J. Aust. Math. Soc. 78 (2005), 323-338

WEYL QUANTIZATION AND A SYMBOL CALCULUS FOR
ABELIAN GROUPS

N. J. WILDBERGER
(Received 8 February 2003; revised 20 October 2003)

Communicated by A. H. Dooley

Abstract

We develop a notion of a x-product on a general abelian group, establish a Weyl calculus for operators
on the group and connect these with the representation theory of an associated Heisenberg group. This
can all be viewed as a generalization of the familiar theory for R. A symplectic group is introduced and
a connection with the classical Cayley transform is established. Our main application is to finite groups,
where consideration of the symbol calculus for the cyclic groups provides an interesting alternative to the
usual matrix form for linear transformations. This leads to a new basis for sl(n) and a decomposition of
this Lie algebra into a sum of Chrtan subalgebras.

2000 Mathematics subject classification: primary 44A45 17B05 11F27.

1. Introduction

In this paper we show that a certain circle of ideas related to harmonic analysis on R
has a natural generalization to any locally compact abelian group satisfying a certain
parity requirement. The topics with which we are concerned are:

(1) the Weyl calculus for pseudo-differential operators on R (see for example Hor-
mander [5]);

(2) the Moyal product, or *-product, for functions on T*R (see Bayen et al. [2],
Moyal [9]); and

(3) the convolution structure on the Heisenberg group.

The close connection between these subjects has been described in Howe [6, 7],
Grossman, Loupias and Stein {4], Folland [3] and Lion and Vergne [8]. We wish here
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to point out that these three theories can be built around any locally compact abelian
group subject to a certain parity condition. This parity condition is satisfied by R
but not by the circle group, which is an explanation for why there is no good symbol
calculus for the latter. More generally, the crucial condition is that multiplication by 2
ought to be an automorphism of the group. For a finite abelian group, this simply
requires that the order of the group be odd. The significance of this factor 2 was
already mentioned in Howe [6, 7]. For quite another approach using Kac algebras,
see Aldrovandi and Saeger [1].

To avoid technicalities, we restrict our attention to the case of G a finite abelian
group; since our formulae hold in general however, we have used integrals instead of
sums throughout.

We begin by considering the group G=GxG (following Weil [10]) and its
unique Haar measure. We show there is a canonical algebra structure on the space of
functions on G which is given by an integral formula similar to one which may be
used to define the Moyal product on T*R.

Furthermore, if |G| = n is odd (which we henceforth assume) then there is a
canonical identification of such functions as symbols of operators on C(G) so, that
this algebra structure corresponds to operator multiplication. -

This shows that abstractly C (G) is isomorphic to M (n, C). Subgroups of G are
shown to naturally lead to subalgebras of M (n, C).

The above algebra structure is related to the representation theory of an associated
Heisenberg group which we define. We study the associated oscillator representation
of the symplectic group which arises as ‘quadratic’ symmetries of C( G) and show
how the familiar Cayley transform arises in a natural way when we derive formulae
for this representation. We are here combining well known ideas from the special case
G = R (as found, say, in Howe [6] or Lion and Vergne [8]) with the general approach
of Weil [10].

It is perhaps useful to point out the direction of the applications we have in mind.
The idea of representing a linear transformation of R" by a matrix with respect to an
ordered basis permeates much of modern mathematics. This is simply one convenient
way of encoding n? bits of information and corresponds to viewing the matrix as
a function on Z, x Z,. However in infinite dimensional functional analysis it is
occasionally useful to encode an operator (say, on LZ(R)) by its symbol. In the
finite dimensional case, this corresponds to representing a linear transformation by a
function on Z,, x 2,,. This is an entirely equivalent formulation—strictly speaking no
information is either lost or gained. There will be situations in which such a symbol
representation of an operator poses distinct advantages to the matrix representation.

As an application therefore we consider the cyclic group and give an associated
symbol calculus for n by n matrices, culminating in a new decomposition of the Lie
algebra sl(n) into a sum of Cartan subalgebras.
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2. Notation and preliminaries

For any finite set S, denote the space of complex-valued functions on S by C(S).
If S has measure ds, introduce the inner product (-, -) on C(S)

(i fo) = / FOFG)ds, Vfif2 € C(G),
s

and let §; € C(S) be the function such that

/ 5,()f (s)ds' = f (s), Vf € C(S).
S

If S;,S,aresetsand o : §; — S; amap, let a = ao o forall a € C(S5;). We let
Perm(S) denote the group of permutations of the set S.

