly on the
plasma parameters (temperature, density…). We have
found that the damping through electrons is generally
negligible. However for large values of τ and in the range
kλDe<< 1, the damping through electrons prevails over the
one through ions and this result does not depend on the rel-
ativistic parameter ze.

3. We are now interested onwaves of verysmall phaseveloc-
ity such asω/k<< vti. In this case, we just remark that our
hydrodynamic formalism works well for electrons than
ions. We have solved analytically Eq. (13) with the
use of the conditions ξe<< 1 and ξi<< 1 and found
the expression for the longitudinal dielectric function

D ω, k( ) ≈ 1+ 1

k2λ2Di
+ 1

k2λ2De
. (32)

This shows that these modes are dramatically damped. In
this static limit the electrostatic field is screened within a
radius equal to the well-known Debye length as in non-
relativistic plasmas.

4. In this sub-section, we deal with the polytropic index
and the fluid damping rate in relativistic plasmas. We
can recast Eqs. (2) and (3) into one equation by elimi-
nating the perturbed temperature, obtaining

− iωGeδVe = −ik
T0e
msn0e

Γδne − nδVe + qe
me

δE, (33)

where

Γ = 1+ 2ξ2eαVe
ze

+ ξ2e 1− αVe( ) K2
Te + he 1− αTe( )[ ]

zeK2
Te

2
+ h2eξ

2
e

, (34)

is the relativistic polytropic index and

n = ωr

ξe

��
ze
2

√
ηe +

KTe 1− αVe( ) 1− αTe
2

− ξ2e
he
ze

( )
zeK2

Te

2
+ h2eξ

2
e

⎡
⎢⎢⎣

⎤
⎥⎥⎦, (35)

is the fluid collisionless damping rate. We present in
Figure 4 the polytropic index as a function of the nor-
malized phase velocity ξe for three values of ze. First,
whatever the relativistic state, the isothermal value de-
fined for ξe→ 0 is recovered, that is, Γ= 1, and when ze
decreases, Γ increases. Furthermore, we have checked
numerically that the dependence of the fluid damping
rate on ξe is negligible. Its value corresponds approximate-
ly to the stationary value: n ξe = 0

( )
/
��
2

√
kvt = 0.89 for

ze= 100 and ze= 30, and n ξe = 0
( )

/
��
2

√
kvt = 2.1 for

ze= 0.3.

In Figure 5 we represent the fluid damping rate as a func-
tion of the relativistic parameter ze. We have checked numer-
ically that n(ze) admits a flat minimum about zemax= 35.6.
This explains the variation of ωi with respect to ze. We
have also calculated analytically the asymptotic limits and
we found that in the ultra-relativistic limit the damping
tends to n ze � 0( ) � (π/2 ��

2
√ )(1/ ��

ze
√ ), whereas in the op-

posite limit it tends to n ze � ∞( ) � 29
��
π

√
/60. These two

limits agree well with the numerical results. Moreover we
just remark that the damping rate (35) vanishes as it should
if the dissipative terms, that is, the viscosity ηe and the ther-
mal conductivity KTe, are dropped.

Fig. 4. Polytropic index Γ as a function of the normalized phase velocity ξe
for the three values of ze:ze= 100 (blue curve), ze= 30 (dashed red curve),
and ze= 0.3 (green curve).
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Let us now neglect in Eq. (34) the transport coefficients
KTe, ηe, αVe, and αTe. This leads to the adiabatic approxima-
tion since the thermal flux vanishes. In this case, the poly-
tropic index becomes

Γ ze( ) = 1+ 1/he ze( ), (36)

as shown in Figure 5. For increasing ze, the polytropic index
increases from the ultra-relativistic value Γ(ze→ 0)= 4/3 to
the non-relativistic one Γ(ze→∞)= 5/3. We thus recover
the well-known results reported in the literature. We should
mention that expression (36) derived in the present work
from the fluid-kinetic theory was also derived by Synge
(1957), but with different approach based on the relativistic
equilibrium statistical mechanics in Minkowsky space.

5. SUMMARY

In this work, a collisionless dispersion relation of low-
frequency electrostatic waves is derived in relativistic plas-
mas. The electron gas is described with the fluid approach
using the three conservative equations of particle, momen-
tum, and energy together with the collisionless closure rela-
tions derived in Bendib-Kalache et al. (2004). Due to their
large mass energy the ions are assumed non-relativistic and
therefore this particle species is described by the standard
plasma dispersion function Zi(ξi). Analytic solutions of the
dispersion relation are proposed for the ion-acoustic waves
and ion plasma waves. The numerical results show that the
relativistic effects do not modify significantly the dispersion
of the low-frequency electrostatic waves. In addition, in mod-
erately relativistic regime the damping rate slightly decreases
when relativistic effects increase. However in the highly rel-
ativistic regime the damping rate increases with relativistic
effects. The relativistic polytropic index and the collisionless
fluid damping rate were also derived and the asymptotic non-
relativistic and ultra-relativistic limits are recovered as well as
the well-known adiabatic polytropic index of Synge (1957).

