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ON THE DECOMPOSITION OF CONTINUOUS MODULES 

BY 

B R U N O J. M Û L L E R A N D S. T A R I Q R I Z V I 

ABSTRACT. We prove two theorems on continuous modules: 
Decomposition Theorem. A continuous module M has a decomposi­
tion, M = Ml(BM2, such that Mx is essential over a direct sum 
£ © i e I A j of indecomposable summands A( of M, and M2 has no 
uniform submodules; and these data are uniquely determined by M 
up to isomorphism. Direct Sum Theorem. A finite direct sum 
£©r=i A of indecomposable modules At is continuous if and only 
if each Ai is continuous and A-injective for all j ^ i. 

1. Introduction. Utumi [11] introduced the concept of continuous rings, 
which was later generalized to quasicontinuous modules by Jeremy [3], and 
applied to continuous modules by Mohamed and Bouhy [5]. 

A module M is called continuous if (i) for every submodule A of M there 
exists a summand Mx of M such that A is essential in M l 5 and (ii) whenever a 
submodule A of M is isomorphic to a summand of M then A is itself a 
summand of M. 

The concept of a continuous module is a generalization of that of a 
(quasi-)injective module. Mohamed and Singh [7] gave a decomposition 
theorem for dual continuous modules (the definition of which is dual to that of 
continuous modules), which was further improved by Mohamed and Millier [6]. 
So far, there have been no results on the decomposition of continuous 
modules. One purpose of this paper is to give such a theorem, namely: 

THEOREM 1. Let M be a continuous module. Then there exists a decomposition 
M = M1@M2, where M1 is essential over an (automatically maximal) direct sum 
*L®ieiAi of indecomposable (hence uniform) summands of M, and M2 has no 
non-zero uniform submodule. Moreover, these data are uniquely determined by 
M, up to isomorphism: if M = M[®M'2 is another decomposition such that M[ is 
essential over a direct sum Z © j e j ^ y of indecomposable summands of M, and 
M2 has no non-zero uniform submodule, then M1 = M[, M2 = M2 and there is a 
bijection |8 :1 —> J such that At = A^(i). 

REMARK. In the above situation, every direct sum of finitely many of the At 

is still a summand of M 
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While summands of continuous modules are continuous, the sum of continu­
ous modules need not be continuous (cf. [5], 2.4 and 2.5). In fact, if M®M is 
continuous, then M becomes quasi-injective ([5], 3.6). Our second result 
contributes to this question: 

THEOREM 2. Let M = £©r=i Ai9 where the At are indecomposable. Then M is 
continuous if and only if each At is continuous and Arinjective for all jj= i. 

REMARKS. This theorem dualizes Theorem 2 of Mohamed and Miiller [6]. 
We note that a continuous module is a finite direct sum of indecomposable 
submodules if and only if it is of finite Goldie dimension. 

2. Preliminaries. Our rings have identity elements but are not necessarily 
commutative. All modules are unitary right modules. A module A is said to be 
B-injective if every homomorphism from a submodule of B to A can be 
extended to B. 

Goel and Jain [2] call a module M 7r-injective if for every pair of sub-
modules M1 and M2 with MxPiM2 = 0, the projections iri\M1®M2-^ Mt can 
be lifted to endomorphisms of M. Every continuous module is 7r-injective. 
7r-injective modules are the same as the quasi-continuous modules defined by 
Jeremy [3]. 

We say that a submodule N of a module M is essential if it intersects 
non-trivially with every non-zero submodule of M, and we write N e ' M . We 
denote the injective hull, the unique maximal essential extension of M, by 
E(M). 

We list some of the properties of continuous modules which will be used: 
(A) Every indecomposable continuous module is uniform ([5], Proposition 

2.1). 
(B) The endomorphism ring of an indecomposable continuous module is 

local ([5], Corollary 4.3). 
(C) If M is 77-injective and E(M) = 1 0 i 6 l Ai7 then M = £ © iGl (MH At) ([2], 

Theorem 1.1). 

3. Proof of Theorem 1. Let M be continuous. Let {Ak : k e K} be the family 
of all indecomposable summands of M. We call a subset J of K direct if the 
sum Zjej A is a direct sum. Consider the collection of all direct subsets of K, 
ordered by inclusion. An application of Zorn's Lemma yields a maximal direct 
subset I of K. 

Since M is continuous, it can be decomposed as M = M1®M2 such that 
Z f f i i e i A c ' ^ i - Then M2 does not contain any non-zero uniform submodule 
U, because otherwise there exists a summand V of M2 such that U^V. But 
then V is itself uniform (hence indecomposable), and the direct subset I can be 
enlarged, contradicting its maximality. 