Now let G be a finite abelian group with |G| = n and with typical element x,
operation addition and identity 0. Let G be the dual group with typical element Y
and denote the pairing between x € Gand Y € G by (Y, x). Let dx denote a Haar
measure on G (unique up to a constant).

The Fourier transform " : C(G) —» C (6) is given by

f“(Y):f (Y, x)f (x)dx, VYf € C(G).
G

Normalize Haar measure dY on G so that the inverse ¥ of the Fourier transform is
given by

R (x) =/A(Y,x)h(Y)dY, Vh € C(G).
G

Then both the Fourier transform and its inverse are unitary operators. Forx € G,
let * denote the element of C (G) given by x ( Y) = (Y,x). The map x — % provides
us with a natural identification of G and G. For a general locally compact abelian
group, there is of course no isomorphism between G and G but when G is finite there
is, although it is not unique. This follows from the basic structure theorem that states
that any finite abelian group is isomorphic to a direct product of cyclic groups along
with the obvious fact that the dual of the cyclic group Z, is itself isomorphic to Z,,.

Let G = G x G with typical element z = (x, Y) and Haar measure dz = dxdY.
Note that this measure is canonical; it is independent of the original choice of dx. In
fact, f z dz = |G| = n. Furthermore we find that with these normalizations &,,(z) is
the function of z that is zero unless z = z,, in which case it is | G] = n. From this also
follows the useful formula

[ (2, 21) dz = Bo(z1)
G
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which we will use throughout. G also has the canonical function e(x, V) = (Y, x).
Now (5)": G x G with typical element Z = (Y, x) and Haar measure d Ydx. Define
T: (5)"—» G by t(Y, x) = (x, —Y). Then 7 is a canonical isomorphism from (5)A
to G.

Forz; = (x;, Y) € G, i = 1,2, define (z1, 22) = (1, x2){¥2, x1). For k > 2 and
=@, Y) e G, i=1,...,k, define (z, ..

) = (2, 22) - {zk-n ) (2 )
It is evident that for all k > 2, (z1, 22, ..., %) = (%, ..., 22, 21) and for k > 2 the
expression (z;, ..., z) is invariant under cyclic permutations of the z;’s.

~

Forz € G, let 2 € C(G) be defined by 2(z') = (z, 7) forall 7’ € G.

3. The #-product

We will be interested in a particular algebra structure canonically defined on C (G).
For a,, a; € C(G), define a, * a; € C(G) by

a; * a(z3) =/:/:(21,Z2,23)01(21)a2(22) dzidz;, Yz € G.
cJe

THEOREM 3.1. (C (5), %) is an associative algebra with identity the constant func-
tion 1.

PROOF. Let a;, a3, a3 € C(a). Then forall z; € 5

(a1 * a3) * a3(z4) = / "'/(Zh 22, 2)(2, 73, w)a1(z1)ax(z2)as(z3) dzy dzy dza dz,

G G
while
a; * (ay * a3)(24) =/:--~ﬁ(2n,z,a)<22,23,z)ax(zl)az(Zz)as(a)dzl dz;dz3dz.
G G

Thus associativity of * is equivalent to the validity for all z;, 2,23, 24 € G of the
equation

/:(zhz:,z)(z,z:s,24>dz= /~(zl,z,a)(22,23,z) dz.

Fel el
Now

/~(zhz:,z)(z,23,24) dz=f<zl,22)(Z3,Z4)(z,z; -+ —u)dz

G I

=8,(z1 — 22+ )21, 22, 23)

= /(24, azn Mz, zn — 22+ 23 — ) dz

G

= /(Zl, Z, 24)(129 23, Z) dZ

G
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which proves associativity of *.
Fora € C(G)and zz € G,

ax*1(z;) = /:/JZlv 22, z3)a(z) dzdzy
GJG
= /:ﬁ(221 23 _Zl>(z3, Z])d(Zl)dZ] dZZ
GJG
G

Similarly 1 % a = a forall a € C(G).

The computation in the above theorem also shows the following.

