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REPRESENTATIONS OF WELL-FOUNDED
PREFERENCE ORDERS

DOUGLAS CENZER AND R. DANIEL MAULDIN

A preference order, or linear preorder, on a set X is a binary relation =<
which is transitive, reflexive and total. This preorder partitions the set X
into equivalence classes of the form [x] = {y:x < y and y =< x}. The
natural relation induced by =< on the set of equivalence classes is a linear
order. A well-founded preference order, or prewellordering, will similarly
induce a well-ordering. A representation or Paretian utility function of a
preference order is an order-preserving map f from X into the R of real
numbers (provided with the standard ordering). Mathematicians and
economists have studied the problem of obtaining continuous or
measurable representations of suitably defined preference orders [4, 7].
Parametrized versions of this problem have also been studied [1, 7, 8].
Given a continuum of preference orders which vary in some reasonable
sense with a parameter 7, one would like to obtain a continuum of
representations which similarly vary with z.

Specifically, let T and X be Polish (that is, complete separable metric)
spaces. For each 7 in T, let B, be a nonempty subset of X, -  a preference
order on B, and let E, = {(x, y):x =<, y}. Finally, set

E={xy:x =<y},
and set
B ={( x)x € B}.

Suppose that E (and therefore B) is a Borel measurable set. This will be
the general setting throughout the paper.

We will say that E is section-wise closed if, for each ¢, E, is closed with
respect to B, X B,; in this case, each preference order < r will possess a
continuous representation by a result of Debreu [4]. The second author
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showed in [7] that if E is section-wise closed, then there is an S(7 X X)-
measurable map f of B into R such that; for each ¢, f(z, -) is a continuous
representation of <. (Here S(T X X) form the C-sets of Selivanovskii or
the husin heirarchy [6, p. 468].) Under the further assumption that each B,
is o-compact, it was also shown in [7] that the map f may be taken to be
Borel measurable.

In this paper we obtain significant improvements in the above results in
the case that each preference order =, is well-founded.

THEOREM 3.3. Let E be a Borel subject of the product TX XX X of Polish
spaces such that, for each t, E, = {x, y):(t, x, y) € E} is a well-founded
preference order on B, = {x:(t, x, x) € E}. Then there is a Borel
measurable map f from B = { (x, t):x € B,} into R such that each f (¢, ) is a
representation of E,.

If E is section-wise closed, then we show that the map f constructed in
the above theorem can be modified so as to be continuous on each
section.

THEOREM 4.2. Suppose that E satisfies the hypothesis of Theorem 3.1 and
that, for each t, E, is closed with respect to B, X B,. Then there is a Borel
measurable map [ from B into R such that each f (t, ) is a continuous
representation of E,.

This answers Question (2) of [7] in the affirmative.

We note that the methods of this paper are quite different from those of
[7]. The construction of the map fin Theorem 3.3 does not require that E
be section-wise closed and does not depend on any selection principles.

1. Ordinal representations. In this section, we introduce the notion of
an ordinal representation of a preference order and of a continuum of
preference orders. We show the existence of ordinal representations for
individual well-founded preference orders and give a sufficient condition
for the continuity of such a representation. Finally, we show that the
existence of an ordinal representation (with range bounded to some
countable ordinal) for a continuum of preference orders implies the
existence of a representation into the real line.

An ordinal representation of a preference order < on a set B is simply
an order-preserving map ¢ from B into the class of ordinal numbers.
Suppose now that < is a well-founded Borel preference order on a Borel
subset B of a Polish space X. Then =X possesses a natural ordinal
representation, which we will now describe. Let x ~ y denote the
equivalence relation (x < y and y < x) and let x < y denote (x <X y and
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not (y < x)). Let the ordinal o( X) = « be the order type of the induced
well-ordering on the equivalence classes of ~; it follows from Theorem 3.1
that k is countable. For X € B, let o(x) be the order type of =< restricted
to the predecessors of [x]. Note that

o(=X) = sup {o(x) + l:x € B}.

The map o0:B — (=X) is clearly an ordinal representation.

Furthermore, since each equivalence class [x] is a Borel subset of X,
o~ '(4) will be Borel for any set A4 of ordinals. This will clearly apply to
any representation of a Borel preference order.

