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Abstract

We present JKL-ECM, an implementation of the elliptic curve method of integer factorization
which uses certain twisted Hessian curves in a family studied by Jeon, Kim and Lee. This
implementation takes advantage of torsion subgroup injection for families of elliptic curves over
a quartic number field, in addition to the ‘small parameter’ speedup. We produced thousands
of curves with torsion Z/6Z⊕Z/6Z and small parameters in twisted Hessian form, which admit
curve arithmetic that is ‘almost’ as fast as that of twisted Edwards form. This allows JKL-ECM
to compete with GMP-ECM for finding large prime factors. Also, JKL-ECM, based on GMP,
accepts integers of arbitrary size. We classify the torsion subgroups of Hessian curves over Q and
further examine torsion properties of the curves described by Jeon, Kim and Lee. In addition, the
high-performance curves with torsion Z/2Z⊕Z/8Z of Bernstein et al. are completely recovered
by the Z/4Z ⊕ Z/8Z family of Jeon, Kim and Lee, and hundreds more curves are produced
besides, all with small parameters and base points.

1. Introduction

The elliptic curve method (ECM) [17] for factorization of integers is used for finding ‘small’
factors of composite integers, which are difficult to factor by other methods.

We wish to investigate the use of Hessian curves, and a particular subclass consisting of
curves arising in families described by Jeon, Kim and Lee (JKL) [15], in ECM. These curves
have a large torsion subgroup over a quartic number field, which yields an improvement to
ECM as outlined in [5, § 6], for curves over Q, and [9, § 5] for curves over quartic number fields
(also referred to in [11]). In particular, we focus on JKL curves that have torsion subgroup
Z /6Z⊕Z /6Z and Z /4Z⊕Z /8Z over a quartic number field.

We are able to generate a large number of suitable JKL curves with small parameters and
positive rank. Specifically, in the Z /6Z⊕Z /6Z case, we are able to generate over 8000 curves
in a short time. These curves have a natural representation in twisted Hessian form, and all our
curves have a point of infinite order with small height, and small parameters, two things that
combine to yield a speedup for scalar multiplication for this class of curves. We present the
details in § 3. The larger number of curves facilitates finding large factors and setting records
for ECM. In § 4 we study the torsion subgroup of Hessian curves and JKL curves over Q and
over the relevant quartic extension of Q. We present our implementation of ECM using these
JKL curves, and compare timings, in § 5.

Along the way we briefly mention JKL curves that have torsion subgroup Z /4Z⊕Z /8Z, but
these are not the primary focus of this paper, as in practice they are not generated as quickly
as the Z /6Z⊕Z /6Z family. However, we did generate over 700 curves in twisted Edwards
form with torsion Z /4Z⊕Z /8Z, and small parameters, and point of infinite order with small
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height, and surprisingly these include the 25 highest-performance curves found by [5]. These
700 curves can be used directly in EECM-MPFQ.

2. Elliptic curves

Let K be any field. The (short) Weierstrass form of an elliptic curve over K is y2 = x3 +ax+b
where a, b ∈ K.

For an elliptic curve E defined over K we use the notation E(K) for the group of K-rational
points, and E(K)[m] denotes the subgroup of m-torsion points.

2.1. Edwards form

An Edwards curve [12] over K is a curve defined by the equation

Ed : x2 + y2 = 1 + dx2y2,

where d ∈ K\{0, 1}.
Let a, d ∈ K be distinct, nonzero elements. The twisted Edwards curve [4] is the curve

Ea,d : ax2 + y2 = 1 + dx2y2.

Every twisted Edwards curve is birationally equivalent to a curve in Weierstrass form.
The identity is (0:1:1) and the inverse of P = (X:Y :Z) is −P = (−X:Y :Z).

2.2. Hessian form

A projective twisted Hessian curve over K has the form

Ha,d : aX3 + Y 3 + Z3 = dXY Z (2.1)

and specified point (0:−1:1), whenever a, d ∈ K, a(27a− d3) 6= 0. A Hessian curve is a twisted
Hessian curve that has a = 1. See [7] for further details on twisted Hessian curves.

One can transform back and forth between Hessian curves and twisted Hessian curves
(see [7]). Throughout this paper, all theoretical results will refer to Hessian curves, while
the implementation will transform the Hessian curve into a twisted Hessian and work with
twisted Hessian curves. This is because retaining two parameters a and d allows both to be
small and yields faster arithmetic.

2.3. The JKL families

2.3.1. JKL torsion family Z /6Z⊕Z /6Z. Here we state a theorem of [15] which allows
the generation of curves with Z /6Z⊕Z /6Z torsion over the given quartic number field.

Theorem 2.1. Let K = Q(
√
−3,
√

8t3 + 1), with t ∈ Q and t 6= 0, 1,− 1
2 , and let Eµ be an

elliptic curve defined by the equation

Eµ : y2 = x3 − 27µ(µ3 + 8)x+ 54(µ6 − 20µ3 − 8)

where

µ =
2t3 + 1

3t2
.

Then the torsion subgroup of Eµ over K is equal to Z /6Z⊕Z /6Z for almost all t.
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We can easily write down the equation for these curves in twisted Hessian form. The
parameter µ above is actually already the parameter of the Hessian curve

X3 + Y 3 + Z3 = 3µXY Z

We let d/a = 3µ, where d ∈ Z \{0, 1}, a ∈ Z \{0} are coprime. To get a twisted Hessian curve
we simply ‘twist’ the Hessian curve having parameter d by a to get

EH : aX3 + Y 3 + Z3 = dXY Z.