PROPOSITION 3.2. For z;, 22,23 € G, 8, %8, ¥6,, = (21, 22, 23)6

-+
LEMMA 3.3. Fora,, a; € C(a), @k a; = a,  a.
PROOF. For z; € 5,
@ * a1(z3) = /;L(Zly 2, )@ (z)ai(z) dz1dz,

=/:[(22,21,Zs)al(ll)az(lz)d21 dz,
GJG

:[_/_:(Zl,ZZ,ZB)al(ZI)aZ(ZZ)dZI dzy = a; * a(z3).
cJe

= /:80(23 — a){z3, z1)a(z) dz) = a(z3).

327

where 7, =

a

LEMMA 34. Ifa; € C(E;) and a;(x, Y) = a;(x), i = 1,2 then a; x a; = aya;. The

same holds ifa;(x, Y) = a;(Y), i = 1,2

PROOF. Suppose that a;(x, ¥) = a;(x). Then for z3 = (x3, ¥3) € G,

01*02(23)=/ﬁ/‘/A(thz*‘xa)(yz,xs—Xl)(YLxl—xz)
¢JeJcle

X al(xl)az(xz)le dX] dY2 de

= / f So(x2 — x3)80(x3 — x1) (Y3, x1 — x2)a  (x1)az(x2)dx; dx;
¢Ja

= ay(x3)az(x3).

PROPOSITION 3.5. Forz;, 22 € G, 721 ¥ 2 = {22, 21)(z1 + 22)"
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PROOF.
2 *Ez(Z3)=/~f~(z§,z;,23)(zl,z{)(22, 2;)dz, dz;
GVvG

= /:50(23 — 23 — 21){23, 23){(22, 23) d2)
G
= (21, )22, 21 + 23) = (22, 1)1 + 22)"(23). O

COROLLARY 3.6. Forz € G and a € C(G),
(1) zxa(@) =272(zNa(@ + 2); N
() axz2(Z)=72(Na@ —z2) forall7 € G.

PROOF. Proposition 3.5 shows the formulae hold when a = Z, for z5 € G and thus
generally since {Zy]|zo € G} spans C(G). O

Proposition 3.5 provides us with a ready supply of subalgebras of (C (5), x), for
if H is any subgroup of G it follows that the span of {Z | z € H} is a subalgebra
of C(G).

PROPOSITION 3.7. Fora,, a; € C(E;), (aj, @) = fa a, * a;(z) dz.

PROOF.

/~al *52(Z)d2=/;‘/;/~(Zl,Zz)(Zz,Z)(Z,Zl)al(Zl)az(Zz)dzl dzydz
GJGJG

G

=/:_/:50(21 — {21, 2)ai(z)ax(z2) dzy dz;
&JG

= /:_al(zl)aZ(Zl)le = (a;, @). O

G

From Proposition 3.7 and Lemma 3.3 one easily obtains the following.

PROPOSITION 3.8. For a;, az, a3 € C(G),

() fra1*a(z)dz = [z a, x ai(2) dz;
(2) (a1, a; % a3) = (a; * a3, @m);
(3) (a1 * a3, a3) = (a3, a, * a3).

There are a number of other algebra structures on C (5) that can be derived from
the *-product. Suppose for example that ¢ is a permutation of G. For 4y, a;, € C(G)
define a, *, a; € C(G) by a, *, a; = (a] * ag)”_'. Then for all z; € G,

a; *, a3(z3) = [ﬁ(U(Zl), 0(22), 0(z3))a1(z1)ax(z2) dz, dza,
cJG
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and the algebra structure *, is isomorphic to *. In particular if ¥k € Z and k and
|G| = n are relatively prime, then the map o ((x, Y)) = (kx, Y) is a permutation of G
and we have

ay %, ;(73) = /;/;(21»22,23)’(01(21)612(22) dz1dz.
GJG

In this case we will write %, as ;. Then k plays the role that Planck’s constant %
plays in the theory of the *-product for R. It is easily seen that the constant function 1
is the identity for all %, and that for z;, z; € G, Proposition 3.5 becomes

2% 22 = (2 a/ k)@ + 22) = (z/k, 21) (21 + 22)5

where z — z/k is the inverse map to z — kz. The case k = 2 will be of special
importance for what follows.

4. The symbol calculus

Define a locally compact abelian group G to be odd if the map x — 2x is an
automorphism of G. Then for example R is odd while the unit circle S! is not. A
finite abelian group G is odd if and only if |G| = n is odd. Throughout this section
we will assume that the finite abelian group G is odd, so that x /2 is well-defined for
allx € G.

