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introduction

Offering a “barously brief” distillation of Marshall McLuhan’s writings, John
M. Culkin expanded on one of McLuhan’s five postulates, Art Imitates Life, with
the now-famous line, We shape our tools and thereafter they shape us.1 This fear of
being shaped and controlled by tools, rather than autonomously wielding them, lies
at the heart of current concerns with machine learning and artificial intelligence
systems (ML/AI systems). Stories recounting the actual or potential bad outcomes of
seemingly blind deference and overreliance on ML/AI systems crowd the popular
press. Whether it is Facebook’s algorithms allowing Russian operatives to unleash
a weapon of mass manipulation, trained on troves of personal data, on electorates in
the US and other countries; inequitable algorithmic bail decisions placing people of
color behind bars while whites with similar profiles are sent home to await trial; cars
in autonomous mode driving their inattentive could-be-drivers to their death; or
algorithms assisting Volkswagen in routing around air quality regulations, there is
a growing sense that our tools, if left unchecked, will undermine our choices, our
values, and our public policies.

If we fail to grapple with the significant challenges posed by ML/AI systems
designed to automate tasks or aid decision making, things may get much
worse. At risk are potential decreases in human agency and skill,2 both over-
and under-reliance on decision support systems,3 confusion about

* Titles in alphabetical order.
1 Culkin, J. M. 1967. “A Schoolman’s Guide toMarshall McLuhan.” The Saturday Review, March 1967,

51–53, 70–72.
2 Lee, John D., and Bobbie D. Seppelt. 2009. “Human Factors in Automation Design.” In Springer

Handbook of Automation, edited by Shimon Nof, pp. 417–36. Springer: Berlin (detailing how auto-
mation that fails to attend to how it redefines and restructures tasks, and the behavioral, cognitive, and
emotional responses of operators to these changes, produce various kinds of failure, including those
that arise from deskilling due to reliance on automation).

3 Goddard, Kate, Abdul Roudsari, and JeremyC.Wyatt. 2012. “Automation Bias: A Systematic Review of
Frequency, Effect Mediators, and Mitigators.” Journal of the American Medical Informatics
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responsibility,4 and diminished accountability.5 Relatedly, as technology
reconfigures work practices, it also shifts power in ways that may misalign
with liability frameworks, diminishing humans’ agency and control but still
leaving them to bear the blame for system failures.6 Automation bias, power
dynamics, belief in the objectivity and infallibility of data, and distrust of
professional knowledge and diminished respect for expertise – all coupled
with the growing availability of ML/AI systems and services – portend
a potential future in which we are ruled by our tools.

Designing a future in which our tools help us reason and act more effectively,
efficiently, and in ways aligned with our social values – i.e., creating the tools that
help us act responsibly – requires attention to system design and governance models.
ML/AI systems that support us, rather than control us, require designs that foster in-
the-moment human engagement with the knowledge and actions systems produce,
and governance models that support ongoing critical engagement with ML/AI
processes and outputs. Expert decision-support systems are a useful case study to
consider the system properties that could maintain human engagement and the
governance choices that could ensure they emerge.

We begin by describing three new challenges – design by data, opacity to designer,
and dynamic and variable features – posed by the use of predictive algorithmic systems
in professional, expert domains. Concerns about inscrutable bureaucratic rules and
privatization of public policy making (and the specific opacity that technology can
bring to either) apply to predictive machine learning systems generally, but we suggest
there are distinctive challenges posed by such predictive systems. We then briefly
explore transparency and explainability, two policy objectives that current scholarship
suggests are antidotes to such challenges. We show how conceptions of transparency
and explainability differ along disciplinary lines (e.g., law, computer science, social

Association 19 (1): 121–27(reviewing literature on automation bias in health care clinical decision
support systems); Bussone, A., S. Stumpf, and D. O’Sullivan. 2015. “The Role of Explanations on Trust
and Reliance in Clinical Decision Support Systems.” In 2015 International Conference on Healthcare
Informatics, 160–69, p. 160 (discussing research findings on automation bias and self-reliance).

4 For an overview of research on technology-assisted decision making and responsibility, see
Mosier, Kathleen L., and Ute M. Fischer. 2010. “Judgment and Decision Making by Individuals
and Teams: Issues, Models, and Applications.” Reviews of Human Factors and Ergonomics 6 (1):
198–256.

5 Nissenbaum, Helen. 1994. “Computing and Accountability.” Commun. ACM 37 (1): 72–80;
Simon, Judith. 2015. “Distributed Epistemic Responsibility in a Hyperconnected Era.” In The
Onlife Manifesto: Being Human in a Hyperconnected Era, edited by Luciano Floridi, pp. 145–59.
Cham, CH: Springer International Publishing.

6 Jones, Meg Leta. 2015. “The Ironies of Automation Law: Tying Policy Knots with Fair Automation
Practices Principles.” Vanderbilt Journal of Entertainment & Technology Law 18 (1): 77–134;
Elish, Madeleine C. 2016. “Moral Crumple Zones: Cautionary Tales in Human-Robot Interaction.”
InWe Robot 2016Working Paper, 1–26. University of Miami (exploring how humans take the brunt of
failures in sociotechnical systems, acting as “moral crumple zones” and absorbing a disproportionate
amount of responsibility and liability, and arguing for reapportioning responsibility and liability in
relation to actual control and agency).
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sciences) and identify limitations of each concept for addressing the challenges posed
by algorithmic systems in expert domains.