To find a point (x, y) on EH from an affine point (u, v) on Eµ we compute

x =
36(µ3 − 1)− v

6(u+ 9µ2)
− µ/2,

y =
v + 36(µ3 − 1)

6(u+ 9µ2)
− µ/2.

2.3.2. JKL torsion family Z /4Z⊕Z /8Z. Here we will also state another theorem of [15],
which allows the generation of curves with Z /4Z⊕Z /8Z torsion over the given quartic
number field.

Theorem 2.2. Let K = Q(
√
−1,
√
t4 − 6t2 + 1) with t ∈ Q, t 6= 0,±1 and let Eν be an

elliptic curve defined by the equation

y2 + xy − (ν2 − 1
16 )y = x3 − (ν2 − 1

16 )x2, (2.2)

where ν = (t4 − 6t2 + 1)/4(t2 + 1)2 and t 6= 0,±1. Then

Eν(K)tors ∼= Z /4Z⊕Z /8Z .

3. A speedup

Bernstein et al. [5] provided a new implementation of ECM, named EECM-MPFQ [6], which
uses twisted Edwards curves and the MPFQ library for large integer arithmetic. As well as
a speedup due to the faster group law formulas of Edwards and twisted Edwards curves
(in fact also due to the combined use of extended and projective coordinates), another speedup
came from the use of curves with small parameters and point coordinates. To find such
curves, Bernstein et al. conducted an (enhanced) exhaustive search, taking about a week
of computation time on a number of computers. The search yielded 78 curves with torsion
Z /12Z over Q, and 25 curves with torsion Z /2Z⊕Z /8Z over Q. However, we discovered that
the curves produced by the JKL Z /4Z⊕Z /8Z and Z /6Z⊕Z /6Z families, by generating
curves via the rational parameter t increasing in height, end up with small parameters when
converted to twisted Edwards and twisted Hessian form, respectively. Not only this, but our
search (using Sage) for a point of infinite order for curves with positive rank yielded base
points with small projective coordinates. This perfectly suits an implementation of ECM
needing the small parameter speedup. In addition, all 25 of Bernstein et al.’s small parameter
curves with torsion Z /2Z⊕Z /8Z over Q are included in the curves generated by the JKL
Z /4Z⊕Z /8Z family. So in fact Bernstein et al.’s high-performance Z /2Z⊕Z /8Z curves
have torsion Z /4Z⊕Z /8Z over the quartic number field of the JKL construction. We also
discovered that many of Bernstein et al.’s high-performance Z /12Z curves are recovered by
the JKL Z /24Z family.
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For a comparison of our computation against that of Bernstein et al., see Table 1.
We can generate curves very quickly since we have a parameterized family. The curve

parameters and base point coordinates tend to slowly increase in height as the height of the
curve parameter t is increased, very slowly in the case of the Z /6Z⊕Z /6Z family. This allows
the generation of hundreds of Z /4Z⊕Z /8Z curves, and thousands of Z /6Z⊕Z /6Z curves.
In the latter case, not all curves had unique j-invariants, and in fact some were isogenous, but
there still remained thousands of unique nonisogenous curves.

The JKL curves with Z /4Z⊕Z /8Z torsion all have torsion Z /2Z⊕Z /8Z over Q, see
Theorem 4.2. Since they have a point of order 4 over Q (see Lemma 4.1), they are birationally
equivalent over Q to Edwards curves, and hence to twisted Edwards curves, allowing an
immediate improvement to EECM-MPFQ; just augment the list of curves. Indeed, suppose
we have a point P = (r, s) of order 4 with r, s ∈ Q on the JKL curve with Weierstrass form
E : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6. To convert this to twisted Edwards form,
compute v = 1 − 4r3/s2. Then d = numerator(v), a = denominator(v) are the parameters of
the twisted Edwards curve Ea,d : ax2 + y2 = 1 + dx2y2. If we have Q = (x, y) ∈ E(Q), then
R = (2x/y, (x− a+ d)/(x+ a− d)) ∈ Ea,d(Q).

We conjecture that none of the JKL curves with torsion Z /6Z⊕Z /6Z are isogenous to
twisted Edwards curves over Q.

3.1. Performance of twisted Hessian arithmetic

Bernstein et al.’s combination of twisted Edwards arithmetic, together with the use of extended
and projective coordinates, emerged as the winner of the curve arithmetic speed contest among
the popular curve forms. In fact Hisil et al. in [14] conducted an exhaustive search for fast
curve arithmetic formulas, yielding many formulas for the different curve forms, but none
faster than is possible with the use of twisted Edwards curves. It may be unlikely that faster
formulas exist. However, good use can still be made of the 4800+ curves generated from
the JKL Z /6Z⊕Z /6Z family, which have a natural representation in twisted Hessian form,
in which case they have small parameters/base points, since twisted Hessian arithmetic is
‘almost’ as fast as twisted Edwards arithmetic (at least in terms of operation counts). Twisted
Edwards doubling in projective coordinates can be done in 3M + 4S + 1a + 6add + 1 ∗ 2,
while addition for the same can be done in 10M + 1S + 1a + 1d + 7add; see [3]. Here N is
the number to be factored, n = log(N), M denotes multiplication, S denotes squaring, a, d
denote multiplication by curve constants, add denotes addition, 2 denotes multiplication by 2,
all modN . In comparison, twisted Hessian doubling in projective coordinates can be done in
7M + 1S+ 1d+ 7add, while addition for the same can be done in 12M + 1a+ 3add; see [3]. In
the specific context of scalar multiplication of a fixed point, we can effectively reduce addition
from 12M + 1a+ 3add to about 6M + 6m+ 1a+ 3add, where m denotes multiplication by a
small constant. This is because 6M costs O(n) rather than O(n2) (see below). We can compare
this to the method used in EECM-MPFQ, which uses an extended coordinate variant of the
addition law presented in [13] costing 9M+1a. This is combined with projective doubling, and
the total cost in EECM-MPFQ for a double-and-add operation is (3M +4S+1a)+(9M +1a).

