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Abstract
Accurate redshift measurements are essential for studying the evolution of quasi-stellar objects (QSOs) and their role in cosmic structure
formation. While spectroscopic redshifts provide high precision, they are impractical for the vast number of sources detected in large-scale
surveys. Photometric redshifts, derived from broadband fluxes, offer an efficient alternative, particularly when combined with machine
learning techniques. In this work, we develop and evaluate a neural network model for predicting the redshifts of QSOs in the Dark Energy
Spectroscopic Instrument (DESI) Early Data Release spectroscopic catalogue, using photometry from DESI, the Widefield Infrared Survey
Explorer (WISE), and the Galactic Evolution Explorer (GALEX). We compare the performance of the neural network model against a
k-Nearest Neighbours approach, these being the most accurate and least resource-intensive of the methods trialled herein, optimising
model parameters and assessing accuracy with standard statistical metrics. Our results show that incorporating ultraviolet photometry
from GALEX improves photometric redshift estimates, reducing scatter and catastrophic outliers compared to models trained only on near
infrared and optical bands. The neural network achieves a correlation coefficient with spectroscopic redshift of 0.9187 with normalised
median absolute deviation of 0.197, representing a significant improvement over other methods. Our work combines DESI, WISE, and
GALEX measurements, providing robust predictions which address the difficulties in predicting photometric redshift of QSOs over a large
redshift range.
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1. Introduction

1.1 Background

Accurate redshift measurement is crucial for understanding the
cosmological and physical properties of active galactic nuclei
(AGN), particularly quasars, which are the most luminous and
distant objects in the Universe. Although spectroscopic measure-
ments provide precise redshifts, they are resource-intensive and
impractical for the vast number of sources that upcoming surveys,
such as those with the Square Kilometre Array (SKA; Carilli &
Rawlings 2004; Schilizzi 2004; Norris et al. 2011), will detect. This
highlights the need for efficient photometric redshift estimation
methods that can handle large datasets. Photometric redshifts,
hereafter referred to as zphot, derived from broadband flux mea-
surements in the ultraviolet (UV), optical and near infrared bands
(NIR), offer a complementary approach, enabling the rapid anal-
ysis of quasars and other celestial objects. Using machine learning
(ML) techniques trained on large datasets, these methods can pro-
vide reliable redshift estimates, paving the way for timely data
processing and analysis in the SKA and other large-scale surveys.

The identification and classification of AGN such as quasars
and quasi-stellar objects (QSOs) requires the detection of spec-
tral lines. However, even with the development of multiobject
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spectrometers (Wolf et al. 2018), spectroscopy is a time- and
resource-intensive process (Popowicz & Kurek 2017). Acquiring
high-quality spectra is a demanding task due to the necessity for
high signal-to-noise ratios and spectral resolutions. Achieving res-
olutions ofR= 300 000 or higher is essential for fully resolving line
shapes and accurately interpreting wavelength shifts in QSO spec-
tra (Dravins 2010). However, several challenges can complicate
the interpretation of these spectra, such as incomplete spectro-
scopic data (Connolly & Szalay 1999), the absence of suitable lines,
overlapping lines from different sources, and imprecise laboratory
wavelengths. Additionally, obtaining such high-fidelity spectra
often requires long integration times. The development of effi-
cient spectrometers with resolutions approaching R= 1 000 000
for future large telescopes remains a significant challenge in
advancing our understanding of QSO spectra (Dravins 2010), and
the spectroscopic redshifts (zspec) derived from them. However,
higher spectral resolution also comes at the cost of increased noise,
necessitating even longer exposure times to maintain adequate
signal-to-noise-ratios.

Photometric redshift estimates based on broadband photome-
try or template-fitting (see, for example, Ball et al. 2007; Bovy et al.
2012; Curran et al. 2021; 2022; Zhou et al. 2021 and references
therein) from the photometry of known objects provide a valuable
alternative but are often plagued by inherent uncertainties. Once
trained on a sufficiently large dataset, modern ML models allow
the analysis of large amounts of data, fromwhich they can estimate
the redshift from the photometric measurements taken by the sur-
vey. This enables us to predict the redshift of a large number of
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sources without relying on a spectrum for each object. As modern
surveys collect vast amounts of data, the ability to rapidly esti-
mate redshifts using ML models becomes crucial for timely data
processing and release. By validating and refining photometric
redshift methods against spectroscopic data, we can improve the
accuracy of these models, extending their applicability to future
surveys and legacy datasets. Such methods also hold potential for
identifying high-redshift objects in upcoming surveys, where spec-
troscopic follow-up may be limited or delayed. Developing robust
methods and pipelines for estimating redshifts from photometric
measurements is essential to maximise the scientific potential of
upcoming surveys.

In this paper, we present a neural network capable of predict-
ing QSO redshifts in the Dark Energy Spectroscopic Instrument
(DESI; Dey et al. 2019; Abareshi et al. 2022; Adame et al. 2023;
Chaussidon et al. 2023; Alexander et al. 2023) dataset with an
accuracy of ∼ 81%, which increases to ∼ 92% with the inclusion
of photometry from Galaxy Evolution Explorer (GALEX; Martin
et al. 2005; Gil de Paz et al. 2007).

2. Data andmethods

2.1 DESI

DESI surveys the sky in the −34◦ < δ ≤ 90◦ declination range
using the g, r, and z bands. Data Release 9 (DR9 Schlegel et al.
2021) includes images and photometric measurements of 2.85
million sources. The photometry of these sources from DESI is
complemented by forced photometry in the W1 and W2 bands
from unWISE coadded images, derived from Wide-field Infrared
Explorer (WISE) mission (Wright et al. 2010); that is, flux mea-
surements were extracted at the positions of sources detected
in the optical bands, even if the sources were too faint to be
independently detected in WISE infrared (IR) images.

This imaging data serves as the basis for target selection in the
DESI spectroscopic survey. The Early Data Release (EDR) QSO
catalogue,a for which the sky distribution is shown in Figure 1,
contains 87 318 sources spectroscopically identified as QSOs
using DESI’s Redrock (RR) template-fitting algorithm and the
QuasarNET (QN) deep-learning classifier. In this paper, the term
‘DESI dataset’ encompasses both the imaging data from the Legacy
Imaging Surveys’ DR9, which includes g, r, and z fluxes, and the
spectroscopic data from the EDR QSO catalogue, which provides
redshift information for a subset of these sources. Both include
W1 and W2 fluxes from unWISE coadded images, derived using
forced photometry as described above. Distributions of the fluxes
in the DESI dataset are shown in Figure 2.

2.2 DESI x SDSS

To assess the impact ofmissing photometric bands on redshift pre-
diction performance, the DESI dataset was crossmatched with the
Sloan Digital Sky Survey (SDSS) Data Release 16 QSO catalogue
(DR16Q; Lyke et al. 2020). The DESI component of the dataset,
described in Section 2.1, provided photometry in the g, r, and z
bands, along with infrared fluxes fromWISE (W1 andW2).

SDSS contains optical magnitudes (u, g, r, i, z), where g, r, and
z overlap with DESI, and forced-photometry UV measurements

aQSO_cat_fuji_healpix_only_qso_targets.fits available at https://data.desi.
lbl.gov/public/edr/vac/edr/qso/v1.0/.

Figure 1. The sky distributions of the DESI EDR QSO spectroscopic catalogue (top,
from Adame et al. (2023) and SDSS (bottom, from Lyke et al. 2020) samples. The
histograms show the number of sources in right ascension and declination.

in the far- and near-ultraviolet (FUV and NUV) wavebands from
GALEX for 750 414 QSO sources. This crossmatch allows us to
evaluate whether excluding the SDSS u and i bands, as well as the
GALEX FUV and NUV bands, leads to a significant degradation
in photometric redshift predictions.

SDSS imaging has amedian seeing of 1.32 arcsec in the r-band,b
while DESI’s spatial resolution is limited by its 1.5 arcsec fibre
diameter.c A positional tolerance of 1 arcsec was chosen for cross-
matching to ensure high-confidence associations, returning 24 616
secure matches (only 3.2% of the DESI EDR QSO sample) which
we refer to as DxS. This modest fraction arises because SDSS imag-
ing is both shallower (z� 22mag) and covers a slightly different
footprint than the DESI EDR, so many of the fainter or uniquely
targeted DESI QSOs simply have no SDSS counterpart. Figure 1

bhttps://www.sdss4.org/dr17/imaging/other_info.
chttps://noirlab.edu/public/media/archives/brochures/pdf/brochure007.pdf.
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Figure 2. The distribution of magnitudes for the DESI sample as a whole compared to
thosewith amatch in SDSS (see Section 3.2). The legend in each panel shows themean
magnitude and the standard deviation. While DESI fluxes are used directly for model
training, the comparison in this figure is made in magnitude space to match the SDSS
format.

