
SPM

553

4

Future Global Climate: 
Scenario-based Projections 
and Near-term Information

Coordinating Lead Authors:
June-Yi Lee (Republic of Korea), Jochem Marotzke (Germany)

Lead Authors:
Govindasamy Bala (India/United States of America), Long Cao (China), Susanna Corti (Italy), 
John P. Dunne (United States of America), Francois Engelbrecht (South Africa), Erich Fischer 
(Switzerland), John C. Fyfe (Canada), Christopher Jones (United Kingdom), Amanda Maycock 
(United Kingdom), Joseph Mutemi (Kenya), Ousmane Ndiaye (Senegal), Swapna Panickal (India), 
Tianjun Zhou (China)

Contributing Authors:
Sebastian Milinski (Germany), Kyung-Sook Yun (Republic of Korea), Kyle Armour (United  States 
of America), Nicolas Bellouin (United Kingdom/France), Ingo Bethke (Norway/Germany), 
Michael P. Byrne (United Kingdom /Ireland), Christophe Cassou (France), Deliang Chen (Sweden), 
Annalisa Cherchi (Italy), Hannah M. Christensen (United Kingdom), Sarah L. Connors (France/United 
Kingdom), Alejandro Di Luca (Australia, Canada/Argentina), Sybren S. Drijfhout (The Netherlands), 
Christopher G. Fletcher (Canada/United Kingdom, Canada), Piers Forster (United Kingdom), 
Javier  García-Serrano (Spain), Nathan P. Gillett (Canada), Darrell  S.  Kaufmann (United States  of 
America), David  P.  Keller (Germany/United States of America), Ben  Kravitz (United States 
of America), Hongmei Li (Germany/China), Yongxiao Liang (Canada/China), Andrew H. MacDougall 
(Canada), Elizaveta  Malinina (Canada/Russian Federation), Matthew  Menary (France/United 
Kingdom), William  J.  Merryfield (Canada/United States of America), Seung-Ki Min (Republic 
of Korea), Zebedee R.J. Nicholls (Australia), Dirk Notz (Germany), Brodie Pearson (United States of 
America/United Kingdom), Matthew D. K. Priestley (United Kingdom), Johannes Quaas (Germany), 
Aurélien Ribes (France), Alex C. Ruane (United States of America), Jean-Baptiste Sallée (France), 
Emilia  Sanchez-Gomez (France/Spain), Sonia  I.  Seneviratne (Switzerland), Aimée  B.  A.  Slangen 
(The  Netherlands), Chris Smith (United Kingdom), Malte  F.  Stuecker (United States of America/
Germany), Ranjini Swaminathan (United Kingdom/India), Peter W. Thorne (Ireland/ United Kingdom), 
Katarzyna  B. Tokarska (Switzerland/Poland), Matthew Toohey (Canada, Germany/Canada), 
Andrew Turner (United Kingdom), Danila Volpi (Italy), Cunde Xiao (China), Giuseppe Zappa (Italy)

Review Editors:
Krishna Kumar Kanikicharla (Qatar/India), Vladimir Kattsov (Russian Federation), 
Masahide Kimoto (Japan)

Chapter Scientists:
Sebastian Milinski (Germany), Kyung-Sook Yun (Republic of Korea)

This chapter should be cited as:
Lee, J.-Y., J. Marotzke, G. Bala, L. Cao, S. Corti, J.P. Dunne, F. Engelbrecht, E. Fischer, J.C. Fyfe, C. Jones, A. Maycock, 
J. Mutemi, O. Ndiaye, S. Panickal, and T. Zhou, 2021: Future Global Climate: Scenario-Based Projections and Near-
Term Information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the 
Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. 
Pirani, S.L.  Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, 
J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA, pp. 553–672, doi:10.1017/9781009157896.006.

https://doi.org/10.1017/9781009157896.006
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 22 Aug 2025 at 18:47:28, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.006
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


554

Chapter 4� Future Global Climate: Scenario-based Projections and Near-term Information

4

Table of Contents

Executive Summary  ��������������������������������������������������������������������������������������   555

4.1	 Scope and Overview of This Chapter  �����������������������   559

4.2	 Methodology  ���������������������������������������������������������������������������������   561

4.2.1	 Models, Model Intercomparison Projects, 
and Ensemble Methodologies  �������������������������������������   561

4.2.2	 Scenarios  ����������������������������������������������������������������������������������   562

4.2.3	 Sources of Near-term Information  ����������������������������   563

4.2.4	 Pattern Scaling  ����������������������������������������������������������������������   565

4.2.5	 Quantifying Various Sources of Uncertainty  �������   566

4.2.6	 Display of Model Agreement and Spread  ������������   567

Box 4.1 |  
Ensemble Evaluation and Weighting  ������������������������������������   568

4.3	 Projected Changes in Global Climate Indices  
in the 21st Century  ������������������������������������������������������������������   570

4.3.1	 Atmosphere  ����������������������������������������������������������������������������   571

4.3.2	 Cryosphere, Ocean and Biosphere  ����������������������������   574

4.3.3	 Modes of Variability  �����������������������������������������������������������   578

4.3.4	 Synthesis Assessment of Projected Change 
in Global Surface Air Temperature  ����������������������������   580

4.4	 Near-term Global Climate Changes  ���������������������������   583

4.4.1	 Atmosphere  ����������������������������������������������������������������������������   583

4.4.2	 Cryosphere, Ocean and Biosphere  ����������������������������   586

4.4.3	 Modes of Variability  �����������������������������������������������������������   587

4.4.4	 Response to Short-lived Climate Forcers 
and Volcanic Eruptions  �����������������������������������������������������   591

Cross-Chapter Box 4.1 |  
The Climate Effects of Volcanic Eruption  ��������������������������   593

4.5	 Mid- to Long-term Global Climate Change  ���������   595

4.5.1	 Atmosphere  ����������������������������������������������������������������������������   595

4.5.2	 Ocean  ������������������������������������������������������������������������������������������   608

4.5.3	 Modes of Variability  �����������������������������������������������������������   609

4.6	 Implications of Climate Policy  ����������������������������������������   612

4.6.1	 Patterns of Climate Change for Specific Levels 
of Global Warming  �������������������������������������������������������������   612

4.6.2	 Climate Goals, Overshoot,  
and Path-Dependence  ������������������������������������������������������   617

4.6.3	 Climate Response to Mitigation, Carbon Dioxide 
Removal and Solar Radiation Modification  ��������   619

4.7	 Climate Change Beyond 2100  ����������������������������������������   629

4.7.1	 Commitment and Climate Change  
Beyond 2100  ��������������������������������������������������������������������������   630

4.7.2	 Potential for Abrupt and Irreversible 
Climate Change  ��������������������������������������������������������������������   633

4.8	 Low-likelihood, High-warming Storylines  ������������   635

Acknowledgements  �������������������������������������������������������������������������������������   639

Frequently Asked Questions

FAQ 4.1 |  
How Will the Climate Change  
Over the Next Twenty Years?  .......................................................  640

FAQ 4.2 |  
How Quickly Would We See the Effects  
of Reducing Carbon Dioxide Emissions?  ...........................  642

FAQ 4.3 |  
At a Given Level of Global Warming,  
What Are the Spatial Patterns of Climate Change?  .  644

References  �����������������������������������������������������������������������������������������������������������   646

https://doi.org/10.1017/9781009157896.006
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 22 Aug 2025 at 18:47:28, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.006
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


555

Future Global Climate: Scenario-based Projections and Near-term Information� Chapter 4

4

Executive Summary

This chapter assesses simulations of future global climate change, 
spanning time horizons from the near term (2021–2040), mid-term 
(2041–2060), and long term (2081–2100) out to the year 2300. 
Changes are assessed relative to both the recent past (1995–2014) 
and the 1850–1900 approximation to the pre-industrial period.