Let the class of ordinals be given the usual order topology with a
subbase of open sets of the two forms {a:a < B} and {«:a > B}. If < has
a continuous representation ¢, then, for each y € B, both {x:x <X y} =
{x: ¢(x) = ¢(y) } and {x = y} must be relatively closed subsets of B. A
preference order satisfying the above condition was said to be continuous
in [7]. This condition is easily seen to be equivalent to the following: that
the set £ = { (x, y):x =< y} is a relatively closed subset of B X B.

LEMMA 1.1. An ordinal representation ¢ of a continuous preference order
on B is continuous if and only if, for each ordinal B, {x:¢(x) > B} is a
relatively open subset of B.

Proof. For any ordinal B, {x:¢(x) << B} equals either B or {x:x =< y},
where ¢ (y) is the least ordinal in the range of ¢ which is greater than or
equal to B.

For a continuous preference order <, the map o defined above is a
continuous ordinal representation, since, for each ordinal 8, {x:0(x) > B}
equals either @ or {x:x > y}, where o(y) = 8.

We will next indicate how (continuous) ordinal representations may be
used to obtain (continuous) representations into the real line. It is a
classical result of Cantor that any countable linear ordering can be
imbedded into the real line. For a well-ordering, the image can be taken to
be a closed set. This fact is a straightforward consequence of the countable
axiom of choice.

LEMMA 1.2. For any countable ordinal , there exists a bicontinuous order
isomorphism i of k = {a:a < x} onto a closed subset K of the real line.

It should be remarked that any order isomorphism i from an initial
segment k of the ordinals onto a closed set of reals must be bicontinuous.
This can be seen as follows. For any real r, {a:i(a) < r} = {a:a < B},
where 8 is either k or the least such that i(8) = r; also, {a:i(a) = r} is
either empty or equals {a:a = B}, where i(B) is the least upper bound of K
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N(—oo r]. The inverse map from K onto k is just the natural
representation of the standard order on K and is therefore continuous as
shown above.

Now if =< is a continuous preference order on B, let o be the natural
ordinal representation mapping B onto o( <) = « and let i be a continuous
order isomorphism of k onto a closed subset K of the real line. Then the
composition of f:B — K, defined by f(x) = i(o(x) ) is clearly a continuous
representation of B into the real line.

The problem is more interesting when we are given a continumum of
preference orders. Therefore, let the Borel subset E of the product 7 X X
X X of Polish spaces define a continuum of preference orders =<, on the
sets B, as described in the introduction. An ordinal representation of E is a
map ¢ from B into the class of ordinals such that, if x and y belong to B,,
then x =<,y if and only if ¢(z, x) = ¢(z, y). It is important to note that the
natural map ¢, defined by letting ¢(z, ) be the natural ordinal
representation of B,, is not necessarily a Borel map, even assuming that E
is section-wise closed. An example will be given in Section two. The failure
of this natural first guess for a Borel representation of a continuum of
preference orders necessitates the inductive construction given in this
paper.

However, once we construct a continuous or Borel ordinal representa-
tion for E which maps B into some countable ordinal k, Lemma 1.2 can be
used to obtain a continuous or Borel representation mapping B into the
real line.

2. Reduction, separation and boundedness. The classical Separation
Theorem of Lusin states that disjoint analytic subsets 4, and A, of a
Polish space Y may be separated by a Borel set D so that 4, € D and 4,
N D = B. Now suppose that ~ is an analytic equivalence relation on Y,
that is, { (x, y):x ~ y} is an analytic subset of Y X Y; in fact, we have in
mind the equivalence relation on the product space T X X induced by a
Borel continuum of preference orders <,. Define the saturation S(4) of a
subset 4 of Y by

S(A) = {x(Fy €4)x ~ y}.

Of course, the saturation of an analytic set is also analytic. We will need
the “invariant” separation theorem first obtained by Ryll-Nardzewski and
a “downward closed invariant” reduction theorem.