For a € C(G), define W* : C(G) — C(G) by

@n W)= / ] (Y, x' = x)a((x +x)/2, Y')f () dx' dY
GJG

for all f € C(G) and x € G. This is essentially the same formula as used in R to
define an operator from a ‘Wey!l’ symbol. The following facts are immediate.

LEMMA 4.1. (1) Ifa(x,Y) = a(x), then W* is multiplication by a(x).
2) Ifa(x,Y) = a(Y) then W* is multiplication by a(Y) on the Fourier transform
side.
(3) Ifa =1then W is the identity.

PROPOSITION 4.2. For a € C(G) the adjoint of W* is W2.

PROOF. Let a € C(G) and f1, f2 € C(G). Then

(WeF1, fo) = / f / (Vo x' = x)a((x + x)/2, V)1 a0 dx’ d Y dx
GJGJIG

B / /:/f‘(x/)(y',x —xYa((x +x)/2, Y)f2(x)dx dY dx’'
¢JeJa
= (f1, Wof). O
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Iface C(a), then a® € C(a x () so that reversing the roles of G and Gin 4.1
we may regard W as an operator from C(G) to C(G).

PROPOSITION 4.3. Fora € C(G) letb=a*"' € C((G)). Then forall f € C(G),
(Wef)'= Wof”,

PROOF.
(W"f)‘(Y)=/Gfa/GW(Y',x'—x)a((xﬂ')/z, Y)f (x)dx'dY' dx
=L/@W(Y'—,x)a(x/2, YV (=2Y = Y)dY dx.
Replace Y’ with (Y’ — Y)/2 to get
ey = [ [Tz a/2, (= Dy ay ds.
Finally replace x with 2x and ¥’ with — Y’ to get
(Wf)(Y) =//jY’— Y,x)a(x,—(Y' + Y)/2)f (Y)dY' dx
= v:/;b(;‘)()f). O
PROPOSITION 4.4. For z = (xo, Yo) € G and f € C(G),
Wif (x) = (Yo, %0/2)(Yo, x)f (x +x0) Vx €G.
PROOF.
wff(x)=/6/c<y',x’—x>(yo, (x +x)/2){(Y", xo)f (x'ydx'dY’

- / Sox’ — x — xo) (Yo, (x + x)/2)f (') dx’
G
= (Y, x) (Yo, x0/2) f (x + Xo). O

We will be interested in recoveringa € C (5) from a knowledge of W°. For Y € G
andx € G,

WY (x) =/A/(Y’,x’—x>a((x+x’)/2, Y)Y, x')dx' dY’
GJG
=/;/(Y/,X'—Zx)a(x'/2, Y)(Y,x' —x)dx'dY
GJG

= (Y,x)/:/(Y',fo'—Zx)(Y,?.x')a(x', Y)dx'dY'.
éJe
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Then if we define ¢, € C(a) by ¢c;(z) = ¢c,(x, Y) = W?Y(x) then

caz) = e(@) / (', —22)(a)(Z) d7 .
G

Taking the Fourier transform gives

ea(?') = f~ (22, 2) (eca)(z) dz.
G
We have proven the following.

PROPOSITION 4.5. Let T : C(G) — C(G) be any linear operator. Define dr €
C(G)bydr(x,Y)=TY(x). Then T = W? where

a(z) = 52(2)/~(2z, e(?)dr(Z)d7 .
G

COROLLARY 4.6. The map a — W*° is a linear isomorphism from C(G) tb
End(C(G)).

We now relate the x-product to the algebra structure on C (G) arising from its
identification with End (C(G)).

THEOREM 4.7. For a,b € C(G), suppose WoW? = W¢, ¢ € C(G). Then ¢ =
a*zb

PROOF. For (x, ¥) € G,
W"W”Y(x):////(Y’,x’—x)a((x +x/2, YY", x" — x')
GJGJGJG
x b((x"+x")/2, Y')(Y,x"ydx"dY"dx'dY'.