The projections assessed here are mainly based on a new range 
of scenarios, the Shared Socio-economic Pathways (SSPs) used 
in the Coupled Model Intercomparison Project Phase 6 (CMIP6). 
Among the SSPs, the focus is on the five scenarios SSP1‑1.9, SSP1‑2.6, 
SSP2‑4.5, SSP3‑7.0, and SSP5‑8.5. In the SSP labels, the first number 
refers to the assumed shared socio-economic pathway, and the second 
refers to the approximate global effective radiative forcing (ERF) in 
2100. Where appropriate, this chapter also assesses new results from 
CMIP5, which used scenarios based on Representative Concentration 
Pathways (RCPs). Additional lines of evidence enter the assessment, 
especially for change in globally averaged surface air temperature 
(GSAT) and global mean sea level (GMSL), while assessment for 
changes in other quantities is mainly based on CMIP6 results. Unless 
noted otherwise, the assessments assume that there will be no major 
volcanic eruption in the 21st  century. {1.6, 4.2.2, 4.3.2, 4.3.4, 4.6.2, 
Box 4.1, Cross-Chapter Box 4.1, Cross-Chapter Box 7.1, 9.6}

Temperature

Assessed future change in GSAT is, for the first time in an 
IPCC report, explicitly constructed by combining scenario-
based projections with observational constraints based on 
past simulated warming, as well as an updated assessment 
of equilibrium climate sensitivity (ECS) and transient 
climate response (TCR). Climate forecasts initialized using recent 
observations have also been used for the period 2019–2028. 
The inclusion of additional lines of evidence has reduced the assessed 
uncertainty ranges for each scenario. {4.3.1, 4.3.4, 4.4.1, 7.5}

In the near term (2021–2040), a 1.5°C increase in the 20-year 
average of GSAT, relative to the average over the period 
1850–1900, is very likely to occur in scenario SSP5‑8.5, 
likely to occur in scenarios SSP2‑4.5 and SSP3‑7.0, and more 
likely than not to occur in scenarios SSP1‑1.9 and SSP1‑2.6. 
The  threshold-crossing time is defined as the midpoint of the  first 
20-year period during which the average GSAT exceeds the 
threshold. In all scenarios assessed here except SSP5‑8.5, the central 
estimate of crossing the 1.5°C threshold lies in the early 2030s. This 
is in the early part of the likely range (2030–2052) assessed in the 
IPCC Special Report on Global Warming of 1.5°C (SR1.5), which 
assumed continuation of the then-current warming rate; this rate has 
been confirmed in the AR6. Roughly half of this difference between 
assessed crossing times arises from a  larger historical warming 
diagnosed in AR6. The other half arises because for central estimates 
of climate sensitivity, most scenarios show stronger warming over 
the near term than was assessed as ‘current’ in SR1.5 (medium 
confidence). When considering scenarios similar to SSP1‑1.9 instead 

of linear extrapolation, the SR1.5 estimate of when 1.5°C global 
warming is crossed is close to the central estimate reported here. 
It is more likely than not that under SSP1‑1.9, GSAT relative to 
1850–1900 will remain below 1.6°C throughout the 21st  century, 
implying a potential temporary overshoot of 1.5°C global warming 
of no more than 0.1°C. If climate sensitivity lies near the lower end of 
the assessed very likely range, crossing the 1.5°C warming threshold 
is avoided in scenarios SSP1‑1.9 and SSP1‑2.6 (medium confidence). 
{2.3.1, Cross-Chapter Box 2.3, 3.3.1, 4.3.4, Box 4.1, 7.5}

By 2030, GSAT in any individual year could exceed 1.5°C 
relative to 1850–1900 with a  likelihood between 40% 
and 60%, across the scenarios considered here (medium 
confidence). Uncertainty in near-term projections of annual GSAT 
arises in roughly equal measure from natural internal variability and 
model uncertainty (high  confidence). By contrast, near-term annual 
GSAT levels depend less on the scenario chosen, consistent with the 
IPCC Fifth Assessment Report (AR5) assessment. Forecasts initialized 
from recent observations simulate annual GSAT changes for the 
period 2019–2028 relative to the recent past that are consistent with 
the assessed very likely range (high confidence). {4.4.1, Box 4.1}

Compared to the recent past (1995–2014), GSAT averaged over 
the period 2081–2100 is very likely to be higher by 0.2°C–1.0°C 
in the low-emissions scenario SSP1‑1.9 and by 2.4°C–4.8°C 
in the high-emissions scenario SSP5‑8.5. For the scenarios 
SSP1‑2.6, SSP2‑4.5, and SSP3‑7.0, the corresponding very likely 
ranges are 0.5°C–1.5°C, 1.2°C–2.6°C, and 2.0°C–3.7°C, respectively. 
The uncertainty ranges for the period 2081–2100 continue to be 
dominated by the uncertainty in ECS and TCR (very high confidence). 
Emissions-driven simulations for SSP5‑8.5 show that carbon-cycle 
uncertainty is too small to change the assessment of GSAT projections 
(high confidence). {4.3.1, 4.3.4, 4.6.2, 7.5}

The CMIP6 models project a  wider range of GSAT change 
than the assessed range (high confidence); furthermore, 
the CMIP6 GSAT increase tends to be larger than in CMIP5 
(very high confidence). About half of the increase in simulated 
warming has occurred because higher climate sensitivity is more 
prevalent in CMIP6 than in CMIP5; the other half arises from higher 
ERF in nominally comparable scenarios (e.g., RCP8.5 and SSP5‑8.5; 
medium confidence). In SSP1‑2.6 and SSP2‑4.5, ERF changes also 
explain about half of the changes in the range of warming (medium 
confidence). For SSP5‑8.5, higher climate sensitivity is the primary 
reason behind the upper end of the warming being higher than in 
CMIP5 (medium confidence). {4.3.1, 4.3.4, 4.6.2, 7.5.6}

While high-warming storylines – those associated with GSAT 
levels above the upper bound of the assessed very likely range – 
are by definition extremely unlikely, they cannot be ruled out. 
For SSP1‑2.6, such a high-warming storyline implies long-term 
(2081–2100) warming well above, rather than well below, 2°C 
(high confidence). Irrespective of scenario, high-warming storylines 
imply changes in many aspects of the climate system that exceed the 
patterns associated with the central estimate of GSAT changes by up 
to more than 50% (high confidence). {4.3.4, 4.8}
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It is virtually certain that the average surface warming will 
continue to be higher over land than over the ocean and that 
the surface warming in the Arctic will continue to be more 
pronounced than the global average over the 21st  century. 
On average, the surface is expected to warm faster over land 
than over the ocean by a  factor of 1.5 (likely range 1.4 to 1.7). 
The warming pattern likely varies across seasons, with northern high 
latitudes warming more during boreal winter than summer (medium 
confidence). Regions with increasing or decreasing year-to-year 
variability of seasonal mean temperatures will likely increase in their 
spatial extent. {4.3.1, 4.5.1, 7.4.4}

It is very likely that long-term lower-tropospheric warming 
will be larger in the Arctic than in the global mean. It is very 
likely that global mean stratospheric cooling will be larger by the 
end of the 21st century in a pathway with higher atmospheric CO2 
concentrations. It is likely that tropical upper tropospheric warming 
will be larger than at the tropical surface, but with an uncertain 
magnitude owing to the effects of natural internal variability and 
uncertainty in the response of the climate system to anthropogenic 
forcing. {4.5.1, 3.3.1.2}

Precipitation

Annual global land precipitation will increase over the 
21st  century as GSAT increases (high confidence). The likely 
range of change in globally averaged annual land precipitation 
during 2081–2100 relative to 1995–2014 is –0.2 to +4.7% 
in the low-emissions scenario SSP1‑1.9 and 0.9–12.9% in 
the high-emissions scenario SSP5‑8.5, based on all available 
CMIP6 models. The corresponding likely ranges are 0.0–6.6% in 
SSP1‑2.6, 1.5–8.3% in SSP2‑4.5, and 0.5–9.6% in SSP3‑7.0. {4.3.1, 
4.5.1, 4.6.1, 8.4.1}