Figure 3. The distribution of redshifts for the full DESI sample and the SDSS-matched
subset. The legend in each panel shows the mean redshift, standard deviation and
maximum redshift.

illustrates the limited overlap, while Figures 2 and 3 show that,
despite the low match fraction and the difference in magnitude
distributions, the two redshift distributions are broadly similar in
shape and spread, diverging mainly at the highest redshifts where
SDSS drops out.

2.3 GALEX

GALEX provides UV photometry in two bands: FUV and NUV .
These bands are particularly valuable for studies of QSOs, as
they probe rest-frame UV features that shift into optical wave-
lengths at high redshifts, as shown in Figure 4. For this study,
GALEX measurements were obtained from the SDSS DR16Q cat-
alogue, including forced-photometry UV fluxes for a subset of
SDSS QSOs. We also attempted to crossmatch the DESI dataset
directly with the standalone GALEX QSO catalogue (Atlee &
Gould 2007), which contains 36 120 sources with NUV and /or
FUV fluxes. However, this yielded only 504 matches, significantly
reducing the sample size, making it unusable as a training set for
ML. As a result, we chose to use the GALEX UV fluxes available
via the SDSS DR16Q catalogue, which provided broader coverage
while maintaining consistency with the rest of the dataset. While a
direct cross-match between the DESI quasar sample and GALEX
yields only 504 high-confidence matches, the broader DxS dataset
contains 24 616 sources with GALEX fluxes. This is because the
GALEX photometry for DxS is sourced from the GALEX–SDSS
cross-match catalogue, which includes both detections and forced
photometry at SDSS positions. As such, many sources in the DxS
dataset have GALEX fluxes even when no significant UV detec-
tion wasmade by SDSS. These fluxes often have large uncertainties
or are upper-limit estimates. Although the inclusion of GALEX
bands improves neural network predictions on average, the com-
paratively poor quality of the UVmeasurements likely contributes
to the more modest or statistically insignificant improvements
observed for the kNN model. The results highlight the impor-
tance of UV coverage for constraining redshifts, but also the need
for caution when interpreting results based on noisy or uncertain
fluxes.

Previous studies have shown that a wide range of wavelengths
is desirable for estimating photometric redshift due to the shifting
of rest-frame wavelengths through filter bands (Brescia et al. 2021;
Duncan 2022). The wide wavelength coverage ofW1 - FUV allows
us to trace rest-frame features across redshift.

2.4 Preprocessing

While we do have access to the redshift quality flags summarised in
Table 1 during training, we chose not to apply these filtering con-
straints so that the model remains applicable to real-world data
where such quality indicators may be absent. We tested the effect
of applying these filters in preliminary runs and found no signif-
icant difference in results, so the constraints were not used in the
final training set.

Before incorporating the photometric data into the training
features, SDSS magnitudes and DESI fluxes were corrected for
Galactic extinction using the Schlafly & Finkbeiner (2011) dust
maps, and the data were standardised by the mean and stan-
dard deviation to ensure that the fluxes and magnitudes were
comparable, enabling consistent input features for the models.

ManyMLmodels use the u− g, g − r, r − i and i− z colours of
sources in SDSS to train and validate an ML model (for example,
Carliles et al. 2007; Hoyle et al. 2015; Pasquet et al. 2019; Li et al.
2022). Throughout this study, we use raw fluxes and magnitudes
as input features for the ML models, rather than colour indices,
since our previous studies have shown that the raw measure-
ments yield comparable results (Curran et al. 2021; Curran 2022).
This approach avoids introducing additional correlations between
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Figure 4. The variation of source-frame wavelength with redshift for g, r, z, W1, W2 and GALEX bands. The coloured horizontal bands show the ‘windows’ provided by the filter
ranges at the observed-frame wavelengths and the curves show those rest-frame wavelengths as a function of source redshift. The dashed red line represents the Lyman break
(λ = 1.216× 10−7 m), the green square hashed region represents the Lyman forest and the shaded cyan region shows the Big Blue Bump. The black dotted line represents the Mg
ii emission line (λ = 2.8× 10−7 m) and the green dotted line shows the 4000 Å break. Labels identify the bands and lines. For example, for a source at a redshift of z= 5, the FUV
line (λrest = 1.575× 10−7 m) has been shifted into the z-band.

features, and retains the direct photometric measurements, ensur-
ing that the models are trained on the most fundamental obser-
vational data. Across this work, the choice of using fluxes or
magnitudes was guided by dataset conventions and practical con-
siderations. For the DESI and DxS datasets, fluxes are used directly
as provided in the Legacy Surveys DR9 catalogue. In contrast,
SDSS photometry is typically provided in asinhmagnitudes, which
we retain. While this means the units differ between datasets,
all fluxes and magnitudes are standardised prior to model train-
ing, minimising the impact of unit differences and ensuring that
fluxes and magnitudes are directly comparable. This preprocess-
ing step prevents unit-driven bias and ensures the models remain
sensitive to relative patterns rather than absolute scales. No con-
version between fluxes and magnitudes was therefore necessary.
This choice also preserves the numerical properties of low-S/N
sources, particularly in the case of asinh magnitudes and forced
photometry. The choice to work with raw fluxes and magnitudes
aligns with the goal of maintaining flexibility and generality for
application across various surveys and datasets.

2.5 Model evaluation andmetrics

To evaluate model performance we use the following statistics:

• Correlation coefficient (r) of the least-squares linear fit
between the predicted redshifts (zphot) and the spectro-
scopic redshifts (zspec). Perfect agreement would yield
r = 1.

• Explained variance (EV). Define the residuals

�z ≡ zspec − zphot.

EV compares the spread of these residuals with the intrin-
sic spread of the true redshifts:

EV= 1− σ 2
�z

σ 2
zspec

,

where the variance is

σ 2
x =

∑N
i=1 (�z)2

zspec
.

An ideal model has σ 2
�z→0 and hence EV→1.

• Normalised median absolute deviation (NMAD), a robust
scatter estimator insensitive to outliers:

σNMAD = 1.4826×median
( |�z|
1+ zspec

)
.

• Maximum error

emax =max
(|�z|).

• Mean absolute error (MAE)

MAE= 1
N

N∑
i=1

|�zi|.

Each model was trained on 80% of the dataset, with 20%
reserved for testing. Models were trained on selected features, and
the models were run 100 times. A summary of the features in each
dataset is given in Table 8. Each run used its own train-test split so
that the data were shuffled each time. The training utilised K-fold
cross-validation, using the above metrics to quantify predictive
performance. The average performance of each model across the
100 runs was computed, and the results inspected visually by
comparing the zphot generated by each model to the zspec in the
datasets, including their residuals, defined by �z = zphot − zspec
with standard deviation σ�z.

2.6 Neural network

In preliminary trials, several ML algorithms were evaluated,
including Random Forest (RF), Ridge Regression (RR), Support
Vector Machines (SVM), ElasticNet (EN), k-Nearest Neighbours
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Table 1. Filtering criteria for the DxS sample and the
number of sources affected by each filter. Names are
as follows (Adameet al. 2023):ZERR is the uncertainty
in the spectroscopic redshift; ZWARN is a bitmask indi-
cating if there are any known problems with the data
or the spectroscopic fit; SPECTYPE is the spectral
classification, which could be STAR, GALAXY or QSO.

Filter criterion Number of sources

ZERR > 0.001 25

ZWARN != 0 277

SPECTYPE != ‘QSO’ 1 447

(kNN), and a Neural Network (NN). The RF and SVM mod-
els yielded reasonably accurate predictions but were found to be
prohibitively slow to train and test across the large dataset and
multiple iterations required for this study. In contrast, RR and EN
were computationally efficient but underperformed in terms of
predictive accuracy, particularly at higher redshifts and in regions
with sparse training data. Consequently, this paper focuses on
the methodologies and results of the NN and kNN approaches.
For the neural network, architectures with 1–6 hidden layers
and 50–300 neurons per layer were explored, using ReLU activa-
tions, the Adam and AdamW optimisers, and mean squared error
(MSE)loss. The best configuration was selected based on the lowest
RMS error on the test set.

