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This article shows how new time series models can be used to track the progress of an epidemic, forecast key
variables and evaluate the effects of policies. The univariate framework of Harvey and Kattuman (2020,Harvard
Data Science Review, Special Issue 1—COVID-19, https://hdsr.mitpress.mit.edu/pub/ozgjx0yn) is extended to
model the relationship between two or more series and the role of common trends is discussed. Data on daily
deaths from COVID-19 in Italy and the UK provides an example of leading indicators when there is a balanced
growth. When growth is not balanced, the model can be extended by including a non-stationary component in
one of the series. The viability of this model is investigated by examining the relationship between new cases and
deaths in the Florida secondwave of summer 2020. The balanced growth framework is then used as the basis for
policy evaluation by showing how some variables can serve as control groups for a target variable. This approach
is used to investigate the consequences of Sweden’s soft lockdown coronavirus policy in the spring of 2020.
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1. Introduction

The aimof this article is to showhow time seriesmodels1 can be used to track the progress of an epidemic,
forecast key variables and evaluate the effects of policies. Developing effective techniques to accomplish
these tasks is of some importance, because, as documented by Ioannidis et al. (2020), the performance of
many of themethods used to forecast the current COVID-19 epidemic has not been impressive. The new
models draw much of their inspiration from time series econometrics. However, the characteristics of
time series for epidemics are different from those of most time series in economics and these differences
need to be taken into account.

Harvey and Kattuman (2020)—hereafter HK—developed a class of univariate time series models for
predicting future values of a variable whichwhen cumulated is subject to an unknown saturation level. In
these models, the logarithm of the growth rate of the cumulated series depends2 on a time trend.
Allowing this trend to be time-varying introduces flexibility which, in the context of an epidemic, enables
the effects of changes in policy and population behaviour to be tracked. Nowcasts and forecasts of
the variables of interest, such as the daily number of cases, its growth rate and the instantaneous
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1The application of classical time series methods to data on epidemics is relatively undeveloped. Most of the emphasis has
been on building ‘semi-mechanistic’models to simulate the path of an epidemic under different assumptions about behaviour
and policies; see Avery et al. (2020).

2Themodels have been used as the basis for theNIESRCOVID-19 tracker since the early part of 2021; seeHarvey et al. (2021)
and https://www.niesr.ac.uk/latest-weekly-covid-19-tracker
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reproduction number, Rt , can be made. Estimation of the models is by maximum likelihood (ML) and
goodness of fit can be assessed by standard statistical test procedures.

Time series models can also be used to address other questions by exploring relationships between
different series. One application concerns how the time path of an epidemic in a country which suffers an
outbreak before another can be used as a leading indicator. The rationale for modelling the logarithm of
the growth rate (of the cumulated series) comes from the properties of a Gompertz growth curve and
when two such curves follow the same time path, but one lags the other, the trends in the series on the
logarithms of the growth rate are a constant distance apart. This suggests that when the trends are
stochastic, the same will be true. This situation, known as a balanced growth, arises in macroeconomics
and is a special case of what econometricians call co-integration; see, for example, Stock and Watson
(1988). The situation is illustrated by showing how the time path of deaths in the UK in the first few
months of the coronavirus epidemic follows the time path of deaths in Italy 2 weeks earlier.

The requirement that two series exhibit balanced growth, while highly desirable, is not necessary for
one to be a good leading indicator of the other. The need for additional flexibility is explored with data
from the ‘secondwave’ of coronavirus in Florida in the early part of the summer of 2020where it is shown
how daily new cases can potentially offer improved forecasts of deaths in 2–3 weeks’ time. The forecasts
are based on a bivariate unobserved component time series model that combines the dynamic infor-
mation in the two series by a common trend specified as an integrated random walk (IRW) but includes
an independent random walk (RW) component for new cases.

Time series modelling of an intervention can be used to assess the impact of a policy. This was done in
HK in connection with the UK lockdown of March 2020. Here, an attempt is made to answer the
question ‘What if lockdown had been imposed a week earlier?’ The impact of lockdowns is explored
further by developing the ideas associated with balanced growth to try to estimate the number of
coronavirus deaths in Sweden had amore stringent lockdown been imposed. Themethodology draws on
the study of control groups in time series byHarvey and Thiele (2021). It is argued that the fact that death
rates in Sweden were roughly 10 times those in neighbouring countries could be misleading; the growth
paths of the UK and Italy provide more relevant information. A comparison is made with studies based
on the synthetic control (SC) method of Abadie et al. (2010, 2015).

2. Growth curves and time series models

This section sets out the basic model in which the logarithm of the growth rate of the cumulated series
consists of a stochastic trend plus an irregular term. It is then shown how the frameworkmay be extended
to model the relationship between two series.

