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Abstract. The atmospheric effective angular momentum functions were 
used to study the excitation of the diurnal polar motion and nutation. 
The main effect on polar motion at the frequency of the S\ tide is up to 
10 j*as, and on the annual prograde nutation term is up to 0.1 mas. The 
atmosphere and viscosity of the outer core of the Earth were taken into 
account in calculating the transfer function. 

The atmosphere treated as a thin rotating layer gives two new eigen-
modes or two new resonance frequencies in the Earth's transfer function, 
and one of them is in the diurnal frequency band. Viscosity of the fluid 
outer core and choice of the Earth's model change the nearly diurnal 
frequencies of the normal modes. 

1. Introduction 

The extremely high precision with which the orientation of the Earth in space 
and the position of the instanteneous rotation axis inside the Earth can now 
be measured by space geodetic methods provides an opportunity to test new 
hypotheses about the Earth's deep interior. Both nutation, that is the mo­
tion of the celestial ephemeris pole (CEP) in the inertial reference frame, and 
short-periodic terms of polar motion, the position of the CEP in the terrestrial 
reference frame, are excited by the nearly diurnal forcing. The nutation is seen 
as a retrograde motion of CEP, and the retrograde terms have frequencies which 
are less than —1 cycles per sidereal day. The main reason for nutation is the 
lunisolar gravitational torque on the Earth's equatorial bulge. 

Polar motion is a prograde motion. Diurnal terms in polar motion can be 
explained by the effect of the relative motions of the atmosphere and the oceans 
and by the global pressure field of the fluid on the Earth. 

The direct effect of atmospheric and ocean tides on nutation was calculated 
by Sasao and Wahr (1981). The observable nutation, ((e), is the function of the 
surface load potential $£, and the relative angular momentum h: 

((a) = -(2.686 x 1 0 - 3 — — — + 2.554 x 10"4 — ) $ L + 
a - ocw v - VRFCN 

+ (1.124—^2 6.170 x l O - 4 ^ ) * (i) 
a - &cw & - o-ftFCN Ail 

where fio is the sidereal rotation rate of the Earth, A is the equatorial moment 
of inertia, VRFCN , &cw are the complex-valued Retrograde Free Core Nutation 

555 

https://doi.org/10.1017/S0252921100061728 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100061728


556 Zharov and Pasynok 

(RFCN) and Chandler Wobble (CW) frequencies. Polar motion parameters 
p(t) = x(i) — iy{t) reported by IERS are connected with nutation in the frequency 
domain by the simple equation 

C(<7) = -p(<7). (2) 

The main contribution to nutation and polar motion in the diurnal fre­
quency band comes from the ocean tides (Gross, 1993). The effect of the at­
mosphere is much smaller. Nevertheless the atmosphere has a non-negligible 
effect on nutation, in particular on the prograde and retrograde annual nutation 
(Zharov and Gambis, 1996; Bizouard et ai, 1998). In this work we calculate 
the daily atmospheric polar motion variations. In order to do this we use the 
corrected frequency domain version of the extended polar motion equation. It 
was derived by Brzezinski (1994) using equations (1,2): 

p{a)= acW (apX
p + awX

w)+ ^ (xp + Xw), (3) 
PRFCN - C &CW - & 

where ap, aw are dimensionless parameters depending on the Earth model. Equa­
tion (3) connects the temporal variations of polar motion with the effective angu­
lar momentum (EAM) functions \ of the atmosphere; \p',XW a r e the "pressure" 
and "wind" terms, respectively. In order to calculate the diurnal variations of 
polar motion it is necessary to know the EAM functions with high temporal res­
olution. We used the homogeneous 29-year series of the 4-times daily estimates 
of the atmospheric EAM that were obtained by the U.S. National Center for En­
vironmental Research (NCEP) and the U.S. National Center for Atmospheric 
Research (NCAR) (Kalnay et ai, 1996). 

Why is it necessary to correct equation (3)? 
Coefficients and frequencies in (1) and (3) were calculated for the 1066A 

model of the Earth. But it was found by analysis of very long baseline inter-
ferometry (VLBI) data that the frequencies differ from frequencies predicted by 
Wahr's theory (Wahr, 1981). 