As per our previous studies (Curran et al. 2021), the NN
model used in this study, shown schematically in Figure 5, was a
fully connected NN model using K-fold cross-validation. The NN
employed is constructed using the TensorFlow Keras API (Abadi
et al. 2016; Developers 2021), and has a fully-connected, three-
layer perceptron architecture designed for regression tasks. Early
stopping with a patience of 100 epochs was applied to prevent
overfitting. K-fold cross-validation was employed to assess model
performance, during which the data in each fold was split into
training and test sets. This setup allowed for robust assessment
of the model’s performance by averaging the evaluation metrics
across folds. To manage computational efficiency, each fold was
trained over 100 epochs with a batch size of 32.We defined our loss
function as MSE and used mean absolute error (MAE) as the pri-
mary evaluation metric. The model was compiled with the Adam
optimiser (Kingma & Ba 2017), which was selected based on prior
experiments for its effectiveness in handling sparse and noisy data,
which can be problems in astronomical datasets.

2.7 Comparison with k-nearest neighbours

Since different MLmodels can learn different patterns in the same
data, as part of the same study we also implemented a kNN algo-
rithm to predict photometric redshifts. The kNN algorithm has
been used in previous studies (Yuan, Liu, & Xiang 2013; Zhang
et al. 2013, 2019). This ML method is computationally less inten-
sive than a NN, as well as being relatively simple and interpretable
(Zhang et al. 2013), but it can struggle with complex data and
can suffer from catastrophic failures, particularly in certain red-
shift regimes (Han et al. 2016). A NN, on the other hand, can
reduce the dispersion and catastrophic outliers, providing more
reliable estimates (Pasquet-Itam & Pasquet 2018) at the expense
of being computationally more difficult. The kNN’s key hyperpa-
rameters were optimised and its performance evaluated over 100

Figure 5. Architecture of the neural network used in the NN algorithm. Blue boxes
show densely-connected hidden layers, each with 200 neurons and activation func-
tions, and with optimiser and learning rate (lr) indicated. The orange box indicates
the loss function (MSE) used to measure the accuracy of the model’s training. Arrows
indicate the downwards flow of information from one layer to the next. The red
box indicates the output layer. Visualisation developed using Bird’s Neural Notation
Convention (Bird 2023).

iterations. In each iteration, the number of neighbours (k) was
tested across values from 1 to 40, alongside systematic exploration
of distance metrics (Euclidean and Manhattan) and weighting
schemes (uniform or distance-based). The combination of these
hyperparameters that minimised the RMS error on the test set was
identified as optimal, and is listed in Table 2. Similar investigations
into the impact of distance metrics on kNN-based redshift pre-
diction have been conducted in previous studies, such as Luken
et al. (2022), who found that Mahalanobis distance performs best
below z < 1.

Once the optimal hyperparameters were determined for a given
iteration, the kNN regressor was retrained on the training set
and used to generate predictions for the test set. The residuals
�z = zspec − zphot were calculated, and RMS errors for each k were
averaged across all iterations, providing a comprehensive assess-
ment of the algorithm’s performance independent of specific data
splits.

3. Results

3.1 DESI fluxes

The NN and kNN were trained on the DESI dataset only, using
the g, r, z,W1 andW2 fluxes as training features (see Section 2.4).
Table 3 summarises the performance metrics, demonstrating the
base level of accuracy we can achieve without invoking wavebands
from other surveys.
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Table 2. Final configuration of the kNN
model used in this study. These hyperparam-
eters were selected based on grid search per-
formance across 100 iterations, optimising
for the lowest RMS error.

Hyperparameter Value

Distance metric Manhattan

Weighting scheme distance

Number of neighbours (k) 18

Table 3. Average performance metrics from 100 runs of the kNN and NN
models, trained on the DESI dataset (g, r, z, W1, W2), where the training
and test sets are randomised for each trial. Numbers in parentheses repre-
sent uncertainties in the last reported digits. Changes refer to the increase
or decrease from kNN DESI to NN DESI. Positive percentage changes indi-
cate an increase (improvement for Corr and EV, but worsening for NMAD,
ME, and MAE), and vice versa.

kNN DESI NN DESI Change (%)

Corr 0.7779 (26) 0.8099 (44) 3.95

EV 0.6046 (41) 0.6556 (72) 7.78

NMAD 0.2968 (33) 0.2781 (78) −6.72
ME 3.5971 (2949) 3.0910 (4633) −16.37
MAE 0.2002 (22) 0.1876 (52) −6.72

Figure 6 shows a representative sample scatterplot for one of
the 100 runs of the NN using the DESI fluxes as training fea-
tures, with the lower panel showing the residuals normalised by
�z/(1+ z). In this sample, the main cluster of points is near
the 1:1 line. Some bimodality is observed in the distribution of
points in the scatterplot. This likely reflects complexities in the
photometric data, such as the photometric gap between the z and
W1 wavebands. Importantly, the bimodality does not introduce
degeneracies or significantly affect the model’s overall perfor-
mance, as evidenced by the strong correlation coefficient (r =
0.8183) and low scatter (σ′z = 0.387) compared to the kNNmodel.
See Section 4.1 for a discussion on how this affects the redshift
predictions.

3.2 SDSSmagnitudes

3.2.1 SDSS crossmatching

The spectroscopic redshifts provided by DESI and SDSS were gen-
erally in agreement; however, 107 sources displayed significant
discrepancies (|�z| > 0.14). Such mismatches are most often due
to the incorrect association of QSO emission lines (Chaussidon
et al. 2023). In order to rule out the possibility that these are due
to redshift measurements of different sources, Figure 7 shows the
distribution of |�z| with the source separation. While there is a
grouping of outliers at |�z|� 0.14, there is no sign of any corre-
lation. These outliers were excluded from the training sample in
order not to contaminate the sample. Lastly, to increase our con-
fidence in the redshifts being measured for the same source, in
Figure 8 we show�m versus�z for the DxS dataset, with red stars
representing the sources for which |�z| < 0.14 (∼1σ ) where �m
is the difference between theDESI and SDSS g, r and zmagnitudes.
Although small differences in magnitude for matched DESI and
SDSS sources are to be expected, we also considered the impact of

Figure 6. Example plot showing prediction results after training the NN model on the
DESI fluxes (g, r, z,W1,W2). The top panel illustrates the NN predictions, while the bot-
tom panel shows the normalised residuals. In each plot, the solid red line represents
the 1:1 relationship, and the dotted red lines indicate the 1σ deviation from themean.
Inset: distribution of the normalised residuals (zphot − zspec) plotted against redshift,
with the red line indicating the line of perfect correlation.

Figure 7. zDESI − zSDSS versus the angular separation between the DESI and SDSS
coordinates.
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Figure 8. Top: the difference in magnitudes versus difference in redshift between DESI and SDSS measurements, with m being g, r or z. Red stars show sources for which
zDESI − zSDSS > 0.14. Bottom: distribution of the |�m| in the top row.

excluding sources with large magnitude differences (|�m| > 1 in
g, r or z). We repeated the analysis both with and without these
sources included, and found no significant change in model per-
formance. As a result, only the 107 sources with large redshift
discrepancies were excluded from the training set.

The SDSS magnitudes (u, g, r, i, z) in the DxS dataset were
used to train the NN as described in Section 2.4, and Table 4 gives
the averaged metrics across 100 runs of each method. Figure 9a
shows the results of training the NN model on the SDSS magni-
tudes (u, g, r, i, z). These predictions are significantly worse than
the predictions using either the DESI fluxes (g, r, z, W1, W2), or
DESI complemented with GALEX fluxes (g, r, z, W1, W2, NUV ,
FUV), demonstrating the importance of the W1, W2, NUV and
FUV bands.

3.3 GALEXmagnitudes

As noted previously (Ball et al. 2008; Niemack et al. 2009; Curran
2020; Nakazono et al. 2024), the inclusion of GALEX narrowband
fluxes from DxS alongside DESI fluxes in the second set of fea-
tures leads to notable improvements in the performance of the
ML models for redshift predictions (Table 5), the GALEX bands
being required to span the λrest = 1 216 Å Lyman break at low red-
shift (see Figure 4). The kNN and NN were trained on the g, r,
z, W1, W2, NUV and FUV fluxes from DxS. The NUV and FUV
measurements come from the SDSS catalogue (see Section 3.2).
The inclusion of the NUV and FUV fluxes from the DxS dataset
resulted in significant performance improvements for both of the
NN and the kNNmodels. As shown in Table 5, the NN achieves an
average correlation across the 100 runs of r = 0.9187± 0.0036, a
5.57% increase over the kNN’s correlation of r = 0.8675± 0.0044.
Substantial improvements are also observed in other metrics: the

Table 4. As for Table 3, but using the SDSSmagnitudes (u, g, r, i, z) only.

kNN SDSS NN SDSS Change (%)

Corr 0.7904 (55) 0.7770 (373) −1.72
EV 0.6241 (85) 0.6028 (559) −3.53
NMAD 0.2634 (59) 0.2968 (431) 11.25

ME 2.2414 (2821) 2.1083 (1925) −6.31
MAE 0.1776 (40) 0.2002 (291) 11.29

EV improves by 10.88%, while the NMAD and MAE decrease
by 31.1% and 15.52% respectively, indicating higher accuracy and
lower scatter in the NN predictions. These results demonstrate the
neural network’s superior capacity to model the complex relation-
ships in the dataset, using the additional UV fluxes for improved
zphot predictions. Figure 9b shows the results of including theNUV
and FUV fluxes from GALEX in the training features for the NN
model.