Then from Proposition 4.5, for (x;, ¥}) € 5,

(honet, 1 = [ [ @RATTRIERF . =0 =)0,
xGa((x ix')/Z, Y)o((x' +x")/2, Y")dx"dY"dx'dY'dx dY.
Replace x” with x” — x' to get
(Y, x))2c(xy, Y1)
/ ] Y, )Y, x )Y, x) (Y, x" = x) (V' x" = 2X') (Y, x" — x")
x a((x +x)/2, Y’) ( "2, Y")dx"dY"dx"dY' dx dY.
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Replace x” with x’ — x to get
(Yl’xl)zc(xlv h)
=ﬁ---/(ﬂ’],x}W(Y,x)(Y’,x'—2.x)(Y”,x”—2x'+2.x)
Y, x" —x +x)a(x /2, Y)b(x"/2,Y")dx"dY"dx'dY dx dY
/ /(ZY,, XY, x) (Y, 2x" — 2x)(Y", 2x" — 4x" + 2x)

(Y,2x" —2x' +xYa(x', YYb(x", YYdx dY dx'dY dx"dY".

After integrating with respect to Y and x and cancelling terms, we obtain

c(x,,Y,)=ﬁfﬁf(zn,x'—x")(zY',x"—x1><2Y",x1—x'>
GVGJVGJIG

x a(x', Y)b(x", Y)dx' dY dx"dY" = a *, b(x,, 11). O

COROLLARY 4.8. If G is an odd finite abelian group, then (C (5), *) Is isomorphic
to the algebra of n x n matrices.

PROOF. This follows from Theorem 4.7 and the observation in Section 3 that if G
is odd, then (C(G), *) and (C(G), *;) are isomorphic. O

For a general abelian group G, (C (5), *) is isomorphic to a direct sum of matrix
algebras (this actually follows from the results of Section 3). However if G is not
odd there will generally be more than one component in this sum. For example if
G = Z; x --- x Z, then one may check directly that (C (5), *) is a direct sum of
1-dimensional algebras, and therefore abelian.

5. The Heisenberg group

Throughout this section G will be an odd finite abelian group. Let S be the subset
of the unit circle ' € C given by S¢g = {(Y,x) | Y € G, x € G}.

LEMMA 5.1. S¢ is a subgroup of S'.

PROOF. Supposethat G ~ Z,,, x - -+ x Z,,,. Then S consists of all complex numbers
of the form y, - - - y; with y; an n;th root of unity. This is clearly a subgroup of S*.
a

Any finite subgroup of S' is cyclic. Let |Sg| = m, so that S; consists of all mth
roots of unity. If G >~ Z,, x - -- x Z,, then m is the least common multiple of the n;’s,
i=1,...,1 It follows that for any k € Z, (k, m) = 1 if and only if (k,n) = 1.
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Let Hg = G x S¢ and introduce a multiplication in Hg by

@i, 7)) - (2, 2) = @ + 22, iV {z2/2, ).

Then Hg; is a finite nilpotent group with identity (0, 1) and centre

Zg={0,y) |y € Sg} = S¢.

We call Hg the Heisenberg group of G.

Suppose that p is any irreducible unitary representation of Hg. Then Zg acts as
scalars so there is a character y of Zg such that p(y) = x () forall y € Zs. Since
any character x of Zg >~ S; is given by x(y) = y* forsome k € Z,0 < k < m, we
may separate the unitary dual (Hg) of Hg into m components

m—1
(Ho) = | J(Ho),
k=0

with p € (Hc)Ak if and only if the central character of p is y — y*.
For0 <k < m,let

C(Ho) = (¢ € C(Ho) | $(vh) = y*¢(h) Vy € Zg, h € Hg).

Then we have the orthogonal decomposition C(Hg) = ;":'01 C(Hg)rand p € (HG);
if and only if all the matrix coefficients of p belong to C(Hg), (recall that a matrix
coefficient of p is a function on Hg of the form A — (po(h)v, w), where v, w are
vectors in the space of p).

PROPOSITION 5.2. There is (up to equivalence) exactly one representation in (HG):.
It acts on C(G) and is given by p\(z, y) = y Wi

PROOF. It is easy to check that p; is a unitary representation of H;. Since
{z | z € G} spans C(G) the representation is irreducible and clearly belongs to (H),.
Now since the space of matrix coefficients of p; is n? dimensional it exhausts C(Hg),.
Thus there are no other representations in (Hg);. O

6. The symplectic group and the oscillator representation

G is a finite abelian group with additional structure determined by the ‘form’
{(-,-). Let Hom(a) denote the ring of homomorphisms o : G — 5, and Aut(f;) the
subgroup of automorphisms. Forany o € Aut(a), there is aunique o* € Aut(G) such
that (0*z, 22) = (71, 02;) forallz;, 2, € G.In analogy with the case G = R we define
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the symplectic group Sp( G) to be the set of automorphisms o of G which preserve
(-, -), that is the set of 0 € Aut(G) such that o* = o~!. It follows immediately that
foro € Sp(G),

(6.1) a® *b° = (axb)°, Va,be CG),

so that %, = *.

