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REPRESENTATIONS OF WELL-FOUNDED 
PREFERENCE ORDERS 

DOUGLAS CENZER AND R. DANIEL MAULDIN 

A preference order, or linear preorder, on a set X is a binary relation < 
which is transitive, reflexive and total. This preorder partitions the set X 
into equivalence classes of the form [x] = {y:x < y and y < x}. The 
natural relation induced by < on the set of equivalence classes is a linear 
order. A well-founded preference order, or prewellordering, will similarly 
induce a well-ordering. A representation or Paretian utility function of a 
preference order is an order-preserving map / from X into the R of real 
numbers (provided with the standard ordering). Mathematicians and 
economists have studied the problem of obtaining continuous or 
measurable representations of suitably defined preference orders [4, 7]. 
Parametrized versions of this problem have also been studied [1, 7, 8]. 
Given a continuum of preference orders which vary in some reasonable 
sense with a parameter t, one would like to obtain a continuum of 
representations which similarly vary with t. 

Specifically, let T and X be Polish (that is, complete separable metric) 
spaces. For each t in T, let Bt be a nonempty subset of X, < t a preference 
order on Bt and let Et = { (x, y):x < t y). Finally, set 

E = {(t,x,y):x <ty}, 

and set 

B = { (r, x):x G Bt}. 

Suppose that E (and therefore B) is a Borel measurable set. This will be 
the general setting throughout the paper. 

We will say that E is section-wise closed if, for each t, Et is closed with 
respect to Bt X Bt\ in this case, each preference order < t will possess a 
continuous representation by a result of Debreu [4]. The second author 
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showed in [7] that if E is section-wise closed, then there is an S(T X X)-
measurable map /o f B into R such that; for each t,f(t, •) is a continuous 
representation of <. (Here S(T X X) form the C-sets of Selivanovskii or 
the husin heirarchy [6, p. 468].) Under the further assumption that each Bt 

is a-compact, it was also shown in [7] that the m a p / m a y be taken to be 
Borel measurable. 

In this paper we obtain significant improvements in the above results in 
the case that each preference order <t is well-founded. 

THEOREM 3.3. Let E be a Borel subject of the product TX XXX of Polish 
spaces such that, for each t, Et = [x, y):(t, x, y) £ E) is a well-founded 
preference order on Bt = {x\(t, x, x) e E}. Then there is a Borel 
measurable map ffrom B = { (x, t)\x G Bt} into R such that eachf(t, •) is a 
representation of Et. 

If E is section-wise closed, then we show that the map/constructed in 
the above theorem can be modified so as to be continuous on each 
section. 

THEOREM 4.2. Suppose that E satisfies the hypothesis of Theorem 3.1 and 
that, for each t, Et is closed with respect to Bt X Bt. Then there is a Borel 
measurable map f from B into R such that each f (/, •) is a continuous 
representation of Et. 

This answers Question (2) of [7] in the affirmative. 
We note that the methods of this paper are quite different from those of 

[7]. The construction of the m a p / i n Theorem 3.3 does not require that E 
be section-wise closed and does not depend on any selection principles. 

1. Ordinal representations. In this section, we introduce the notion of 
an ordinal representation of a preference order and of a continuum of 
preference orders. We show the existence of ordinal representations for 
individual well-founded preference orders and give a sufficient condition 
for the continuity of such a representation. Finally, we show that the 
existence of an ordinal representation (with range bounded to some 
countable ordinal) for a continuum of preference orders implies the 
existence of a representation into the real line. 

An ordinal representation of a preference order < on a set B is simply 
an order-preserving map <£ from B into the class of ordinal numbers. 
Suppose now that < is a well-founded Borel preference order on a Borel 
subset B of a Polish space X. Then < possesses a natural ordinal 
representation, which we will now describe. Let x ~ y denote the 
equivalence relation (x < y and y < x) and let x < y denote (JC < y and 
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not (y < x)). Let the ordinal o(<) = K be the order type of the induced 
well-ordering on the equivalence classes of ~ ; it follows from Theorem 3.1 
that K is countable. For X e B, let o(x) be the order type of < restricted 
to the predecessors of [x]. Note that 

o(<) = sup {o(x) + l:x e B). 

The map o:B —» (<) is clearly an ordinal representation. 
Furthermore, since each equivalence class [x] is a Borel subset of X, 

o~\A) will be Borel for any set A of ordinals. This will clearly apply to 
any representation of a Borel preference order. 