We then introduce the concept of contestability and explain the particular
benefits of contestable ML/AI systems in the professional context over and above
transparent or explainable systems. This approach can be valuable for an algorith-
mic handoff in a highly professionalized domain, such as the use of predictive
coding software – a particular e-discovery tool – by lawyers during litigation.
Current governance frameworks around the use of predictive coding in the form
of professional norms and codified rules and regulations have their limitations. We
argue that an approach centered around contestability would better promote attor-
neys’ continued, active engagement with these algorithmic systems without relying
so heavily on retrospective, case-specific, and costly legal remedies.

the limitations of existing approaches

to protecting values

Technical systems containing algorithms are shaping and displacing human deci-
sion making in a variety of fields, such as criminal justice,7 medicine,8 product
recommendations,9 and the practice of law.10 Such decision-making handoffs have
been met with calls for greater transparency and explainability about system-level
and algorithmic processes. The delegation of professional decision making to pre-
dictive algorithms – models that predict or estimate an output based on a given
input11 – creates additional issues with respect to opacity in machine learning12 and
to more general concerns with bureaucratic inscrutability13 and privatization of
public power.14

7 Angwin, Julia, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. “Machine Bias.” ProPublica,
May 23, 2016. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-
sentencing.

8 See, e.g., Faggella, Daniel. 2018. “Machine Learning Healthcare Applications – 2018 and Beyond.”
TechEmergence. March 1, 2018. https://www.techemergence.com/machine-learning-healthcare-
applications/; see generally, Berner, Eta S., ed. 2016. Clinical Decision Support Systems: Theory and
Practice. 3rd ed. Health Informatics. New York: Springer.

9 As an example, see Netflix’s recommendation engine: https://medium.com/netflix-techblog/netflix-
recommendations-beyond-the-5-stars-part-1-55838468f429.

10 Ashley, Kevin D. 2017. Artificial Intelligence and Legal Analytics: New Tools for Law Practice in the
Digital Age. Cambridge: Cambridge University Press.

11 James, G., D.Witten, T. Hastie, and R. Tibshirani. (2013). An Introduction to Statistical Learning.
New York: Springer.

12 Burrell, Jenna. 2016. “How the Machine ‘Thinks’: Understanding Opacity in Machine Learning
Algorithms.” Big Data & Society 3 (1): 1–13 (describing three forms of opacity: corporate or state
secrecy; technical illiteracy; and complexity and scale of machine-learning algorithms).

13 Freeman, Jody. 2000. “Private Parties, Public Functions and the New Administrative Law Annual
Regulation of Business Focus: Privatization.” Administrative Law Review 52: 813–58.

14 Citron, Danielle Keats. 2008. “Technological Due Process.” Washington University Law Review 85

(6): 1249–313. (“Agencies inadvertently give rulemaking power to computer programmers who can,
and do, alter established policy when embedding it into code.” “Because the policies embedded in
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Three Challenges Facing Algorithmic Systems in Expert Domains

We identify three challenges facing the use of predictive algorithms in expert
systems. First, such predictive algorithms are not designed by technologists in the
traditional sense. Whereas engineers of traditional expert systems explicitly program
in a set of rules, ideally from the domain knowledge of adept individuals, predictive
algorithms supplant this expert wisdom by deriving a set of decision rules from data.

Predictive algorithms can be partitioned into two categories: (1) those focused on
outcomes that do not rely too heavily on professional judgment (e.g., was an individual
readmitted to the hospital within thirty days of their visit?) versus (2) those focused on
outcomes that are more tailored toward emulating the decisions made by professionals
with specific domain expertise (e.g., does this patient have pneumonia?). Specifically,
the first example can be deemed either true or false simply via observation of admit logs,
regardless of professional training. The second example, by way of contrast, is distinct
from thefirst in that it requiresmedical expertise tomake such adiagnosis. In the strictest
sense, expert systems fall into the second category,15 and as such, inferences of such rules
via predictive algorithms create unique challenges for the transfer of expertise from both
individuals to the algorithm, and from the algorithm to individuals.

The second challenge is one of opacity. In many ways, this issue is induced by the
first. While certain classes of predictive algorithms lend themselves to ease of
understanding (such as logistic regression and shallow decision trees), other classes
of model make it difficult to understand the rules inferred from the data (such as
neural networks and ensemble methods). Unlike expert systems, where domain
professionals can review and interrogate the internal rules, the opacity of certain
algorithms prevents explicit examination of these decision rules, leaving experts to
infer the model’s underlying reasoning from input–output relationships.

Last, these algorithms are case-specific and evolving. They will not necessarily
make the same decision about two distinct people in the same way at the same point
in time, neither will they necessarily make the same decision about the same
individual at varying points in time. This plasticity creates challenges for under-
standing and interrogating a model’s behavior, as input–output behavior can vary
from case to case and can vary over time.

Transparency: Perspectives and Limitations

Due to the challenges described above, algorithmic handoffs have been met with
calls for greater transparency.16 At a fundamental level, transparency refers to some

code are invisible, administrators cannot detect when the rules in an automated system depart from
formal policy.”)