2.1. Dynamic trend models

The observational model uses data on the time series of the cumulated total of confirmed cases or deaths,
Yt , t¼ 0,1,…,T , and the daily change, yt ¼ΔYt ¼Yt �Yt�1: HK show how the theory of generalised
logistic growth curves suggests models for ln yt and ln gt , where gt ¼ yt=Yt�1 orΔ ln Yt: For the special
case of the Gompertz growth curve:

ln yt ¼ ln Yt�1þδ� γtþ εt , γ> 0, t¼ 1,…,T , (1)

and
ln gt ¼ δ� γtþ εt , t¼ 1,…,T , (2)

where εt is a random disturbance term.
A stochastic, or time-varying, trend may be introduced into (2), to give the dynamic trend model:

ln gt ¼ δt þ εt , εt �NID 0,σ2ε
� �

, t¼ 1,…,T , (3)
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where

δt ¼ δt�1� γt�1þηt , ηt �NID 0,σ2η

� �
,

γt ¼ γt�1þ ζ t , ζ t �NID 0,σ2ζ

� �
,

(4)

and the normally distributed irregular, level and slope disturbances, εt , ηt and ζ t , respectively, are
mutually independent. When σ2ζ is positive, but σ

2
η ¼ 0, the trend is an IRW. HK found an IRW trend to

be particularly useful for tracking an epidemic and it will be adopted in the applications here. The speed
with which a trend adapts to a change depends on the signal-noise ratio, which for the IRW is qζ ¼
σ2ζ=σ

2
ε ; when qζ ¼ 0 the trend is deterministic, as in (2).

Allowing γt to change over time means that the progress of the epidemic is no longer tied to the
proportion of the population infected as it would be if Yt followed a deterministic growth curve. Instead
themodel adapts tomovements brought about by changes in behaviour and policies. If γt falls to zero, the
growth in Yt becomes exponential while a negative γt means that the growth rate is increasing. This
flexibility also allows themodel to deal with second waves, where infections start to increase sharply after
having fallen to a relatively low level. The Florida example3 of Section 4.2 shows how the model deals
successfully with a second wave andHarvey et al. (2021) report accurate forecast for the secondUKwave
of early 2021. A modification of the model, that is currently under investigation, is to re-initialize the
cumulative total at the low point before a new wave begins. The way in which the cumulative total enters
the model is important because a key feature of the dynamic Gompertz model is its ability to detect
upcoming turning points and tomake forecasts that show a downwardmovement even before a peak has
been reached; see, for example, the forecasts made for Germany in HK.

Additional components, such as day of the week effects, can be added to (3). These may be
deterministic or stochastic. Explanatory variables, including interventions, can also be included, as
may stationary components. Thus (3) could become:

ln gt ¼ δt þθt þμt þx0tβþ εt , t¼ 1,…,T , (5)

where θt is a stochastic daily component, modelled as in Harvey (1989, pp. 43–4), μt is a stationary
autoregressive process, xt is a vector of explanatory variables and β is a corresponding vector of parameters.
Possible candidates for explanatory variables include stringency indices for governmental policies, as in Hale
et al. (2021). All these models can be handled using techniques based on state space models and the Kalman
filter (KF); see Durbin and Koopman (2012). Here, the STAMP package of Koopman et al. (2021) is used.
Estimation of the unknownparameters is byML.Diagnostic tests for normality and residual serial correlation
are based on the one-step ahead prediction errors, vt ¼ ln gt �δtjt�1, t¼ 3,…,T:

The KF outputs the estimates and forecasts of the state vector δt ,γtð Þ0: Estimates at time t conditional

on information up to and including time t are denoted δtjt ,γtjt
� �0

, while predictions j steps ahead are

δtþjjt ,γtþjjt

� �0
:The smoother, which estimates the state at time t based on allT observations in the series,

is denoted δtjT ,γtjT
� �0

.
Remark 1. When the observations are small, a negative binomial distribution for yt , conditional on

past observations, may be appropriate. HK show how the model may be modified to deal with this
possibility. However, the numbers in the applications here are big enough to allow yt to be treated as
conditionally lognormal and hence for the conditional distribution of ln gt to be considered normal.

2.2. Forecasts

The forecasts of the trend in future values of ln gt in the dynamic Gompertz model are given by δTþℓ∣T ¼
δT∣T � γT∣Tℓ, ℓ¼ 1,2,…, where δT∣T and γT∣T are the KF estimates of δT and γT at the end of the sample.

3Appendix B illustrates the importance of the ln gt transformation for new cases in Florida.
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Forecasts of the trend in the daily observations are obtained from a recursion for the trend in their
cumulative total, Yt , namely,

μTþℓ∣T ¼ μTþℓ�1∣T 1þ gTþℓ∣T

� �
, ℓ¼ 1,2,…, (6)

where gTþℓ∣T ¼ expδTþℓ∣T and μT∣T ¼YT . The trend in the daily figures is then,

μy,Tþℓ∣T ¼ gTþℓ∣TμTþℓ�1∣T , ℓ¼ 1,2,… (7)

Daily effects can be added to δt: In this case, forecasts of the observations themselves, that is byTþℓ∣T
and bYTþℓ∣T , are given by adding the filtered value of the daily component to the trend component,
δTþℓ∣T .

Unlike most other forecasting methods, the dynamic Gompertz model yields prediction intervals.
The way in which they are constructed is set out in Section 2.4 of Harvey et al. (2021) and examples are
given.