Precipitation change will exhibit substantial regional 
differences and seasonal contrast as GSAT increases over the 
21st century (high confidence). As warming increases, a larger land 
area will experience statistically significant increases or decreases 
in precipitation (medium confidence). Precipitation will very likely 
increase over high latitudes and the tropical oceans, and likely increase 
in large parts of the monsoon region, but likely decrease over large 
parts of the subtropics in response to greenhouse gas-induced 
warming. Interannual variability of precipitation over many land 
regions will increase with global warming (medium confidence). 
{4.5.1, 4.6.1, 8.4.1}

Near-term projected changes in precipitation are uncertain, 
mainly because of natural internal variability, model 
uncertainty, and uncertainty in natural and anthropogenic 
aerosol forcing (medium confidence).  In the near term, no 
discernible differences in precipitation changes are projected 
between different SSPs (high confidence). The anthropogenic aerosol 
forcing decreases in most scenarios, contributing to increases in 
GSAT (medium confidence) and global mean land precipitation 
(low confidence). {4.3.1, 4.4.1, 4.4.4, 8.5}

In response to greenhouse gas-induced warming, it is likely that 
global land monsoon precipitation will increase, particularly 
in the Northern Hemisphere, although Northern Hemisphere 
monsoon circulation will likely weaken. In the long term 
(2081–2100), monsoon rainfall change will feature a  north–south 
asymmetry characterized by a  greater increase in the Northern 
Hemisphere than in the Southern Hemisphere and an east–west 
asymmetry characterized by an increase in Asian-African monsoon 
regions and a  decrease in the North American monsoon  region 
(medium confidence). Near-term changes in global monsoon 
precipitation and circulation are uncertain due to model uncertainty 
and internal variability such as Atlantic Multi-decadal Variability 
and Pacific Decadal Variability (medium  confidence). {4.4.1, 4.5.1, 
8.4.1, 10.6.3}

It is likely that at least one large volcanic eruption will occur 
during the 21st century. Such an eruption would reduce GSAT 
for several years, decrease global mean land precipitation, alter 
monsoon circulation, modify extreme precipitation, and change 
the profile of many regional climatic impact-drivers. A  low-
likelihood, high-impact outcome would be several large eruptions 
that would greatly alter the 21st century climate trajectory compared 
to SSP-based Earth system model projections. {Cross-Chapter Box 4.1}

Large-scale Circulation and Modes of Variability

In the near term, the forced change in Southern Annular 
Mode in austral summer is likely to be weaker than observed 
during the late 20th century under all five SSPs assessed. This 
is because of the opposing influence in the near- to mid-term from 
stratospheric ozone recovery and increases in other greenhouse gases 
on the Southern Hemisphere summertime mid-latitude circulation 
(high confidence). In the near term, forced changes in the Southern 
Annular Mode in austral summer are therefore likely to be smaller 
than changes due to natural internal variability. {4.3.3, 4.4.3}

In the long term, the Southern Hemisphere mid-latitude jet 
is likely to shift  poleward and strengthen under  SSP5‑8.5 
relative to 1995–2014. This is likely to be accompanied by an 
increase in the Southern Annular Mode index in all seasons relative 
to 1995–2014. For SSP1‑2.6, CMIP6 models project no robust change 
in the Southern Annular Mode index in the long term. It is likely that 
wind speeds associated with extratropical cyclones will strengthen 
in the Southern Hemisphere storm track for SSP5‑8.5. {4.5.1, 4.5.3}

The CMIP6 multi-model ensemble projects a  long-term 
increase in the boreal wintertime Northern Annular Mode 
index under the high-emissions scenarios of SSP3‑7.0 and 
SSP5‑8.5, but regional changes may deviate from a simple shift 
in the mid-latitude circulation. Substantial uncertainty and thus 
low confidence remain in projecting regional changes in Northern 
Hemisphere jet streams and storm tracks, especially for the North 
Atlantic basin in winter; this is due to large natural internal variability, 
the competing effects of projected upper- and lower-tropospheric 
temperature gradient changes, and new evidence of weaknesses in 
simulating past variations in North Atlantic atmospheric circulation 
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on seasonal-to-decadal time scales. One exception is the expected 
decrease in frequency of atmospheric blocking events over Greenland 
and the North Pacific in boreal winter in SSP3‑7.0 and SSP5‑8.5 
scenarios (medium confidence). {4.5.1}

Near-term predictions and projections of the sub-polar branch 
of the Atlantic Multi-decadal Variability (AMV) on the decadal 
time scale have improved in CMP6 models compared to CMIP5 
(high  confidence). This is likely to be related to a more accurate 
response to natural forcing in CMIP6 models. Initialization contributes 
to the reduction of uncertainty and to predicting subpolar sea surface 
temperature. AMV influences on the nearby regions can be predicted 
over lead times of 5–8 years (medium confidence). {4.4.3}

It is virtually certain that the El Niño–Southern Oscillation 
(ENSO) will remain the dominant mode of interannual 
variability in a warmer world. There is no model consensus for 
a  systematic change in intensity of ENSO sea surface temperature 
variability over the 21st century in any of the SSP scenarios assessed 
(medium confidence). However, it is very likely that ENSO rainfall 
variability, used for defining extreme El Niños and La Niñas, will 
increase significantly, regardless of amplitude changes in ENSO 
SST variability, by the second half of the 21st  century in scenarios 
SSP2‑4.5, SSP3‑7.0, and SSP5‑8.5. {4.3.3, 4.5.3, 8.4.2}

Cryosphere and Ocean

Under the SSP2‑4.5, SSP3‑7.0, and SSP5‑8.5 scenarios, it is 
likely that the Arctic Ocean in September, the month of annual 
minimum sea ice area, will become practically ice-free (sea 
ice area less than 1 million km2) averaged over 2081–2100 
and all available simulations. Arctic sea ice area in March, the 
month of annual maximum sea ice area, also decreases in the future 
under each of the considered scenarios, but to a much lesser degree 
(in percentage terms) than in September (high confidence). {4.3.2}

Under the five scenarios assessed, it is virtually certain 
that global mean sea level (GMSL) will continue to rise 
through the 21st  century. For the period 2081–2100 relative to 
1995–2014, GMSL is likely to rise by 0.46–0.74 m under SSP3‑7.0 
and by 0.30–0.54 m under SSP1‑2.6 (medium confidence). For the 
assessment of change in GMSL, the contribution from land-ice melt 
has been added offline to the CMIP6-simulated contributions from 
thermal expansion. {4.3.2. 9.6}

It is very likely that the cumulative uptake of carbon by 
the ocean and by land will increase through to the end of the 
21st century. Carbon uptake by land shows greater increases but 
with greater uncertainties than for ocean carbon uptake. The fraction 
of emissions absorbed by land and ocean sinks will be smaller 
under high emissions scenarios than under low emissions scenarios 
(high confidence). Ocean surface pH will decrease steadily through 
the 21st  century, except for SSP1‑1.9 and SSP1‑2.6 where values 
decrease until around 2070 and then increase slightly to 2100 
(high confidence). {4.3.2, 5.4}

Climate Response to Emissions Reduction, Carbon Dioxide 
Removal and Solar Radiation Modification

If strong mitigation is applied from 2020 onward as reflected 
in SSP1‑1.9, its effect on 20-year trends in GSAT would likely 
emerge during the near term (2021–2040), measured against 
an assumed non-mitigation scenario such as SSP3‑7.0 and 
SSP5‑8.5. However, the response of many other climate 
quantities to mitigation would be largely masked by internal 
variability during the near term, especially on the regional scale 
(high confidence). The mitigation benefits for these quantities would 
emerge only later during the 21st century (high confidence). During 
the near term, a small fraction of the surface can show cooling under 
all scenarios assessed here, so near-term cooling at any given location 
is fully consistent with GSAT increase (high confidence). Events 
of reduced and increased GSAT trends at decadal time scales will 
continue to occur in the 21st century but will not affect the centennial 
warming (very high confidence). {4.6.3, Cross-Chapter Box 3.1}