Let the class of ordinals be given the usual order topology with a 
subbase of open sets of the two forms {a:a < ft} and {a:a > ft}. If < has 
a continuous representation <J>, then, for each y <E B, both {x:x < y} = 
{x: <t>(x) ^ <f>(y) } and {x ^ y} must be relatively closed subsets of B. A 
preference order satisfying the above condition was said to be continuous 
in [7]. This condition is easily seen to be equivalent to the following: that 
the set E = { (x, y)\x < y) is a relatively closed subset of B X B. 

LEMMA 1.1. An ordinal representation (f> of a continuous preference order 
on B is continuous if and only if for each ordinal /?, {x:<t>(x) > 13} is a 
relatively open subset of B. 

Proof For any ordinal ft, {x\(j)(x) < /?} equals either B or {x:x < y}, 
where <f> (y) is the least ordinal in the range of <f> which is greater than or 
equal to /?. 

For a continuous preference order :<, the map o defined above is a 
continuous ordinal representation, since, for each ordinal /?, {x\o(x) > ft} 
equals either 0 or {x:x > y}, where o(y) = ft. 

We will next indicate how (continuous) ordinal representations may be 
used to obtain (continuous) representations into the real line. It is a 
classical result of Cantor that any countable linear ordering can be 
imbedded into the real line. For a well-ordering, the image can be taken to 
be a closed set. This fact is a straightforward consequence of the countable 
axiom of choice. 

LEMMA 1.2. For any countable ordinal K, there exists a bicontinuous order 
isomorphism i of K = [a:a < K} onto a closed subset K of the real line. 

It should be remarked that any order isomorphism / from an initial 
segment K of the ordinals onto a closed set of reals must be bicontinuous. 
This can be seen as follows. For any real r, {a:i(a) < r} = {a:a < ft}, 
where ft is either K or the least such that /'(/?) ^ r\ also, {a:i(a) ^ r} is 
either empty or equals {a:a ^ ft}, where i(ft) is the least upper bound of K 
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n ( —oo r]. The inverse map from K onto K is just the natural 
representation of the standard order on K and is therefore continuous as 
shown above. 

Now if < is a continuous preference order on B, let o be the natural 
ordinal representation mapping B onto o(<) = K and let / be a continuous 
order isomorphism of K onto a closed subset K of the real line. Then the 
composition of/:B —> AT, defined byf(x) = i(o(x)) is clearly a continuous 
representation of 5 into the real line. 

The problem is more interesting when we are given a continumum of 
preference orders. Therefore, let the Borel subset E of the product T X X 
X X of Polish spaces define a continuum of preference orders < t on the 
sets Bt as described in the introduction. An ordinal representation of E is a 
map cf> from B into the class of ordinals such that, if x and y belong to Bh 

then x <ty if and only if <£(/, x) ^ <>(/, j>). It is important to note that the 
natural map <f>, defined by letting <£(/, •) be the natural ordinal 
representation of Bt, is not necessarily a Borel map, even assuming that E 
is section-wise closed. An example will be given in Section two. The failure 
of this natural first guess for a Borel representation of a continuum of 
preference orders necessitates the inductive construction given in this 
paper. 

However, once we construct a continuous or Borel ordinal representa­
tion for E which maps B into some countable ordinal /c, Lemma 1.2 can be 
used to obtain a continuous or Borel representation mapping B into the 
real line. 

2. Reduction, separation and boundedness. The classical Separation 
Theorem of Lusin states that disjoint analytic subsets A\ and A2 of a 
Polish space Y may be separated by a Borel set D so that A\ c D and A2 

n D = 0. Now suppose that ~ is an analytic equivalence relation on 7, 
that is, { (x, y):x ~ y) is an analytic subset of Y X Y; in fact, we have in 
mind the equivalence relation on the product space T X X induced by a 
Borel continuum of preference orders <t. Define the saturation S (A) of a 
subset A of Y by 

S(A) = {x:(3y ŒA) x ~ y). 

Of course, the saturation of an analytic set is also analytic. We will need 
the "invariant" separation theorem first obtained by Ryll-Nardzewski and 
a "downward closed invariant" reduction theorem. 