Table 1. Resources for generation of small-parameter curves for ECM.

#Curves Type Torsion Time Resources

EECM-MPFQ 25 Edwards Z /2Z⊕Z /8Z 1 week Several computers
EECM-MPFQ 78 Edwards Z /12Z 1 week Several computers
This work 700 Edwards Z /4Z⊕Z /8Z 2 weeks One desktop computer
This work 4840 Hessian Z /6Z⊕Z /6Z 2 weeks One desktop computer
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Since doublings cannot really take advantage of small coordinates, we cannot apply our idea to
twisted Hessian doubling, so our doubling cost remains the same, for a total double-and-add
cost of (7M + 1S + 1d) + (6M + 6m+ 1a).

The twisted Hessian curve addition law (one of a number of possibilities) is reproduced below
so that the idea of this speedup is clear. Note that (X1:Y1:Z1) is fixed, with small coordinate
values, and likewise the curve parameter a is small (d is typically small too, but it is not used
in point addition).

We did not implement windowing methods for the stage 1 scalar multiplication, which would
have given a slight speedup (see e.g. [8]), but instead we avoid a higher memory cost for stage 1.

We use the following procedure for addition on twisted Hessian curves.

Input: Points (X1:Y1:Z1), (X2:Y2:Z2) on a twisted Hessian curve E

with equation aX3 + Y 3 + Z3 = dXY Z

Output: Point (X3:Y3:Z3) = (X1:Y1:Z1) + (X2:Y2:Z2) on E

A = X1 · Z2, B = Z1 · Z2, C = Y1 ·X2,

D = Y1 · Y2, E = Z1 · Y2, F = a ·X1 ·X2,

X3 = A ·B − C ·D, Y3 = D · E − F ·A, Z3 = F · C −B · E.

Since one of the integers involved in calculating A,B,C,D,E, F is small, those
multiplications approach O(n) rather than O(n2), so in effect there are only six multiplications
that are O(n2). The identity is (0:− 1:1) and the inverse of P = (X:Y :Z) is −P = (X:Z:Y ).

4. Torsion of JKL and Hessian curves

In this section we study the torsion points on JKL curves, and Hessian curves (not twisted
Hessian). Note that rather than using the addition formulas as stated above, we use the
following addition law.

Let P1 = (x1:y1:z1), P2 = (x2:y2:z2), P1 6= P2 and set

x3 = y21x2z2 − y22x1z1,
y3 = x21y2z2 − x22y1z1,
z3 = z21y2x2 − z22y1x1.

Then P1 + P2 = (x3:y3:z3).
For doubling we obtain the formula

2P1 = (y1(z31 − x31):x1(y31 − z31):z1(x31 − y31)).

The identity of this addition law is the point O = (1:−1:0) at infinity and −(x:y:z) = (y:x:z).
A coordinate transformation x → z′, z → x′ sends the curve H : x3 + y3 + z3 = dxyz with

specified point (0:−1:1) and corresponding addition law to the curve H ′ : (x′)3+(y′)3+(z′)3 =
dx′y′z′ with specified point (1:−1:0) and addition law defined as above.

4.1. JKL curves with torsion Z /4Z⊕Z /8Z

We will study the torsion of the Z /4Z⊕Z /8Z family of JKL curves. From now on, let K
denote the quartic number field K = Q(

√
−1,
√
t4 − 6t2 + 1) and Eν the JKL curve Eν :

y2 + xy − (ν2 − 1
16 )y = x3 − (ν2 − 1

16 )x2 with ν = (t4 − 6t2 + 1)/4(t2 + 1)2 and t 6= 0,±1,
t ∈ Q.
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Since char(K) = 0, we can transform Eν into a short Weierstrass form

Eν : y2 = x3 + px+ q (4.1)

with
p = − 1

3 (ν4 + 7
8ν

2 + 1
256 ) and q = − 2

27ν
6 + 11

72ν
4 + 11

1152ν
2 − 1

55296 ,

and ν as above.
We use the following lemma to calculate the torsion subgroup of Eν over Q.

Lemma 4.1. Every JKL curve Eν has at least four points of order 4 defined over Q.

Proof. Consider the fourth division polynomial:

ψ4

y
= 4(x6 + 5px4 + 20qx3 − 5p2x2 − 4pqx− 8q2 − p3).