Table 6 shows the improvements in metrics across the models
and datasets shown in Tables 3, 4 and 5 to highlight the improve-
ment when moving from one dataset to the next. Training the
kNNmodel on GALEX fluxes as well as DESI fluxes also improves
the metrics, but to a much lesser degree than the NN model. The
NN trained on the DESI fluxes (g, r, z, W1 and W2) is used
as the baseline for each comparison, and the percentage scores
are the changes shown in each metric when the SDSS magni-
tudes are used as training features, and when the GALEX fluxes
are added to the DESI fluxes, respectively. The improvements are
calculated as

Valuenew −ValueNN DESI

ValueNN DESI
× 100. (1)
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Figure 9. Comparison of neural network photometric redshift predictions for SDSS-only versus SDSS+GALEX fluxes. (a) Example plot showing prediction results after training the
NN model on the SDSS magnitudes (u, g, r, i, z). The top panel illustrates the redshift predictions, while the bottom panel shows the normalised residuals. In each plot, the solid
red line represents the 1:1 relationship, and the dotted red lines indicate the 1σ deviation from the mean. Inset: distribution of the normalised residuals (zphot − zspec) plotted
against redshift, with the red line indicating the line of perfect correlation. (b) As for Figure (a) but for the DESI and GALEX fluxes g, r, z, FUV , NUV .

Table 5. As for Table 3, but using the DESI fluxes and GALEX NUV and FUV .

kNN GALEX NN GALEX Change (%)

Corr 0.8675 (44) 0.9187 (36) 5.57

EV 0.7516 (73) 0.8434 (69) 10.88

NMAD 0.2584 (46) 0.1971 (47) −31.1
ME 2.4889 (1423) 2.1546 (2281) −15.52
MAE 0.1743 (31) 0.1330 (32) −31.05

Comparing the metrics from the NN model trained on SDSS to
those trained on DESI, all metrics are worse with the exception of
ME, which is 46.61% lower when using the SDSS magnitudes as
training features. When including the GALEX fluxes along with
the DESI fluxes, all metrics improve by ∼ 40%, with the excep-
tion of correlation coefficient and EV, which show improvements
of 11.84% and 22.27% respectively.

To ensure a fair comparison, we tested photometric redshift
performance on the same DxS dataset using two sets of features:
one with all SDSS bands plus WISE (u, g, r, i, z, W1, W2), and
one with just the DESI bands (g, r, z, W1, W2). While the full
ugriz W1W2 set gave slightly better results, shown in Table 7, the
differences are small. This suggests that the addition of u and i
provides only a modest improvement over grz +W1W2. The NIR
information from the WISE bands appears to play a larger role in

breaking colour-redshift degeneracies than the inclusion of the u
and i bands alone.

4. Discussion

4.1 Photometric differences between bimodal groups

To investigate the nature of the bimodality observed in the
photometric redshift predictions, we examine the differences in
photometric colours between the two identified groups. Figure 10
presents a visualisation of the bimodal groups in colour-space.
The bimodal groups were identified by assigning each source a
label based on its position in colour space, and the centres of
these groups were defined as the mean of their respective colour
indices.

To quantify the photometric separation between these two
groups, we calculate the Euclidean distances between the mean
colour indices (i.e. the centroids) of the bimodal groups in vari-
ous photometric spaces. Specifically, for each pair of colour indices
(e.g. g − r vs. z −W1), we calculated the mean values for each
group and then measured the Euclidean distance between these
two centroids, giving:

• g − r vs. z −W1: 0.4964
• g − r vs. r − z: 0.3355
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Table 6. Performance metrics and relative improvements computed with respect to the NN DESI baseline. Positive percentages indicate an
increase (improvement for Corr and EV, but worsening for NMAD, ME, and MAE), and vice versa.

NNmodel kNNmodel

Metric DESI SDSS cf. DESI (%) DESI/GALEX cf. DESI (%) DESI SDSS cf. DESI (%) DESI/GALEX cf. DESI (%)

Corr 0.8099 (44) −4.23 11.84 0.7779 (26) 1.58 10.33

EV 0.6556 (72) −8.76 22.27 0.6046 (41) 3.12 19.56

NMAD 0.2781 (78) 6.30 −41.1 0.2968 (33) −12.68 −14.86
ME 3.0910 (4633) −46.61 −43.46 3.5971 (2949) −60.48 −44.53
MAE 0.1876 (52) 6.29 −41.05 0.2002 (22) −12.73 −14.86

Table 7.Photometric redshift performance on the sameDxS sample (0.1< z≤ 4.8) using two feature sets: ugriz+
W1W2 and grz+W1W2. Metrics are from the kNN model. The addition of u and i yields modest improvements,
while WISE bands appear to play a key role in breaking colour–redshift degeneracies.

Features r EV NMAD ME MAE

ugriz+W1W2 0.8439 (0.0038) 0.7116 (0.0061) 0.2990 (0.0024) 2.3504 (0.2105) 0.2017 (0.0016)

grz+W1W2 0.8329 (0.0030) 0.6934 (0.0049) 0.2821 (0.0055) 2.6612 (0.3839) 0.1903 (0.0037)

Figure 10. The points from each of the bimodal groups in Figure 6 in the z−W1 vs. g− r space, incorporating Gaussian ellipses (black ellipses) with centres marked as crosses.
The marginal histograms illustrate the distributions of g− r and z−W1 within each group, and individual points are coloured by their g− r values, with bluer values on the left
and redder values on the right.

• z −W1 vs.W1−W2: 0.4119
• g − r vs.W1−W2: 0.2945

These values indicate that the most significant separation
between the two bimodal groups occurs in the g − r vs. z −
W1 space. This suggests that the optical-to-mid-infrared colour
combination plays a critical role in distinguishing between the two
populations. The relatively large separation in z −W1 and W1−
W2 further implies that mid-infrared properties contribute to the
bimodality, potentially linked to differences in dust obscuration or
QSO evolutionary stages.

While the mid-infrared separation (z −W1 vs. W1−W2)
remains substantial, its slightly lower value compared to the

optical-to-mid-infrared colour separation suggests that the pri-
mary driver of bimodality is not solely dust reddening. If dust
were the dominant factor, we might expect a stronger distinction
in the g − r vs.W1−W2 space (currently the weakest separation
at 0.2945).

Furthermore, the large gap between the z and W1 photomet-
ric bands (see Figure 4) may be a key factor contributing to the
observed bimodality. This gap limits the continuous coverage of
spectral features, potentially leading to systematic biases in colour-
based classification. The separation in this space suggests that
certain populations of QSOs may preferentially occupy distinct
regions due to their intrinsic properties or observational selection
effects.
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The observed photometric separation between the bimodal
groups has direct implications for photometric redshift predic-
tions. Since the bimodality is strongest in the optical-to-mid-
infrared colour space, it is likely that differences in z −W1 play a
role in introducing systematic deviations in redshift estimates. If
the two groups correspond to distinct physical populations – such
as blue, unobscured QSOs versus dust-reddened ones – standard
ML models may struggle to provide accurate redshifts across
the entire QSO sample. This suggests that incorporating explicit
bimodal modelling or separate training strategies for these two
populations could enhance redshift estimation accuracy.

The observed bimodality in our zphot predictions reflects
known degeneracies in broadband photometric data, and is con-
sistent with findings reported by Kügler, Gianniotis, & Polsterer
(2016) and D’Isanto & Polsterer (2018). Kügler et al. (2016) argue
that redshift estimation from photometry is fundamentally a mul-
timodal problem, as multiple redshifts can plausibly explain the
same set of observed magnitudes due to physical overlaps in SEDs
and limited observational constraints. D’Isanto & Polsterer (2018)
similarly report strong multi-modal behaviours in photometric
redshift predictions across redshift ranges z ∼ 0.5− 0.9 and z ∼
1.5− 2.5, attributing this to degeneracies introduced by the use of
broadband filters. This phenomenon, though not widely discussed
in the context of QSO redshift prediction, may point to important
structure in the training data and warrants further study.