THEOREM 2.1. (Invariant Separation) Let — be an analytic equivalence 
relation on a Polish space Y Then any two disjoint saturated analytic subsets 
A i and A2 of Y may be separated by a saturated Borel set D. 
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The Reduction Theorem of Kuratowski [6, p. 508] for a infinite 
sequence (Cj, Co, . • . } of coanalytic sets whose union is Borel states that 
there exists a sequence {Dh £)2> • • • } of pairwise disjoint Borel sets such 
that Dn c Cn for each n and U Cn = U Dn. Now, if each Cn is saturated, 
then S{Dn) and Y-Cn are disjoint, saturated analytic sets. Thus, by the 
Invariant Separation Theorem above, there exists a Borel Bn such that D„ 
c S(Dn) c Bn c C„. This gives the first part of Theorem 2.2. 

THEOREM 2.2. (Invariant Reduction) Let ~ be an analytic equivalence 
relation on a Polish space Y and let ( Q , C\, C2, • • . } be a sequence of 
saturated coanalytic subsets of Y such that U n Cn = D is Borel Then there 
exists a sequence {Bn:n < co} of saturated Borel sets such that Bn c Cnfor 
all n and such that U „ Bn = D. Furthermore, if < is a Borel linear ordering 
on the equivalence classes of ~ and each Cn is closed downward, then each Bn 

may be taken to be closed downwards. 

Proof. The proof of the first part was given above. Now fix n and 
suppose that Cn = C is closed downward. Let the saturated Borel subset 
Bn = B° of C be given by the above and let 

A° = {y:(3 x e B°)(y < x) }. 

Then A° is a saturated analytic subset of C, so by Theorem 2.1, there is a 
saturated Borel set Bl with A° c B] c C. Proceeding inductively, we 
obtain a sequence i?° c A° c Bl c A1 c . . . of saturated subsets of C 
such that each Bl is Borel and each A1 is analytic and closed downwards. 
Then U, Bl will be Borel, saturated and closed downwards. 

The invariant separation and reduction theorems are both subsumed 
under the main result of [2]. 

The classical Boundedness Principle of Lusin and Sierpinski states that 
any analytic subset of the family of countable well-orderings must be 
bounded in length by some countable ordinal. This can be used to see that 
a Borel continuum of well-founded preference orders is similarly bounded 
in length. 

We will use the Boundedness Principle as incorporated in the Inductive 
Definability Theorem of [3]. We recall that a monotone operator over the 
Polish space Y is a map T from the power set 2Y into 2Y such that, 
whenever K c M c 7, Y(K) c Y(M). Y constructs a transfinite 
sequence {Ya:a an ordinal} by letting r ° = 0, Ya+1 = Y (Ya) for all a and 
TA = Ua<xY

a for limit A. 
The closure C1(T) = Y°° of Y is Ua P*; the closure ordinal |T| is the 

least such that Ya = Y°°. The following theorem is given in [3, p. 58]. 
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THEOREM 2.3. (Inductive Definability) Let V be a coanalytic monotone 
operator on a Polish space Y. Then 

(a) For each countable ordinal a, Ta is a coanalytic subset of Y. 
(b) r°° is a coanalytic subset of Y. 
(c) in ^ «,. 
(d) For any analytic subset A of T00, there is a countable ordinal a such 

that A c Ta. 

Part (d) can be viewed as a generalization of the Boundedness 
Principle. 

3. Borel representations. Let E be a Borel continuum of well-founded 
preference orders <t on the Borel subset B of the product T X X oî Polish 
spaces, as described in the introduction. For each /, let o(t) be the order 
type of the induced well-ordering on the equivalence classes of ~t\ for 
each x, let o(x, t) be the order type of <t restricted to the ^-predecessors 
of [x]t. Let o(E) = sup, o(t). 

THEOREM 3.1. Let E be a Borel subset of the product T X X X X of 
Polish spaces such that, for each t, Et = { (x, y):(t, x, y) e E} is a 
well-founded preference order on Bt. Then o(E) is countable and each of the 
following sets are coanalytic: 

{ (/, x):o(t, x) < a ) , { (/, x):o(t, x) ^ a}, 
{t:o(t) ^ a) , and \t:o{t) < a}. 

Proof Define the I T i monotone operator T over B by: 

(/,*) G T(K)**(Vy)[(y <tx)-*(t,y) e K]. 

It is easily seen by induction on a that 

Ta = { (/, x):o(t, x) < a}; 

in addition, C1(T) = B and |T| = o(E). 

Ta is P I ! by Theorem 2.3(a). Also, 

o(t, x) ^ a «=> o(t, x) < a + 1 
o(t) = a «=> (V x) o(t, x) < a; 
o(t) < a *=> (3 j8 < a) o(0 ^ /?. 
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Now by Theorem 2.3(d), B = C1(T) = Ta for some countable ordinal a; it 
follows that o(E) is countable. 