15 See Todd, Bryan S. 1992. An Introduction to Expert Systems. Oxford: Oxford University Computing
Laboratory.

16 Brauneis, Robert, and Ellen P. Goodman. 2018. “Algorithmic Transparency for the Smart City.” Yale
Journal of Law & Technology 20: 103–76, p. 108.
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notion of openness or access, with the goal of becoming informed about the system.
However, the word “transparency” lends itself to the question: What is being made
transparent?

Given the growing role that algorithmically driven systems are poised to play
across government and the private sector, we should exercise care in choosing policy
objectives for transparency. A trio of federal laws – two adopted in the 1970s due to
fears that the federal government was amassing data about citizens – exemplify three
policy approaches to transparency relevant to algorithmic systems. Together, the
laws aim to ensure citizens “know what their Government is up to,”17 that “all federal
data banks be fully and accurately reported to the Congress and the American
people,”18 that individuals have access to information about themselves held in
such data banks, and that privacy considerations inform the adoption of new
technologies that manage personal information. These approaches can be summar-
ized as relating to (1) scope of a system, (2) the decision rules of a process, and (3) the
outputs.

The Privacy Act of 1974,19 which requires notices to be published in the Federal
Register prior to the creation of a new federal record-keeping system, and section 208

of the E-Government Act of 2002,20which requires the completion of privacy impact
assessments, exemplify the scope perspective. These laws provide notice about the
existence and purpose of data-collection systems and the technology that supports
them. For example, the Privacy Act of 1974 requires public notice that a system is
being created and additional information about the system, including its name and
location, the categories of individual and record maintained in the system, the use
and purpose of records in the system, agency procedures regarding storage, retrieval,
and disposal of the records, etc.21 The first tenet of the Code of Fair Information
Practices, first set out in a 1973 HEW (Health, Education, Welfare) Report22 and
represented in the Privacy Act of 1974 and data-protection laws the world over,
stipulates in part that “there must be no personal-data record-keeping systems whose
very existence is secret.”23 With the Privacy Act of 1974, the transparency theory is
one of public notice and scope. Returning to our previous question of “what is being

17 US Dept. of Justice v. Reporters Committee, 489 U.S. 749, 773 (1989).
18 Ware, W. H., 1973. Records, Computers and the Rights of Citizens (No. P-5077). Santa Monica, CA:

RAND Corporation.
19

5 U.S.C. § 552a (2014).
20 Pub. L. No. 107–347, § 208, 116 Stat. 2899 (Dec. 17, 2002).
21

5 U.S.C. § 552a(e)(4); see also United States Department of Health, Education, and Welfare. 1973.
“Report of the Secretary’s Advisory Committee on Automated Personal Data Systems, Records,
Computers, and the Rights of Citizens.”MIT Press (discussing purpose and provisions of Privacy Act).

22 US Department of Health, Education, and Welfare. “Report of the Secretary’s Advisory Committee
on Automated Personal Data Systems: Records, Computers and the Rights of Citizens,” 1973, at § III.
Safeguards for Privacy.

23 The full Code of Fair Information Practices can be found at https://epic.org/privacy/consumer/
code_fair_info.html.
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made transparent,” in this approach to transparency, it is precisely the existence and
scope being made available.

Unlike the scope aspect of transparency, the decision-rules aspect is not con-
cerned with whether or not such a system exists. Rather, this view of transparency
refers to tools to extract information about how these systems function. As an
example, consider the Freedom of Information Act (FOIA), a law that grants
individuals the ability to access information and documents controlled by the
federal government.24 The transparency theory here is that the public has a vested
interest in accessing such information. But instead of disclosing the information
upfront, it sets up a mechanism to meet the public’s demand for it. As such, FOIA
allows for individuals to gain access to the decisional rules of these systems and
processes. Similarly, the privacy impact assessment requirement of the
E-Government Act of 2002 provides transparency around agencies’ consideration
of new technologies, as well as their ultimate design choices.

Last, several privacy laws allow individuals to examine the inputs and outputs of
systems that make decisions about them. Under this perspective, transparency is not
the end goal itself. Rather, transparency supports the twin goals of ensuring fair
inputs and understanding the rationale for the outputs by way of pertinent informa-
tion about the inputs and reasoning. The laws all entitle individuals to access
information used about them and to correct or amend data. Some of the privacy
laws in this area also entitle individuals to receive information about the reasons
behind negative outcomes.25 For example, under the Equal Credit Opportunity Act,
if a candidate’s credit application is rejected, the credit bureau must provide the key
reasons for the decision.26 Thus, this type of transparency refers to notice of how
a particular decision was reached. These forms of transparency are aimed at indivi-
dual, rather than collective, understanding; they provide, to a limited extent, insight
into the data and the reasoning – or functioning – of systems.

Within the computer science literature, transparency is similar to the functional
and outputs perspective presented in law. That is, transparency often refers to some
notion of openness around either the internals of a model or system, or around the
outputs. Typically, less focus is given to disclosing the subjective choices that were
invoked during the system design and engineering process or to system inputs.