Inserting p and q from above leads to

ψ4

y
=

−1

3057647616
(80ν2 − 48x− 1)(16ν2 + 48x− 5)

× (256ν4 + 1536ν3 + 1536ν2x− 544ν2 − 2304νx+ 2304x2 + 96ν + 96x+ 1)

× (256ν4 − 1536ν3 − 544ν2 − 96ν + 1 + (1536ν2 + 2304ν + 96)x+ 2304x2).

This shows immediately two rational roots, namely

x1 = 5
3ν

2 − 1
48 and x2 = − 1

3ν
2 + 5

48 .

Using x1 and x2, we can determine the corresponding y-coordinates.
Insert x1 into y2 = x3 + px+ q to get

y21 = 1
64 (4ν + 1)2(4ν − 1)2ν2 and therefore y1 = ± 1

8 (4ν + 1)(4ν − 1)ν.

Similarly, we get
y2 = ± 1

32 (4ν + 1)(4ν − 1)

and four points of order 4:

P11 = ( 5
3ν

2 − 1
48 ,−

1
8 (4ν + 1)(4ν − 1)ν),

P12 = ( 5
3ν

2 − 1
48 ,

1
8 (4ν + 1)(4ν − 1)ν),

P21 = (− 1
3ν

2 + 5
48 ,−

1
32 (4ν + 1)(4ν − 1)),

P22 = (− 1
3ν

2 + 5
48 ,

1
32 (4ν + 1)(4ν − 1))

with clearly rational coefficients. 2

Theorem 4.2. The torsion subgroup of the JKL curve Eν over Q is

Eν(Q)tors = Z /2Z⊕Z /8Z .

Proof. Let Eν/K be a JKL curve. By Lemma 4.1 Eν has at least four points of order 4.
Since Eν(K)tors = Z /4Z⊕Z /8Z, by Mazur’s theorem [18] we deduce

Eν(Q)tors ∈ {Z /2Z⊕Z /4Z,Z /2Z⊕Z /8Z}.

Let P̃ = (x̃, ỹ) with x̃ = (t8 + 12t7 + 20t6 − 2t4 − 12t3 − 4t2 + 1)/12(t8 + 4t6 + 6t4 + 4t2 + 1)
and ỹ = (t2 + 2t− 1)(t+ 1)3(t− 1)t3/2(t2 + 1)5. Straightforward calculations show that
ψ8(P̃ ) = 0 and ψ4(P̃ ) 6= 0. Thus P̃ is a point of order 8 and we can conclude that

E(Q)tors = Z /2Z⊕Z /8Z . 2
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4.2. JKL curves with torsion Z /6Z⊕Z /6Z

We consider the JKL curve

Eµ : y2 = x3 − 27µ(µ3 + 8)x+ 54(µ6 − 20µ3 − 8)

over the quartic number field K = Q(
√
−3,
√

8t3 + 1) for t 6= 0, 1,− 1
2 and µ = (2t3 + 1)/3t2,

which has torsion subgroup Z /6Z⊕Z /6Z.
By [15], the points of order 2 of Eµ are

P1,2 =

(
8t6 + 20t3 − 1±

3
√

(8t3 + 1)3

6t4
, 0

)
and P3 =

(
−8t6 + 20t3 − 1

3t4
, 0

)
.

Lemma 4.3. The JKL curve Eµ has exactly one point of order 2 defined over Q.

Proof. Clearly,

P3 =

(
−8t6 + 20t3 − 1

3t4
, 0

)
∈ Eµ(Q).

All we need to show is that P1,2 from above are not defined over Q.

We claim that
√

(8t3 + 1)3 /∈ Q, which is equivalent to saying that
√

8t3 + 1 /∈ Q, or that
(2t)3 + 1 is not a square in Q. It is well known that the elliptic curve E : y2 = x3 + 1 defined
over Q has

E(Q) = {(0,±1), (−1, 0), (2,±3),O}.

It follows that (2t)3 + 1 is only a square for t ∈ {0,− 1
2 , 1}, which are all not valid values

for t. 2

Lemma 4.4. Eµ has exactly two points of order 3 defined over Q,

P1,2 =

(
1

3t4
(2t3 + 6t2 + 1)2,± 4

t4
(4t2 − 2t+ 1)(t2 + t+ 1)2

)
,

and at least two more which are defined over Q(
√
−3).

Proof. Consider the third division polynomial for elliptic curves in short Weierstrass form
ψ3 = −(1/9t16)(16t12 − 96t11 + 432t10 − 832t9 + 1152t8 + 432t7 − 408t6 − 72t5 + 108t4 + 8t3 −
12t2 + (−24t10 + 72t9 + 108t8 − 24t7 + 36t6 − 6t4)x+ 9t8x2)(4t6 + 24t5 + 36t4 + 4t3 + 12t2 +
1− 3t4x)(4t6 + 4t3 + 1 + t4x).

We can easily see two roots,

x1 =
4t6 + 24t5 + 36t4 + 4t3 + 12t2 + 1

3t4
=

(2t3 + 6t2 + 1)2

3t4
∈ Q

and

x2 = −4t6 + 4t3 + 1

t4
∈ Q,

leading to the points (xi,±yi), i = 1, 2, where

y21 =
16

t8
(4t2 − 2t+ 1)2(t2 + t+ 1)4
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and

y22 = − 16

27t12
(4t2 − 2t+ 1)2(t2 + t+ 1)4(2t+ 1)2(t− 1)4.

