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1. Introduction. A graph G is defined as a set

X =A{ Xi’ ...,x } of elements x  called vertices, and a
n i

collection I" of (not necessarily distinct) unordered pairs of
distinct vertices, called edges. An edge (x ,x ) 1is said to
1]

be incident to x. and x, which are its end-vertices.
i

DEFINITION 1. The adjoint (or the interchange graph)
I(G) of a given graph G =(X,I') is defined as follows. The
edges of G form the vertices of I(G), and two vertices in
I(G) are joined by zero, one or two edges according as the
corresponding edges in G have zero, one or two common
end-vertices respectively.

For example, in Fig. 1 we see the graphs G1, GZ and
C:3 and their adjoints I(Gi)’ I(GZ) and I(G3). The edges

lled , , .
have been calle e1 e2 e3

DEFINITION 2. 17(G) is defined recursively by

-1
1G) = 1177 (G)], n>2.
DEFINITION 3. Two graphs G and G' are isomorphic

if there exists a one-one correspondence between their vertices

such that if x , x, € G correspond to vertices x  , x, € G
i i
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respectively, then the edge (x, x ) exists in G if and only if
1)

the edge (x,, , %, ) exists in G'.

B J

Y . 4. f is th be:
DEFINITION 4 The degree of a vertex Xi is e number

of edges incident to it.

The problem dealt with in this paper is that of determining
graphs which are isomorphic to their adjoints; and in general,
of graphs G which are isomorphic to In(G) for some n. The
latter is the generalisation of a problem suggested in Ore [1].

The solution of this problem occurs as Theorem 2 in
sectiorn 3. The theorem 1 is a general result applicable to any
graph. The proofs of these theorems also appear in section 3.
In section 2 are given certain obvious results which are useful
in simplifying the proof of the main theorem.

2. Preliminary remarks. First we define the connected
components of & graph. A graph is said to be connected if for

zny pair of vertices x , x there exists a sequence ui, . ,uk
! J

of edges of the graph such that (1) u, is incident to x, and u
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to x,, and (2) u, 1 is incident to one end-vertex of u,, and
i- i

ui+1 to the other, for 2 < if k-1. In other words, between
every pair of vertices there exists a chain of edges. Any given
graph can be partitioned into components, called the connected
components of the graph, such that each component is a con-
nected graph and there are no edges joining vertices belonging
to different components.

Considering a graph G, we see that the edges in a con-
nected component of G form the vertices of a connected com-
ponent of I(G), and vice-versa.

From the definition of an adjoint graph, we can easily
verify the following lemmas.

LEMMA 1. Let the graph G consist of n edges in a
chain (n > 1), as shown in Fig. 2(a), then the adjoint I{G)
consists of n-1 edges in a chain, as in Fig. 2(b). Conversely,
if I(G) consists of n-1 edges in a chain, then the relevant
connected component of G consists of n edges in a chain.

Fig. 2

LEMMA 2. In the graph G let there be a vertex X,

of degree 1 (called a pendant vertex) such that starting from
%, there is a chain of n edges (n > 1) before the first vertex

of a degree exceeding 2 is encountered, as in Fig. 3(a). Then
the corresponding portion in I(G) has a similar configuration
with n-1 edges, as in Fig. 3(b). Conversely, if I(G) has the
form shown in Fig. 3(b), then the retevant connected component
of G has the form shown in Fig. 3(a).

e e e
1 2 n <
————— —— — — — — —o——a_
*y €y 2 “n
a b
(a) Fig. 3 (b)
9
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3. The MNain Results.

THEOREM 1. Suppose G is a finite graph without loops
(there may be multiple edges); let xi, ...,X be its vertices

n
and let d. be the degree of the vertex x, 1 <i<n. Then the
1 1 —_— —_

number of edges in the adjoint I(G) is
d.(d.-1)

1 1

Proof: From the construction of adjoints, we see that if
there are d. edges at the vertex x, of G, then each of the
i 1

vertices of I(G) corresponding to these edges will be joined by
edges to each of the others if d. > 2, and there will be no
;2

edges in virtue of edges at x, if d < 1. In other words, the
i i—

number of edges in I(G) contributed by edges (of G) at x, is
1

d (d,-1)
- 2 if 4 >2, and 0 if d. < 1. The total number of
1 1=
edges in I(G) is, therefore,
d.(d.-1)
- 1 1
T > ,

where the summation is over all i such that d, > 2,
e

n d(d-1)

1 1

2

Also if (x.,x.) is an edge in G then the vertex (X4’Xj) of I(G)
i i

will be joined by edges to (d.-1) vertices in virtue of the edges
at x in G, andto (d.-1) vertices in virtue of the edges at x,
1 J

in G. Thus the degree of this vertex in I(G) is (di—1) + (dj—i)

-4 -~ d - 2.
i
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THEOREM 2. For a finite graph G without loops, the
following statements are equivalent.

a) the degree of each vertex of G is 2,
L . k
b) G is isomorphic to I (G) for all k> 1,
.. . k
c) G is isomorphic to I (G) for some k, (k> 1).