The social sciences and statistics, however, take a more comprehensive perspec-
tive on transparency. Transparency in these disciplines not only captures the ideas
from law and computer science, but also means disclosures about how the data was
gathered, how it was cleaned and normalized, the methods used in the analysis, the
choice of hyperparameters and other thresholds, etc., often in line with the goals of

24

5 U.S.C. § 553 (2016).
25 See, e.g., The Equal Credit Opportunity Act (ECOA), 15 U.S.C. § 1691 et seq., as implemented by

Regulation B, 12 C.F.R. §1002.9. See also The Fair Credit Reporting Act (FCRA), 15 U.S.C. § 1681

et seq.
26

15 U.S.C. § 1691(d).
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reproducibility.27 The sweep of transparency reflects an understanding that these
choices contribute to the methodological design and analysis. This more holistic
approach to transparency acknowledges the effect that humans have in this process
(reflected in decisions about data, as well as behaviors captured in the data), which is
particularly pertinent for predictive algorithms.

Current policy debates, and scientific research, center around explainability and
interpretability. Transparency is being reframed, particularly in the computer
science research agenda, as an instrumental rather than final objective of regulation
and system design. The goal is not to lay bare the workings of themachine, but rather
to ensure that users understand how the machines are making decisions – whether
those decisions be offering predictions to inform human action or acting indepen-
dently. This reflects both growing recognition of the inability of humans to under-
stand how some algorithms work even with full access to code and data, but also an
emphasis on the overall system – rather than solely the algorithm – as the artifact to
be known.

Explainability: Perspectives and Limitations

Explainability is an additional design goal for machine-learning systems. Driven in
part by growing recognition of the limits of transparency to foster human under-
standing of algorithmic systems, and in part by pursuit of other goals such as safety
and human compatibility, researchers and regulators are shifting their focus to
techniques and incentives to produce machine-learning systems that can explain
themselves to their human users. Such desires are well-founded in the abstract. For
the purposes of decision making or collaboration, explanations can act as an inter-
face between an end-user and the computer system, with the purpose of keeping
a human in the loop for safety and discretion. Hence, explanations invite question-
ing of AI models and systems to understand limits, build trust, and prevent harm. As
with transparency, different disciplines have responded to this call to action by
operationalizing both explanations and explainability in differing ways.

One notable use of explanations and explainability comes from the social
sciences. Miller28 performed a comprehensive literature review of over 200 articles
from the social sciences and found that explanations are causal, contrastive, selec-
tive, and social. What is pertinent from this categorization is how well the paradigms
invoked in predictive algorithms (machine learning, artificial intelligence, etc.) fall
within social understandings of explanations. Machine learning raises difficulties for
all four of Miller’s attributes of explanations.

27 Miguel, Edward, Colin Camerer, Katherine Casey, Joshua, Cohen, KevinM. Esterling, AlanGerber,
Rachel Glennerster, et al. 2014. “Promoting Transparency in Social Science Research.” Science 343
(6166): 30–31.

28 Miller, Tim. 2017. “Explanation in Artificial Intelligence: Insights from the Social Sciences.”
ArXiv:1706.07269 [Cs], June. http://arxiv.org/abs/1706.07269.
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For concreteness and clarity, imagine we have a predictive algorithm that classi-
fies a patient’s risk for breast cancer as either low risk, medium risk, or high risk. In
this scenario, a causal explanation would answer the question: “Why was the patient
classified as high risk?” Alternatively, a contrastive explanation would answer ques-
tions of the form, “Why was the patient classified as high risk as opposed to low risk or
medium risk?” As such, explanations of the causal type require singular scope on the
outcome, whereas contrastive explanations examine not only the predicted out-
come, but other candidate alternatives as well.

With respect to machine learning, this distinction is important and suggestive.
Machine learning is itself a correlation box. As such, the output itself should not be
interpreted as causal. However, when individuals ask for causal explanations of
predictive algorithms, they are not necessarily assuming that the underlying data
mechanism is causal. Rather, the notion of causality is seeking to understand what
caused the algorithm to decide that the patient was high risk, not what caused the
patient to be high risk in actuality. Thus, causal explanations can be given of amodel
built on correlation. However, the fact that they can be produced doesn’t mean that
causal explanations further meaningful understanding of the system.

Contrastive explanations are a better fit for machine learning. The very paradigm
of machine learning – classification models – are built in a contrastive manner.
These models are trained to learn to pick the “best” output given a set of inputs – or
equivalently stated, the model is taught to discern an answer to a series of input
questions based on the fixed set of alternatives available. Combining these insights,
it follows that requiring causal explanations for classificationmodels is inappropriate
for determining why a model predicted the value it did. Contrastive explanations,
which provide insight into the counterfactual alternatives that the model rejected as
viable, transfer more knowledge about the system, than causal ones.

Regardless of whether the type of explanation is causal or contrastive, Miller
argued that explanations in the social sciences were selective. That is, explanations
tend to highlight a few key justifications rather than being completely exhaustive.
Consider the case of a doctor performing a breast cancer-screening test in the
absence of a predictive algorithm. When relaying the rationale of their diagnosis
to a patient, a doctor would provide sufficient reasons for their decision to justify
their answer. Now, consider the state of the world where a handoff has been made to
the predictive model. Suppose the model being used relies on 500 features. When
explaining why the model predicted the outcome it did, it is indeed unreasonable to
assume that providing information about all 500 features would practically relay any
information about why the model made the choice it did. As such, requiring
explanations of predictive models requires honing into the relevant features of
a decision problem, whichmay differ from patient to patient andmay vary over time.