Thus

y1 = ± 4

t4
(4t2 − 2t+ 1)(t2 + t+ 1)2 ∈ Q,

y2 = ± 4

9t6
√
−3(4t2 − 2t+ 1)(t2 + t+ 1)2(2t+ 1)(t− 1)2 ∈ Q(

√
−3)\Q.

Now consider the quadratic factor of ψ3. We calculate the roots and obtain

x3,4 =
1

3t4

(
4t6 − 12t5 − 18t4 + 4t3 − 6t2 + 1± 6

√
3
√
−(2t+ 1)2(t− 1)4 · t2

)
=

1

3t4

(
4t6 − 12t5 − 18t4 + 4t3 − 6t2 + 1± 6(2t+ 1)(t− 1)2t2

√
−3
)

which is not in Q. 2

Since Eµ(K)tors = Z /6Z⊕Z /6Z, Eµ cannot have any points of order 4 which are defined
over Q or even K. This also shows that Eµ is not birationally equivalent to a curve in Edwards
form.

Lemma 4.5. Eµ has two points of order 6 over Q.

Proof. Consider

ψ6 =
ψ3

2y
(ψ5ψ

2
2 − ψ1ψ

2
4).

Since the roots of ψ3 are the points of order 3, we can focus on

ψ̃6 = ψ5ψ
2
2 − ψ1ψ

2
4 .

Let x1 = (4t6 − 24t5 + 12t4 − 32t3 + 24t2 − 12t+ 1)/3t4 ∈ Q. A straightforward calculation
shows ψ̃6(x1) = 0 and we get y21 = (16/t10)(4t2− 2t+ 1)2(t2 + t+ 1)2(t− 1)6, thus (x1,±y1) ∈
E(Q)[6]. Since ψ3(x1) 6= 0, (x1 ± y1) is of order 6. 2

With these lemmas, we can now calculate the torsion subgroup of Eµ.

Theorem 4.6. Over Q, the JKL curve Eµ has torsion subgroup Z /6Z for all µ.

Proof. From the previous lemmas we already know that Eµ(Q)tors has exactly one point of
order 2, two of order 3 and at least two points of order 6. Using Mazur’s theorem, we can see
that

Eµ(Q)tors ∈ {Z /6Z,Z /12Z,Z /2Z⊕Z /6Z}.

The group cannot be Z /12Z because there is no point of order 4 as commented above. Also,
Z /2Z⊕Z /6Z has three points of order 2, while Eµ(Q)tors only has one point of order 2 by
Lemma 4.3. The only remaining option, therefore, is Eµ(Q)tors = Z /6Z. 2

Theorem 4.7. Consider the JKL curve Eµ over the quadratic number field L = Q(
√
−3).

Then

Eµ(L)tors = Z /3Z⊕Z /6Z .
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Proof. We already know that Z /6Z ⊂ Eµ(L) ⊂ Z /6Z⊕Z /6Z . By the theorem of
Kamienny, Kenku and Momose (see [16]),

Eµ(L)tors ∈ {Z /6Z,Z /2Z⊕Z /6Z,Z /3Z⊕Z /6Z}.

Recall that there are at least four points of order 3 defined over L (see Lemma 4.4). Since
both Z /6Z and Z /2Z⊕Z /6Z only have two points of order 3, they cannot be the torsion
subgroup of Eµ(L). Thus Eµ(L)tors has to be isomorphic to Z /3Z⊕Z /6Z. 2

Theorem 4.8. The torsion subgroup of the JKL curve Eµ over the quadratic number field
L = Q(

√
8t3 + 1) is

Eµ(Q(
√

8t3 + 1))tors = Z /2Z⊕Z /6Z .

Proof. Analogously to the previous proof, we know that Z /6Z ⊂ Eµ(L) ⊂ Z /6Z⊕Z /6Z
and again by the Kamienny–Kenku–Momose theorem,

Eµ(L)tors ∈ {Z /6Z,Z /2Z⊕Z /6Z,Z /3Z⊕Z /6Z}.

We know that

Eµ(L)[2] =

{(
8t6 + 20t3 − 1±

3
√

(8t3 + 1)3

6t4
, 0

)
,

(
−8t6 + 20t3 − 1

3t4
, 0

)
,O
}
.

Since all points in Eµ(L)[2] are defined over L = Q(
√

8t3 + 1), Eµ(L)tors has three points of
order 2. Since Z /6Z, Z /3Z⊕Z /6Z each only have one point of order 2, those two possibilities
are ruled out, leaving

Eµ(Q(
√

8t3 + 1))tors = Z /2Z⊕Z /6Z . 2

4.3. Torsion points in Hessian and JKL curves

Some Hessian curves have points of order 2 defined over Q, others do not. Consider, for
example, the Hessian curve with parameter d = − 1

3 and short Weierstrass form

E : y2 = x3 +
215

3
x− 10582

27
.

Then P = ( 13
3 , 0) is a point of order 2. On the other hand, the curve

E : y2 = x3 − 2835x+ 9774

with parameter d = 3 does not have any points of order 2 defined over Q. If P was a point
of order 2, then P = (r, 0) where r ∈ Q is a root of f = x3 − 2835x + 9774. By the rational
root theorem, r ∈ Z and r has to divide 9774. One can easily check that no divisor of 9774 is
a root of f .

The next theorem classifies the curves with a point of order 2 defined over Q.