2.3. Forecasting and nowcasting R

Harvey and Kattuman (2021) use filtered estimates of gy,t , given by gy,t∣t ¼ gt∣t � γt∣t , to track the progress
of an epidemic. A corresponding estimator of the instantaneous reproduction number, Rt , can be
constructed in a number ofways, as inWallinga and Lipsitch (2007). Themost practical for COVID-19 are:

eRt,τ ¼ 1þ τgy,t∣t and eRe
t,τ ¼ exp τgy,t∣t

� �
, (8)

where τ is the generation interval, which is the number of days thatmust elapse before an infected person
can transmit the disease; setting τ¼ 4 is a good choice. Harvey and Kattuman (2021) provide more
details and show how forecasts of Rt,τ , with associated prediction intervals. Harvey et al. (2021) illustrate
the implementation of this approach in the NIESR tracker.

2.4. Panel data

The extended dynamic Gompertz model of (5) can be used as the basis for handling panel data. When
there are N cross-sectional units,

ln g it ¼ δitþ z0itαiþx0itβþ εit , i¼ 1,…,N , t¼ 1,…,T , (9)

where δ0its are stochastic trend components and zit and xit are vectors of explanatory variables, with αi,
i¼ 1,…,N , and β denoting associated coefficients. It may be necessary to add autoregressive and day of
the week components. Either way, we can pre-filter with the univariate filter, as in Harvey (1989, Sect.
3.4.2) and then, if the components are assumed to be mutually independent, use the transformed
observation to estimate a standard panel data model. This procedure can be iterated to convergence.

Further generalisations would let the stochastic trends depend on common factors.

3. Comparing different growth curves

The Gompertz growth curve lies behind the notion of setting up time series models in which the
logarithm of the growth rate of the cumulative total of a variable follows a trend. It is therefore able to
provide insight on how to formulate and interpret models linking several series.

The Gompertz growth curve is:

μ tð Þ¼ μexp �αe�γtð Þ, α,γ> 0, �∞< t<∞, (10)
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where γ is a growth rate parameter, μ is the upper bound or saturation level (μ tð Þ ! μ as t!∞Þ and α
reflects initial conditions. The associated incidence curve is:

dμ tð Þ=dt¼ μ0 tð Þ¼ γαμ tð Þexp �γtð Þ,

with a peak at t¼ γ�1 ln α: Figure 1 shows an incidence curve with a peak at t¼ 19:97, together with the
same curve shifted to the right so the peak is at 30:71: A curve above the right hand curve is also shown;
this is higher because the value of μ is 1400 rather than 1000 as it is for the other two curves. In all
cases γ¼ 0:15, but for the left hand curve α is 20 whereas for the right hand curves it is 100.

Although the right hand curves in figure 1 clearly lag the left hand one, it is not immediately evident
how to model the relationship. However, the logarithms of the growth rates of μ tð Þ are:

ln g tð Þ¼ δ� γt, t ≥ 0, (11)

where δ¼ ln αγ; compare (2). Figure 2 shows the two lines for ln g tð Þ running in parallel. The distance
between them depends on the intercepts, δ, which in turn depend on the initialization parameter, α: The
height of the incidence curve, which depends on the saturation level, μ, is irrelevant; as a result, the lines
corresponding to the two right-hand incidence curves in figure 1 are identical. This is important because
it means that small populations can be compared with big ones: size does not matter.

When two lines are parallel, the upper line lags the lower one by:

k¼ δ2�δ1
γ

¼ ln α2� ln α1
γ

, (12)

where δ1 and δ2 are the intercepts of the lower and upper lines, respectively and α1 and α2 are the
corresponding initial conditions. In figure 2, the lag is k¼ 10:73: When the γ0s are different, the epidemic
progresses at different speeds. The lines for ln g tð Þ are no longer parallel and the time lag is no longer constant.

4. A statistical model for leading indicators

Now consider observational models of the form (2) for two time series which are on the same growth
path because γ1 ¼ γ2 but the first series leads the second by k time periods. The observations run from

806040200
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Figure 1. (Colour online) Gompertz incidence curves, μ0 tð Þ, with γ¼ 0:15, α1 ¼ 20 for the left hand curve and α2 ¼ 100 for the right
hand curves; the value of μ in the upper curve is 1400 as opposed to 1000 as in the lower curve
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t¼ 1 to T but when the first series is lagged by k time periods, ln g1,t�k runs from t¼ kþ1 to Tþk:
Subtracting the first series from the second gives:

ln g2t ¼ δþ ln g1,t�kþ εt , (13)

where δ¼ ln α2=α1ð Þ and the disturbance term is εt ¼ ε2t � ε1,t�k. The equation takes the same form
when the trends are stochastic, so long as there is balanced growth. The disturbance, εt , can replaced by
any stationary process.

When the two series are not on the same growth path, there is no longer a value of k for the contrast in
(13) that makes it stationary. The stationarity test of Kwiatkowski et al. (1992)—the KPSS test—can be
used to test for this possibility.