As a corollary it follows that G is isomorphic to I(G) if and
only if the degree of each vertex of G is 2.

Proof: We shall prove the following implications

(a) = (b) = (c) = (a) ,

Let x, 1 <i<n be the vertices of G and d,, 1<1i<n, their
i - - i

corresponding degrees. Since (b) = (c) obviously, we shall
only prove

(a) = (b) and (c) = (a) .

1. (a) = (b). For if each d, =2, then every connected
1

component must be of the following form, as in Fig. 4, (called

»

an elementary cycle), where the vertices are Xi’ SRR r Xl

(For different components, the value of { may be different) and

th d 3 3 e = = .9 LR 3 ©
e edges are (x1 x2) (x1 Xi+1) (XE Xi)
X1 X2
x
3
X \
a \
: i
/
S /‘X.
~ 1
- - &
_ i+1
Fig. 4

One readily verifies that the adjoint of such a component is
isomorphic to itself. Thus each connected component of G is
isomorphic to the corresponding component of I(G), i.e., G is
isomorphic to I(G). By induction, we see that G is isomorphic

k
to T (G) for every k.

11
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2. (¢) = (a). We first show that G cannot contain

vertices of degree zero or one.

If possible, let d. =0 for some i, i.e., the corres-
1

. . . k
ponding vertex X, 1is an isolated vertex. Since G and I (G)
: 1

k
are isomorphic, I (G) also contains an isolated vertex. Now
applying lemma 1 of section 2 repeatedly, we see that the
connected component of G which gave rise to this isolated

k
point of I (G) must be a chain of k edges (an isolated point
is a chain of zero edges), as in Fig. 5(a).

——— — — — — — — *——o—@— — — — — — -—u8
X X X X x! x! x! x!
1 2 k k+1 1 2 2k " 2k+1
(a) (b)
Fig. 5

k k
But G and I (G) are isomorphic, so I (G) contains
such a connected component (a chain of k edges). The cor-
responding component of G (which reduces to this component

in Ik(G)) must be, again by repeated applications of lemma 1,
a chain of 2k edges, as in Fig. 5(b). Proceeding thus, we see
that in G there occur connected components which are chains
of k, 2k, 3k, ... edges respectively. This contradicts the
finiteness of G.

Now let d =1 for some i, 1i.e., the corresponding
i
vertex x, 1S a pendant vertex. Consider the chain (of { edges,
i
say) from x_ to the first vertex of degree exceeding 2 (this
i

chain may be of length 1), or of degree 1. If the latter applies,
we can use the above argument. So we can assume that a

k
configuration, as in Fig. 6(a) exists in G, and hence in I (G).
By applying k times the lemma 2 of section 2, we see
that G must contain the configuration of Fig. 6(b), where

there are [ +k edges from the pendant vertex to the first

vertex of degree > 2. Thus, as in the previous case, we can

12
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Fig. 6

show that such configurations with g, ¢ +k, £ +2k,... edges
exist in G, as connected components, which is absurd since
G 1is finite.

Hence we must have d, > 2 for all i, in G.
e

Using theorem 1, we see that if G contains n vertices
and m edges, and the degree of each vertex is at least 2, and
if I(G) contains m, edges, then

n d(d,-1)
Dom, =Dt g,
1

ii) the degree of each vertex of I(G) is also at least 2.
The equality m, =n holds if and only if each di =2.

Let now n , m be respectively the number of vertices
o o
and edges of G, and let n , m be the corresponding
r r
quantities for Ir(G). Then it follows that (since the degree

of each vertex in Ir(G) is at least 2 for all r > 0)

(1) mr+12nr for r>0.

. . r+1i r
It is of course true that n_,,=m_ since I (G)=I1 (GQ)].

for r> 0. Now since G and Ik(G) are isomorphic, they have,
in particular, the same number of vertices and edges,
respectively,

13
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and m = m

If k is even, say k =2r, then using the result (1), we
obtain

m > ... > =
2r-2 = 2 T,

and equality holds if and only if each vertex is of degree 2 at
all stages. But since m :mk, we have each d. =2 for G.
o i

If k is odd, say 2r+1, then using the result (1), we
have

and

whence n = n >m = m_>n . Thus equality holds and
o k= o k— o

hence each d. =2.
i

Special case. If we are given that G and I(G) are
isomorphic, we can simplify the last stage of the proof con-

siderably. Because if each d, > 2, then the condition of
;2

equality of the number of edges in G and I(G) gives

n d.(d.-1) n
Z;_—l—:m :m:iZd
ya 1 o) 2 i
131 1
n
ie., X d/(d.-2) =20,
i i
i=1

whence it follows that d, =2 for all i.
i
14
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Remark. We can put the condition that each d =2,
- 1

in the alternative form that the graph consists of disjoint
elementary cycles.
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