Now, let M = M[®M'2 be another decomposition, such that X © / G J AJcz'MJ, 
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the A J are indecomposable summands of M, and M2 has no non-zero uniform 
submodule. According to ([3], Theorem 7.1), the radical factor ring of endo(M) 
is von Neumann regular, and idempotents can be lifted. Therefore, Theorems 3 
and 2 of [13] apply and show that M has the finite exchange property. Thus, 
M = M1@M2 = M[®M'2 yields decompositions M1 = K1®L1 and M2 = 
K2®L2 such that M = M[®K1®K2. It follows that M2 = KX®K2 and M2 = 
LX®L2 hold. As Ma and M[ are essential over direct sums of uniform 
modules, each of their non-zero submodules contains a non-zero uniform 
submodule. This applies in particular to Kx and L2 if they are non-zero. But 
since these modules embed into M2 and M2, respectively, which have no 
non-zero uniform submodules, we conclude KX = L2 = 0. We deduce M1 = LX = 
M[ and M2 = K2 = M2. 

Since M1 is essential over Y®i^i^ a n d M[ is essential over £©,-<=/A J-, w e 

obtain from Mx = M[ the isomorphism 

E Œ © i e i E ( A ) ) = E Œ e i e I A i ) = E(M 1 )=E(M;) = EQ;e i . e JE(A;)). 

Corollary 4.1 of [12] states: "Any two representations of any injective module 
as the injective envelope of a direct sum of injective submodules have isomor­
phic refinements". As the E(At) and E(A-) are indecomposable, we obtain a 
bijection |3:I—» J such that E(Ai) = E(A3 ( 0). 

We have M = Ai@P = A^(i)®Q, and the endomorphism ring of A^(i) is 
local. ([10], Lemma 5.2) yields that Ap ( i ) is isomorphic to a summand of either 
Ai or P. In the first case, we obtain immediately A'^{i) = At. In the second one, 
we have P = A^(i)®P' and therefore M = A ^ A ^ o © * 5 ' . Thus, A^A^ is 
continuous, and consequently 7r-injective. This fact, together with E(At) = 
E(A^ ( 0) , implies A^A^^, by ([2], Proposition 1.11). 

COROLLARY 3. For a ring with right Krull dimension, every continuous module 
is essential over a (maximal) direct sum of indecomposable summands, which is 
unique up to isomorphism. 

Proof. Let M = M1®M2, as in Theorem 1. Since every non-zero module 
contains a critical (hence uniform) submodule (cf. [9]), we conclude M2 = 0. 

The implications between (1) and (2) of the next corollary were proved by 
Matlis [4] and Papp [8], respectively. 

COROLLARY 4. The following are equivalent for a ring R: 
(1) R is right noetherian; 
(2) every injective module is a direct sum of indecomposable modules; 
(3) every continuous module is a direct sum of indecomposable modules. 

Proof. R right noetherian, implies that it has right Krull dimension. Thus, 
Corollary 3 yields X ®i^iAt c 'M, where the At are indecomposable continuous 
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submodules. The E(M) = E ( I © i e I A i ) = I © i e I E ( A i ) and the property (C) 
listed in the preliminaries gives M = JJ($ieI(E(Ai)nM). The converse follows 
trivially from the fact that every injective module is continuous. 

4. Proof of Theorem 2. This proof involves the use of the following lemma, 
which is dual to Lemma 4 of [6]. 

LEMMA 5. Let N = £ ffiieI A> where each At is uniform and Aj-injective for all 
jj= i. Then every non-essential submodule of N is contained in a proper summand 
ofN. 

Proof. Let A be a non-essential submodule of N. Then A Pi Ak = 0 for some 
k. Indeed, otherwise there are non-zero elements a^eADA^ for all i, and then 
the submodule E © ^ ^ ! ? of A is essential in N, since the At are uniform. This 
contradicts the non-essentiality of A. 

Consider the homomorphism o- = l -7r k : A —»£©i*k A> where 7rk is the 
projection to Ak. This is a monomorphism, since a-(a) = a - ak = 0 implies 
a = ak G A n Ak = 0. Now, as Ak is At-injective for all i j= fc, Ak is £ ©i^k A " 
injective, by ([1], Proposition 1.16). Hence there exists a homomorphism 
<P 'X©i^k A -* Ak such that cpcr = 7rk | A. Thus, for any a=Y,at^^cz 

X ©i^k Ai? we obtain ak = 7rk(a) = cpo-(a) = cp(a - ak). We define a submodule C 
of N by C = {b + (p(b):be^(Bi^kAi}, and we claim iV=C©A k . Since any 
xeN can be written as JC = b + xk, with b eZ©i#k A ar*d xk e Ak, we have 

x=(b + <p(b)) + (xk-<p(b))eC + Ak. 