THEOREM 2.1. (Invariant Separation) Let ~ be an analytic equivalence
relation on a Polish space Y. Then any two disjoint saturated analytic subsets
A\ and A, of Y may be separated by a saturated Borel set D.
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The Reduction Theorem of Kuratowski [6, p. 508] for a infinite
sequence {C), Ca, ... } of coanalytic sets whose union is Borel states that
there exists a sequence {D), D,, ...} of pairwise disjoint Borel sets such
that D, ¢ C, for eachnand U C, = U D,. Now, if each C, is saturated,
then S(D,) and Y-C, are disjoint, saturated analytic sets. Thus, by the
Invariant Separation Theorem above, there exists a Borel B, such that D,
c S(D,) € B, € C,. This gives the first part of Theorem 2.2.

THEOREM 2.2. (Invariant Reduction) Let ~ be an analytic equivalence
relation on a Polish space Y and let {Cy, C|, Cy, ...} be a sequence of
saturated coanalytic subsets of Y such that U, C, = D is Borel. Then there
exists a sequence {B,:n < w} of saturated Borel sets such that B, < C, for
all n and such that U, B,, = D. Furthermore, if < is a Borel linear ordering
on the equivalence classes of ~ and each C,, is closed downward, then each B,
may be taken to be closed downwards.

Proof. The proof of the first part was given above. Now fix n and
suppose that C, = C is closed downward. Let the saturated Borel subset
B, = B° of C be given by the above and let

A° = {3 x € B®(y = x)}.

Then A° is a saturated analytic subset of C, so by Theorem 2.1, there is a
saturated Borel set B! with A° ¢ B' c C. Proceeding inductively, we
obtain a sequence B° ¢ A° ¢ B' ¢ A' ¢ ... of saturated subsets of C
such that each B' is Borel and each A’ is analytic and closed downwards.
Then U; B' will be Borel, saturated and closed downwards.

The invariant separation and reduction theorems are both subsumed
under the main result of [2].

The classical Boundedness Principle of Lusin and Sierpinski states that
any analytic subset of the family of countable well-orderings must be
bounded in length by some countable ordinal. This can be used to see that
a Borel continuum of well-founded preference orders is similarly bounded
in length.

We will use the Boundedness Principle as incorporated in the Inductive
Definability Theorem of [3]. We recall that a monotone operator over the
Polish space Y is a map I' from the power set 2" into 27 such that,
whenever K ¢ M C Y, I'(K) ¢ I'(M). T constructs a transfinite
sequence {I"*:a an ordinal} by letting I'° = @, T**! = I'(I'®) for all « and
™ = Ugoy I for limit A.

The closure CI(I") = I'™ of T is U, I'*; the closure ordinal || is the
least such that I'* = I'®. The following theorem is given in [3, p. 58].
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THEOREM 2.3. (Inductive Definability) Let I' be a coanalytic monotone
operator on a Polish space Y. Then

(a) For each countable ordinal a, T® is a coanalytic subset of Y.

(b) I'*° is a coanalytic subset of Y.

(C) IF| = w].

(d) For any analytic subset A of T'°, there is a countable ordinal a such
that A C T'*.

Part (d) can be viewed as a generalization of the Boundedness
Principle.

3. Borel representations. Let £ be a Borel continuum of well-founded
preference orders =<, on the Borel subset B of the product 7" X X of Polish
spaces, as described in the introduction. For each ¢, let o(¢) be the order
type of the induced well-ordering on the equivalence classes of ~,; for
each x, let o(x, ¢) be the order type of <, restricted to the < ,-predecessors
of [x],. Let o(E) = sup, o(1).

THEOREM 3.1. Let E be a Borel subset of the product T X X X X of
Polish spaces such that, for each t, E, = {(x, y):(t, x, y) € E} is a
well-founded preference order on B, Then o(E) is countable and each of the

Jfollowing sets are coanalytic:

{ (&, x)0(t, x) < a}, {(t x)o(t, x) = a},
{t:o(t) = a}, and {tro(t) < a}.

Proof: Define the H: monotone operator I' over B by:
(tx)eTK)= V) [0 =2,x)>y) € K]
It is easily seen by induction on « that
'« = {(@ x)o(@ x) < a};
in addition, CI(T") = B and |I'| = o(F).
r*is H: by Theorem 2.3(a). Also,
ot, x) S aeot,x) <a+ 1

o(t) Zae(Vx)olt,x)<a;
ot) <ae@L<a)o@) =B
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Now by Theorem 2.3(d), B = CI(I') = I'* for some countable ordinal «; it
follows that o(E) is countable.