We are now ready for the first of our two main theorems. 

THEOREM 3.2. Let E be a Borel continuum of well-founded preference 
orders on a subset B of T X XX X as described in Theorem 3.1. Then E 
possesses a Borel ordinal representation <fi:B —> o(E). 

Proof The proof is by induction on a = o(E). 
(a = 1). Just let 4>(t, x) = 0 for all (f, x) in B. 
(a 4- 1). Suppose the theorem holds for o(E) = a and let B, E be given 

with o(E) = a + 1. 
Let 

U = { (U x) G 5:o(/, x) ^ a) and 
L = {(/, x) G 5 : ( 3 v ) i - ^ } . 

Then U and L are disjoint saturated analytic subsets of B. By the Invariant 
Separation Theorem (2.1), there exist disjoint saturated Borel sets BL D L 
and Bv D £/ such that i?L U i?£/ = B. Define a Borel continuum EL of 
well-founded preference orders on BL by 

£7 = E n { (r, x,y)\ (t, x) G £ L and (t, y) G £z }. 

Now o(EL) = a, so by the induction hypothesis, EL possesses a Borel 
ordinal representation §i'.BL —» a. Define the representation <£ of E by: 

f «if (f, x) G £„ , 
W ' ; W L ( ' , *) i f ( f , jc) ^ 5 L . 

Each (f)_1 ({/?}) is either 5^, 0, or <J>/-1 ( {/?} ) and is therefore a Borel 
subset of B. If (f, x) and (/, y) are both in 2?L, then 

x :<, y ^ 4>L (/, x) ^ <f>L (f, 7) <^ 4>(t, x) ^ <£(/, >>)• 

If (/, x) and (/, y) are both in 5^ , then x ~ty and <J>(̂ , x) = <j> (t, y) = a. 
Finally, if (f, xj G BL and (f,j>) G £^, then (t,y) £ L, so for all z <E Bh z 
<t y\ it follows that x <t y. Since (t, x) £ 5 ^ and i?/y is saturated, we 
must have x <ty. Of course 

<f>(t, x) = 4>L(t, x) < a = <(>(/, y). 

Thus <J> is an ordinal representation. 
(À = limit). Let À = limw(aw), where {an:n < co} is an increasing 

sequence and the theorem holds for each ordinal a < X. Suppose that o(E) 
= X. For each AÏ, let 
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C„ = {(t9x):o(t,x) < «„}. 

Then each Cn is I I x and saturated (in fact, closed downwards). Further­
more, each Cn aCn+\ and U,7 Cn = B. By the Invariant Reduction 
Theorem (2.2), there is a sequence {Bn:n < 10} of saturated Borel sets such 
that U Bn = B and, for each n, Bn c Cw and Bn is closed downwards. 

Let En = £ n { (f, x, y):(/, x) e 2?w and (r, j ) e Bn}. 

Let o/7 (/, x) be the order of (/, x) in En, on (t) the order of Bnt and T„ = 
o(En). Note that T,7 = a,7. By the induction hypothesis, each £,7 possesses a 
Borel ordinal representation </>„:#„ —» T„. Define the map <£:£ —> À by 

<£(/, x) = min {<£„(/, x):(/, x) e J9W}. 

Then for each ordinal /?, we have 

<t>(U x) > j8 « (V «)( (r, x) G £„ -> <f>w(f, x) > 0) 

and 
<£(*, x) < P <=> (3 n)((t, x) e Bn and #„(/, x) < /}). 

It follows that (J) is Borel measurable. Now, given (t, x) and (/, y) in B, such 
that x ^ty\ choose n so that (y, 0 G 2?„ and <J>„ (y, f) = $(y, /). Since Bn is 
closed downward, (/, x) e 2?̂  and since <>„ is a representation, 

$n(t,x) ^ *„(/,>>) = <t>(t,y). 

But this implies that <j>(t, x) = <j>(t, y) since <f>(t, x) is the minimum of the 
<£„(/, x). Similarly, if x r<r_y, then <J>(/, x) < <£(/, j ) . This completes the 
proof of Theorem 3.2. 

THEOREM 3.3. Let E be a Borel continuum of well-founded preference 
orders on B as described in Theorem 3.1. Then E possesses a Borel 
representation f.B —» R. 

Proof Let <f>:B —> o (£) = K be given by Theorem 3.2 and let z':/c —> A' be 
given by Lemma 1.2. De f ine /by / (x ) = /(<^(x) ). 