A bivariate time series model combines the dynamic information in the target series with that in the
leading indicator. It is set up by lagging the observations on the leading indicator so that they are aligned

with the target. Hence, defining g kð Þ
1,t ¼ g1,t�k for t¼ kþ1, ::,Tþk gives:

ln g kð Þ
1,t ¼ δtþψt þ ε1t , t¼ kþ1, :…,Tþk,

ln g2t ¼ δþδt þ ε2t , t¼ kþ1, :…,T:
(14)

The k future values of ln g2,Tþj, j¼ 1, ::,k are treated as missing observations.4 The trend, δt , is an
IRW that is designed to capture the growth path of the target series. Its initial level has been (arbitrarily)
assigned to the first series; hence the need for a constant term, δ, in the second. The role of the other
stochastic component, ψt , is to allow for deviations of the leading indicator from the balanced growth
path. A convenient specification for it is the first-order autoregressive process,

ψt ¼ ϕψt�1þ ζ t , ζ t �NID 0,σ2ζ

� �
, t¼ kþ1, :…,Tþk:

All disturbances in (14), including ε1t and ε2t , are Gaussian and assumed to be mutually as well as
serially independent. Only a single lag is present. More lags could be included, but the aim is find a viable
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Figure 2. (Colour online) Logarithms of the growth rates for incidence curves in figure 1; γ¼ 0:15, α1 ¼ 20 and α2 ¼ 100 (upper line)

4If the first k observations on the second series are reliable they could be used by treating the first k values of the first series as
missing.
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leading indicator for movements in the trend rather than to estimate a distributed lag for the observa-
tions. Estimation is by state space methods. As new observations become available, nowcasts and
forecasts are updated by the KF.

When ϕj j< 1, the series are co-integrated with balanced growth. In the absence of balanced growth,
the suggestion is to let ψt be a RW, by setting ϕ¼ 1. The value of k is then based on experimentation and
prior information about whatmight constitute a reasonable lag. The hope is that the RW specification for
ψt enables its movements to be separated from those in the IRW trend.

The filtered estimates, gt∣t and γt∣t , for the target series give the nowcast of gy,t at time t¼T and the
forecast at t¼Tþk. Forecasts can also be made beyond t¼Tþk, but without the benefit of corre-
sponding values of the leading indicator. The KF and smoother implicitly weights observations in both
series in order to compute nowcasts and forecasts for the target.

4.1. Italy and the UK

Figure 3 shows the daily deaths in Italy and the UK from 2March to 20 June 2020; after that the numbers
for Italy start to become small. The figures are for when the deaths were recorded rather than when they
occurred. Series based on date of death would not have the daily pattern but were difficult to obtain at
that time. Data sources are given in Appendix A.

Italy clearly leads the UK but the relationship is captured more precisely in figure 4 which shows the
logarithms of the growth rates of total deaths (LDL). The UK numbers are small at the beginning of
March and so there are missing observations. A lag of 14 days is not inconsistent with prior information
and it has the attraction of lining up the days of the week in the two countries. Other lags were tried but
14 minimised the gap between the two countries. Figure 5 shows the LDL series with Italy lagged by
14 days together with the contrast between the two countries obtained by subtracting Italy from the
UK. The contrast series appears to be stationary with a mean close to zero; without the lag for Italy the
values at the end of March and the beginning of April tend to be higher than the others, reflecting the
later UK lockdown. Estimating a regression model with daily dummy variables removed most of the
serial correlation and gave a mean of eδ¼�0:083, with a SE on 0:035: The diagnostic statistics were5:
r(1) = �0:06; Q 14ð Þ¼ 13:40,r 1ð Þ¼�0:06, BS¼ 1:85 and H¼ 1:24:

UK Italy

2020-3 4 5 6

200

400

600

800

1000

1200

UK Italy

Figure 3. (Colour online) Daily deaths from COVID-19 in Italy and UK in 2020

5r(1) is the autocorrelation at lag one, Q(P) is Box–Ljung statistic with P autocorrelations, BS is the Bowman–Shenton
normality statistic and H is a heteroscedasticity statistic constructed as the ratio of the sum of squares in the last third of the
sample to the sum of squares in the first third.

National Institute Economic Review 89

https://doi.org/10.1017/nie.2021.21 Published online by Cambridge University Press

https://doi.org/10.1017/nie.2021.21


Fitting a bivariate time series model of the form (14), starting on 16 March and finishing on 5 July,
gave a slowly changing trend that was close to being deterministic. The δ1t term was excluded but a daily
component was included. The estimate of the daily growth rate of UK deaths 14 days beyond the final
observation on 20 June was gy,Tþk∣T ¼�0:058, giving a forecast of eRTþk,4 ¼ 0:77.

4.2. Deaths and new cases in Florida

Daily cases of COVID-19 in the U.S. state of Florida peaked in early April. There was then a decline
following a lockdown during April. After April restrictions were eased and there was a levelling out in

LDLUK LDLItaly

2020-3 4 5 6

-7

-6

-5

-4

-3

-2

-1

0

LDLUK LDLItaly

Figure 4. (Colour online) Logarithms of the growth rates (LDL) of total deaths in UK and Italy
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-2

LDLUK LDLItaly_14

Contrast

2020-3-15 3-22 3-29 4-5 4-12 4-19 4-26 5-3 5-10 5-17 5-24 5-31 6-7 6-14
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0.0
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Contrast

Figure 5. (Colour online) LDL series from 16 March to 20 June with Italy lagged by 14 days together with the contrast LDLUK–LDLItaly
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May, followed by a sharp rise in June. This second wave poses a challenge for a model in which new cases
are used as a leading indicator for deaths. The model deals with the second wave by allowing γt∣t to
become negative; estimates of Rt can still be obtained from gy,t∣t , as in (8).