We are now ready for the first of our two main theorems.

THEOREM 3.2. Let E be a Borel continuum of well-founded preference
orders on a subset B of T X X X X as described in Theorem 3.1. Then E
possesses a Borel ordinal representation ¢:B — o(E).

Proof. The proof is by induction on a = o(E).

(a = 1). Just let ¢(z, x) = O for all (z, x) in B.

(a + 1). Suppose the theorem holds for o(£) = « and let B, £ be given
with o(F) = a + 1.

Let

U= {(x)€ Bo(, x) Za} and
L={(x)e B@3y)x <,y}.

Then U and L are disjoint saturated analytic subsets of B. By the Invariant
Separation Theorem (2.1), there exist disjoint saturated Borel sets B; D L
and By D U such that B; U By = B. Define a Borel continuum E; of
well-founded preference orders on B; by

E, =EnN {(txy); (tx)€ B, and (t.y) € B, }.

Now o(E;) = a, so by the induction hypothesis, E; possesses a Borel
ordinal representation ¢,:B; — «. Define the representation ¢ of E by:

o if ([, X) (S Bu,

ol x) = {¢1, (1. x) if (1, x) € By.

Each ¢! ( {B}) is either By, @, or o ' ( {B}) and is therefore a Borel
subset of B. If (¢, x) and (¢, y) are both in B, then

x Jyye ¢ (tx) = ¢ (1 y) < ot x) = 61, p).

If (¢, x) and (¢, y) are both in By, then x ~, y and ¢(t, x) = ¢ (¢, y) = «a.
Finally, if (1, x) € By and (t,y) € By, then(t,y) &€ L,soforallz € B,z
=<, y; it follows that x =<, y. Since (¢, x) € By and By is saturated, we
must have x =<, y. Of course

(f)(l, X) = ¢L(t~ X) <a= (1)([, _V)‘

Thus ¢ is an ordinal representation.

(A = limit). Let A = lim,(e,), where {a,:n < w} is an increasing
sequence and the theorem holds for each ordinal « << A. Suppose that o(E)
= A. For each n, let
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C, ={( x)ot, x) < a,}.

Then each C), is H: and saturated (in fact, closed downwards). Further-
more, each C, cC,+, and U, C, = B. By the Invariant Reduction
Theorem (2.2), there is a sequence {B,:n < w} of saturated Borel sets such
that U B, = B and, for each n, B, € C, and B, is closed downwards.

Let £, = E N {(t, x,y)(t, x) € B, and (1,y) € B,}.

Let o, (z, x) be the order of (¢, x) in E,, o, (¢) the order of B, , and 7, =
o(E,). Note that , = a,,. By the induction hypothesis, each E, possesses a
Borel ordinal representation ¢,:B,, — 7,. Define the map ¢:E — A by

(1, x) = min {¢,(t, x):(¢z, x) € B,}.

Then for each ordinal 8, we have
o1, x) > B = (V) (1, x) € B, = ¢,(1, x) > B)

and
o(t, x) < Be= 3 n)(1, x) € B, and ¢, x) < ).

It follows that ¢ is Borel measurable. Now, given (¢, x) and (7, y) in B, such
that x =<, y, choose n so that (y, 1) € B, and ¢, (y, 1) = ¢(y, t). Since B,, is
closed downward, (¢, x) € B, and since ¢, is a representation,

¢'n(la X) = (]5,,([, .y) = ¢([, y)

But this implies that ¢(z, x) = ¢(1, y) since ¢(¢, x) is the minimum of the
¢,(t, x). Similarly, if x =<, y, then ¢(z, x) < ¢(z, y). This completes the
proof of Theorem 3.2.

THEOREM 3.3. Let E be a Borel continuum of well-founded preference
orders on B as described in Theorem 3.1. Then E possesses a Borel
representation f:B — R.

Proof. Let $:B — o (E) = k be given by Theorem 3.2 and let i:x — K be
given by Lemma 1.2. Define f by f(x) = i(¢(x) ).