Hence, N=C + Ak. Furthermore, if akeCC\Ak, then ak = b + ç(b) for some 
b e X ^ k A . Thus, 

fc = flk-<p(i)Gl©^AnAk=o, 

and consequently N=CG)Ak. 
The proof is finished once we show A^C. But a =X #i £ A c ^ © i e I Af 

implies cr(a) = a - ak G X ®t^k A , and therefore 

a = (a — ak) + ak = o-(a) + <po-(a) e C, 

by definition of C. 

Proof of Theorem 2. If M = £ © r = i A is continuous, then each At is 
continuous by ([5], Proposition 2.4) and Aj-injective for all j^i by ([5], 
Corollary 3.5). 

Conversely, let all At be continuous and A;-injective for j ^ i. Then each At 

is uniform and has local endomorphism ring. Given a submodule A of M, then, 
among the decompositions of M into indecomposable summands (which are all 
isomorphic by the Krull-Schmidt-Azumaya Theorem), we choose one, M = 
E © r = i A , with a minimal t such that A c J © j = 1 A j . We claim that this 
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inclusion is essential. If not, by Lemma 5, A is contained in a proper summand 
S of X©î=iA- But then, the direct decomposition length of S is strictly 
smaller than t, in contradiction to the minimality of t. Thus, we have verified 
the first condition of continuity. 

To establish the second condition, namely that every monomorphism / : B —> 
M from a summand B of M splits, we consider first the case of an indecompos­
able summand B. Here, by the Krull-Schmidt-Azumaya Theorem, there is an 
isomorphism <p:Ak = B, for some fc. We consider the maps 

where the 7̂  are the projections. As / is a monomorphism, we have 
nr=i ker(7Ti/)= 0. Since B is uniform, we conclude k e r ^ / ) = 0 for some i. For 
this i, iTifcp : Ak —> At is a monomorphism. Now, in case i = k, irjcp is an 
isomorphism by the indecomposability and continuity of At. On the other hand 
if i^ k, then Ak is A rinjective and therefore rrjcp splits. By indecomposability, 
again, irjip is an isomorphism. Consequently in both cases, nj and (TTJ/)-1 are 
isomorphisms. 

We define g : M -> B by g | At - (TTJ)"1 and g | X © ^ A, = 0. We claim that 
g/= 1B, the identity map on B. For any beB we may write f(b) = x + y with 
X G A ; and y G X © ^ A,-. Then, 

gf(b) = g(x) + g(y) = ( T T ^ - X X ) = ( T T J ) - ^ ^ ( x + y)) 

= (7Tif)-\7Tif(b)) = b. 

Therefore, f :B -*M splits, as claimed. 
Now, we consider a monomorphism / : B —> M from an arbitrary summand B 

of M, and we proceed by induction over the direct decomposition length / of B. 
/ = 1 is the special case dealt with above. If J > 2 , then we write B = BX®B2 

where Bx has length / — 1 and B2 is indecomposable. Let et denote the 
injections Bt-^B. The monomorphism fe1:B1-+ M splits by assumption of 
induction; hence M = im(/e1)©M2. Let pt (i = 1, 2) denote the two correspond­
ing projections. Clearly, p2fe2:B2-^> M2^M is a monomorphism. As B2 is 
indecomposable, it splits and we obtain M2 = im(p2fe2)(B M3. 

Using im(pi) = im(fei)<^im(f), we calculate for every beB that 

P2fe2(b) = fe2(b) - pxfe2(b) e im(/) 
and 

f(b) = fe1(b)+fe2(b) = fe^b) + pje2(b) + p2fe2(b) e im(fe1) + im(p2/e2). 

We conclude that im(f) = im(fe1)@im(p2fe2) holds, and therefore 

M - im(/e1)©M2 - im(fe1)®im(p2fe2)@M3 = im(/)©M3 , 

which proves the second condition. 
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REMARK. It is still an open question whether an infinite direct sum of 
indecomposable continuous modules, each injective with respect to all the others, is 
continuous, even over a noetherian ring. We have been able to prove that over 
a right noetherian ring, a module M = Y®7=i A is continuous provided the At 

are indecomposable, continuous and Ay-injective for j ^ i, and M is 7r-injective. 

This research was supported in part by the Science and Engineering Research Council of 
Canada, Grant A 4033. The authors thank the referee for pointing out an improvement of 
Theorem 1. 
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