Aside from the model having to deal with a situation where new cases and deaths rise and fall, there is
the problem that the basis on which new cases are recorded changes over time. At the beginning of the
pandemic, new cases inmany countries were primarily hospital admissions, but over time testing became
more widespread. In the case of Florida, there was an increase in testing inMay, although the growth rate
in tests was roughly constant from the end of May onwards. This suggests that the growth rate of
confirmed new casesmay still be a good indicator of the path of new infections; seeHarvey andKattuman
(2021).

The observations, particularly deaths, have a strong weekly pattern. A clearer impression of the
underlying trend is given by figure 6which shows a 7-daymoving average of the logarithms of the growth
rates of total new cases and deaths from 29March to 19 July 2020 inclusive. It is apparent that new cases
are leading, but the relationship between deaths and new cases is not completely stable over time, partly
because of an increase in the growth rate of testing in May and partly because of other factors, such as
better hospital treatment. The inclusion of the ψt component in model (14) offers a way of dealing with
the discrepancy. Nevertheless, despite the instability, it seems clear that new cases peak some time before
the end of the sample whereas deaths appear to be at their peak, something confirmed by later
observations.

The lag in (14) is chosen so as to get maximum benefit for new cases as a leading indicator. It is not
trying to model the distribution of days from infection to death although the choice of kmay be roughly
aligned with the mean time to death. After some experimentation it was decided to fix the lag at 18. The
LDL for new cases shifted in this way, and shown in figure 6, tracks deaths quite well.

The model, including day of the week variables, was fitted to the Florida data from 29 March till
19 July, with the new cases shifted forward 18 days so as to end on 6 August; thus k¼ 18. Specifying ψt as
a first-order autoregressive process in (14) gave an estimated ϕ of 0.998, so a RW seems appropriate. The
smoothed estimates of this RW component are shown in figure 7. The lower graph is the smoothed
estimates of the day of the week component in deaths; note that the bivariate model is able to give
estimates for the period after 19 July when there are no observations on deaths. The size and variability of
the daily component in deaths is much bigger than it is for new cases, with the very high variation
coinciding with the period when the numbers of deaths are relatively small. Similarly the prediction error

moviLDLFlcases

moviLDLFlcases_18

moviLDLFlDeath

2020-4 5 6 7 8

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5
moviLDLFlcases

moviLDLFlcases_18

moviLDLFlDeath

Figure 6. (Colour online) Seven-day moving average of LDL deaths in Florida, new cases and new cases lagged 18 days (dotted line)
from 29 March till 19 July 2020
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variance of 0.115 for new cases was less than half the 0.253 obtained for deaths. Little serial correlation
remained in the residuals for deaths: the Box–Ljung Q-statistic for the first 18 residual autocorrelations
was 8.16, while the corresponding figure for cases was a little higher6 at 25.01. The signal-noise ratio was
estimated as 0.00037, so the trend changes relatively slowly but is still able to adapt to changes in
direction.

Figure 8 shows the forecasts of the logarithm of the growth rate deaths, obtained by using the leading
indicator, together with the actual observations from 20 July to 4 August. The smooth dotted line is the
trend in LDL deaths. As can be seen, the model forsees the turning point. By contrast, the growth rate of
LDL deaths on 19 July is still positive, and estimating a univariate model up to this point gave forecasts
continuing on an upward path, overshooting the actual observations.

5. Policy interventions and control groups

This section shows how the time series models can be used to assess the effects of policy. The first
example uses univariate time series modelling to investigate the timing of the UK lockdown in the spring
of 2020. The second illustrates how the balanced growth framework provides the basis for policy
evaluation by showing how some variables can be used as control groups for a target variable. The
consequences of Sweden’s soft lockdown coronavirus policy in the early part of 2020 are assessed and a
comparison is made with studies based on the method of SC.

5.1. What if the March 2020 lockdown in the UK had been a week earlier?

The UKwent into full lockdown on 23March. Can we estimate howmany deaths could have been saved
if it had been a week earlier?

A slope intervention in (2) enables the effect of a policy which changes γ to be evaluated. Thus,

ln gt ¼ δ� γt�βtwt þ εt , t¼ 1,…,T , (15)

LDLcases18-RW

2020-3 4 5 6 7 8

-0.2

0.0

0.2
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-1.0

-0.5

0.0

0.5

LDLdeathDay

Figure 7. (Colour online) Smoothed estimates of the RW component in Florida new cases, shifted forward by 18 days and the
associated daily component in deaths

6The suggestion in the STAMPmanual is to test against a chi-square variable with allowance made for the loss in degrees of
freedom due to estimated parameters which here is six. Thus, the chi-square may be taken to have 12 degrees of freedom.
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where wt are intervention dummy variables. When the full effect is realised, the slope on the time trend
will have moved from γ to γþβ: A positive β lowers the growth rate, gt , the peak of the incidence curve
and the final level. The intervention dummies can be constructed from a logistic cumulative distribution
function, giving a response curve:

W tð Þ¼ 1= 1þ exp �γ t� tmed
� �� �

, �∞<W tð Þ<∞,
�

where tmed is the median.With tL and tU denoting the beginning and end of the time span during which
the response to the intervention occurs, the dummy variables are defined aswt ¼ 0 for t< tL, wt ¼W tð Þ
for tL, t¼ tLþ1, ::, tI , ::, tU and wt ¼ 1 for t¼ tU þ1, ::,T:HK fitted the static model in (15) to new cases
in the UK, with an intervention starting on 26 March and ending on 12 April, using data from the
beginning ofMarch up to 29 April. The result was an estimate of β equal to 0:020 0:004ð Þ and an estimate
of γ also equal to 0:020: The overall effect7 is a new slope of 0:041. The trend, with the intervention
included, is shown by the dashed line in figure 9.

The effect of implementing lockdown restrictions a week earlier can be estimated by shifting the
intervention response forward by 1 week so it starts on 19March, rather than on 26March. The adjusted
trend in the logarithm of the growth rate is then:

ln g∗t ¼ δ� γt�βtwtþ7, t¼ 1,…,T: (16)

Once the effect of the intervention has worked itself through, the new slope is the same as before, as can
be seen in the solid line in figure 9.

The predicted final total is:

μ≃μT exp expδT∣T
� �

=γT∣T
� �

,
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Figure 8. (Colour online) Forecasts (dots) and trend (smooth dots) of the logarithmof the growth rate of deaths, obtained by using the
leading indicator, together with the actual observations from 20 July to 4 August; observations before 20 July (LDLFlDeath) shown by
thick line

7When the slope was allowed to be stochastic, the estimate of β was reduced to 0:014 0:006ð Þ, but with such a small sample
size, a stochastic slope risks some confounding with the intervention variable.
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where T is 12 April. For the actual data, μT can be approximated by YT , but for the early lockdown
scenario, μT will be smaller because the growth rate falls earlier. This implies that the level on 18March is
multiplied by exp

P
g∗t

� �
, where the summation is over the period from 19March to 12 April. To ensure

comparability, the actual level on 12 April is best estimated in the same way, rather than by YT . Thus an
estimate of the ratio of the total number of cases for a hypothetical early lockdown to the actual total is
given by:

Hypothetical

Actual
¼

exp
P

g∗j

� �

exp
P

g j

� �¼ exp
P

exp δ� γt�βtwtþ7ð Þð Þ
exp

P
exp δ� γt�βtwtð Þð Þ :

This ratio is 0:551 implying that the number of infections, as measured by data on daily coronavirus
hospital admissions, could have been almost halved by an earlier lockdown. If a constant proportion of
those admitted die, the implication is that deaths in the initial phase of the epidemic (up to the end of
June) could have been almost halved by an earlier lockdown.8 This conclusion is not too different from
ones obtained by othermethods. For example, the BBC reported on 10 June that Professor Neil Ferguson
of Imperial College told a committee of MPs: ‘Had we introduced lockdownmeasures a week earlier, we
would have reduced the final death toll by at least a half’.

5.2. Fewer deaths in Sweden with a full lockdown?

Sweden did not opt for the full lockdown that other European countries imposed in March. Restrictions
wereminimal: the government recommended frequent handwashing, working from home, self-isolation
for those who felt ill or were over 70 and social distancing9; see, for example, Kamerlin and Kasson
(2020). Did this policy lead to the number of deaths being significantly higher than it might have been
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Figure 9. (Colour online) Estimates of logarithm of growth rate of total cases in UK with a logistic intervention and a daily effect

8It should be stressed that these findings relate specifically to the effect of the full lockdown of March 2020. A full lockdown
imposed now is unlikely to have the same impact because the environment is different in that social distancing restrictions are in
place, behaviour has changed and the risk to care homes is better understood.

9Carl Bildt, a Former Prime Minister, was quoted as saying ‘Swedes, especially of the older generation, have a genetic
disposition to social distancing anyway’.

94 Harvey

https://doi.org/10.1017/nie.2021.21 Published online by Cambridge University Press

https://doi.org/10.1017/nie.2021.21


under a full lockdown?To answer this questionwe need to determine the growth path that Swedenwould
most likely have followed under a hard lockdown.

The analysis is based on daily deaths in Sweden, UK and Italy (lagged 14 days) from 18 March to
22 July; by the end of July numbers had become small. A comparison of actual and potential growth paths
is best carried out with the logarithms of growth rates of the cumulative total for the reasons discussed
earlier. Although Sweden is much smaller than the UK and Italy, there is no need to take deaths per
100,000 because it follows from the discussion in Section 2.3 that standardising in this way leaves the
growth rate, gt , unchanged. Because the day of the week effect is very strong, particularly in the UK, the
logarithms of growth rates were smoothed with a 7-day moving average, centred on the fourth day. The
graph in figure 10 shows that Sweden initially fell at the same rate as the UK and Italy but then started to
diverge10 around 24 April, about a month after the UK lockdown began on 23 March.