One may wonder why we don’t dispense with reduction and separation
and just let ¢(¢, x) = o(z, x). The following example indicates that this
may not be possible even when o (E) = 2 and each FE, is continuous. Let T
and X be the space of irrational numbers, let S be an analytic non-Borel
subset of T, let A = § X {0} U T X {1} and let f be a continuous map of
X onto A. Now f(x) = (f1(x), /> (x) ), where both f; and f5 are continuous.
Define the closed subset B of T X X by
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B = { (1, x)/ix) = 1}
and the closed subset E of T X X X X by

E = {(t x,p)itx) = fily) = ¢ and fo(x) = foly) }.
Also define the closed sets

B, = {(t,x) € Bifo(t, x) = i} fori = 0Oor L

Of course, the map f; is a continuous representation of E, but it does not
always agree with the order map o(z, x). In fact, let

Cy = { (1, x)0(t, x) = 0}.
Then
Co=Byu [BNn((T—S5) XX)]

If Cy were Borel, then Cy N B, = (T — S) X X would also be Borel,
whereas it is clearly a coanalytic non-Borel set by our choice
of S.

4. Continuous representations. Suppose that we have a Borel represen-
tation ¢:B — o(E) for a continuum F of continuous well-founded
preference orders. We will now systematically repair any discontinuities of
¢ and thus obtain a section-wise continuous representation of E.

THEOREM 4.1. Suppose that E is section-wise closed and that ¢:B — o(E)
is a Borel representation of E. Then E possesses a section-wise continuous
Borel representation ¢:B — o(E) = k.

Proof. We will construct a descreasing sequence {¢,:a = k} of Borel
representations of E such that ¢g = ¢ and, for all a = &,

(I)forallt € Tand all 0 < a:
{x:¢4(t, x) > 0} is open in B,.

(2) forall (1, x) € Band allo < 8 < a:
a1, X) > 0 < ¢g(t, x) > 0.

The map ¢ = ¢, will be a Borel ordinal representation which is
section-wise continuous by (1) and Lemma 1.1. The construction of the
maps ¢, is by induction and as usual, there are two cases to consider:
successor and limit.
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(Case I: @ + 1) Suppose that ¢ has been constructed, satisfying (1) and
(2), for all 8 = «. Define the saturated coanalytic subset C of B by

C

fl

{ (2. x)isup {@alt, ¥) + 1oy <, x} = & < q(t, x) )
= (L x)ga(t.x) > a and (Y y)y <, x = ¢,(1.)) <

=3
-

Define the analytic set A which is a subset of C by
1
A= {(t x)dt, x) >a and (V n)3y)dx,y) < -

and ¢, (1.y) = a) ).

where d is the metric on X.

Now A contains precisely those points of C at which ¢, is discontinuous
because of the indicated gap: sup {$,(z, )y <, x} = a whereas ¢, (7, x)
> o. Notice that in fact if (1, x) € A, then sup {¢, (¢, ¥)1y <, x} must
equal «. To see this, suppose

sup {¢, (1, ¥)y <, x} = B8 < a.

Since (¢, x) € A, there is a sequence {y,:n < w} converging to x such that
¢q (1, y,) < a for each n. Since ¢, (7, x) > « and ¢, is a representation, y,
<, x for each n. Now, according to (1), U = {y:¢4(t, y) > B} is open in
B,. Since x € U, it follows that for some n, y, € U and therefore ¢.(t, y,)
> f. This is a contradiction.

Thus we can repair ¢, for (7, x) € A letting ¢+ (¢, x) = a. For (¢, x)
e C — A,

{rix <, y} = {yigalt.y) > a}

is already open and we can let ¢, (f, x) = «a anyway.

Now the saturated analytic set S(4) is included in the saturated
coanalytic set C, so by the Invariant Separation Theorem (2.1) there is a
saturated Borel set D with 4 € S(4) € D c C. Notice that if D, # 0,
then D, consists of exactly one ~, equivalence class, since C has this
property. Define the map ¢,+; by

a, if (¢, x) € D, and
¢q (1, x), otherwise.