Because of the near-linear relationship between cumulative 
carbon emissions and GSAT change, the cooling or avoided 
warming from carbon dioxide removal (CDR) is proportional 
to the cumulative amount of CO2 removed by CDR 
(high  confidence). The climate system response to net negative 
CO2 emissions is expected to be delayed by years to centuries. 
Net negative CO2 emissions due to CDR will not reverse some 
climate change, such as sea level rise, at least for several centuries 
(high confidence). The climate effect of a sudden and sustained CDR 
termination would depend on the amount of CDR-induced cooling 
prior to termination and the rate of background CO2 emissions at the 
time of termination (high confidence). {4.6.3, 5.5, 5.6}

Solar radiation modification (SRM) could offset some of the 
effects of anthropogenic warming on global and regional climate, 
but there would be substantial residual and overcompensating 
climate change at the regional scale and seasonal time 
scale (high  confidence), and there is low confidence in our 
understanding of the climate response to SRM, specifically 
at the regional scale. Since AR5, understanding of the global and 
regional climate response to SRM has improved, due to modelling work 
with more sophisticated treatment of aerosol-based SRM options and 
stratospheric processes. Improved modelling suggests that multiple 
climate goals could be met simultaneously. A  sudden and sustained 
termination of SRM in a  high-emissions scenario such as SSP5‑8.5 
would cause a  rapid climate change (high  confidence). However, 
a gradual phase-out of SRM combined with emissions reductions and 
CDR would more likely than not avoid larger rates of warming. {4.6.3}

Climate Change Commitment and Change Beyond 2100

Earth system modelling experiments since AR5 confirm that the 
zero CO2 emissions commitment (the additional rise in GSAT 
after all CO2 emissions cease) is small (likely less than 0.3°C in 
magnitude) on decadal time scales, but that it may be positive 
or negative. There is low confidence in the sign of the zero CO2 
emissions commitment. Consistent with SR1.5, the central estimate is 
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taken as zero for assessments of remaining carbon budgets for global 
warming levels of 1.5°C or 2°C. {4.7.2, 5.5.2}.

Overshooting specific global warming levels such as 2°C 
has effects on the climate system that persist beyond 2100 
(medium confidence). Under one scenario including a  peak and 
decline in atmospheric CO2 concentration (SSP5‑3.4-OS), some 
climate metrics such as GSAT begin to decline but do not fully reverse 
by 2100 to levels prior to the CO2 peak (medium confidence). GMSL 
continues to rise in all models up to 2100 despite a reduction in CO2 
to 2040 levels. {4.6.3, 4.7.1, 4.7.2}

Using extended scenarios beyond 2100, projections show likely 
warming by 2300, relative to 1850-1900, of 1.0°C-2.2°C for 
SSP1‑2.6 and 6.6°C-14.1°C for SSP5‑8.5. By 2300, warming under 
the SSP5‑3.4-OS overshoot scenario decreases from a peak around 
year 2060 to a level very similar to SSP1‑2.6. Precipitation over land 
continues to increase strongly under SSP5‑8.5. GSAT projected for the 
end of the 23rd century under SSP2‑4.5 (likely 2.3°C–4.6°C higher 
than over the period 1850–1900) has not been experienced since the 
mid-Pliocene, about 3 million years ago. GSAT projected for the end 
of the 23rd century under SSP5‑8.5 (likely 6.6°C–14.1°C higher than 
over the period 1850–1900) overlaps with the range estimated for 
the Miocene Climatic Optimum (5°C–10°C higher) and Early Eocene 
Climatic Optimum (10°C–18°C higher), about 15 and 50 million 
years ago, respectively (medium confidence). {2.3.1.1, 4.7.1}
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4.1	 Scope and Overview of This Chapter

This chapter assesses simulations of future climate change, covering 
both near-term and long-term global changes. The chapter assesses 
simulations of physical indicators of global climate change, such as 
global surface air temperature (GSAT), global land precipitation, 
Arctic sea ice area (SIA), and global mean sea level (GMSL). 
Furthermore, the chapter covers indices and patterns of properties 
and circulation not only for mean fields but also for modes of 
variability that have global significance. The choice of quantities to 
be assessed is summarized in Cross-Chapter Box 2.2 and comprises 
a subset of the quantities covered in Chapters 2 and 3. This chapter 
provides consistent coverage from near-term to long-term global 
changes and provides the global reference for the later chapters 
covering important processes and regional change.

Essential input to the simulations assessed here is provided by future 
scenarios of concentrations or anthropogenic emissions of radiatively 
active substances; the scenarios represent possible sets of decisions 
by humanity, without any assessment that one set of decisions is 
more probable to occur than any other set (Section  1.6). As in 
previous assessment reports, these scenarios are used for projections 
of future climate using global atmosphere–ocean general circulation 
models (AOGCMs) and Earth system models (ESMs; Section 1.5.3); 
the latter include representation of various biogeochemical cycles 
such as the carbon cycle, the sulphur cycle, or ozone (e.g.,  Flato, 
2011; Flato et al., 2013). This chapter thus provides a comprehensive 
assessment of the future global climate response to different future 
anthropogenic perturbations to the climate system.

Every projection assessment is conditioned on a  particular forcing 
scenario. If sufficient evidence is available, a  detailed probabilistic 
assessment of a physical climate outcome can be performed for each 
scenario separately. By contrast, there is no agreed-upon approach 
to assigning probabilities to forcing scenarios, to the point that it has 
been debated whether such an approach can even exist (e.g., Grübler 
and Nakicenovic, 2001; Schneider, 2001, 2002). Although there were 
some recent attempts to ascribe subjective probabilities to scenarios 
(e.g.,  Ho et  al., 2019; Hausfather and Peters, 2020), and although 
‘feasibility’ along different dimensions is an important concept in 
scenario research (see AR6 WGIII Chapter 3), the scenarios used for 
the model-based projections assessed in this chapter do not come 
with statements about their likelihood of actually unfolding in the 
future. Therefore, it is usually not possible to combine responses to 
individual scenarios into an overall probabilistic statement about 
expected future climate. Exceptions to this limit in the assessment 
are possible only under special circumstances, such as for some 
statements about near-term climate changes that are largely 
independent of the scenario chosen (e.g., Section 4.4.1). Beyond this, 
no combination of responses to different scenarios can be assessed 
in this chapter but may be possible in future assessments.

A central element of this chapter is a  comprehensive assessment 
of the sources of uncertainty of future projections (Section  1.4.3). 
Uncertainty can be broken down into scenario uncertainty, model 
uncertainty involving model biases, uncertainty in simulated effective 
radiative forcing and model response, and the uncertainty arising 

from internal variability (Cox and Stephenson, 2007; Hawkins and 
Sutton, 2009). An additional source of projection uncertainty arises 
from possible future volcanic eruptions and future solar variability. 
Assessment of uncertainty relies on multi-model ensembles such as the 
Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al., 
2016), single-model initial-condition large ensembles (e.g.,  Kay 
et al., 2015; Deser et al., 2020), and ensembles initialized from the 
observed climate state (decadal predictions, e.g., Smith et al., 2013a; 
Meehl et al., 2014; Boer et al., 2016; Marotzke et al., 2016). Ensemble 
evaluation methods include assessment of model performance and 
independence (e.g., Knutti et al., 2017; Boé, 2018; Abramowitz et al., 
2019); emergent and other observational constraints (e.g., Allen and 
Ingram, 2002; Hall and Qu, 2006; Cox et al., 2018); and the uncertainty 
assessment of equilibrium climate sensitivity and transient climate 
response in Chapter 7. Ensemble evaluation is assessed in Box 4.1 
through the inclusion of lines of evidence in addition to the projection 
ensembles, including implications for potential model weighting.

The uncertainty assessment in this chapter builds on one particularly 
noteworthy advance since the IPCC Fifth Assessment Report (AR5). 
Internal variability, which constitutes irreducible uncertainty over 
much of the time horizon considered here (Hawkins et  al., 2016; 
Marotzke, 2019), can be better estimated in models even under 
a  changing climate through the use of large initial-condition 
ensembles (Kay et  al., 2015). For many climate quantities and 
compared to the forced climate change signal, internal variability is 
dominant in any individual realization – including the one that will 
unfold in reality – in the near term (Kirtman et al., 2013; Marotzke 
and Forster, 2015), is substantial in the mid-term, and is still 
recognizable in the long term in many quantities (Deser et al., 2012a; 
Marotzke and Forster, 2015). This chapter will use the strengthened 
information on internal variability throughout.