On the aspect of explanations being social, Miller noted that explanations are
meant to transfer knowledge from one individual to another. In the example above,
where the doctor performs the breast cancer-screening test, this was the point of
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having the doctor justify their diagnosis to the patients – to inform the patient about
their breast cancer-risk level. When applied to technical systems, the goal is to
transfer knowledge about the internal logic of how the system reached its conclusion
to some individual (or class of individuals). In the case of our breast cancer-risk
prediction, this would manifest itself as a way to justify why the algorithm predicted
high risk as opposed to low risk. It is worth noting that for predictive algorithms, it is
often difficult to truly achieve the social goal of explanations. Certain qualities of
algorithms – such as their functional form (e.g., nonlinear, containing interaction
terms), their input data, and other characteristics – make it particularly difficult to
assess the internal logic of the algorithm itself, or for the system to even explain what
it is doing. It is therefore difficult for these machine systems to transfer knowledge to
individuals in the form of an explanation that is either causal or contrastive. To the
extent that explanations are aimed at improving human understanding of the logic
of algorithms, the qualities of some algorithmsmay be incompatible with this means
of transferring knowledge. It may be that the knowledge transfer must come the
other way around, from the human to the machine, which is then bound to
particular way or ways of knowing.29

Thus, there are tensions between the paradigms of predictive algorithms and
those characteristics laid out by Miller. As such, the discussion above suggests that
our target is off. That is, to actually fully and critically engage with predictive
algorithms, this suggests that we require something stronger than transparency and
explainability. Enter contestability – the ability to challenge machine predictions.

toward contestability as a feature of expert

decision-support systems

Contestability fosters engagement rather than passivity, questioning rather than
acquiescence. As such, contestability is a particularly important system quality
where the goal is for predictive algorithms to enhance and support human reason-
ing, such as decision-support systems. Contestability is one way “to enable respon-
sibility in knowing”30 as the production of knowledge is spread across humans and
machines. Contestability can support critical, generative, and responsible engage-
ment between users and algorithms, users and system designers, and ideally between
users and those subject to decisions (when they are not the users), as well as the
public.

29 Kroll, Joshua A., Joanna Huey, Solon Barocas, Edward W. Felten, Joel R. Reidenberg, David
G. Robinson, and Harlan Yu. 2017. “Accountable Algorithms.” University of Pennsylvania Law
Review 165 (3): 633–705.

30 Simon, Judith. 2015. “Distributed Epistemic Responsibility in a Hyperconnected Era.” The Onlife
Manifesto, pp. 145–59. Cham, CH: Springer International Publishing, at p. 146 (separating out two
aspects of “epistemic responsibility”: 1) the individualistic perspective, which asks, “what does it mean
to be responsible in knowing?”; and 2) the governance perspective with asks, “what does it take to
enable responsibility in knowing?”).
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Efforts to make algorithmic systems knowable respond to the individual need to
understand the tools one uses, as well as the social need to ensure that new tools are
fit for purpose. Contestability is a design intervention that can contribute to both.31

However, our focus here is on its potential contribution to the creation of govern-
ance models that “support epistemically responsible behavior”32 and support shared
reasoning about the appropriateness of algorithmic systems behavior.33

Contestability, the ability to contest decisions, is at the heart of legal rights that
afford individuals access to personal data and insight into the decision-making
processes used to classify them,34 and it is one of the interests that transparency

31 For insights on how contestable systems advance individual understanding, see, e.g., Eslami,
Motahhare, and Karrie Karahalios. 2017. “Understanding and Designing around Users’ Interaction
with Hidden Algorithms in Sociotechnical Systems.” CSCW Companion (describing several studies
finding that seamful designs, which expose algorithmic reasoning to users, facilitated understanding,
improved user engagement, and in some instances altered user behavior); Eslami, Motahhare, et al.
2015. “I Always Assumed that I Wasn’t Really That Close to [Her]: Reasoning about Invisible
Algorithms in News Feeds.” Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems (describing the lasting effects on how users engage with Facebook to influence the
News Feed algorithm after an experimental design intervention that visualized its curatorial voice);
Jung, Malte F., David Sirkin, and Martin Steinert. 2015. “Displayed Uncertainty Improves Driving
Experience and Behavior: The Case of Range Anxiety in an Electric Car.” Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems (CHI ’15) (gradient plot that
reveals uncertainty reduced anxiety over single point estimate of remaining range of electric vehicle);
Joslyn, Susan, and Jared LeClerc. 2013. “Decisions with Uncertainty: The Glass Half Full.” Current
Directions in Psychological Science 22 (4): 308–15 (displaying uncertainty in weather predictions can
lead to more optimal decision making and trust in a forecast: transparency about probabilistic nature
of prediction engenders trust even when predictions are wrong); Stumpf, Simone, et al. 2007. “Toward
Harnessing User Feedback for Machine Learning.” Proceedings of the 12th International Conference
on Intelligent User Interfaces; Stumpf, Simone, et al. 2009. “Interacting Meaningfully with
Machine-Learning Systems: Three Experiments.” International Journal of Human-Computer
Studies 67 (8): 639–62 (explainable systems can improve user understanding and use of system and
enable users to provide deep and useful feedback to improve algorithms); Moor, Travis, et al. 2009.
“End-User Debugging of Machine-Learned Programs: Toward Principles for Baring the Logic”
(salient explanations helped users adjust their mental models); Amershi, Saleema, et al. 2014.
“Power to the People: The Role of Humans in Interactive Machine Learning.” AI Magazine 35 (4):
105–20 (providing an overview of interactive machine learning research, with case studies, and
discussing value of interactive machine learning approaches for machine learning community as
well as users).