Let Perm(G *) denote the group of permutations o of G Wthh satisfy (6.1).
Clearly Sp(G) is a subgroup of Perm(G %) and we may cons1der G as contained in
Perm(G, *) if we identify z € G with the permutation 6, of G given by

(6.2) 0.(Z)=7+2z VZeG.
THEOREM 6.1. Perm(G, *) = G x Sp(G).

PROOF. G N Sp(G) contains _]llSt the identity and Sp(G) normahzes G. It thus
suffices to show thatif o € Pcrm(G ¥)and 0(0) =0,theno € Sp(G)
First note that (6.1) is equivalent to the condition

(021,022,023) = {21, 22, 13), V21,22, 23 € G.
Setting z; = 0 and using the condition o (0) = 0 shows that
(UZ], UZZ) = (Zla ZZ)! les 2 € G'

We thus need only show that o is a homomorphism. Recall that every character of G
is of the form z for some z € G. Then the computation
R)° (@) =2(07) = (z,07)
=(07'2,7)=(7"2)'(), VZeGC

shows that the map x — x° permutes the characters of G.
Now let z1, 22, z3 € G. Then since characters separate points of an abelian group,

uz =23 &= x(@)x (@) = x(23), Vx € (G}
= X @)X @) = x° @), Vx € (G}
= x(o)x(02n) = x(0z3), Vx € (G
<> (021)(02;) = 0z3. a

If o € Perm(G, *) then Proposition 3.7 shows that o preserves the inner product
(-,+) on C(G). Now suppose that G is odd. Then Perm(G, %) acts as a group of
automorphisms of the Hilbert algebra (C(G), *,) which we have seen is isomorphic
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to M (n, C). Now any automorphism of M (n, C) which preserves the Hilbert space
structure must be conjugation by a unitary matrix. Thus for each . € Perm(G, %) we
can find ¢, € C(G) such that forall b € C(G)

Cu*2b 42T, = b(u(2)), VzeG.
Furthermore ¢, is unique up to a multiplicative constant of modulus one. We may re-
state this by saying that £ — W* is a projective unitary representation of Perm(G, *)

which we call the oscillator representation. For p € Sp((~7), the correspondence
u — ¢, involves a ‘Cayley transform’.

THEOREM 6.2. Suppose G is odd. Let u € Sp(a) and suppose that 1 + n €
Hom(G) is invertible. Define C(n) = (1 — n)/(1 + ). Then c,(z) = (z, C(1)z).

PROOF. For o € Hom(G), set a, (z) = (z, 0z) forall z € G. Then for b € C(G),

a *zb*zao(z)=/~/~ﬁ[(21,22)2(22,23)2(23,zl)2<zh021)b(Zz)

(z3, 2) (24, 2)%(2, 23) (024, 24) 21 2y dz3 d s

/f/ 21, 22) 50(21—Zz+Z4—'Z)(Z1,O'Z1)b(Zz)

(24, 2) (024, 24) d7y 72 d2s
/21, — ¥z, 02)b(z1 + 24 — 2) {24y 2)°

(024’ )dZI dZ4
Now make the change of variables r = z; + z4 and s = z; — z4 so that
u=0+5)/2, za=1(t—1s)/2.

The above integral then becomes

,[t+s t—s>2<t+s <t+s>
/afa(“) 2 ' T2 2 7\ 72 >
t—s\ t—s
< ( 5 ) 5 >b(t—z)dtds
//zs (s, 1) ><s,%{>b(t—z)dtds
=f~ao<t—2z— i Ut)b(t—z)dt
G
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Assume for the moment that 2 — 6* + o : G — G is invertible. Then we may solve
t=0Q2—-0*+0)""'42)
so that the above integral becomes simply

b((2—0* +0)7'(42) — 2) = b(z(2)),

where
24+0*—0 _1=(o0-0%)/2

= e WS T e o2

(@).

We have established that if o € Hom(&) with 2 — o* + o invertible, then for all
be C(Ef), a, *; b x3a,(z) = b(a(z)), where « is defined in terms of o above.