¢’a+l([ax):{

Since (¢, x) € D implies ¢, (f, x) > «, we have
Sa+1(t, X) = ¢, (¢, x) forall (z, x) € B.

The map ¢, is Borel measurable since both D and ¢, are Borel.
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We next show that ¢, is a representation. Certainly, ¢4 | is invariant
on ~, equivalence classes. All we need to show is that if x <, y, then ¢,
(t, x) < ¢q+1 (1, ¥). Suppose x <,y andy € D,; then

bar1(t,y) = a, (1,x) & C and
Do+ l(l* X) = ¢q (la X) < a.

Suppose x <,y and y € D,; then

¢(y+l([s V) = bl ,V) > ¢a+l([~ X).

Thus ¢, is an ordinal representation.
It remains to show that (1) and (2) hold for « + 1. Given ¢ < «a, we
have, for all (¢, x) € B:

(3) Parilt, x) > 0 & 1, x) > o.

It follows that {x:¢,(z, x) > 6} is open in B,.

Now suppose ¢, (7, x) > a. There are two sub-cases. First, suppose
that D, # @ and choose yy € D,. Then ¢, (¢, o) = « and yy <, x.
Thus

x € {yyo <, ¥} C {Vidai(t, y) > a}.

Second, suppose that D, = @; in this case, ¢, = ¢, Since A C D, 4, is
also empty and x & A,. Thus by the definition of A4, there is some n such
that

1
X € (Bf N {rd(x,y) < ;} ) = {yida+1 (1. y) > a}.

In either case, it follows that {x:¢,+, > a} is open in B,. This establishes
().
Given o0 < 8 < a + 1, it follows that 0 < a. Thus by (3):

¢a+l([e X) = 0 <> Pq (t» X) >0
< og (1, x) > o.

This establishes (2) and completes the proof of Case I.
(Case I1: A = limit). Suppose that ¢, has been constructed satisfying (1)
and (2) for all &« < A. Define the map ¢):B — « by
¢) (¢, x) = min {$, (¢, x):a < A}

Clearly ¢, is less than or equal to ¢, for all a < A.
Since {¢,:a < A} is a decreasing sequence of ordinal representations, it
follows that ¢, is a representation. For each ¢ < k, we have
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o\, x) >0 > (Va <A ¢y t, x) >0 and
O\, x) < oo (Ta <) P lt, x) < o.

It follows that ¢y is Borel measurable.

Forany o < 8 < A, any 7 and any x, it follows from the definition of ¢y
that if ¢\(r, x) > o, then ¢p(t, x) > 0. Now if $p(1, x) > o, then by (2) of
the hypothesis, ¢4(f, x) > o for all § = a < A and, since the maps {¢,:a
< A} are decreasing,

dult, X) = dpt, x) >0, fa <B.

So, if ¢p(1, x) > 0, then ¢p(¢, x) > o. This establishes (2). In particular, if o
< A, then

o\, X) > 0 > o4 (t, X) > 0.
In other words,

{x:d\ (2, x) > 0} = {xids4 (s, x) > 0}

and is open in B, by the (1) of the induction hypothesis. This establishes
(1) and completes the proof of Theorem 4.1.

THEOREM 4.2. Let E be a Borel subset of the product T X X X X of
Polish spaces such that, for each t, E, is a continuous well-founded preference
order on B, Then E possesses a section-wise continuous Borel ordinal
representation ¢:B — o(E) and a section-wise continuous Borel representa-
tion f*B — K of B onto a closed subset K of the real line.

Proof. The first part is immediate from Theorem 4.1 and Theorem 3.2.
As in the proof of Theorem 3.3, let i:o(£) — K be a continuous order
isomorphism of o(E) onto a closed subset K of the real line (given by
Lemma 1.2). Let ¢ be the section-wise continuous ordinal representation
as in the first part. Finally, let f = i 0 ¢.

It should be pointed out that the general Question (1) of [7] remains
open: whether every section-wise continuous Borel preference order has a
section-wise continuous Borel (or even % «~measurable) econ. 71980),
165-173.

Added in proof. Some results similar to those in [7] were obtained by A.
Wieczorek, J. Math. Econ. 7 (1980), 165-173.
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