Theorem 4.9. Let H be a Hessian curve. Then H has a point of order 2 over Q if and only
if H = Eµ for some JKL curve Eµ as defined above.

Proof. One direction is clear. If Eµ is a JKL curve, we already know that Eµ(Q)tors = Z /6Z.
Now let H : x3 + y3 + 1 = 3dxy be a Hessian curve and P = (x, y) ∈ H(Q). Then P is a

2-torsion point if and only if

2P = O ⇔ P = −P ⇔ x = y.
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This means that P is a 2-torsion point if and only if

2x3 + 1 = 3dx2

and thus, d = (2x3 + 1)/3x2 for x ∈ Q, x 6= 0. For x = 1,− 1
2 , we have d = 1 and therefore H

not smooth. Thus, H is a JKL curve with parameter d = (2t3 + 1)/3t2 for t ∈ Q\{0, 1,− 1
2}

and H is a Hessian curve. 2

This classification yields information about the torsion subgroup.

Corollary 4.10. Let H be a Hessian curve. Then H(Q)tors = Z /6Z if and only if H = Eµ
for µ of the form µ = (2t3 + 1)/3t2, t ∈ Q\{0, 1,− 1

2}.

Proof. If H = Eµ, we showed in Theorem 4.6, that H(Q)tors = Z /6Z. On the other hand,
if H(Q)tors = Z /6Z, then H(Q) has to have a point of order 2 and, by Theorem 4.9, H has
to be a JKL curve. 2

In order to calculate the torsion subgroup of Hessian curves, which are not JKL curves, we
need the following lemma. Note that for Hd : x3 + y3 + z3 = dxyz in projective Hessian form,
the points of order 3 are P1 = (0:−1:1) and P2 = (−1:0:1).

Lemma 4.11. Over Q, a curve Hd in Hessian form does not have any point of order 9.

Proof. Let P = (x:y:z) be a point of order 9. Then 3P = (x3:y3:z3) has to be a point of
order 3 and thus 3P = (0:1:1) or 3P = (−1:0:1). We obtain

x3 = −(x6y2 − x3y5 − x3y2z3 + y5z3 − x2z3)z,

y3 = (x5y3 − x2y6 − x5z3 + x2y3z3 − x3y2 + y2z3)z,

z3 = −(x3y3 − x3z3 − y3z3 + z6 − x3 + y3)xyz,

with (x3:y3:z3) ∈ {(0:1:1), (−1:0:1)}.
Note, that if P = (x:y:z) is of order 9, then xyz 6= 0, because if xyz = 0, then z3 = 0, which

is a contradiction to (x3:y3:z3) ∈ {(0:1:1), (−1:0:1)}.
We start with points (x:y:z) of order 9 such that 3(x:y:z) = (0:1:1). Since xyz 6= 0 and

(x:y:z) = (kx:ky:kz) for any k ∈ Q\{0}, we can set x = 1. This leads to the following system
of equations:

−y2 − y5 − y2z3 + y5z3 − z3 = 0,

(y3 − y6 − z3 + y3z3 − y2 + y2z3)z = 1,

−(y3 − z3 − y3z3 + z6 − 1 + y3)yz = 1.

Subtracting the last equation from the second yields

−(yz3 + y3 − y − 1)(y3 − z3 − y)z = 0.

Since z 6= 0, we have two different cases.

Case 1: z3 = y3−y. This changes the first equation to (y6−y5−2y3+2y2−2y+1)(y+1)y = 0.
If y = −1, then z3 = y3 − y = 0 and thus z = 0, which is a contradiction. Also y cannot be
zero, leaving y6 − y5 − 2y3 + 2y2 − 2y + 1 = 0 as the only possibility. According to the
rational root theorem, for any root p/q ∈ Q, both p and q have to be ±1. If y = 1, then
y6 − y5 − 2y3 + 2y2 − 2y + 1 = −1 6= 0, so y = 1 is not a root and we have already seen that
y = −1 cannot be a solution.
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Case 2: z3 = (−y3 + y + 1)/y. Inserting this into the first equation leads to y8 − 2y5 + y3 −
y2 +y+1 = 0. By the rational root theorem, the only rational roots would be p/q = ±1, which
both lead to a contradiction.

Thus, there is no rational point (x:y:z) ∈ E(Q), such that 3(x:y:z) = (0:1:1).
Next, we will examine the points P = (x:y:z) such that 3P = (−1:0:1). As above, we set

x = 1 and obtain the following system of equations:

−(y5z3 − y5 − y2z3 − z3 + y2)z = −1,

−y6 + y3z3 + y2z3 + y3 − z3 − y2 = 0,

(y3z3 − z6 − 2y3 + z3 + 1)yz = 1.

The second equation implies

z3 =
y6 − y3 + y2

y3 + y2 − 1
.

Note, that y3 + y2 − 1 6= 0 for all y ∈ Q. We add the first equation to the last one, substitute
z3 by (y6 − y3 + y2)/(y3 + y2 − 1) and obtain y13 + y12− y11− 4y10− 2y9 + 4y8 + 6y7− 5y5−
5y4 + y3 + 2y2 + 2y − 1 = 0. Using the rational root theorem once more, we can see that the
equation does not have rational roots and we cannot find a simultaneous solution for all three
equations above. 2

Now we know the torsion subgroup of Hessian curves.

Corollary 4.12. Let H be a Hessian curve, but not a JKL curve. Then

H(Q)tors = Z /3Z .