In future inertial fusion plasmas the electron temperature
could be moderately relativistic and we expect that the role
of ion acoustic waves on the Brillouin backscattering instabil-
ity should not be significant.
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APPENDIX A

Relativistic hydrodynamic equations in unmagnetized
plasmas
The hydrodynamic equations describe the spatio-temporal

evolution of the macroscopic parameters and they are derived
from the kinetic theory. For unmagnetized plasmas with a
spatial inhomogeneity along the x-axis, the electron relativis-
tic kinetic equation is

∂ fe
∂t

+ c2

ε
px

∂ fe
∂x

+ qeE
∂ fe
∂ px

= Cei fe, fi
( )+ Cee fe, fe

( )
, (A1)

where fe �p, x, t
( )

istheelectrondistributionfunction, �E = E x, t( )x̂
is the longitudinal electric field, �p = γme�v is the electron mo-
mentum, ε= γmec

2 is the particle energy, �v is the electron
velocity, γ= (1− v2/c2)−1/2 is the relativistic factor, and
c is the speed of light. The right-hand side of Eq. (A1) accounts
for the electron–ion and electron–electron collision operators,
respectively. Their explicit forms are given for instance
in Dzhavakhishvili and Tsintsadze (1973). The three lower
moments of Eq. (A1), are the well-known conservative
equations for the particle, momentum and energy. First, let
us introduce the standard definitions for the electron density
ne x, t( ) = $ fed3p, the mean velocity �Ve x, t( ) = $�v fed3p/ $ fe
d3p, and the temperature (in energy units) Te x, t( ) = mc2(G−
1) − $ ε− mc2

( )
fed3p/

$
fed3p, where G= K3(ze)/K2(ze),

Kn(ze) being the modified Bessel function of nth order and
ze=mec

2/Te, the relativistic parameter. We assume that

the mean velocity is along the x-axis and is non-relativistic
(Ve/c<< 1). The relativistic effects are therefore included
only in the random part of the velocity, through the tempera-
ture Te. Dropping the collisional operators in Eq. (A1), multi-
plying this equation by 1, �p and (ε−mc2), and integrating over
the momentum, we readily obtain the following collisionless
relativistic equations

∂ne
∂t

+ ∂neVe

∂x
= 0, (A2)

ne
d

dt
meGVe( ) = − ∂Pe

∂x
− ∂Πxxe

∂x
+ neqeE

− 1
c2

∂
∂t

VeΠxxe + qxe
( )− 1

c2
∂
∂x

2Veqxe
( )

,

(A3)

ne
d

dt
mec

2G
( )− ne

dTe
dt

− Te
dne
dt

= − ∂qxe
∂x

− Πxxe
∂Ve

∂x
− 1

c2
∂
∂t

Veqxe
( )− 2Veqxe

c2
∂Ve

∂x

− 1
c2

ΠxxeVe + qxe
( ) ∂Ve

∂t
,

(A4)

where (d/dt)= (∂/∂t)+ (Ve∂/∂x), Pe = c2/3
$
p′2/ε fed3p

is the isotropic particle pressure, Πxxe = c2
$
1/ε p′x p′x−
(

p′2/3) fed3p is the x–x component of the stress tensor and
qxe = c2

$
p′x fed3p is the x-component of the heat flux, where

the prime denotes the rest frame of the electron gas. To derive
Eqs. (A2)–(A4) we performed the Lorentz transformations
p i = S ikp ′

k + γ/c2V iε
′ and ε = γ ε′ + �V e · �p ′( )

, where Sik =
δik + γ− 1

( )
VeiVek/V2

e . Equations (A2)–(A4) are collision-
less hydrodynamic equations and the transport quantities qxe
and Πxxe are closure relations that one has to compute in the
collisionless limit as functions of the hydrodynamic variables
ne, Ve, and Te. The resulting equations, coupled to the Poisson
equation are self-consistent set of equations. As far as we
know, the collisionless relativistic closure relations qxe and
Πxxe are derived only for perturbed plasmas with respect to
equilibrium.
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