4.2 Redshift dependence

4.2.1 Limitations of the model

Figure 4 illustrates how the observed-frame filters (FUV , NUV ,
g, r, z,W1,W2) trace rest-frame wavelengths as a function of red-
shift. At low redshift (z ≤ 1), the observed g, r, and z bands capture
rest-frame near-UV to optical wavelengths, which include promi-
nent emission lines such as Mg ii. At higher redshifts (z > 2), these
wavelengths are shifted into theW1 andW2 bands, with UV and
optical features moving further into the infrared. This continuous
shifting of rest-frame wavelengths across observed bands compli-
cates photometric redshift estimation, particularly at higher red-
shifts where rest-frame UV features dominate. To investigate how
each of the ML models operates across different redshift regimes,
the DESI dataset was divided into the following redshift bins:

• 0.0< z ≤ 1.0 (11 419 sources)
• 1.0< z ≤ 2.0 (45 627 sources)
• 2.0< z ≤ 3.0 (25 878 sources)
• 3.0< z ≤ 4.0 (4 120 sources)
• 4.0< z ≤ 5.0 (260 sources)
• 5.0< z ≤ 6.0 (13 sources)

The last redshift range (z > 5.0) was disregarded due to the
very low number of sources. While the 4.0< z ≤ 5.0 bin also con-
tains relatively few sources (260), it was retained in the analysis
to ensure coverage of the highest redshift regimes included in the
dataset.

In the lowest-redshift bin (0< z ≤ 1) the addition of the
GALEX bands leads to a modest decline in performance: the
correlation and EV metrics both dip slightly, while NMAD and
MAE increase by a small amount. The maximum error improves
only marginally. In the next bin (1< z ≤ 2) the two models are
effectively indistinguishable once the error bars are accounted for.

Beyond z ≈ 2 all metrics worsen for both models, a trend driven
by the dwindling number of high-redshift training data and by
the fact that rest-frame UV features have shifted into the infrared,
where WISE photometry carries larger uncertainties.

Only a small fraction of DESI QSOs have reliable GALEX
detections, and those that do are already among the brighter,
better-constrained subset that optical–infrared colours describe
well. The GALEX measurements themselves carry comparatively
large photometric errors, and therefore, because our current kNN
distance metric treats all features equally, the noisy UV magni-
tudes can blur, rather than sharpen, the zphot estimates.

For the present kNN implementation, Figure 11a and b show
that the inclusion of GALEX FUV and NUV fluxes does not yield
a statistically significant improvement in the photometric redshift
accuracy, even in the z ≤ 1 bin where one might expect the largest
benefit. Given the small fraction and relatively poor precision
of GALEX detections, this is consistent with the data quality
and sampling limitations rather than a failure of the underlying
method.

4.3 Including GALEX photometry in the training set

Previous studies have shown that UV data is especially valuable for
blue galaxies and quasars, where traditional optical bandsmay lack
sufficient information to constrain redshifts effectively (Niemack
et al. 2009; Zhang et al. 2010). Augmenting the DESI fluxes with
GALEX photometry markedly improves our model performance.
Both the kNN and NN models benefit from the extended wave-
length coverage, although the NN model exhibits particularly
enhanced accuracy and robustness across the metrics. While the
reduction in ME is modest, improvements in correlation, EV,
NMAD and MAE are significant.

When comparing the photometric redshift estimates from
DESI and SDSS, the DESI dataset shows a notably tighter cor-
relation and reduced scatter, especially when GALEX fluxes are
added to the DESI bands (g, r, z, W1, W2), particularly for
the NN model. This enhanced performance is largely attributed
to the near-infrared coverage provided by W1 and W2, which,
when combined with the UV data from GALEX, helps to break
colour–redshift degeneracies more effectively. In contrast, the
SDSS dataset (u, g, r, i, z) lacks this near-infrared component,
which may contribute to the overall messier appearance of its
correlation plot.

4.4 Predicting redshift for outliers inDESI/SDSS crossmatched
sources

To identify redshift mismatches, we defined outliers as sources for
which |�z| = |zDESI − zSDSS| > 0.14. This threshold corresponds to
the 1σ width of the residual distribution for the matched sample
in Figure 12, and was chosen to isolate only the most significant
outliers. While some recent studies use 2σ or 3σ thresholds (e.g.
Duncan 2022; Luken et al. 2023), we adopt the more conserva-
tive 1σ definition to ensure a clean separation of the outliers from
the dominant population. All of these sources come from the DxS
crossmatched sample and have complete photometry across all
nine bands (u, g, r, i, z, W1, W2, FUV , and NUV), as SDSS pro-
vides the optical and UV measurements, and DESI contributes
the near-infrared fluxes (see Table 8). All nine bands were used as
input features in the photometric redshift prediction models for
this subset.

To address the mismatches in the DESI and SDSS redshifts, we
remove the 107 problematic sources and retrain our model on the
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Figure 11. Comparison of kNN performance metrics across the DESI-only and DESI+GALEX (DxS) samples over five redshift bins. (a) The average of the performance metrics for
100 runs of the kNN model for the DESI (g, r, z, W1, W2) sample across the five redshift bins. Ideal values for each metric are represented by horizontal dashed lines. (b) As for
Figure (a) but for the DxS (g, r, z,W1,W2, NUV , FUV) sample.

remaining 24 509 sources, using the DESI spectroscopic redshift
(zDESI) as the target. Figure 13 shows a diagnostic scatterplot
comparing the photometric redshift accuracy and photometric
consistency for the outlier QSOs, showing that for 78 out of 107
(∼ 73%) outliers, our predictions most closely match the DESI
spectroscopic redshift. Each point represents an individual source,
with the y-axis showing the absolute difference between the SDSS
and DESI magnitudes for the source and the x-axis showing the
lowest absolute difference between zphot and the available spec-
troscopic redshift from either SDSS or DESI. Objects located in
the lower-left quadrant (below both medians) represent cases for
which the photometric redshift is relatively accurate and the pho-
tometric measurements are consistent between the two surveys.
Objects in the upper-right quadrant show larger discrepancies in
both redshift and photometry.

The discrepancies between zspec for DESI and those for SDSS
were used as an unseen test set for the NN model. In Figure 14 we
plot the spectroscopic redshifts from SDSS (zSDSS) against those
from DESI (zDESI). The vertical axis is labelled ‘zcomparison’ to reflect
that the plotted values may represent either SDSS spectroscopic
redshifts or predicted redshifts from our model. For clarity, each
data source is explicitly indicated in the figure legends. The red

stars show the redshift predictions from our model plotted against
the spectroscopic redshift from DESI. Figure 14 also shows that
the NN model tightens up the zphot for the outliers, which is con-
firmed in the inset, which shows that the standard deviation of the
residuals is now σresids = 0.04 (improved from 0.14). Many of the
predicted redshifts are now on the line of zSDSS ≈ zDESI.

4.5 Comparison with previous machine learning results

Photometric redshift estimation has been approached using a
variety of different techniques, each with distinct strengths and
limitations. Broadly speaking, these methods can be categorised
into template-fitting, ML, and deep learning approaches.

Template-fitting approaches, such as those using EAZY
(Brammer, van Dokkum, & Coppi 2008), have traditionally been
employed for high-redshift sources, where training data for ML
models is sparse. Li et al. (2022) demonstrate that combining tem-
plate fitting with ML, using CATBOOST for low redshift galaxies
and EAZY for extrapolation to high redshifts, improves accuracy,
particularly for z < 2. However, this approach still struggles with
out-of-distribution predictions, reinforcing the need for robust
high-redshift solutions.

https://doi.org/10.1017/pasa.2025.10075 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10075


12 J. Moss et al.

Figure 12. Spectroscopic redshifts from SDSS and DESI for the matched sources in
the DxS sample. The background colour-coded scatterplot shows the 24 509 QSOs for
which zSDSS ≈ zDESI. The green crosses indicate sources classified as outliers which lie
outside 1σ ∼ 0.14. The legend shows the mean and standard deviation of the residu-
als for the full sample. The inset displays the distribution of �z= zSDSS − zDESI for the
outliers only.