Proof. We know that H has exactly two points of order 3 defined over Q and by assumption
H does not have a point of order 2. By Mazur’s theorem, this rules out all torsion subgroups
but Z /3Z and Z /9Z. By Lemma 4.11 we conclude that H(Q)tors = Z /3Z. 2

In summary, if H is a Hessian curve, then

H(Q)tors =

{
Z /6Z, H = Eµ for Eµ a JKL curve,

Z /3Z otherwise.

5. Implementation and timings

The primary motivation for the implementation was to see if the torsion/small parameter
improvements would lead to an implementation that was competitive with either GMP-ECM
[21] or EECM-MPFQ. To this end, a choice had to be made as to the eventual application:
record setting (which requires targeting integers of arbitrary size) or cofactoring for the number
field sieve. The former was desired for JKL-ECM. To target integers of arbitrary size, GNU-
MP was used as a multi-precision library (MPFQ is limited to inputs of at most nine words of
64 bits, with a corresponding maximum input size of around 174 digits). Finally, one aim of
this work was to test an implementation on the Fionn cluster at the Irish Centre for High-End
Computing.

5.1. Stage 2

The original algorithm described in [17], now called ‘stage 1’ of ECM, has seen the subsequent
development of ‘stage 2’. Where stage 1 allows for all primes in the group order up to a size B1,
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stage 2 allows a single larger prime in the group order factorization between B1 and some larger
bound B2. Stage 1 computes the residue

Q = [S]P

for a point P on the elliptic curve. If Q has order between B1 and B2 then computing

[p]Q

for all B1 < p 6 B2 should yield one [p]Q which is the identity. In this naive approach, we
must compute O(B2) extra multiples. An implementation of ECM which includes an optimized
stage 2 in practice significantly increases the chances of finding larger primes, even though the
asymptotic complexity of the overall algorithm is unchanged (thus it is a logarithmic factor
improvement).

There are different approaches to implementing the core idea of stage 2. In fact, our JKL-
ECM includes an implementation of the ‘FFT continuation’ [19], so called because it translates
the function of stage 2 into the calculation of a very large integer product, where it is faster to
carry out the multiplication via a convolution computed via forward and backward FFT [20].
Luckily, GMP (which JKL-ECM uses for multi-precision arithmetic) handles this automatically
once the integers in the product exceed a calibrated threshold, so it was not necessary to
write (and optimize) FFT-based convolution. It is the saving induced by FFT multiplication,
together with a ‘baby-step, giant-step’ idea which reduces the required computation to square-
root size, which attains the increased likelihood of success of stage 2 without incurring too
much extra cost. This makes the FFT continuation indispensable in practice. The memory
required by the FFT continuation grows as B2 log(B2) (involving various kinds of in-memory
product trees, which have logarithmic depth), placing a practical limit on the value of B2

that may be used. For more on the ideas that go into stage 2, see additionally [1, 2, 22]. Our
implementation was standard, except for a technicality that arises when using twisted Hessian
curves in stage 2. We had to use the rational map ψ(X:Y :Z) = X2/(Y Z); see [5, § 5.2].

5.2. Using the torsion improvement

To make full use of the torsion improvement possible with the use of the JKL families, it is
necessary to ensure that the torsion subgroup over a given quartic extension of Q injects into
the elliptic curve group over the associated finite field for the prime factor we are attempting
to find. This can be at least partially prescribed by choosing numbers of a special form as
input. For example, the JKL Z /6Z⊕Z /6Z family is defined over the biquadratic number
field K = Q(

√
−3,
√

8t4 + 1), with t ∈ Q and t 6= 0, 1,− 1
2 . To achieve full torsion injection

(for example, to ensure that 36|#E(Fp) for a prime factor p of N), it is necessary that both√
−3 and

√
8t4 + 1 exist in Fp. We can prescribe the existence of

√
−3 in Fp by choosing to

factor numbers of the form N = x2 + 3y2, since then
√
−3 ≡ x/y mod p for any p|N (see,

for example, [10], and also [9], where this idea is put to use). We do not have as much control
over the other quadratic irrationality (

√
8t4 + 1) but we can at least ensure a minimum divisor

of #E(Fp). If −3 is a quadratic residue in Fp, and 8t4 + 1 is not, then the torsion is actually
Z /3Z⊕Z /6Z (for primes of good reduction). If 8t4+1 is a quadratic residue as well, then the
torsion is Z /6Z⊕Z /6Z. So if −3 at least is a quadratic residue, then we have a guaranteed
factor of at least 18 dividing #E(Fp) for any p dividing the number, with roughly a 50%
chance that 36 divides #E(Fp). Both are larger than anything possible over Q. The case of
the Z /4Z⊕Z /8Z family is similar.
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5.3. Results

The largest prime factor found was the 57 digit prime factor

675047857067159607640250455245491501526526277140638512677

of the 248 digit number
(5228 + 3 · 197110)/227812

using the twisted Hessian curve

aX3 + Y 3 + Z3 = dXY Z

where d = 26511, a = 231136413353. The factorization of the group order of the elliptic curve
over Fp, with p equal to the above prime, is

2 · 32 · 58211 · 73757 · 824039 · 13582747 · 17027609 · 74341063 · 99190781 · 6215336273.