In order to calculate the effect of the atmospheric tides on polar motion 
the theoretical frequencies ORFGNI^CW in (3) are replaced by the observed 
frequencies (Bizouard et ah, 1998). Really it means that the model 1066A is 
replaced by another model of the Earth. 

Our goal was to find better agreement between model and observations. The 
main idea was to take into account in our computation both the atmosphere as 
a thin rotating layer and the viscosity of the fluid outer core (FOC). As shown 
below the atmosphere determines new normal modes of the Earth and one of 
them is in the diurnal frequency band. It means that resonance enhancement of 
the diurnal atmospheric tides is possible. Viscosity of the outer core significantly 
changes the diurnal frequencies of the normal modes and quality factor QRFCN 

of RFCN. Using the different models of viscosity one can fit the frequency and 
the quality factor of the RFCN to the observed ones. 

Our methodology is to seek the best fit of the theoretical amplitudes of 
nutation terms to ones obtained from VLBI data analysis by changing the model 
of viscosity. After that the solution of the dynamical equations for the Earth 
can be used to recalculate equations 1 and 3. 
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2. Main equations 

According to the theory of nutation of the elastic, oceanless, oblately spheroidal 
and spherically stratified and dissipationless model of the Earth (Mathews et al, 
1991) we can write the dynamical equations in the Earth-fixed reference frame: 

^ + fixH = L, (4) 

5-«/xHy = 0, (5) 

- ^ + f t x H s = Ls. (6) 

The equations are written for the whole Earth, for the FOC and the solid 
inner core (SIC), respectively. If we take into account the atmosphere as an 
outer layer relative to the solid Earth, we have to add the fourth equation: 

ATI 

y + flxH^L,. (7) 

In equations (4-7) H, H/ , Hs , H a are the angular momentum of the whole Earth, 
the FOC, the SIC and the atmosphere, respectively, L ,L s ,L a are the torque on 
the Earth, on the SIC and on the atmoshere. We defined the instantaneous 
rotation vector of the Earth as ft and the rotation vector of the FOC relative 
to the mantle as LOJ. 

The system of equations (4-7) can be reduced to a system of coupled linear 
equations for small unknown parameters that represent the wobble of the mantle 
(m), the wobbles (my, ms ,ma) of the FOC, SIC and the atmosphere, respec­
tively, and the inclination of the polar axis of the SIC (ns) and the atmosphere 
(na) from that of the rest of the Earth. The amplitude of the wobble (m) does 
not exceed 4 x 10~8 (Mathews et al., 1991) in the diurnal frequency band. The 
leading terms in (4-7) are of the first order in m, or O(m). 

Let us consider the effect of viscosity of the FOC first. Equation (4) for 
the whole Earth does not change, if we take into account the viscous forces, 
because they are inner forces, and, consequently, cannot change the torque L. 
But equations (5,6) have to be rewritten. 

As shown in Appendix B (Mathews et al., 1991) the dynamical equation for 
the FOC, written in an alternative form is 

^±-LofxUf = -JprxGdV, (8) 

v 

where force G was obtained by the integration of the equations of the fluid 
motion in our reference frame for the dissipationless model of the Earth. The 
right-hand side of (8) can be set to zero with error of order of 0(me2), where e 
is the flattening of the Earth. We have to add the torque of the viscous forces: 

L^=frxp^dS, (9) 
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Figure 1. Model of viscosity 

where 

rf>-*,E(£+£j (10) 

??(r) is the viscosity of the FOC, v = v(vi,V2,V3) = ve + v" is the residual 
velocity field that includes non-rotational motion of a fluid, caused by the elastic 
deformational motion (ve) and by the viscous motion (vu); n is normal to the 
corresponding point of the FOC surface. One can write similar equations for 
the torque acting on the mantle (L^J and the inner core (L^). According to the 
conservation law we can write: 

L(") + LW + I W = 0 

The model of viscosity is shown on Fig. 1. The estimation of the viscosity 
of the FOC was reported by Brazhkin (1999). It was based on the experiments 
where the viscosity of the liquid was studied under high pressure (Brazhkin, 
1998). The upper and lower curves in Fig. 1 correspond to the upper and lower 
possible values of viscosity assumed by Brazhkin. 