If Sweden had kept on the same growth path as the UK and Italy there would have been fewer deaths.
An estimate of the number of deaths under this alternative scenario is given by reference to the
forecasting equations in Section 2.2. Let t¼m denote the date of divergence and let bδt denote the values
of δt estimated for the lockdown growth path using the data on UK and Italy. Since the moving averages
are quite smooth, bδt was constructed as a simple average of the two countries, rather than by restricted
least squares (RLS) as11 in Harvey and Thiele (2021). Then,

bμmþj ¼bμmþj�1 1þbgmþj

� �
≃bμmþj�1 expbδmþj, j¼ 1,2, ::,T�m: (17)

The initial value is bμm ¼Ym, or a weighted average around that point. Solving the recursion gives:
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Figure 10. (Colour online) Seven day moving averages of the logarithms of the growth rate (LDL) from 18 March to 22 July

10The growth path of deaths in theUK and Italy differs somewhat from the growth path of new cases. The growth rate of ln gt
for new cases, that is γt , drops significantly within a little over 2 weeks from the start of lockdown; HK estimate the UK fall by
fitting intervention variables. A corresponding sharp drop in γt is less evident in the deaths data. The divergence of Sweden from
Italy and the UK is more a consequence of the Swedish γt increasing, rather than the γ0ts falling for the other countries.

11The generalmethodology is to select a set of controls from a donor pool by using the KPSS test to determine which series are
on a balanced growth path with the target. The control group weighting is then determined by RLS. The complication here is
that, when there is an intervention, balanced growth may require lagging some of the series.
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bYT ¼bμT ¼Ym

YT�m

j¼1

1þbgmþj

� �
≃Ym exp

XT�m

j¼1

bδmþj, (18)

as the estimated total number of deaths, up to time T , under the lockdown scenario. The estimated
number of deaths after timem is bYT �Ym while the actual is YT �Ym:Here T is 22 July; the number of
deaths after that is relatively small.

The total on 24April was 2236 and using formula (18) gives an estimate of 4062 for 22 July as opposed
to an actual figure of 5722, a difference of 1660. The sensitivity to the initial value can be gauged by noting
that the estimates using the totals 2 days before and 2 days after 24 April are 3808 and 4378, respectively.

One way of reducing the dependence on the starting value is to estimate the underlying total for
Sweden using formula (18) withbgmþj replaced by the actual Swedish values. This gave a total of 5657. The
ratio of bYT for the lockdown control group to that of Sweden is 1:816=2:530¼ 0:718: For bYT �Ym it is
0:816=1:530¼ 0:533: This implies that the actual increase from 24 April, which was 3486, could have
been 1902. The first method gave 4062�2236¼ 1826: The overall conclusion is that, between 24 April
and 22 July, there were perhaps 40–45 per cent more deaths than there might have been under a more
stringent lockdown of the kind implemented in the UK and Italy.

It is worth noting that although Swedenmay have had more deaths under its soft lockdown, this does
notmean a higher death rate than countries which had a hard lockdown. On 4 September, the figures for
deaths per one million for Sweden were 577 as against 611 for the UK and 587 for Italy. The rates for
Denmark, Norway and Finland were 108, 49 and 61, respectively, but this should not lead one to infer
that the soft Swedish lockdown resulted in a death rate of perhaps ten times what it might have been.

The number of deaths in Denmark is too small to allow a full analysis based on the logarithms of
growth rates. The variability is high and after mid-May there are often days when no deaths occur.
Numbers in Norway and Finland are lower still. However, up to the end of April the logarithm of the
growth rate for Denmark is informative. Figure 11 shows the logarithms of the growth rates for Sweden,
Italy, UK andDenmark. Denmark is on a similar growth path to that of the other countries but it is lower
than the UK because coronavirus may have arrived earlier and lockdown was imposed on 13March; the
gap is consistent with Denmark leading the UK by about a week. During this period deaths in Denmark
weremuch lower than in Sweden even though theywere on the same growth path until close to the end of
April. This difference therefore seems to be for reasons not directly connected to the policies of the two
countries on lockdown.
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Figure 11. (Colour online) Seven-day moving averages of the logarithms of the growth rate from 18 March to 30 April
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On 30 April, 2714 deaths had been recorded in Sweden as against 443 in Denmark, a ratio of 6.13. On
24April, the figures were 2236 and 394, a ratio of 5.68. (But bear inmind that the population of Sweden is
1.76 times that of Denmark so in per capita terms the ratio is closer to three.) On 22 July, the ratio of
Swedish to Danish deaths had risen to 9.36. However, the ratio of the lockdown estimate of 4062 to the
611 Danish deaths is only 6.64 which is not far from the ratio at the end of April. Thus the estimate of the
number of deaths obtained using the control group seems quite plausible. The conclusion is that for
reasons unconnected with lockdown policy the death rate per head in Sweden was about three and a half
times that in Denmark. The less stringent lockdown then raised this ratio to nearly five and a half.