The expanded treatment of uncertainty allows this chapter a more 
comprehensive assessment of the benefits from mitigation than in 
previous IPCC reports, as well as the climate response to carbon 
dioxide removal (CDR) and solar radiation modification (SRM), and 
how to detect them against the backdrop of internal variability. 
Important advances have been made in the detection and attribution 
of mitigation, CDR, and SRM (Bürger and Cubasch, 2015; Lo et al., 
2016; Ciavarella et  al., 2017); exploring the ‘time of emergence’ 
(ToE; see Annex VII: Glossary) of responses to assumed emissions 
reductions (Tebaldi and Friedlingstein, 2013; Samset et  al., 2020) 
and the attribution of decadal events to forcing changes that 
reflect emissions reductions (Marotzke, 2019; Spring et  al., 2020; 
McKenna et al., 2021).

The question of the potential crossing of thresholds relative to global 
temperature goals (Geden and Loeschel, 2017) is intimately related 
to the benefits of mitigation; a prerequisite is an assessment of how 
robustly magnitudes of warming can be defined (Millar et al., 2017). 
This chapter provides an update to the IPCC Special Report on Global 
Warming of 1.5°C (SR1.5, IPCC, 2018a) and constitutes a reference 
point for later chapters and AR6 WGIII on the effects of mitigation, 
including a robust uncertainty assessment.
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The chapter is organized as foll ows (Figure  4.1). After Section  4.2 
on the methodologies used in the assessment, Section 4.3 assesses 
projected changes in key global climate indicators throughout the 
21st  century, relative to the period 1995–2014, which comprises 
the last 20 years of the historical simulations of CMIP6 (Eyring et al., 
2016) and hence the most recent past simulated with the observed 
atmospheric composition. The global climate indicators assessed 
include GSAT, global land precipitation, Arctic sea ice area (SIA), 
global mean sea level (GMSL), the Atlantic Meridional Overturning 
Circulation (AMOC), global mean ocean surface pH, carbon 
uptake by land and ocean, the global monsoon, the Northern and 
Southern Annular Modes (NAM and SAM), and the El Niño–Southern 
Oscillation (ENSO). Differently from the assessment for changes 
in other quantities only based on the range of CMIP6 projections, 
additional lines of evidence enter the assessment for GSAT and GMSL 
change. For most results and fi gures based on CMIP6, one realization 
from each model (the fi rst of the uploaded set) is used. Section 4.3 
fi nally synthesizes the assessment of GSAT change using multiple 
lines of evidence in addition to the CMIP6 projection simulations.

Section  4.4 covers near-term climate change, defi ned here as the 
period 2021–2040 and taken relative to the period 1995–2014. 
Section  4.4 focuses on global and large-scale climate indicators, 
including precipitation and circulation indices and selected modes 
of variability (see Cross-Chapter Box  2.2 and Annex IV: Modes  of 
Variability), as well as on the spatial distribution of warming. 
The  potential roles of short-lived climate forcers (SLCFs) and 
volcanic eruptions on near-term climate change are also discussed. 

Section 4.4 synthesizes information from initialized predictions and 
non-initialized projections for the near-term change.

Section  4.5 then covers mid-term and long-term climate change, 
defi ned here as the periods 2041–2060 and 2081–2100, respectively, 
again relative to the period 1995–2014. The mid-term period is thus 
chosen as the twenty-year period following the short-term period 
and straddling the mid-century point, year 2050; it is during the 
mid-term that differences between scenarios are expected to emerge 
against internal variability. The long-term period is defi ned, as in 
AR5, as the 20-year period at the end of the century. Section 4.5 
assesses the same set of indicators as Section  4.4, as well as 
changes in internal variability and in large-scale patterns, both of 
which are expected to emerge in the mid- to long-term. The chapter 
sub-division according to time slices (near term, mid-term, and long 
term) is thus to a large extent motivated by the different roles that 
internal variability plays in each period, compared to the expected 
forced climate-change signal.

Section  4.6 assesses the climate implications of climate policies, as 
simulated with climate models. First, Section 4.6 assesses patterns of 
climate change expected for various levels of GSAT rise including 1.5°C, 
2°C, 3°C, and 4°C, compared to the approximation to the pre-industrial 
period 1850–1900 to facilitate immediate connection to SR1.5 and 
the temperature goals specifi ed in the Paris Agreement (UNFCCC, 
2016). Section 4.6 continues with climate goals, overshoot, and path-
dependence, as well as the climate response to mitigation, CDR, and 
SRM. Section 4.6 also covers the consistency between RCPs and SSPs.

Chapter 4: Future global climate Chapter 4: Quick guide
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Section  4.7 assesses very long-term changes in selected global 
climate indicators, from 2100 to 2300. Section  4.7 continues with 
climate-change commitment and the potential for irreversibility and 
abrupt climate change. The chapter concludes with Section 4.8 on 
the potential for low-likelihood, high-impact storylines, followed by 
answers to three frequently asked questions (FAQs).

4.2	 Methodology

4.2.1	 Models, Model Intercomparison Projects, 
and Ensemble Methodologies

Similar to the approach used in AR5 (Flato et al., 2013), the primary 
lines of evidence of this chapter are comprehensive climate models 
(atmosphere–ocean general circulation models, AOGCMs) and Earth 
system models (ESMs); ESMs differ from AOGCMs by including 
representations of various biogeochemical cycles. We also build 
on results from ESMs of intermediate complexity (EMICs; Claussen 
et  al., 2002; Eby et  al., 2013) and other types of models where 
appropriate. This chapter focuses on a particular set of coordinated 
multi-model experiments known as model intercomparison projects 
(MIPs). These frameworks recommend and document standards for 
experimental design for running AOGCMs and ESMs to minimize 
the chance of differences in results being misinterpreted. CMIP is an 
activity of the World Climate Research Programme (WCRP), and the 
latest phase is CMIP6 (Eyring et al., 2016). To establish robustness of 
results, it is vital to assess the performance of these models in terms 
of mean state, variability, and the response to external forcings. 
That evaluation has been undertaken using the CMIP6 ‘Diagnostic, 
Evaluation and Characterization of Klima’ (DECK) and historical 
simulations in Chapter 3 of this Report, which concludes that there 
is high confidence that the CMIP6 multi-model mean captures most 
aspects of observed climate change well (Section 3.8.3.1).

This chapter draws mainly on future projections referenced both against 
the period 1850–1900 and the recent past, 1995–2014, performed 

primarily under ScenarioMIP (O’Neill et  al., 2016). This  allows us to 
assess both dimensions of integration across scenarios (Section 4.3) 
and global warming levels (Section  4.6) as discussed in Chapter  1 
(Section 1.6). Other MIPs also target future scenarios with a focus on 
specific processes or feedbacks and are summarized in Table 4.1.

Multi-model ensembles provide the central focus of projection 
assessment. While single-model experiments have great value for 
exploring new results and theories, multi-model ensembles additionally 
underpin the assessment of the robustness, reproducibility, and 
uncertainty attributable to model internal structure and processes 
variability (Section  4.2.5; Hawkins and Sutton, 2009). Techniques 
underlying the combination of evaluation and weighting that are 
applied in this chapter are synthesized in Box 4.1.

Climate model simulations can be performed in either ‘concentration-
driven’ or ‘emissions-driven’ configurations reflecting whether the 
CO2 concentration is prescribed to follow a pre-defined pathway or 
is simulated by the Earth system models in response to prescribed 
emissions of CO2 (Box 6.4, Ciais et al., 2013). The majority of CMIP6 
experiments are conducted in concentration-driven configurations in 
order to enable models without a  fully interactive carbon cycle to 
perform them, and throughout most of this chapter we present results 
from those simulations unless otherwise stated. Concentrations of 
other greenhouse gases are always prescribed. However, the SSP5‑8.5 
scenario has also been performed in emissions-driven configuration 
(‘esm-ssp585’) by 10 ESMs, and in Section  4.3.1.1 we assess the 
impact on simulated climate over the 21st century.