For our model it is important that viscosity changes very significantly only 
on the boundary between the FOC and the SIC in a thin layer with thickness 
of order of 100 km. 

We used the functional dependence of Brazhkin's model, but reduced the 
viscosity values. We assumed that -q = 107 — 5 • 107Pa • s for the viscosity value 
on the solid inner core - fluid outer core boundary. In this case the quality factor 
of the free core nutation is in the range QRFCN — 30000 — 6000. 

The torque approximately equals the surface integral of the product of vis­
cosity and the gradient of velocity. Because the surface of the core-mantle 
boundary is only 10 times more than the surface of the SIC, we will omit the in­
tegrals on the surface of the core-mantle boundary. It means that L„ < < L! (v) 
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On the basis of this model we get 

Li"> = - L ^ . (11) 

In order to calculate the torque Lj of viscous forces (10) the integration over 
the FOC-SIC boundary (9) has to be estimated. 

Briefly, if we should know the velocity field v we could calculate the torque 
Lj on the fluid core (9), and then, using equation (11) find the torque Ls ' 
on the SIC. After correction of the right-hand sides of equations (5,6) we could 
solve the system of equations (4-6). 

The main problem is the calculation of the velocity field v. In order to 
avoid this hard work the special choice of the reference frame is necessary. The 
effect of v has been eliminated in Mathews et al. (1991) by requiring that the 
relative torque is equal to zero: 

I prx vedV = 0. 
Jv 

In this case the reference system is close to the Tisserand mean axis for the 
mantle. 

In order to do our calculations more simply we have to suppose some heuris­
tic but logical requirements for the non-rotating velocity field v. First, suppose 
that viscosity does not affect the motion of the particles of the fluid caused by 
elastic deformations. As shown below, the viscous torque has the order of 0(m). 
It means that the effect of viscosity on the deformational motion will be of the 
order of 0(m2). We will neglect such terms. 

Further approximation is possible on the base of this estimate. We will 
consider that the additional torque caused by the residual velocity field both 
from elastic deformational motion and from the viscous motion are equal to zero 
with necessary precision. This means that the reference system that rotates with 
the angular velocity of the FOC is the Tisserand axis system for the FOC. 

Finally we shall consider that the velocity v" depends on the distance r 
from the center of the Earth: 

v"(r) = ft(r) X r, (12) 

ft' — ft 
ft(r) = fts + - -(r - rs) + 0(Sr2), rs + Sr>r> rs. or 

where rs = 1221 km is the radius of the SIC, Sr = 100 km is the thickness of 
the layer of high viscosity. We assign a rotation vector ft(r) to the fluid layer 
at distance r from the Earth's center. As mentioned above we consider that 
the FOC extends from the layer of low viscosity to the thin layer with thickness 
Sr on the FOC-SIC boundary. So we define fts as the rotation vector of the 
Tisserand axis system for the SIC relative to the inertia! system and ft' as the 
rotation vector of the FOC (outside the layer Sr). 

The requirement that the relative torque has to be equal to zero leads to 
the equation: 

ft' = ft/ + 0(m£2), (13) 
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where ftj is the rotation vector of the fluid core, or the angular velocity of the 
Tisserand axis system for the FOC. 

Using the velocity field (12) together with (13) and (10) for the torque on 
the FOC (9) we get 

w = -v(r.r-3 Sr 
The torque on the SIC can be calculated using relation (11) and written as: 

(14) 

L<"> = WSl&mf - m,), W = rj(rs) 
8TT 

(15). 
3 tfrfi0' 

so the viscous torque has the order of 0(m). 
The equatorial component of the torque on the atmosphere La was cal­

culated by Zharov (1997) and can be written as La = —iU(c% + h/ilo) where 
parameter U depends on the Earth's figure. Variations of the moment of inertia 
of the atmosphere clj and relative angular moment h are connected with the 
EAM atmospheric functions x = Xv + Xw by equation \ = (c% + h/£l0)/(C - A). 