32 Simon, Judith. 2015. “Distributed Epistemic Responsibility in a Hyperconnected Era.” In The Onlife
Manifesto: Being Human in a Hyperconnected Era, edited by Luciano Floridi, pp. 145–59. Cham,
CH: Springer International Publishing, at p. 158.

33 Reuben Binns argues that “public reason—roughly, the idea that rules, institutions and decisions need
to be justifiable by common principles, rather than hinging on controversial propositions which
citizens might reasonably reject—is an answer to the problem of reasonable pluralism in the context
of algorithmic decision making,” and requires transparency. Binns, Reuben. 2017. “Algorithmic
Accountability and Public Reason.” Philosophy & Technology, May.

34 See, e.g., regulations under the notification provisions of the Equal Credit Opportunity Act 15U.S.C.
§ 1691 et seq. that require those denied credit to be provided specific, principal reasons for the denial
ECOA 12 C.F.R. § 1002.1, et seq. at §1002.9; Hildebrandt, M. 2016. “The New Imbroglio. Living with
Machine Algorithms.” In The Art of Ethics in the Information Society, edited by L. Janssens, 55–60.
Amsterdam: Amsterdam University Press, p. 59 (arguing that the EU General Data Protection
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serves. Contestability as a design goal, however, is more ambitious and far-reaching.
A system designed for contestability would protect the ability to contest a specific
outcome, consistent with privacy and consumer protection law. It would also facilitate
generative engagement between humans and algorithms throughout the use of the
machine-learning system and support the interests and rights of a broader range of
stakeholders – users, designers, as well as decision subjects – in shaping its performance.

Hirsch et al. set out contestability as a design objective to address myriad ethical
risks posed by the potential reworking of relationships and redistribution of power
caused by the introduction of machine-learning systems.35 Based on their experi-
ence designing a machine-learning system for psychotherapy, Hirsch et al. offer
three lower-level design principles to support contestability: (1) improving accuracy
through phased and iterative deployment with expert users in environments that
encourage feedback; (2) heightening legibility through mechanisms that “unpack
aggregate measures” and “trac[e] system predictions all the way down” so that “users
can follow, and if necessary, contest the reasoning behind each prediction”; and
relatedly, in an effort to identify and vigilantly prevent system misuse and implicit
bias, (3) identifying “aggregate effects” that may imperil vulnerable users through
mechanisms that allow “users to ask questions and record disagreements with system
behavior” and engage the system in self-monitoring.36 Together, these design prin-
ciples can drive active, critical, real-time engagement with the reasoning of
machine-learning system inputs, outputs, and models.

This sort of deep engagement and ongoing challenge and recalibration of the
reasoning of algorithms is essential to yield the benefits of humans and machines
reasoning together. Concerns that engineers will stealthily usurp or undermine the
decision-making logics and processes of other domains have been an ongoing and
legitimate complaint about decision support and other computer systems.37

Regulation requires “[Algorithmic] decisions that seriously affect individuals’ capabilities must be
constructed in ways that are comprehensible as well as contestable. If that is not possible, or, as long as
this is not possible, such decisions are unlawful.”) However, in reality, what the GDPR requires may
bemuchmore limited. See alsoWachter, Sandra, BrentMittelstadt, and Luciano Floridi. 2017. “Why
a Right to Explanation of Automated Decision-Making Does Not Exist in the General Data
Protection Regulation.” International Data Privacy Law 7 (2): 76–99, p. 93 (arguing that a fairer
reading of the GDPR provisions and recitals, and member states implementation of the EU Data
Protection Directive it replaces, would require “limited disclosures of the ‘logic involved’ in auto-
mated decision making, primarily concerning system functionality rather than the rationale and
circumstances of specific decisions”).

35 Hirsch, Tad, Kritzia Merced, Shrikanth Narayanan, Zac E. Imel, and David C. Atkins. 2017.
“Designing Contestability: Interaction Design, Machine Learning, and Mental Health.” DIS.
Designing Interactive Systems (Conference) 2017 (June): 95–99 (describing the way an automated
assessment and training tool for psychotherapists could be used as a “blunt assessment tool” of
management to the detriment of therapists and patients) at p. 98.