5.3. Synthetic control

Anumber of researchers have analysed the Swedish experience using themethod of SC. The recent paper
by Cho (2020) is a careful and thoughtful analysis, containing a number of references to earlier papers on
the topic. Cho uses daily infection case data per million people to construct a SC variable for Sweden
using observations from 29 February to 24 March. The countries and their SC weights were: Finland
(0.49), Greece (0.24), Norway (0.22), Denmark (0.03) and Estonia (0.02). The choice of these countries,
with the exception of Greece, is not unexpected.12 Cho concludes that, for the 75 days post-lockdown
days, from 25 March until early June, synthetic Sweden is 75 per cent lower than actual Sweden. The SC
method cannot be applied directly to deaths because, as noted above, the numbers for the key control
group candidates are too small so Cho goes on to examine excess deaths by combining the analysis of new
cases with weekly data on excess mortality. He concludes that excess deaths were about 25 per cent less in
synthetic Sweden as compared with actual Sweden. What is striking is that in the balanced growth
analysis the reduction in deaths is quite close, at 29 per cent, and converting to excess deaths might end
up with a figure that is closer still.

Cho, in common with other SC researchers like Born et al. (2020), uses raw cases numbers,
standardised for population. However, the logarithm of the growth rate could also be used and, since
this yields better behaved time series, it would be interesting to see if it yields the same SC group.

Overall the balanced growth approach is simpler, more transparent and arguably more convincing.
Harvey and Thiele (2021) reach the same conclusion in their analysis of the seminal SC applications of
Abadie et al. (2010, 2015).

6. Conclusion

The aim of this article has been to provide a methodological framework for the statistical analysis of the
relationship between time series of the kind that are relevant for tracking and forecasting epidemics and
analysing the effects of policy. The examples illustrate how the methods may be applied in practice,
although a degree of caution is needed in interpreting the results because of data revisions and different
definitions of what constitutes a COVID-19 death.

The growth path of an epidemic is best captured by fitting a stochastic trend to the logarithm of the
growth rate of the cumulated series. When two series are on a balanced growth path, the difference
between them is stationary. The relationship between deaths from coronavirus in the UK and Italy in the
first half of 2020 is a good example of balanced growth, with deaths in Italy 14 days earlier providing a
leading indicator for deaths in the UK. A bivariate state spacemodel takes full account of the dynamics in
both series and, by extracting the common underlying trend, yields estimates of the daily growth rate of
an epidemic and the associated value of Rt:

The balanced growth model was extended by including a RW component. This allows the growth
path of the leading indicator to deviate from the growth path of the target series. A model of this kind

12In an earlier study, Born et al. (2020) selected a somewhat different group, namely the Netherlands (0.39), Denmark (0.26),
Finland (0.19), Norway (0.15) and Portugal (0.01).
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linking deaths to new cases in Florida was estimated for the period covering the second wave in early
summer 2020. The forecasts made for deaths while they were still rising are remarkably successful in
picking up the subsequent downward movement.

Policy evaluation can be carried out by using some series as control groups for others. A common
trend or, better still, balanced growth is the key ingredient. The Swedish policy response to coronavirus
provides an example of themethodology. It is shown that the average of the growth paths of deaths in the
UKand Italy yields a suitable control group for deaths in Sweden. The Swedish growth path is initially the
same as those of the UK and Italy but it begins to diverge towards the end of April. The difference in the
growth paths then enables the implications of the Swedish soft lockdown policy to be assessed. The
analysis suggests that, between 24 April and 22 July, there were perhaps 40–45 per cent more deaths than
there might have been under a more stringent lockdown of the kind implemented in the UK and Italy.
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A. Appendix A. Data Sources

The data for European countries was obtained from the European Centre for Disease Prevention and
Control (ECDC) website, https://www.ecdc.europa.eu/en/publications-data/download-todays-data-
geographic-distribution-covid-19-cases-worldwide. For Florida the source was: https://covidtracking.
com/data. The data were obtained at the end of August and the beginning of September. Data can be
subject to revisions. For example, the UK definition of deaths was changed in August to include only
people who had a laboratory-confirmed positive COVID-19 test and had died within 28 days of the date
the test result was reported. Before that it included anybody who had ever tested positive for COVID-19
no matter how long before the actual death.

Case-fatality statistics in Italy are based on defining COVID-19-related deaths as those occurring in
patients who test positive for SARS-CoV-2 via RTPCR, independently of pre-existing diseases that may
have caused death. This method may have resulted in overestimation; see Onder (2020).

B. Appendix B. Transformations

The ln gt transformation (LDL) is crucial in giving a series that stabilises the variability of the
observations around the trend. The behaviour of ln yt is similar when Yt is large, but it may be quite
different at the start of an epidemic. Other leading examples of statistical forecasting methods are based
on different transformations. For example, Doornik et al. (2020)model gt directly, but a comparison of gt
with its logarithm shows it to be much less stable in that its variability changes with the level. Figure A.1
shows these transformations for data on cases of coronavirus in Florida from 29March to 19 July, as used
in the leading indicator study in Section 4.2. Figure 4 reinforces the case for ln gt by showing its
downward trend and stability for UK and Italian deaths in the initial phase of the epidemic during the
spring of 2020.
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Figure A.1. (Colour online) Daily cases of coronavirus in Florida from 29March to 19 July (top left hand graph), and its logarithm, lnyt,
(top right hand), together with the growth rate of the cumulative total (lower left hand) and its logarithm, lngt.
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