We keep the same notation for all parameters as in Mathews et al. (1991). 
With the inclusion of the viscous coupling at the SIC and the atmosphere, the 
system of equations is 

where: Mx = y, (16) 

C7(1 + K) + ' 7(1 + K) 

<Kl + l) 

.7(1 + 9) - e » a 3 

0 

a — ea 

M = 

l + e / + „(l + 0 ) - , ^ - vl+'-gj -»"1«.^ 0 ^ i + h^^ea 

^ + l + < r _ , 4 ^ (1 + cr- a2)es 

v 

ma 

((K - e + aK)i - (1 + o-)(l + K')^\ 

(,X0-a3e,)^-<T(C/r+ /»,)£ 

\ 
- ( i + " + & ) ; 

o / 

The parameters A, Af, As, Aa are the equatorial moments of inertia, e, ej, ea, ea 

are the dynamical ellipticities of the whole Earth, the FOC, the SIC and the 
atmosphere, a is the frequency of harmonics of the tidal potential <f>. Other 
Greek symbols are the compliancies representing the deformations of the Earth 
and core regions. 

The frequencies of the normal modes of the Earth with the atmosphere and 
viscous outer core were found. Two of these belong to the Chandler Wobble 
(CW) of the Earth and its solid core (ICW) approximately: 

&cw 
A 

( e - « 0 , crICw = ( 1 - a2)es 

https://doi.org/10.1017/S0252921100061728 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100061728


AAM Variations and Diurnal Polar Motion 561 

Viscosity does not change the values of these frequencies but affects the fre­
quencies of the free core nutation (FCN) and free inner core nutations (PFCN) 
approximately: 

VPFCN = - 1 + ( l + j * - ) (e/ - P)(a2es + u) + 
W2 

AfAs 
+ 

+ W + %;>>-*»!;-(> +£)%<"• + ' »]• 
The parameter W depending on viscosity r\ determines the dissipation of the 
tidal energy or quality factor. 

Two frequencies associated with a wobble of the atmosphere OACW and the 
nearly diurnal atmospheric nutation CTRFAN are approximately equal to: 

&ACW = ( l + ryz)ea' PRFAN = - (l + ^rje0 + (K +/? - 20-j—) 

Both frequencies are determined by the dynamical ellipticity of the atmosphere 
e„. If the surface of the Earth is determined by the condition of hydrostatic 
equilibrium, then U = 0,%. According to the estimate of Sidorenkov (1973) 
ea = 0.01476 and it means that the frequency ORFAN differs significantly from 
the main diurnal tides. 

In order to calculate the nutation amplitudes the transfer function was 
written as 

Ri 
f((7) = R + R'(l + a) + J2 

i = l 

where R, R', Ri are the resonance coefficients. The precise periods of the normal 
modes and the coefficients R,R',Ri are shown in Table 1. Amplitudes of the 

Table 1. Periods P (in solar days) of the normal modes and resonance 
coefficients for rj = 10 Pa • S,QRFCN ~ 30000. 

CW 
RFCN 
ICW 

PFCN 
ACW 
RFAN 

P 
400.64 

-427.69 
2408.91 
477.29 

34.27 
-69.54 

Ri 
(-5.804-10- 4 ,1.1-10- 1 1) 

(-1.176-10-4 ,-5.11-lO"8) 
( -4 .6-10- 8 , -1 .3-10- 1 1 ) 
(1.1-lO- 6,5.054-10-8) 

(1.5-lO"10,0.0) 
(-3.0-10"10,0.0) 

i? = (1.0504015,1.7 • 10-10) 
R! = (-0.2835477, -1.4 • 10-12) 

main nutation terms (in-phase and out-of-phase) were calculated for viscosity 
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rj = 5 • 107Pa • s, QRFCN ~ 6000 and ry = 107Pa • s, QRFCN « 30000. They were 
corrected for the effects of anelasticity and ocean tides and are shown in Table 2. 
The values of the dynamical ellipticity of the FOC ej were calculated in order to 
give complete agreement with the observed amplitude of the retrograde annual 
nutation term. 

Table 2. Amplitudes (in mas) of the main nutation terms and com­
parison with the VLBI estimate. 