Internal variability complicates the identification of forced climate 
signals, especially when considering regional climate signals over 
short time scales (up to a few decades), such as local trends over the 
satellite era (Hawkins and Sutton, 2009; Deser et al., 2012a; Xie et al., 
2015; Lovenduski et  al., 2016; Suárez-Gutiérrez et  al., 2017). Large 
initial-condition ensembles, where the same model is run repeatedly 
under identical forcing but with initial conditions varied through small 
perturbations or by sampling different times of a pre-industrial control 

Table 4.1 | Model Intercomparison Projects (MIPs) utilized in Chapter 4.

MIP/Experiment Usage Chapter/Section Reference

DECK, 1%, 4×CO2 Diagnosing climate sensitivity
Assessed in Chapter 7
ECS and TCR used in GSAT assessment

Eyring et al. (2016)

CMIP6 Historical Evaluation, baseline
Assessed in Chapter 3,
used in Chapter 4 to cover reference period

Eyring et al. (2016)

ScenarioMIP Future projections Used throughout Chapter 4 O’Neill et al. (2016)

AerChemMIP Aerosols and trace gases 4.4.4 Collins et al. (2017)

C4MIP CO2 emissions-driven simulations 4.3.1 C.D. Jones et al. (2016a)

CDRMIP Carbon dioxide removal 4.6.3 Keller et al. (2018)

DCPP Near-term climate change 4.2.3, Box 4.1, 4.4 Boer et al. (2016)

GeoMIP Solar radiation modification 4.6.3 Kravitz et al. (2011)

PDRMIP Forcing dependence of precipitation 4.5.1 Myhre et al. (2017)

SIMIP Sea ice assessment 4.3 Notz et al. (2016)

ZECMIP Zero emissions commitment 4.7.1 Jones et al. (2019)

CMIP5 RCP scenario assessment 4.6.2, 4.7.1 Taylor et al. (2012)
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run, have substantially grown in their use since AR5 (Deser  et  al., 
2012a; Kay et al., 2015; Rodgers et al., 2015; Hedemann et al., 2017; 
Stolpe et al., 2018; Maher et al., 2019). Such large ensembles have 
shown potential to quantify  uncertainty due to internal variability 
(Hawkins et al., 2016; McCusker et al., 2016; Sigmond and Fyfe, 2016; 
Lehner et al., 2017; McKinnon et al., 2017; Marotzke, 2019) and thereby 
extract the forced signal from the internal variability, which can be 
calibrated against observational data to improve the reliability of 
probabilistic climate projections over the near and mid-term (O’Reilly 
et al., 2020). Moreover, they allow the investigation of forced changes 
in internal variability (e.g., Maher et al., 2018). A key assumption is 
that a given model skilfully represents internal variability; structural 
uncertainty is not accounted for.

A complementary approach that represents structural uncertainty in 
a given model is stochastic physics (Berner et al., 2017). The approach has 
proven useful in representing structural uncertainty on seasonal climate 
time scales (Weisheimer et  al., 2014; Batté and Doblas-Reyes, 2015; 
MacLachlan et al., 2015). Stochastic physics can markedly improve the 
internal variability in a given model (Dawson and Palmer, 2015; Wang 
et al., 2016; Christensen et al., 2017; Davini et al., 2017; Watson et al., 
2017; Strømmen et al., 2018; Yang et al., 2019). Stochastic physics can 
also correct long-standing mean-state biases (Sanchez-Gomez et  al., 
2016) and can influence the predicted climate sensitivity (Christensen 
and Berner, 2019; Strommen et al., 2019; Meccia et al., 2020).

Perturbed-physics ensembles (Murphy et al., 2004) are also used to 
systematically account for parameter uncertainty in a given model. 
Uncertain model parameters are identified and ranges in their 
values selected that conform to emergent observational constraints 
(see Section 1.5.4.2). These parameters are then changed between 
ensemble members to sample the effect of parameter uncertainty on 
climate (Piani et al., 2005; Sexton et al., 2012; Johnson et al., 2018; 
Regayre et  al., 2018). It is possible to weight ensemble members 
according to some performance metric or emergent constraint 
(e.g., Fasullo et al., 2015; Section 1.5.4.7) to improve the ensemble 
distribution (Box 4.1).

4.2.2	 Scenarios

The AR5 drew heavily on four main scenarios, known as Representative 
Concentration Pathways (RCPs: Meinshausen et al., 2011; van Vuuren 
et  al., 2011), and simulation results from CMIP5 (Section  4.2.1; 
Taylor et al., 2012). The RCPs were labelled by the approximate radiative 
forcing reached at the year 2100, going from 2.6, 4.5, 6.0 to 8.5 W m–2.

This chapter draws on model simulations from CMIP6 (Eyring 
et  al.,  2016) using a  new range of scenarios based on Shared 
Socio-economic Pathways (SSPs; O’Neill et al., 2016). The set of SSPs is 
described in detail in Chapter 1 (Section 1.6) and recognizes that global 
radiative forcing levels can be achieved by different pathways of CO2, 
non-CO2 greenhouse gases (GHGs), aerosols (Amann et al., 2013; Rao 
et al., 2017) and land use; the set of SSPs therefore establishes a matrix 
of global forcing levels and socio-economic storylines. ScenarioMIP 
(O’Neill et  al., 2016) identifies four priority (tier-1) scenarios that 
participating modelling groups are asked to perform, SSP1‑2.6 for 

sustainable pathways, SSP2‑4.5 for middle-of-the-road, SSP3‑7.0 
for regional rivalry, and SSP5‑8.5 for fossil fuel-rich development. This 
chapter focuses its assessment on these, plus the SSP1‑1.9 scenario, 
which is directly relevant to the assessment of the 1.5°C Paris 
Agreement goal. Further, this chapter discusses these scenarios and 
their extensions past 2100 in the context of the very long-term climate 
change in Section  4.7.1. Projections of short-lived climate forcers 
(SLCFs) are assessed in more detail in Chapter 6 (Section 6.7).

In presenting results and evidence, this chapter tries to be as 
comprehensive as possible. In tables we show multi-model mean 
change and 5–95% range for all five SSPs, while in time series 
figures we show multi-model mean change for all five SSPs but for 
clarity 5–95% range only for SSP1‑2.6 and SSP3‑7.0. Where maps are 
presented, due to space restrictions we focus on showing multi-model 
mean change for SSP1‑2.6 and SSP3‑7.0. SSP1‑2.6 is preferred over 
SSP1‑1.9 because the latter has far fewer simulations available. The 
high-end scenarios RCP8.5 or SSP5‑8.5 have recently been argued 
to be implausible to unfold (e.g.,  Hausfather and Peters, 2020; see 
Chapter 3 of the AR6 WGIII). However, where relevant we show results 
for SSP5‑8.5, for example to enable backwards compatibility with AR5, 
for comparison between emissions-driven and concentration-driven 
simulations, and because there is greater data availability of daily 
output for SSP5‑8.5. When presenting low-likelihood, high-warming 
storylines we also show results from the high-end SSP5‑8.5 scenario.

ScenarioMIP simulations include advances in techniques to better 
harmonize with historical forcings relative to CMIP5. For example, 
projected changes in the solar cycle include long-term modulation 
rather than a repeating solar cycle (Matthes et al., 2017). Background 
natural aerosols are ramped down to an average historical level used 
in the control simulation by 2025 and background volcanic forcing 
is ramped up from the value at the end of the historical simulation 
period (2015) over 10 years to the same constant value prescribed 
for the pre-industrial control (piControl) simulations in the DECK, and 
then kept fixed – both changes are intended to avoid inconsistent 
model treatment of unknowable natural forcing to affect the 
near-term projected warming.