ML models have shown promise in improving redshift esti-
mation by training algorithms on large datasets, using feature
selection techniques. Saxena et al. (2024) introduce CircleZ, a NN
model optimised for AGNs, incorporating photometric and mor-
phological features to achieve high precision in zphot estimation.
Similarly, Hong et al. (2022) propose a multimodal ML approach,
integrating photometric and spectroscopic features to enhance
redshift predictions for QSOs, significantly reducing the RMSE.
However, these methods remain sensitive to the quality and rep-
resentativeness of their training datasets, often struggling with
selection biases and incomplete sky coverage.

Deep learning techniques, such as those implemented by
QuasarNET (Busca & Balland 2018), provide an alternative
approach by directly learning spectral features from large spec-
troscopic datasets. QuasarNET demonstrates near expert-level
performance in QSO classification and redshift estimation, using
convolutional neural networks to detect emission lines and refine
redshift estimates. While this method excels at identifying broad
absorption line (BAL) QSOs and reducing catastrophic errors, its
reliance on identifiable spectral features limits its applicability to
high-redshift QSOs, where fewer lines are available.

Compared to other recent methods, our NN approach per-
forms competitively while offering greater flexibility across a wider
redshift range. While QuasarNet is highly effective for spectro-
scopic redshift estimation via spectral line identification, it is not
directly applicable to purely photometric datasets. In contrast, our
method relies solely on photometry, allowing it to be deployed
across large sky areas with limited or no spectroscopic follow-
up. The use of ML also enables the model to adapt to the diverse
spectral energy distributions of QSOs without requiring template
tuning or manual line matching.

Our method builds on these developments by tailoring pho-
tometric redshift estimation to the characteristics of QSOs across
a wide redshift range. Compared to Saxena et al. (2024), who use
optical and infrared (IR) photometry of X-ray selected AGNs from
the Legacy Imaging Survey in g, r, i, z and W1−W4, our dataset
spans from mid-infrared wavelengths from the WISE to UV from

Table 8. Missing values by photometric band for each dataset. All datasets
use extinction-correctedmagnitudes or fluxeswhere applicable. GALEX fluxes
include both direct detections and forced photometry. Only 504 DESI sources
were matched to GALEX with reliable UV fluxes.

Dataset Band Type Missing %Missing

SDSS (750414) u mag 1 014 0.14

g mag 1 015 0.14

r mag 1 011 0.13

i mag 1 011 0.13

z mag 1 011 0.13

FUV , NUV flux 0 0.00

DxS (24616) g, r, z flux 0 0.00

W1,W2 flux 0 0.00

DESI (87318) g, r, z flux 0 0.00

u, g, r, i, z mag 27 0.11

W1,W2 flux 0 0.00

FUV , NUV flux 504 0.58

Figure 13. The sum of the difference in the SDSS and DESI g, r, z magnitudes versus
the difference between the predicted and closest spectroscopic redshift for the out-
liers in Table C1. Filled markers show the DESI zspec being closest and unfilled for the
SDSS. The dotted lines show the median values along each axis, from which we see a
concentration at |�z|� 0.2 and a photometric discrepancy of 〈|�m|〉� 0.6 in each of
the g, r, zmagnitudes.

GALEX, offering broader wavelength coverage. While Li et al.
(2022) successfully apply template fitting to high-redshift galaxies,
we evaluate multiple ML models to better address the complex-
ity of QSO spectral energy distributions. Our neural network,
a configurable regression model, provides a flexible approach
to estimating zphot as a continuous variable. While it lacks spe-
cialised architectural optimisations for spectral line identifica-
tion, its adaptability makes it well-suited for photometric redshift
estimation. By refining feature selection and expanding wave-
length coverage, our study enhances QSO redshift predictions and
informs future wide-field survey analyses.

5. Conclusions

Given that a simple, accurate, and reliable photometric estimate of
redshift for samples of QSOs will be invaluable for upcoming large

https://doi.org/10.1017/pasa.2025.10075 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2025.10075


Publications of the Astronomical Society of Australia 13

Figure 14. Photometric redshift predictions from the NN model (red stars) for the
outliers identified in Figure 12. As in Figure 12, the background colour-coded scatter-
plot shows the 24 509 QSOs for which zSDSS ≈ zDESI. The inset shows the distribution
of�z= zphot − zDESI for these predictions. The predicted redshifts cluster more tightly
around the 1:1 line, with improved performance at lower redshifts, especially 1< z< 2
compared to higher redshifts.

radio surveys, we have developed and evaluated a neural network
capable of predicting the redshift of QSOs in the Dark Energy
Spectroscopic Instrument Early Data Release.

Our neural network model achieves a correlation coefficient
of r = 0.81 with spectroscopic redshifts, with NMAD= 0.28. The
inclusion of UV photometry from GALEX improves the red-
shift predictions to a correlation of r = 0.92 (a 13% increase) and
NMAD of 0.197 (a 29% reduction), while also reducing scatter and
catastrophic outliers. This improvement is particularly significant
for high-redshift QSOs, where rest-frame UV features shift into
the optical bands, making UV photometry a valuable addition to
redshift estimation models.

A notable feature of our results is the bimodal distribution
observed in the photometric redshift predictions, which has not
been explicitly discussed in the literature. Our analysis suggests
that this is linked to differences in the g − r vs. z −W1 colour
space, likely arising from systematic biases within our data, or
from the large photometric gap between DESI’s z and W1 bands.
This finding suggests that further refinement of redshift prediction
models, potentially incorporating tailored treatments for bimodal
populations, could improve accuracy.

We also assess the impact of missing photometric bands com-
pared to SDSS, particularly the absence of the u and i bands. Our
results show that the inclusion of the GALEX UV fluxes provides
additional constraining power, resulting in comparable or supe-
rior performance to models that include SDSS u and i bands. This
suggests that deep UV coverage may be preferable to broadband
optical coverage for QSO redshift predictions.

Additionally, we investigate mismatches between DESI and
SDSS spectroscopic redshifts, finding that DESI redshifts are gen-
erally more reliable in cases of significant discrepancies. These
mismatches are likely due to incorrect emission line associations
in SDSS spectra, reinforcing the accuracy of DESI’s spectroscopic
redshift measurements.

Unlike many previous studies that focus on galaxies with
well-defined spectral features or which cover only narrow red-
shift ranges, our approach uses a neural network trained on the

crossmatched DxS dataset to estimate photometric redshifts for
QSOs spanning the full redshift range observed in DESI. As large-
scale surveys such as the SKA come online, reliable photometric
redshifts will be essential for identifying and analysing large QSO
samples without spectroscopic follow-up. By incorporating deep
UV photometry, we demonstrate that anMLmodel can effectively
capture the spectral diversity of QSOs, improving redshift predic-
tions across a broad range of source types. Future refinements that
explicitly model different QSO spectral classes may offer further
gains in precision.
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Appendix A. k-Nearest Neighbours

A kNN method was also employed to estimate the redshift of
QSOs from photometric data in the DESI dataset as a compar-
ison to the NN. The kNN algorithm iteratively searches for an
optimal number of nearest neighbours, measuring the model’s
performance using the root mean squared (RMS) error between
predicted and actual redshifts. A series of 100 iterations was
conducted to obtain a representative optimal number of nearest
neighbours, ensuring robustness in the selection process. Themet-
rics in Tables 4 and 5 are averaged across the 100 runs, and their
standard deviations calculated as a measure of the uncertainty in
each metric. Figure A1 illustrates how the MSE changes in a rep-
resentative run of the kNN algorithm as the number of nearest
neighbours in the model varies. The error decreases rapidly for
low values of k, stabilises around k= 18, and then slowly rises
again. This pattern reflects the typical balance between over- and
under-fitting.

Following the determination of the optimal k value, the model
undergoes further refinement by testing different distance met-
rics (Euclidean vs. Manhattan) and weighting schemes (uniform
vs. distance). The model is then finalised by selecting the best-
performing distance metric and weighting strategy based on the
MSE.

To assess the importance of each of the features (fluxes) in
producing redshift predictions, the SelectKBest method, using
f-regression, is applied to quantify the contribution of individ-
ual photometric features. Additionally, permutation importance
is employed, offering a non-parametric measure of feature signifi-
cance.

Just as Figure 9a illustrates the correlation between zphot
and zspec for the neural network trained on SDSS magnitudes,

Figure A1. Root Mean Squared Error (RMS) vs. Number of Nearest Neighbours (k) for
the kNN, showing the average RMS error for each value of k. The error decreases
sharply for small values of k and stabilises around k= 18, indicating an optimal choice
for this parameter.