Period 
(days) 
-13.66 
-182.62 
-365.26 
-6798.38 
6798.38 
365.26 
182.62 
13.66 

VLBI 
estimate 

(-3.63,-0.03) 
(-24.57,-0.06) 
(-33.05, 0.35) 

(-8024.88,1.43) 
(-1180.50,-0.07) 

(25.64,0.12) 
(-548.47,-0.51) 
(-94.20,0.13) 

?y = 5-107Pa-s 
e/ = 2.6835 • 10~3 

(-3.64,-0.01) 
(-24.52,-0.05) 
(-33.05,-0.11) 

(-8025.48,0.57) 
(-1180.28,-0.07) 

(25.68,0.00) 
(-548.24,-0.44) 
(-94.05,0.00) 

r/ = 107Pa-s 
ef = 2.6831 • 10~3 

(-3.64,-0.01) 
(-24.52,-0.05) 
(-33.05,-0.07) 

(-8025.62,0.85) 
(-1180.28,-0.11) 

(25.71,0.01) 
(-548.27,-0.50) 
(-94.05,0.00) 

3. Tidal analysis 

The atmospheric tides are excited both by the lunisolar gravitational force and 
by the solar heating. They are the large scale waves that cause the periodic 
variations in pressure and in the wind velocity field, and, consequently, in the 
X-functions. In the frequency domain the EAM atmospheric functions \ m a y 
be expressed as a series of discrete terms: 

3=1 

where n is the number of tidal terms considered, x° and xs are the cosine and 
sine amplitudes of these terms, $ j is the tidal argument that is equal to the sum 
of the five fundamental arguments and of GMST + TT (GMST is the Greenwich 
mean sidereal time). 

To calculate the polar motion variation the corrected equation (3) has to 
be used: 

p(cr) = aCW (aPXp+«.x")+^-(xP+X")+ 
ORFCN &CW 

aCW i I v x I w\ 

-(apx
p+awx )• VRFAN ~° 

Really the third term is very small. It is approximately six orders less than the 
first two terms. The amplitudes of the x tidal terms and effect on polar motion 
and nutation are shown in Table 3. 
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Table 3. Amplitudes (in /xas) of the atmospheric tides and contribu­
tion to polar motion and nutation. 

Tide 

Ki 
Pi 
Si 
Oi 
Qi 

4>i 
M2 

Tide 

A'l 
Pi 
Si 
Oi 
Qi 
T T l 

•01 
M2 

Wind term 
X° 
2 

253 
-158 

14 
42 
-30 
-280 
51 

Xs 

83 
213 

-2020 
-5 
-36 
-75 
-23 
-15 

Wind term 

xc 
16928 

-18644 
-12812 

116 
-214 
451 
1857 
51 

x* 
-3007 
2686 
2378 
-990 
69 

236 
-893 
-15 

Pressure term 
X* 

-159 
341 

-1958 
-35 
-27 

-251 
-41 
45 

X* 
369 
120 

-275 
8 

-53 
112 
-55 
-152 

Pressure term 

xe 
-436 
88 

1545 
-149 
21 
197 
-28 
45 

Xs 

350 
383 
-490 
-45 
40 

-183 
-145 
-152 

Polar motion 
P" 
0.4 
-1.4 
5.1 
0.1 
0.0 
0.7 
0.7 
0.0 

Ps 

-1.0 
-1.1 
5.0 
0.0 
0.0 
0.2 
0.1 
0.1 

Nutation 
Pc 

71.3 
-42.4 
-88.9 
0.4 
-0.5 
-2.6 
-4.6 
-0.1 

Ps 

-40.3 
-3.9 
25.1 
-2.2 
0.1 
3.9 

-106.4 
0.1 

4. Conclusion 

The main atmospheric effect on polar motion and nutation are determined by 
the solar thermal tide S\. Amplitude of the diurnal polar motion variations does 
not exceed 10pas. The effect on the prograde annual nutation is of the order of 
0.1 mas. 

The effect of the viscosity of the FOC on nutation was calculated. It was 
shown that the dynamical ellipticity of the FOC and the frequency CRFCN de­
pend on the model of viscosity and the Earth's model. Viscosity on the solid 
inner core - fluid outer core boundary is equal to rj = 107Pa • s. In this case the 
quality factor of the free core nutation is equal to QRFCN — 30000. 

The atmosphere as a rotating layer determines new normal modes, but the 
frequency CTRFAN is far from the main tidal terms. This frequency is determined 
by the dynamical ellipticity of the atmosphere, and our estimate corresponds to 
an extra flattening of the atmosphere. 
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