The stage 1 bound used was 110 000 000 and the effective stage 2 bound used was
1 151 280 345 600. Note that only 1152 curves were run at these bounds to find the factor,
far fewer than the 17 899 recommended for t55. In addition, another (slightly smaller) 57-digit
factor was found in a different run. Several 56-digit factors were found, in addition to several
more factors with 50+ digits smaller than this. Many smaller factors with 40+ digits were
found.

5.4. Speed

Some timings were obtained for stage 1 using both twisted Edwards and twisted Hessian curves
on Fionn. The tests were repeated with the same numbers and bounds, using GMP-ECM. See
Tables A.1–A.3. Both the implementation and GMP-ECM were compiled to use GMP 6.0.0a.

We remark at this stage that no assembly language/intrinsics at all were written for JKL-
ECM. The performance is purely based on calling the mpz t class of functions in GNU-MP
via C++, so there are significant potential performance gains by making use of SSE/AVX, etc.
The lack of assembly optimization is likely the main reason for the slightly slower timings.

5.5. Effectiveness

Effectiveness is where our implementation already has an edge over GMP-ECM. Although a
slight improvement, the implementation empirically finds more primes for a given bound. Since
this was effectively already shown for a Z /4Z⊕Z /8Z curve vs GMP-ECM in [5, Figures 9.1
and 9.2], here we show statistics for a Z /6Z⊕Z /6Z curve vs a typical GMP-ECM curve
(a Suyama curve with σ = 4007218240), and where a random sample of primes congruent to
1 mod 3 are chosen, so that at least torsion Z /3Z⊕Z /6Z injects into the elliptic curve group
order over Fp for the implementation. See Figures A.1 and A.2.

6. Conclusion

A new implementation of ECM using twisted Edwards and twisted Hessian curve arithmetic
and taking advantage of higher torsion over small-degree number fields in certain families of
curves is presented. We outline relevant theory regarding Hessian and twisted Hessian curves,
in addition to presenting some new results, including a classification of Hessian curve torsion
over Q. Our software includes an implementation of the stage 2 FFT continuation, and makes
use of a large number of precomputed curves having small parameters, which leads to faster
curve arithmetic. The implementation was tested on some numbers of a special form, yielding
a 57-digit factor for the effort expended.
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Appendix

Table A.1. Stage 1 timings on Fionn for twisted Edwards curves for JKL-ECM. Note that
double-and-add costs (3M + 4S + 1a) + (10M + 1S + 1a).

Cost (milliseconds) for given B1

Digits 1e6 3e6 11e6 43e6 110e6

50 2 710 7 910 29 000 113 510 290 400

100 4 240 12 610 46 230 180 860 461 850

150 5 490 16 460 60 380 235 710 602 830

200 7 600 22 800 83 620 326 900 837 200

250 9 850 29 640 108 470 423 850 1084 710

300 12 480 37 560 137 260 537 380 1372 780

350 15 930 47 840 175 250 685 370 1752 690

400 18 920 56 750 207 980 812 300 2082 030

Table A.2. Stage 1 timings on Fionn for twisted Hessian curves for JKL-ECM. Note that
double-and-add costs (7M + 1S + 1d) + (6M + 6m+ 1a).

Cost (milliseconds) for given B1

Digits 1e6 3e6 11e6 43e6 110e6

50 2 530 7 450 27 330 106 810 273 540

100 4 010 12 040 43 970 171 700 439 180

150 5 250 15 710 57 400 223 740 572 200

200 7 420 22 190 81 380 318 230 814 310

250 9 480 28 410 104 160 406 480 1040 190

300 12 420 37 240 136 520 533 650 1365 220

350 15 970 47 800 175 250 684 990 1751 310

400 18 910 56 620 207 970 811 700 2077 680

Table A.3. Stage 1 timings on Fionn for GMP-ECM 6.4.4, compiled with GMP 6.0.0a.

Cost (milliseconds) for given B1

Digits 1e6 3e6 11e6 43e6 110e6

50 896 2 632 9 684 39 058 96 942

100 1 764 5 364 20 037 77 160 201 052

150 2 784 8 288 30 493 119 583 306 243

200 4 564 13 848 50 527 197 932 507 123

250 5 892 17 813 65 244 255 771 655 116

300 7 812 23 373 86 037 336 997 863 873

350 10 228 30 777 113 115 443 391 1140 639

400 16 269 48 967 179 751 705 448 1806 532
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Figure A.1. For a sample of 65 536 30-bit primes ≡ 1 mod 3, success probability of stage 1 of ECM
for the implementation using the Jeon–Kim–Lee Z /6Z⊕Z /6Z curve with (d, a) = (123, 125), and
GMP-ECM using the Suyama curve with σ = 4007218240. The horizontal axis is the stage 1 bound
used (sampled at intervals of 50).
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Figure A.2. For a sample of 65 536 40-bit primes ≡ 1 mod 3, success probability of stage 1 of ECM
for the implementation using the Jeon–Kim–Lee Z /6Z⊕Z /6Z curve with (d, a) = (123, 125), and
GMP-ECM using the Suyama curve with σ = 4007218240. The horizontal axis is the stage 1 bound
used (sampled at intervals of 200).
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13. H. Hişil, K. K.-H. Wong, G. Carter and E. Dawson, ‘Twisted Edwards curves revisited’, ASIACRYPT,

2008, Lecture Notes in Computer Science 5350 (Springer, Berlin, Heidelberg, 2008).
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