Figure A2. Example plot showing prediction results after training the kNN model on
the DESI fluxes (g, r, z, W1, W2); cf. Figure 6. The top panel illustrates the kNN predic-
tions, while the bottom panel shows the normalised residuals. In each plot, the solid
red line represents the 1:1 relationship, and the dotted red lines indicate the 1σ devi-
ation from the mean. Inset: distribution of the normalised residuals (zphot − zspec), with
the mean and standard deviation indicated.
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Figure A3. As for Figure A2, but using the SDSS ugriz magnitudes as training features.
Cf. Figure 9a.

Figures A2, A3, and A4 present the corresponding results for the
kNNmodel trained on the same features across the same datasets.

The inclusion of GALEX FUV and NUV fluxes significantly
improves the accuracy of zphot predictions, as depicted in Figure
A4, particularly for specific subsets of QSOs.

Appendix A.1 Feature importance

Appendix A.1.1 Permutation importance method

Regarding the interpretability of a machine learning model, it is
instructive to determine which wavebands in an astronomical sur-
vey are most informative for predicting photometric redshifts.
For each model, feature relevance was assessed using permuta-
tion importance, in which the values of each feature are randomly
shuffled to observe the effect on model performance. Features
whose randomisation leads to a substantial drop in accuracy are
deemed more important. This approach highlights which photo-
metric bands contribute most to determining zphot, although the
results can vary depending on the choice of k and the properties of
the training data.

The permutation importances from a representative run of the
kNN model, based on the DxS dataset, are shown in Figure A5a.
The top panel shows the DESI/GALEX fluxes, and the middle and

Figure A4. As for Figure A2, but using the DESI and GALEX fluxes together as training
features; cf. Figure 9b.

bottom panels show the importances for the SDSSmagnitudes and
the full DESI sample, respectively. In both cases, the infraredWISE
bands were ranked among the highest, indicating that they are
more predictive than the optical bands alone, although all features
appear to contribute meaningfully.

Feature importances were also evaluated for the neural net-
work model using permutation importance, averaged over 100
runs. The permutation importances for one run of the NN for
the same datasets as used above are shown in Figure C1. In the
DESI/GALEX dataset (top panel), both the NN and kNN models
ranked the r, z, W1, and W2 fluxes highest, with FUV and NUV
appearing near the bottom. In the SDSS component of DxS, the
u and g bands were consistently assigned the greatest importance
across both models. These filters likely provide key information
due to their sensitivity to strong quasar spectral features, such as
the Lyman break at moderate to high redshift.

Appendix A.1.2 Drop-columnmethod

The measured importance of FUV and NUV fluxes can depend
on the method used. Permutation importance may underestimate
the value of features that are highly correlated with others, as
the model can compensate using redundant inputs. Consequently,
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Figure A5. Feature importances from (a) kNN and (b) neural network models. Each panel shows the mean increase in MSE when omitting each flux in the DESI/GALEX sample.
(a) Feature importances for the kNNmodel on the DESI/GALEX sample. (b) As for Figure (a) but for the neural network model.

even if FUV and NUV improve overall model accuracy, their
permutation scores may not fully reflect their utility.

To better assess the true impact of individual features, we
applied the drop-column method, which involves retraining the
model after removing each feature entirely. The results for the
kNN model are summarised in Table A1a. Removing FUV led
to an increase in both σNMAD and MAE, indicating a measur-
able degradation in performance. Similarly, dropping W1 or
W2 degraded model accuracy, confirming their predictive value.
By contrast, removing NUV had little effect, suggesting greater
redundancy betweenNUV and the remaining features. These find-
ings highlight the limitations of permutation-based scores in the
presence of correlated features.

We also applied the drop-column method to the NN model
using the DESI and DxS datasets, as shown in Table A1b.
Removing W1 and W2 fluxes increased both σNMAD and MAE,
confirming their roles as key predictors. A similar degradation
was observed when NUV and FUV fluxes were excluded, despite

these features appearing near the bottom of the feature importance
rankings. This discrepancy highlights a known limitation of per-
mutation importance: when a feature is correlated with others, or
when its contribution is localised to specific subpopulations, ran-
domising it may not strongly impact performance, as the model
can partially compensate using other inputs. In contrast, drop-
ping the feature entirely removes its unique contribution, offering
a more reliable test of importance in such cases. These results
emphasise their significance for accurate photometric redshift
predictions in the neural network model.

Taken together, the results from both permutation and drop-
column analyses confirm the critical role of near-infrared and
some optical bands, particularly W1, W2, NUV , and FUV fluxes,
in accurate zphot estimation. These findings also highlight the
importance of using complementary approaches when assessing
feature relevance, as permutation scores alone may underestimate
the value of features that are correlated or interact non-linearly
with others.
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Table A1. Impact of dropping individual bands on photometric redshift performance using kNN and NNmodels trained on
the DxS dataset. Metrics shown are σNMAD (normalised median absolute deviation) and MAE. Lower values indicate better
performance.

Feature set σNMAD MAE Feature set σNMAD MAE

g, r, z,W1,W2 (baseline) 0.3090 0.2084 g, r, z,W1,W2 (baseline) 0.3171 0.2139

g, r, z,W2 (noW1) 0.3830 0.2584 g, r, z,W2 (noW1) 0.3987 0.2689

g, r, z,W1 (noW2) 0.3372 0.2274 g, r, z,W1 (noW2) 0.3611 0.2435

g, r, z,W1,W2, FUV , NUV (baseline) 0.2584 0.1743 g, r, z,W1,W2, FUV , NUV (baseline) 0.2699 0.1821

g, r, z,W1,W2, FUV (no NUV) 0.2580 0.1740 g, r, z,W1,W2, FUV (no NUV) 0.2839 0.1915

g, r, z,W1,W2, NUV (no FUV) 0.2812 0.1897 g, r, z,W1,W2, NUV (no FUV) 0.2664 0.1797

Appendix B. Average performancemetrics for 100 runs

Tables B1 and B2 show the averaged performance metrics for 100
runs of both the kNN and NN models for the DESI (g, r, z, W1,
W2) and DxS (g, r, z,W1,W2, NUV , FUV) samples.

Table B1. Average performance metrics for 100 runs of both the kNN and NN models across varying redshifts, for the
DESI (g, r, z,W1,W2) sample. Abbreviations are as for Table 3.

Name Corr EV σNMAD Max err MAE

0.1< z≤ 1.0 (11 419)

kNN 0.6005± 0.0152 0.3600± 0.0178 0.1342± 0.0031 0.7579± 0.0504 0.0905± 0.0021

NN 0.5707± 0.0723 0.3269± 0.0792 0.1447± 0.0151 0.6588± 0.0188 0.0976± 0.0102

1.0< z≤ 2.0 (45 627)

kNN 0.6774± 0.0026 0.4583± 0.0033 0.1883± 0.0023 0.7930± 0.0369 0.1270± 0.0015

NN 0.7623± 0.0066 0.5808± 0.0102 0.1592± 0.0017 0.7971± 0.0052 0.1074± 0.0012

2.0< z≤ 3.0 (25 878)

kNN 0.5046± 0.0099 0.2542± 0.0097 0.2389± 0.0047 0.7525± 0.0136 0.1611± 0.0031

NN 0.6170± 0.0036 0.3797± 0.0043 0.2177± 0.0041 0.7352± 0.0159 0.1469± 0.0027

3.0< z≤ 6.0 (4 393)

kNN 0.7823± 0.0238 0.6079± 0.0350 0.1687± 0.0040 1.5137± 0.5351 0.1138± 0.0027

NN 0.9096± 0.0197 0.8263± 0.0349 0.1298± 0.0021 1.1285± 0.1898 0.0875± 0.0014

Table B2. Average performance metrics for 100 runs of both the kNN and NN models across varying redshifts, for the
DxS (g, r, z,W1,W2, NUV , FUV) sample. Abbreviations are as for Table 3.