Complete backward comparability between CMIP5 and CMIP6 scenarios 
cannot be established for detailed regional assessments, because the 
SSP scenarios include regional forcings – especially from land use and 
aerosols – that are different from the CMIP5 RCPs. Even at a global level, 
a quantitative comparison is challenging between corresponding SSP and 
RCP radiative forcing levels due to differing contributions to the forcing 
(Meinshausen et al., 2020) and evidence of differing model responses 
(Section 4.6.2.2; Wyser et al., 2020). The RCP scenarios assessed in AR5 
all showed similar, rapid reductions in SLCFs and emissions of SLCF 
precursor species over the 21st century; the CMIP5 projections hence 
did not sample a wide range of possible trajectories for future SLCFs 
(Chuwah et al., 2013). The SSP scenarios assessed in the AR6 offer more 
scope to explore SLCF pathways as they sample a broader range of air 
quality policy options (Gidden et al., 2019) and relationships of CO2 to 
non-CO2 greenhouse gases (Meinshausen et al., 2020). Section 4.6.2.2 
assesses RCP and SSP differences. Other MIPs (see Section 4.2.1) have 
been designed to explicitly explore some of the implications of the 
different socio-economic storylines for a given radiative forcing level.
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4.2.3	 Sources of Near-term Information

This subsection describes the three main sources of near-term 
information used in Chapter 4. These are (i) the projections from the 
CMIP6 multi-model ensemble introduced in Section  4.2.1 (Eyring 
et  al., 2016; O’Neill et  al., 2016); (ii) observationally constrained 
projections (Gillett et  al., 2013; Stott et  al., 2013); and (iii) the 
initialized predictions contributed to CMIP6 from the Decadal 
Climate Prediction Project (DCPP; Boer et al., 2016). The projections 
under (i) and the observational constraints under (ii) are used for 
all time horizons considered in this chapter, whereas the initialized 
predictions under (iii) are relevant only in the near term.

Observationally constrained projections (Gillett et  al., 2013, 2021; 
Shiogama et al., 2016; Ribes et al., 2021) use detection and attribution 
methods to attempt to reach consistency between observations and 
models and thus provide improved projections of near-term change. 
Notable advances have been made since AR5, for example the ability 
to observationally constrain estimates of Arctic sea ice loss for global 
warming of 1.5°C, 2.0°C, and 3.0°C above pre-industrial levels 
(Screen and Williamson, 2017; Jahn, 2018; Screen, 2018; Sigmond 
et  al., 2018). There is high confidence that these approaches can 
reduce the uncertainties involved in such estimates.

The AR5 was the first IPCC report to assess decadal climate predictions 
initialized from the observed climate state (Kirtman et al., 2013), and 
assessed with high confidence that these predictions exhibit positive 
skill for near-term average surface temperature information, globally 
and over large regions, for up to ten years. Substantially more experience 
in producing initialized decadal predictions has been gained since AR5; 
the remainder of this subsection assesses the advances made.

Because the ‘memory’ that potentially enables prediction of multi-year 
to decadal internal variability resides mainly in the ocean, some systems 
initialize the ocean state only (e.g., Müller et al., 2012; Yeager et al., 
2018), whereas others incorporate observed information in the initial 
atmospheric states (e.g., Pohlmann et al., 2013; Knight et al., 2014) or 
other non-oceanic drivers that provide further sources of predictability 
(Alessandri et al., 2014; Weiss et al., 2014; Bellucci et al., 2015a).

Ocean initialization techniques generally use one of two strategies. 
Under full-field initialization, estimates of observed climate states 
are represented directly on the model grid. A potential drawback is 
that predictions initialized using the full-field approach tend to drift 
toward the biased climate preferred by the model (Smith et al., 2013a; 
Bellucci et al., 2015b; Sanchez-Gomez et al., 2016; Kröger et al., 2018; 
Nadiga et al., 2019). Such drifts can be as large as, or larger than, 
the climate anomaly being predicted and may therefore obscure 
predicted climate anomalies (Kröger et al., 2018) unless corrected for 
through post-processing. By contrast, anomaly initialization reduces 
drifts by adding observed anomalies (i.e., deviations from mean 
climate) to the mean model climate (Pohlmann et al., 2013; Smith 
et al., 2013a; Thoma et al., 2015b; Cassou et al., 2018), but has the 
disadvantage that the model state is then further from the real world 
from the start of the prediction. For both approaches, unrealistic 
features in the observation data used for initialization may induce 
unrealistic transient behavior (Pohlmann et  al., 2017; Teng et  al., 

2017; Nadiga et al., 2019), and non-linearity can reduce forecast skill 
(Chikamoto et al., 2019). As yet, neither of the initialization strategies 
has been clearly shown to be superior (Hazeleger et  al., 2013; 
Magnusson et al., 2013; Smith et al., 2013a; Marotzke et al., 2016), 
although such comparisons may be sensitive to the model, region, 
and details of the initialization and forecast assessment procedures 
considered (Polkova et al., 2014; Bellucci et al., 2015b).

There is also a  wide range of techniques employed to assimilate 
observed information into models in order to generate suitable 
initial conditions (Polkova et  al., 2019). These range in complexity 
from simple relaxation towards observed time series of sea surface 
temperature (SST) (Mignot et  al., 2016) or wind stress anomalies 
(Thoma et al., 2015a, b), to relaxation toward three-dimensional ocean 
and sometimes atmospheric state estimates from various sources 
(e.g.,  Pohlmann et  al., 2013; Knight et  al., 2014; Dunstone et  al., 
2016), or hybrid relaxation combining surface and tri-dimensional 
restoring as function of ocean basins and depth (Sanchez-Gomez 
et al., 2016), to sophisticated data assimilation methods such as the 
ensemble Kalman filter (Nadiga et al., 2013; Counillon et al., 2014, 
2016; Msadek et al., 2014; Karspeck et al., 2015; Brune et al., 2018; 
Cassou et  al., 2018; Polkova et  al., 2019), the four-dimensional 
ensemble-variational hybrid data assimilation (He et al., 2017, 2020) 
and the initialization of sea ice (Guemas et  al., 2016; Kimmritz 
et  al., 2018). In addition, decadal predictions necessarily consist 
of ensembles of forecasts to quantify uncertainty, as discussed in 
Section 4.2.1. A common way to generate an ensemble is through 
sets of initial conditions containing small variations that lead to 
different subsequent climate trajectories. A  variety of methods 
and assumptions has been employed to generate and filter initial-
condition ensembles for decadal prediction (e.g., Marini et al., 2016; 
Kadow et al., 2017). As yet, there is no clear consensus as to which 
initialization and ensemble generation techniques are most effective, 
and evaluations of their comparative performance within a  single 
modelling framework are needed (Cassou et al., 2018).

A consequence of model imperfections and resulting model systematic 
errors is that estimates of these errors must be removed from the 
prediction to isolate the predicted climate anomaly and the phase 
of the decadal modes of climate variability (Sections 4.4.3.5 and 
4.4.3.6, and Annex IV, Sections AIV.2.6 and AIV.2.7). Because of the 
tendency for systematic drifts to occur following initialization, bias 
corrections generally depend on time since the start of the forecast, 
often referred to as lead time. In practice, the lead-time-dependent 
biases are calculated using ensemble retrospective predictions, 
also known as hindcasts, and recommended basic procedures for 
such corrections are provided in previous studies (Goddard et  al., 
2013; Boer et al., 2016). The biases are also dynamically corrected 
during hindcasts and predictions by incorporating the multi-year 
monthly mean analysis increments from the initialization into 
the initial condition at each integration step (Wang et al., 2013b). 
Besides mean climate as a function of lead time, further aspects of 
decadal predictions may be biased, such as the modes of variability 
(see Section 3.7 and Annex IV) upon which drift patterns are projected 
(Sanchez-Gomez et al., 2016), and additional correction procedures 
have thus been proposed to remove biases in representing long-term 
trends (Kharin et al., 2012; Kruschke et al., 2016; Balaji et al., 2018; 
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Pasternack et  al., 2018), as well as more general dependences of 
drift on initial conditions (Fučkar et al., 2014; Pasternack et al., 2018; 
Nadiga et al., 2019).