One may wonder why we don't dispense with reduction and separation 
and just let <j>(t, x) = o(t, x). The following example indicates that this 
may not be possible even when o (E) = 2 and each Et is continuous. Let T 
and X be the space of irrational numbers, let S be an analytic non-Borel 
subset of T, let ,4 = ^ X {0} U T X {1} and le t /be a continuous map of 
XontOv4. Now/(x) = (/i(x),/2 (x) ), where both/i and/2 a r e continuous. 
Define the closed subset B of T X X by 
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B = {(Uxy.j\{x) = t) 

and the closed subset E of T X X X X by 

£ = {(*, x, >0;/i(x) = ZiCv) = ' a n d AW = /2OO }• 
Also define the closed sets 

B, = { (/, JC) e £:/2(7, JC) = /} for / = 0 or 1. 

Of course, the map/2 *s a continuous representation of £, but it does not 
always agree with the order map o(t, x). In fact, let 

C() = {{U x)\o(t, x) = 0}. 

Then 

C0 = B0 U [Bx n ((T - S) X X)}. 

If C0 were Borel, then C0 n 5] = (T — S) X X would also be Borel, 
whereas it is clearly a coanalytic non-Borel set by our choice 
of S. 

4. Continuous representations. Suppose that we have a Borel represen­
tation <{>:B —> o(E) for a continuum £ of continuous well-founded 
preference orders. We will now systematically repair any discontinuities of 
<j) and thus obtain a section-wise continuous representation of E. 

THEOREM 4.1. Suppose that E is section-wise closed and that 4>:B —» o(E) 
is a Borel representation of E. Then E possesses a section-wise continuous 
Borel representation <j>:B —> o(E) = K. 

Proof. We will construct a descreasing sequence {<j>a'.oc = K) of Borel 
representations of E such that $0 = </> and, for all a ^ K, 

(1) for all / e r and all a < a: 

{x:cj)a(t, x) > a} is open in £ r. 

(2) for all (f, x) e £ and all o < /? < a: 

</>0(/, x) > a <=> </>a(/, x) > a. 

The map $ = </>K will be a Borel ordinal representation which is 
section-wise continuous by (1) and Lemma 1.1. The construction of the 
maps <j>a is by induction and as usual, there are two cases to consider: 
successor and limit. 
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(Case I: a + 1) Suppose that <fyg has been constructed, satisfying (1) and 
(2), for all ft ^ a. Define the saturated coanalytic subset C of B by 

C = {(/, x):sup {$a(uy) + l:y -<,*} ^ a < <£«(/, x) } 
= { (/, *):*<*(', x) > a and (V j0(y -<, x -> <j>a(t, y) < a}. 

Define the analytic set A which is a subset of C by 

A = { (/, x):4>a(t, x) > a and (V n)(3 y)(d(x, y) < -
n 

and <f>a (t,y) ^ a) }, 

where d is the metric on X. 
Now yl contains precisely those points of C at which 4>a *

s discontinuous 
because of the indicated gap: sup {<£«(/, y):y <t x) ^ a whereas <t>a (/, x) 
> a. Notice that in fact if (r, x) G ^4, then sup {<f>a (?, J ) : J -<, x} must 
equal a. To see this, suppose 

sup {<t>a (t9y):y <t x} = /? < a. 

Since (/, x) G A, there is a sequence {yn:n < co} converging to x such that 
<£« (^ yn)

 < a f° r e a c h n. Since <f>ft (/, x) > a and <£a is a representation, _y„ 
-<, x for each n. Now, according to (1), U = {y'.<l>a(U y) > ft} is open in 
Bt. Since x G £/, it follows that for some n, jy„ G £/ and therefore </>a(/, yn) 
> /2. This is a contradiction. 

Thus we can repair <j>a for (f, x) G 4̂ letting <#>«+i (/, x) = a. For (/, x) 
e C - A, 

{y:x <ty) = {y\^a(U y) > a) 

is already open and we can let <j>a+\ (/, x) = a anyway. 
Now the saturated analytic set S 04) is included in the saturated 

coanalytic set C, so by the Invariant Separation Theorem (2.1) there is a 
saturated Borel set D with A c S(A) c D c C. Notice that if Dt ^ 0, 
then Z), consists of exactly one ~t equivalence class, since C has this 
property. Define the map </>a+i by 

_ f a, if (f, x) G £>, and 
* f l + l l U ) " U « (/, x), otherwise. 