Name Corr EV σNMAD Max err MAE

0.1< z≤ 1.0 (3 540)

kNN 0.5515± 0.0102 0.3035± 0.0121 0.1474± 0.0062 0.5046± 0.0318 0.0994± 0.0042

NN 0.6993± 0.0079 0.4863± 0.0119 0.1280± 0.0096 0.5073± 0.0744 0.0864± 0.0065

1.0< z≤ 2.0 (11 754)

kNN 0.7532± 0.0116 0.5641± 0.0176 0.1785± 0.0041 0.6969± 0.0128 0.1204± 0.0028

NN 0.8427± 0.0420 0.7087± 0.0686 0.1520± 0.0222 0.7475± 0.1031 0.1025± 0.0150

2.0< z≤ 3.0 (8 001)

kNN 0.6402± 0.0067 0.3945± 0.0154 0.2032± 0.0036 0.7079± 0.0460 0.1371± 0.0024

NN 0.8474± 0.0076 0.7174± 0.0123 0.1303± 0.0131 0.6151± 0.0316 0.0879± 0.0088

3.0< z≤ 4.8 (1 293)

kNN 0.8337± 0.0344 0.6955± 0.0577 0.1398± 0.0052 0.8639± 0.0316 0.0943± 0.0035

NN 0.9360± 0.0042 0.8744± 0.0080 0.1481± 0.0514 0.4280± 0.0734 0.0999± 0.0347
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Appendix C. Redshift Outlier Predictions

Table C1 displays the SDSS name, spectroscopic redshift from
DESI (zDESI) and from SDSS (zSDSS) and zphot for 100 runs of the
kNN trained on the DESI/GALEX fluxes (g, r, z, W1, W2, NUV ,
FUV). A subset of the predictions is visualised in Figure C1.

Table C1. Redshift outlier predictions for DESI quasars. A machine-readable
version of this table is provided as Supplementary Material.

SDSS name zDESI zSDSS zphot,kNN

120744.53+525700.2 1.1034 0.1950 1.0708

120438.23+531131.2 1.1433 2.3400 1.6235

120047.55+532611.3 1.0957 1.4540 1.8208

120450.76+520953.0 1.1635 1.6739 1.2968

123857.98+554746.3 1.0146 4.5623 1.3539

124120.58+544335.3 1.0003 1.3483 2.0847

122552.51+543544.1 0.0921 2.8000 2.0524

120242.06+561047.7 1.6809 1.8600 1.6742

122712.40+550238.6 2.8389 1.5000 1.6525

122020.29+575637.6 4.2673 1.3066 1.2893

123955.34+601824.4 0.8035 1.5350 1.6452

123029.89+574534.0 1.8808 2.6437 2.6863

123030.66+575721.5 1.7724 2.5057 1.5230

123638.35+583741.1 1.4412 0.0424 2.4808

122923.26+593352.0 1.6855 3.2185 2.4362

124643.04+592127.2 1.7376 2.4616 2.1906

124652.95+584245.1 1.7716 6.0009 1.7954

115757.24+505442.4 0.2260 1.8894 2.7173

115028.18+524927.9 1.7276 1.2801 2.0112

114326.99+514921.7 1.6537 2.2660 2.1092

114931.37+550235.1 1.7873 0.8800 1.7949

115341.21+552838.4 2.9474 2.1570 2.0980

112015.34+551127.9 1.3817 0.6130 1.3031

113433.87+543135.8 1.1057 3.8430 1.3429

111939.04+533039.6 1.5371 0.9959 2.0352

113354.87+552346.6 1.7464 1.2350 2.1426

113742.66+560743.3 0.8008 3.1489 1.4635

123322.23+602214.5 3.2632 0.8760 1.0656

161644.01+550449.9 0.8779 1.7993 1.4686

161605.65+543343.1 1.9264 5.6746 1.8422

160903.74+543837.4 1.1077 6.4271 1.1936

161426.61+542845.6 1.3393 2.5097 1.6570

160734.59+534222.6 1.5619 4.8672 2.2708

160719.05+541408.6 0.9609 3.4686 1.0211

130015.97+274432.9 3.0482 0.7820 1.9527

143119.81+360005.8 1.6312 5.7365 1.7618

143008.37+351131.8 1.5998 0.7445 1.9146

142325.46+540037.9 1.1157 0.2010 1.8352

142152.29+533929.0 1.3702 0.6200 1.6330

142435.58+533350.2 1.2420 1.7960 1.8991

Table C1. Continued.

SDSS name zDESI zSDSS zphot,kNN

142701.79+534943.0 1.8062 2.5924 1.9158

120807.43+004304.8 1.1022 0.4400 1.8715

125655.07+251123.6 3.1067 0.4230 2.8520

164837.89+343339.6 1.8846 3.8413 1.5508

164959.14+344937.2 1.5142 3.8900 1.5089

165031.07+343431.6 2.4636 1.2054 2.4384

165203.29+340827.2 2.1680 3.0243 2.1098

165036.95+350057.1 1.5093 3.8874 1.6180

165139.23+350941.1 1.2278 4.0854 1.3028

164625.18+342954.7 1.4830 3.8503 1.3626

164637.75+343119.7 0.8761 3.8480 1.1699

164849.47+344436.0 2.0560 5.8455 2.4611

164756.73+343101.9 1.4249 5.9711 1.6636

164813.72+345427.3 1.8431 3.8091 1.9107

164903.01+344747.1 1.3239 3.9994 1.6066

164938.61+350118.2 0.8684 3.8859 1.7746

165031.77+352200.2 1.2811 3.8861 1.6640

165121.55+354435.7 1.7339 3.9147 1.7713

165022.10+354245.3 1.9101 2.7048 2.2967

165028.26+355014.0 0.9038 6.4526 1.2311

164534.47+342243.5 1.7169 2.4125 2.4079

164527.62+352655.7 1.4801 1.2790 1.5835

165608.97+350303.4 0.9624 2.1301 1.3526

160832.58+442659.8 0.9309 1.8467 1.8436

153621.26+430637.3 0.7747 3.0620 0.8612

162545.32+414320.5 1.9871 0.6500 1.9211

162118.14+415320.8 1.5807 1.7788 2.0974

162421.09+425243.2 0.6574 1.9450 1.9822

162044.69+434450.4 1.7154 1.2150 2.1543

162427.12+442245.3 2.3561 3.2375 2.4087

153728.60+440246.6 0.9349 3.4220 1.0116

162525.13+441741.5 1.5630 0.7406 1.7337

154918.20+435945.2 0.9611 0.2055 1.0953

162940.01+443919.2 1.4396 2.1063 1.6613

163102.54+442607.2 0.8311 3.1959 1.1509

084347.84+203752.4 0.2269 5.6085 0.1597

110513.65+501216.1 1.5794 0.7726 1.7603

130504.60+334623.5 1.9167 2.7111 2.9692

133704.53+331244.4 1.7520 2.4910 1.9779

130004.92+330411.7 1.7953 2.5329 2.3963

023117.57-003932.9 1.0218 1.9560 1.2245

022836.82+002216.7 1.8156 2.5767 1.8784

115333.54+274404.3 1.5767 0.7420 1.7473

122608.53+305454.2 1.7653 2.5001 1.7710

122155.46+330142.2 1.0968 3.7896 1.2203

122421.52+333857.6 1.6043 4.8616 1.8629

074551.46+162811.6 2.4663 2.6342 3.4707
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Table C1. Continued.

SDSS name zDESI zSDSS zphot,kNN

084510.69+231238.1 1.2479 1.7852 1.3159

093433.41+313920.6 0.9982 2.1500 2.1115

091614.46+310241.8 1.0710 7.0112 1.0101

092347.00+311346.8 1.6336 2.2290 2.2348

091447.69+310934.4 2.1578 3.0110 2.0441

091426.09+315453.6 0.9691 2.1278 1.2812

083252.59+311655.3 1.3537 1.9017 1.6132

100017.13+310410.7 0.9185 3.3899 3.2231

100010.17+314251.2 1.9656 2.8216 3.2097

110324.64+310941.9 1.6873 2.4552 2.1218

110110.21+322937.0 1.9887 0.1780 2.5604

110045.66+325711.7 1.1391 1.6641 1.4297

105617.47+322721.6 1.7530 2.4306 2.0418

095234.80+311839.0 1.8527 2.6109 2.4788

102226.96+322644.8 1.1088 1.4426 1.1764

103527.30+312106.6 1.5181 0.7037 1.6365

095303.80+331326.4 0.8653 1.7440 1.0028

074120.45+334715.7 0.4259 1.0950 1.9823

075651.46+344215.2 1.7947 5.5047 1.9359

160829.51+203701.4 2.0910 0.6751 2.3977
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Figure C1. The redshift predictions of a subset of the 107 outliers for which zDESI − zSDSS > 0.14, with 100 runs of the NN trained on the DESI/GALEX (g, r, z, W1, W2, NUV , FUV).
The filled black markers show the DESI spectroscopic redshift, the unfilled markers the SDSS spectroscopic redshift and the stars the predicted redshift. The label gives the SDSS
name of the source. The data is shown in Table C1.
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