36 Id. at p. 98.
37 See Citron, Danielle Keats. 2008. “Technological Due Process.”Washington University Law Review

85 (6): 1249–313 (identifying the slippage and displacement of case worker values by engineering rules
embedded in an expert system); Moor, James H. 1985. “What Is Computer Ethics?”Metaphilosophy
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Encouraging human users to engage and reflect on algorithmic processes can
reduce the risk of stealthy displacement of professional and organizational logics
by the logics of software developers and their employers. Where an approach based
on explanations imagines questioning and challenging as out-of-band activities – excep-
tion handling, appeals processes, etc. – contestable systems are designed to foster critical
engagement within the system. Such systems use that engagement to iteratively identify
and embed domain knowledge and contextual values, as decision making becomes
a collaborative effort within a sociotechnical system.

In the context of decision-support systems, increasing system explainability and
interpretability is viewed as a strategy to address errors that stem from automation
bias and to improve trust.38 Researchers have examined the impact of various forms
of explanatory material, including confidence scores, and comprehensive and
selective lists of important inputs, on the accuracy of decisions, deviation from
system recommendations, and trust.39 The relationship between explanations and
correct decision making is not conclusive.40

Policy debates, like the majority of research on interpretable systems, envision
explanations as static.41 Yet, the responsive and dynamic tailoring at which machine
learning and AI systems excel could allow explanations to respond to the expertise
and other context-specific needs of the user, yielding decisions that leverage, and
iteratively learn from, the situated knowledge and professional expertise of users.

16 (4): 266–75 (identifying three ways invisible values manifest in technical systems – to hide immoral
behavior, gap-filling during engineering that invisibly embeds coders’ value choices, and through
complex calculations that defy values analysis); Burrell, Jenna. 2016. “How the Machine ‘Thinks’:
Understanding Opacity in Machine Learning Algorithms.” Big Data & Society 3 (1): 1–13 (describing
three forms of opacity in corporate or state secrecy, technical illiteracy, and complexity and scale of
machine-learning algorithms).

38 Nunes, Ingrid, and Dietmar Jannach. 2017. “A Systematic Review and Taxonomy of Explanations in
Decision Support and Recommender Systems.” User Modeling and User-Adapted Interaction 27 (3–
5): 393–444 (reviewing approaches to explanations in “advice-giving systems”); Bussone, A.,
S. Stumpf, and D. O’Sullivan. 2015. “The Role of Explanations on Trust and Reliance in Clinical
Decision Support Systems.” In 2015 International Conference on Healthcare Informatics, 160–69.

39 Bussone et al. 2015, supra note 38.
40 Id. at 161 (describing different research finding explanations leading to better and worse decisions).
41 Abdul, Ashraf, Jo Vermeulen, Danding Wang, Brian Y. Lim, and Mohan Kankanhalli. 2018. “Trends

and Trajectories for Explainable, Accountable and Intelligible Systems: An HCI Research Agenda.”
In Proceedings of the International Conference on Human Factors in Computing Systems, 1–18CHI ’18
(research review concluding that the explainable AI research community generally produces static
explanations focused on conveying a single message and recommending that research explore
interactive explanations that allow users to more dynamically explore and interact with algorithmic
decision-making systems); but see also Nunes, Ingrid, and Dietmar Jannach. 2017. “A Systematic
Review and Taxonomy of Explanations in Decision Support and Recommender Systems.” User
Modeling and User-Adapted Interaction 27 (3–5): 393–444, p. 408 (describing research on interactive
explanations that engage users by providing a starting point and allow them to probe systems through
“(i)what-if (what the output would be if alternative input data were provided); (ii)why (why the system
is asking for a particular input); and (iii) why-not (why the system has not provided a given output)”
approaches).
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The human engagement contestable systems invite would align well with regulatory
and liability rules that seek to keephumans in the loop. For example, theFood andDrug
Administration is directed to exclude from the definition of “device” those clinical
decision support systems whose software function is intended for the purpose of:

supporting or providing recommendations to a health care professional about
prevention, diagnosis, or treatment of a disease or condition; and enabling
[providers] to independently review the basis for such recommendations . . . so that
it is not the intent that such [provider] rely primarily on any of such recommendations
to make a clinical diagnosis or treatment decision regarding an individual patient.42

By excluding systems that prioritize human discretion from onerous medical-device
approval processes, Congress shows its preference for human expert reasoning.
Similarly, where courts have found professionals exhibiting overreliance on tools,
they have structured liability to foster professional engagement and responsibility.43

Systems designed for contestability invite engagement rather than delegation of
responsibility. They can do so through both the provision of different kinds of
information and an interactive design that encourages exploration and querying.

Professionals appropriate technologies differently, employing them in everyday
work practice, as informed by routines, habits, norms, values and ideas and obliga-
tions of professional identity. Drawing attention to the structures that shape the
adoption of technological systems opens up new opportunities for intervention.
Appropriate handoffs to, and collaborations with, decision-support systems demand
that they reflect professional logics and provide users with the ability to understand,
contest, and oversee decision making. Professionals are a potential source of govern-
ance for such systems, and policy should seek to exploit and empower them, as they
are well-positioned to ensure ongoing attention to values in handoffs and collabora-
tions with machine-learning systems.

Regulatory approaches should seek to put professionals and decision support
systems in conversation, not position professionals as passive recipients of system
wisdom who must rely on out-of-system mechanisms to challenge them. For these
reasons, calls for explainability fall short and should be replaced by regulatory
approaches that drive contestable design. This requires attention to both the infor-
mation demands of professionals – what they need to know such as training data,
inputs, decisional rules, etc. – and processes of interaction that elicit professional
expertise and allow professionals to learn about and shape machine decision
making.

