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ELEMENTARY REMARKS ON MULTIPLY MONOTONIC 
FUNCTIONS AND SEQUENCESO) 

BY 

M. E. MULDOON 

1. Introduction and statement of results. A function f(x) is said to be completely 
monotonie on (0, oo) if 

(1) (-l)n/ ( n )(*) > 0 (0 < x < oo; n = 0, 1, 2 , . . . ) . 

Familiar examples of such functions are given by /(x) = exp(—ax) and f(x) 
= (x+f$)~a, where a>0 , £>0 . A discussion of completely monotonie functions is 
given in [5, Ch. IV]. 

J. Dubourdieu [1, p. 98] showed that if/(x) satisfies (1), then we must necessarily 
have 

(-l)Y<»>(x)>0 ( 0 < x < o o ; « = 0 ,1 ,2 , . . . ) , 

unless f(x) is constant. This fact was rediscovered, and proved in a more elemen­
tary way, by Lee Lorch and Peter Szego [3, pp. 71-72]. An equivalent result on 
completely monotonie sequences was proved by Lee Lorch and Leo Moser [2]. 
They showed that if 

( - 1 ) « A ^ > 0 («,£ = 0 ,1 ,2 , . . . ) , 

then in fact we must have 

( - l)nAn^ > 0 («, k = 0 ,1 , 2 , . . . ) 

unless Xx = x2 = • • •, i.e., unless the sequence {xQ, xl9 x2,...} is constant from the 
second term on. (Here, and in what follows, we use the notation A°Xtc=X]C, 
Ax}C=X]C+i—X]Cy e t c . ) 

In this note we prove some corresponding results for iV-times monotonie func­
tions and sequences, using the methods of [2] and [3, pp. 71-72]. Recalling some 
work of I. J. Schoenberg [4] and R. E. Williamson [6] we give the following: 

DEFINITION. A function/(x) is said to be TV-times monotonie on (0, oo), where N 
is an integer > 2, if 

(-1)»/<»>(JC) > 0 ( 0 < x < o o ; n = 0, l , . . . , i V - 2 ) 

and if (— \)N~2f{N~2\x) is nonincreasing and convex on (0,oo). For JV=1, the 
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JV-times monotonie functions are those which are non-negative and nonincreasing, 
and for JV=0, they are simply the non-negative functions. 

Williamson [6, p. 190] gives the example 

f(x^i^X)N'K 0<X<1> JW ~ \ 0, x > 1 

of a function which is iV-times monotonie on (0,oo) (N>1), but is not r-times 
monotonie for any r>N. Another example of such a function is given by 

(2) f(x) = r (t-xy-H-*-1 (sin t)2 dt. 

We have the following: 

THEOREM 1. Letf(x) be N-times monotonie on (0,oo), where N is a non-negative 
integer, and suppose that f(x) is not eventually constant {i.e., there do not exist 
numbers b and c, such that f(x) = c for x>b). Then 

(3) (-l)n / ( n )(*) > 0 ( 0 < x < o o ; N=0, l , . . . , i V - 2 ) , 

and (—l)N~2fiN~2)(x) is strictly decreasing on (0,oo). Iff^'^ix) exists, we have 
(—l)N~1f{N~1)(x)>0 on (0,oo) andiffiN)(x) exists, there are points in every neigh­
bourhood of +oo at which ( - l)Nf(N)(x) > 0. 

The corresponding result for JV-times monotonie sequences is 

THEOREM 2. Suppose that for a sequence {x0, xl9 x2,...}, we have 

(4) ( - l )»A»x f c>0 (n = 0,1 iV; £ = 0 ,1 ,2 , . . . ) , 

and that xk is not eventually constant. Then 

(5) ( - l )»A»x f c>0 (#i = 0,1 i V - l ; * = 0 , 1 , 2 , . . . ) , 

and (— l)NANxk>0for infinitely many values ofk. 

2. Proofs of the theorems. Let N> 2 and let/satisfy the hypotheses of Theorem 1. 
Suppose that (3) does not hold. Then there exists an integer m=0, 1 , . . . , N—2 
and a number f(0< £<°o) such that/ (m)(f) = 0. Since (— l)m/(m)(£) is nonincreasing 
we find/(m)(x)==0 on [f,oo). This means tha t / i s a polynomial of degree at most m 
on [£, oo). However, since / is non-negative and nonincreasing on [£, oo), it must 
be bounded there and so is constant on [f, oo). This contradiction shows that (3) 
holds. 

If (— l)N~2f(N~2)(x) is not strictly decreasing on (0,oo) we have / ( i V 2 ) O i ) 
=zf(N~2\x2) for some xl9 x2 with 0<x1<x2<co> Then the convexity and non-
increasing character of (— l)N~2fiN~2)(x) shows that f{N~2)(x) is constant on 
(*i,oo). This implies that fis a polynomial on (xl9co) and we obtain the same 
contradiction as before. 

Ifyw-i>(jc) exists and if/(iV~1)(O==0J the convexity and nonincreasing character 
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of (-l)N'2fN~2)(x) shows that / ( i v-1 )(x)=0 for * > £ which leads again to a 
contradiction. 

Finally, iff(N)(x) exists and is eventually zero we arrive at the same contradiction. 
Thus there are points in every neighbourhood of -foo at which fm(x) ^ 0. The 
convexity of (~-l)N~2f{N-2)(x) shows that at these points, we have in fact 
(-l)y<»>(*)>0. 

Minor changes are required in the above proof in the cases N=0 and N= 1. 
The proof of Theorem 2 is similar to that of Theorem 1, the concept of polynomial 

sequence replacing that of polynomial. The proof that (4) implies (5) is really con­
tained, though not explicitly stated, in the proof given by Lorch and Moser for 
the case N—oo. 

3. Additional remarks. The remark of Dubourdieu follows from Theorem 1 on 
using the fact that a completely monotonie function on (0,oo), being analytic 
[5, p. 146], is identically constant if it is eventually constant. Similarly the result 
of Lorch and Moser is a consequence of Theorem 2. It follows from the work of 
Lorch and Moser [2, p. 172] that a completely monotonie sequence which is 
eventually constant must be constant from the second term on. 

Williamson [6, p. 191, Theorem 1] showed that / is TV-times monotonie on (0,oo) 
(N> 1), if and only if it is representable in the form 

nix 
(6) f(x) = (l-xty-1 d<p(t)9 0 < x < oo, 

where y(t) is nondecreasing and bounded below. 
An alternative proof of Theorem 1 may be based on this representation on 

making the observation that the iV-times monotonie functions which are not even­
tually constant are precisely those for which the function y{i) in the representation 
(6) has points of increase in the open interval (0, e) for every e>0. In case/(^) is 
TV-times monotonie and f(N)(x) exists it follows from a formula of Williamson 
[6, p. 192 (1.2)] (or may be proved directly, using (6)) that <p'(t) exists and that 

(-îyywfr) = (iv-i)! jr*-y(i/*), o < x < oo. 
This last equation shows that under the hypotheses of Theorem l,fiN)(x) may 
vanish on an arbitrarily large interval (0, a), a > 0, and may have zeros in every 
neighbourhood of +oo. This last possibility is exemplified by the function in 
equation (2), for which we have 

(-l)TnKx) = (tf-lX#-2)...(JV-fl) {" {t-xy-^rv-iisintydt 
Jx 

for « = 0, 1 , . . . , 7V-l ,0<x<oo, and 

( - l)NfN)(x) = (N-1)! -*"*"1 (sin x)2, 0 < x < oo. 
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