Since (f, x) G £> implies <f>a (t, x) > a, we have 

<J>a+i(f, x) ^ <J>a (/, x) for all (/, x) G B. 

The map <t>a+\ is Borel measurable since both D and ^ are Borel. 
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We next show that <t>a+\ is a representation. Certainly, <t>a+\ is invariant 
on —t equivalence classes. All we need to show is that if x <ty\ then <J>a+1 
(/, x) < <t>a+\ (t, y)- Suppose x <t y and y e Dt\ then 

4>a+\(^y) = <*•> (t, x) £ C a n d 
<t>a+\(t, X) = 4>a (*, X) < a. 

Suppose x <ty and y £ Dt; then 

<!>a+\(t,y) = <t>a(t,y) > i + i ( u ) . 

Thus <j>a+i is an ordinal representation. 
It remains to show that (1) and (2) hold for a + 1. Given a < a, we 

have, for all (7, x) e 5: 

(3) <f>a+i(f, *) > a <-> <j>a(t, x) > a. 

It follows that {x:<t>a±\(t, x) > a} is open in Bt. 
Now suppose 0a+1(f, x) > a. There are two sub-cases. First, suppose 

that Dt T̂  0 and choose j ^ 0 G Z)r. Then <>a + i(/, >>o) = a a n d >;o ~v x. 
Thus 

Second, suppose that Z), = 0; in this case, <J>a+1 = <J>a. Since 4̂ c D, At is 
also empty and x £ At. Thus by the definition of A, there is some n such 
that 

x e yBt n {y:d(x,y) < - } J = {y:<t>a+\ (U y) > «}. 

In either case, it follows that {x:<j>a+\ > a} is open in Bt. This establishes 
( ! ) • 

Given a < /? < a + 1, it follows that a < a. Thus by (3): 

<t>a+\(t, x) > a <̂> <|>a (/, x) > a 
<̂> a^ (7, x) > a. 

This establishes (2) and completes the proof of Case I. 
(Case II: À = limit). Suppose that <f>a has been constructed satisfying (1) 

and (2) for all a < A. Define the map (j>\:B —» K by 

<f>x (/, x ) = m i n {<f>a (t, x):a < X}. 

Clearly ^ is less than or equal to <j>a for all a < X. 
Since {<£a:a < X] is a decreasing sequence of ordinal representations, it 

follows that <f>\ is a representation. For each o < K, we have 
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<t>\(t, x) > o «-» (V a < X) <j>a(t, x) > o and 
<j>x(t, x) < a B (] a < À) <f>a(t, x) < o. 

It follows that <j>\ is Borel measurable. 
For any o < fi < A, any / and any x, it follows from the definition of <f>\ 

that if <j>x(t, x) > a, then <j>p(t, x) > a. Now if <̂ g(/, x) > a, then by (2) of 
the hypothesis, <£a(f, x) > a for all ft = a < X and, since the maps (<f>a:a 
< X} are decreasing, 

<J>a(/, x) ^ ^ ( r , JC) > a, if a < /?. 

So, if <j>p(t, x) > a, then <fo(f, x) > a. This establishes (2). In particular, if o 
< A, then 

<j>\(t, X) > O <^ <f>a+i(f, * ) > CJ. 

In other words, 

{x:<t>x (/, x) > a} = {*:&,+i(f, x) > a} 

and is open in Bt by the (1) of the induction hypothesis. This establishes 
(1) and completes the proof of Theorem 4.1. 

THEOREM 4.2. Let E be a Borel subset of the product T X X X X of 
Polish spaces such that, for each t, Et is a continuous well-founded preference 
order on Bt. Then E possesses a section-wise continuous Borel ordinal 
representation cj>:B —» o(E) and a section-wise continuous Borel representa­
tion f.B —> K of B onto a closed subset K of the real line. 

Proof. The first part is immediate from Theorem 4.1 and Theorem 3.2. 
As in the proof of Theorem 3.3, let i:o(E) —> K be a continuous order 
isomorphism of o(E) onto a closed subset K of the real line (given by 
Lemma 1.2). Let </> be the section-wise continuous ordinal representation 
as in the first part. Finally, l e t / = i O <J>. 

It should be pointed out that the general Question (1) of [7] remains 
open: whether every section-wise continuous Borel preference order has a 
section-wise continuous Borel (or even 38 ^measurable) econ. 71980), 
165-173. 

Added in proof. Some results similar to those in [7] were obtained by A. 
Wieczorek, J. Math. Econ. 7 (1980), 165-173. 
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