Now suppose that u € Sp (G) and that 1+ wis invertible. Letn = (1 —u)/(1+ ).
Then n* = —n. To see this, let z;, z; € G with z; = (1 + w)w;. Then

(nz1, z2) = (1 — wWw, (1 + p)ws) = (wy, pw,) (pw;, wy)

and similarly (z;, nz;) = (pwi, wy){wy, Lws) so the claim follows.

Consequently 2 — n* +n = 2 + 2n = 4/(1 + w) is invertible, so replacing o
in () with n we get that for all b € C(a), ¢, *2 b %3 C,(2) = b(a(z)), where
a(z) = (1 —-n)/(0+n = pn@). O

7. Systems of Cartan subalgebras for sl(n)

We now give some applications of our approach of regarding matrices from a
symbol point of view. To be very concrete, we work out some of the ramifications of
the preceding approach in the simplest possible case, that when G = Z3 = {0, 1, 2}.
The dual group G can also be regarded as Z3, where the pairing between k € G and
1€ Gis (k, 1) = ¥ where £ = ¢*i/3, Writing

G=GxG={zm=(k1)|0<kl<2)

we get (z;, zy) = &§/*7'. The space V = C(G) has basis {eo, e, e} where e,(j) = §,;.
We get from Proposition 4.4 the formula

Wae k) = (j,i/2)(, k)opus; = EHERD8_, = £10D e (k).

Thus Wi = £/+D¢_; where of course the subscripts are computed mod 3. We
will write W% = Wj;, an operator on V and let M;; denote the matrix of the operator
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in the basis {ey, e;, €;}. Here are these nine matrices:

1 00 1 0 0 1 0 0
010 0 £ O 0 £2 0
00 1] (00 8] oo &
Moo My, My,
[0 1 0] [0 & 0] [0 & 0]
0 01 0 0 1 0 01
1 00| [£ 0 o] |& o o]
Mo My, M,
[0 0 17 [0 O &7 [0 0 &%
1 00| &2 00| |g£0 0
o1 0] Lo 1 1] [01 of
My My My

We now record various properties of these matrices which follow from Section 6.

THEOREM 7.1. (1) B ={M; |0 <i,j <2} forms a basis of M(3, C).
(2) By = B\ My forms a basis of s1(3, C), the trace zero 3 x 3 matrices.
(3) Each M; is invertible, in fact unitary. Furthermore M = M_ ;.
4) MiMy =EXOM, i
(5) MyMyM;' =§IkMy,.

6) MUT =M_;.

(7) M,] = Mi,—-j'

(8) If we define M;; = M;; and extend to the entire algebra linearly, then (AB)° =
BeA°.

Some remarks are in order. We will shortly see that Property (2) is potentially
useful in Lie theory, where the fact that there is no ‘canonical’ basis of sl(n, C)
constructed from the usual basis E; (the matrix with a single 1 in the ij th position)
is always a source of some awkwardness. Property (4) show that pairwise the M
‘almost’ commute. Property (5) shows that conjugation by M; is diagonalized by the
subspaces (M,,). Properties (6) and (7) reveal a symmetry between the operations of
transposition and conjugation not so apparent in the usual formulation. Property (8)
reveals another transposition-like symmetry which is canonical in this basis.

We now point out a consequence of our discussions of subalgebras of C (G).
There are 4 subgroups of G of size 3, namely G; = {(00), (O1), (02)}, G, =
{(00), (11), (22)}, G5 = {(00), (21), (12)} and G, = {(00), (10), (20)}. To each
corresponds a 3-dimensional commutative subalgebra of C (5) = M (3, ©), spanned
by the corresponding matrices M;;. When we pass to g = sl(3, €) regarded as a Lie
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algebra, we get the decomposition

() g=h®h, ®@h: d b,

where b = (Mo, M), by = (My;, M), b = (M3, My3) and by = (Mo, My).
This implies an interesting decomposition on the group level as well. If H; is the
Cartan subgroup in G = SL(3, C) corresponding to §;, then it is natural to ask to
what extent does (x) extend to a decomposition of the form G = H, H, H; H,? It will
certainly hold in a neighbourhood of the identity.
The discussion here easily generalizes to sl(n). To what extent can we decompose
other simple Lie algebras as direct sums of Cartan subalgebras?
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