42

21 U.S.C. § 360j(o)(1)(E)(ii)-(iii) (2016); the term “device” is defined in 21 U.S.C. § 321(h).
43 Aetna Cas. and Sur. Co. v. Jeppesen & Co., 642 F.2d 339, 343 (9th Cir. 1981) (rejecting district court

finding that pilots who relied on map that was defectively designed (showing topographical and
elevation in distinct scales) were not negligent, because it would endorse a standard of care that would
consider “pilot reliance on the graphics of the chart and complete disregard of the words and figures
accompanying them” “as reasonable attention to duty by a pilot of a passenger plane” and opting
instead to apportion fault).
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Contestable Design Directions

Contestable design is a research agenda, not a suite of settled techniques to deploy. The
question of what information and interactions will prompt appropriate engagement and
shaping of a predictive coding system by professionals is likely to be both domain- and
context-specific. However, there are systems in use and under development that support
real-time questioning, curiosity, and scrutiny of machine learning systems’ reasoning.
First,Google’s People andAIResearch (PAIR) Initiative’s “What-if Tool” is an actual tool
that allows users to explore a machine-learning model. For example, users can see how
changes in aspects of a dataset influence the learned model, understand how different
models perform on the same dataset, compare counterfactuals, and test particular
operational constraints related to fairness.44 Second, LIME (Local InterpretableModel-
agnostic Explanations), which generates locally interpretable models to explain the
outputs of predictive systems, and SP-LIME, which builds on LIME to provide insight
into the model (rather than a given prediction) by identifying and explaining a set of
representative instances of the model’s performance, offer information that, if presented
to users, could inform their interaction with the model.45 While the tools themselves
focus only on surfacing information about decisions and models, if integrated with an
interactive user interface, they could promote the explorations of predictions andmodels
necessary for sound use of predictive systems to inform professional judgement.

Other research is exploring the ways in which structured interaction between
domain experts and predictive models can improve performance.46 There are two
distinct approaches. One approach enables interaction during the development
process. Here, the machine-learning training process is reframed as an HCI task,
allowing a set of users the ability to iteratively refine amodel during its conception.47

In contrast to interaction during the development process, the second approach has
focused on ways in which subject matter experts, with domain-specific knowledge,
can interact with predictive systems that have already been developed in real time to
invoke collaboration, exploration of data, and introspection.48 At the very least,

44 Wexler, James. 2018. “The What-If Tool: Code-Free Probing of Machine Learning Models.” Google
AI Blog (blog). September 11, 2018. http://ai.googleblog.com/2018/09/the-what-if-tool-code-free-
probing-of.html. For the tool’s code repository, see https://pair-code.github.io/what-if-tool/.

45 Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. 2016. “‘Why Should I Trust You?’:
Explaining the Predictions of Any Classifier.” In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 1135–144. KDD ’16.
New York: ACM.

46 Micallef, Luana, Iiris Sundin, Pekka Marttinen, Muhammad Ammad-ud-din, Tomi Peltola,
Marta Soare, Giulio Jacucci, and Samuel Kaski. 2017. “Interactive Elicitation of Knowledge on
Feature Relevance Improves Predictions in Small Data Sets.” In Proceedings of the 22nd
International Conference on Intelligent User Interfaces, 547–52. IUI ’17. New York: ACM.

47 Dudley, John J. and Per Ola Kristensson. 2018. “A Review of User Interface Design for Interactive
Machine Learning.” ACM Transactions on Interactive Intelligent Systems 8 (2): 8:1–8, 37.

48 Chander, Ajay, Ramya Srinivasan, Suhas Chelian, Jun Wang, and Kanji Uchino. “Working with
Beliefs: AI Transparency in the Enterprise.” In Explainable Smart SystemsWorkshop, Intelligent User
Interfaces. 2018.
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ensuring that decisions about things such as thresholds are decided by professionals
in the context of use (and remain visible to those using the system), rather than set as
defaults, can support greater engagement with predictive systems.

conclusion

Contestability allows professionals, not just data, to train systems. In doing so,
contestability transfers knowledge about how the machine is reasoning to the
professional, and it allows the professional to collaborate, critique, and correct the
predictive algorithm. While relevant professional norms, ethical obligations, and
laws are necessary, design has a role to play in promoting responsible introduction of
predictive ML/AI systems in professional, expert domains. Such systems must be
designed with contestability in mind from the outset. Designing for contestability
has some specific advantages compared to rules and laws. Opportunities to reflect on
the inputs and assumptions that shape systems can avert disasters where they mis-
align with the conditions or understandings of professional users. Reminders of
professional responsibilities and potential risks of not complying with them can
prompt engagement before undesirable outcomes occur. Contestable design can
confer training benefits allowing users to learn through use. Finally, it can be used to
signal the distribution of responsibility from the start rather than relying solely on
litigation to retrospectively mete it out in light of failures. Contestability can foster
professional engagement with tools rather than deferential reliance. To the extent
the goal is to yield the best of human-machine knowledge production, designing for
contestability can promote the responsible production of knowledge with machine
learning tools within professional contexts.
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