Many skill measures exist that describe different aspects of the 
correspondence between predicted and observed conditions, and no 
single metric should be considered exclusively. Important aspects of 
forecast performance captured by different skill measures include: (i) the 
ability to predict the sign and phases of the main modes of decadal 
variability and their regional fingerprint through teleconnections; 
(ii) the typical magnitude of differences between predicted and observed 
values, forecast reliability and resolution (Corti et  al., 2012); and 
(iii) whether the forecast ensemble appropriately represents uncertainty 
in the predictions. A framework for skill assessment that encompasses 
each of these aspects of forecast quality has been proposed (Goddard 
et al., 2013). A new, process-based method to assess forecast skill in 
decadal predictions is to analyse how well a  specific mechanism is 
represented at each lead time (Mohino et al., 2016).

One additional aspect of forecast quality assessment is that estimated 
skill can be degraded by errors in observational datasets used for 
verification, in addition to errors in the predictions (Massonnet 
et al., 2016; Ferro, 2017; Karspeck et al., 2017; Juricke et al., 2018). 
This suggests that skill may tend to be underestimated, particularly 
for climate variables whose observational uncertainties are relatively 
large, and that the predictions themselves may prove useful for 
assessing the quality of observational datasets (Massonnet, 2019).

Skill assessments have shown that initialized predictions can 
out-perform their uninitialized counterparts (Doblas-Reyes et  al., 
2013; Meehl et al., 2014; Bellucci et al., 2015a; D.M. Smith et al., 2018, 
2019; Yeager et al., 2018), although such comparisons are sensitive 
to the region and variable considered, multi-model predictions are 
generally more skilful than individual models (Doblas-Reyes et  al., 
2013; D.M. Smith et al., 2013b, 2019). Considerable skill, especially for 
temperature, can be attributed to external forcings such as changes 
in GHG, aerosol concentrations, and volcanic eruptions. On a global 
scale, this contribution to skill has been found to exceed that from 
the prediction of internal variability except in the early stages (about 
one year for global SST) of the forecast (Corti et al., 2015; Sospedra-
Alfonso and Boer, 2020; Bilbao et al., 2021), though idealized potential 
skill measures and observations-based studies suggest that improving 
the prediction of internal variability could extend this crossover to 
longer lead times (Boer et  al., 2013; Årthun et  al., 2017). In some 
cases, part of the skill arises from the ability of initialized predictions 
to capture observed transitions of major modes of climate variability 
(Meehl et al., 2016) such as the Pacific Decadal Variability (PDV) and 
the Atlantic Multi-decadal Variability (AMV; see Sections 4.4.3.5 
and 4.4.3.6, and Annex IV, Sections AIV.2.6 and AIV.2.7).

Initialized predictions of near-surface temperature are particularly 
skilful over the North Atlantic, a region of high potential and realized 
predictability (Keenlyside et  al., 2008; Pohlmann et  al., 2009; Boer 
et al., 2013; Yeager and Robson, 2017). Much of this predictability is 
associated with the North Atlantic subpolar gyre (Wouters et al., 2013), 
where skill in predicting ocean conditions is typically high (Hazeleger 
et al., 2013; Brune and Baehr, 2020) and shifts in ocean temperature 

and salinity potentially affecting surface climate can be predicted 
up to several years in advance (Robson et  al., 2012; Hermanson 
et al., 2014), although such assessments remain challenging due to 
incomplete knowledge of the state of the ocean during the hindcast 
evaluation periods (Menary and Hermanson, 2018). A  substantial 
improvement of the sub-polar gyre SST prediction is found in CMIP6 
models, which is attributed to a  more accurate response to the 
AMOC-related delayed response to volcanic eruptions (Section 4.4.3; 
Borchert et al., 2021). A significant improvement GSAT prediction skill 
is also found over some land regions including East Asia (Monerie 
et al., 2018), Eurasia (Wu et al., 2019), Europe (Müller et al., 2012; 
D.M. Smith et al., 2019) and the Middle East (D.M. Smith et al., 2019).

Skill for multi-year to decadal precipitation forecasts is generally much 
lower than for temperature, although one exception is Sahel rainfall 
(Sheen et al., 2017), due to its dependence on predictable variations 
in North Atlantic SST through teleconnections (Annex IV; Martin and 
Thorncroft, 2014a). Predictive skill on decadal time scales is found for 
extratropical storm-tracks and storm density (Kruschke et al., 2016; 
Schuster et  al., 2019), atmospheric blocking (Schuster et  al., 2019; 
Athanasiadis et al., 2020), the Quasi-Biennial Oscillation (QBO; Scaife 
et al., 2014; Pohlmann et al., 2019) and over the tropical oceans (tropical 
trans-basin variability; Chikamoto et al., 2015). In addition, decadal 
predictions with large ensemble sizes are able to predict multi-annual 
temperature (Peters et al., 2011; Sienz et al., 2016; Borchert et al., 2019; 
Sospedra-Alfonso and Boer, 2020), precipitation (Yeager et al., 2018; 
D.M. Smith et  al., 2019), and atmospheric circulation (Smith et  al., 
2020) anomalies over certain land regions, although the ensemble-
mean magnitudes are much weaker than observed. This discrepancy 
may be symptomatic of an apparent deficiency in climate models that 
causes some predictable signal, such as that associated to the North 
Atlantic Oscillation (NAO; Section AIV.2.1), to be much weaker than 
in nature (Eade et al., 2014; Scaife and Smith, 2018; Strommen and 
Palmer, 2019; Smith et  al., 2020), while others, such as that linked 
to the SAM (Section AIV.2.2), are more consistent with observations 
(Byrne et al., 2019).

Evidence is accumulating that additional properties of the Earth 
system relating to ocean variability may be skilfully predicted on 
multi-annual time scales. These include levels of Atlantic hurricane 
activity (Smith et al., 2010; Caron et al., 2017), winter sea ice in the 
Arctic (Onarheim et al., 2015; Dai et al., 2020), drought and wildfire 
(Chikamoto et al., 2017; Paxian et al., 2019; Solaraju-Murali et al., 
2019), and variations in the ocean carbon cycle including CO2 uptake 
(H. Li et al., 2016, 2019; Lovenduski et al., 2019; Fransner et al., 2020) 
and chlorophyll (Park et al., 2019).

In summary, despite challenges (Cassou et al., 2018), there is high 
confidence that initialized predictions contribute information to 
near-term climate change for some regions over multi-annual 
to  decadal time scales. Furthermore, there are indications that 
initialized predictions can constrain near-term projections (Befort 
et  al., 2020). The clearest improvements through initialization 
are seen in the North Atlantic and related phenomena such as 
hurricane frequency, Sahel and European rainfall. By contrast, there 
is medium or low confidence that uncertainty is reduced for other 
climate variables.
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4.2.4	 Pattern Scaling

Projected climate change is typically represented in this chapter 
for specific future periods. One important source of uncertainty in 
projections presented for fixed future epochs (time-slabs/time-slices) 
is the underlying scenario used; another is the structural uncertainty 
associated with model climate sensitivity. Presenting projections and 
associated measures of uncertainty for specific periods (see Sections 4.4 
and 4.5) remains the most widely applied methodology towards 
informing climate change impact studies. It  is becoming increasingly 
important from the perspective of climate change and mitigation 
policy, however, to present projections also as a function of the change 
in global mean temperature (i.e., global warming levels, GWLs). They 
are expressed either in terms of changes of global mean surface 
temperature (GMST) or GSAT (see  Section  1.6.2 and Cross-Chapter 
Box 2.3). For example, the IPCC SR1.5 (Hoegh-Guldberg et al., 2018) 
assessed the regional patterns of warming and precipitation change for 
GMST increase of 1.5°C and 2°C above 1850–1900 levels. Techniques 
used to represent the spatial variations in climate at a given GWL are 
referred to as pattern scaling.

In the ‘traditional’ methodology as applied in AR5 (Collins et al., 2013), 
patterns of climate change in space are calculated as the product of the 
change in GSAT at a given point in time and a spatial pattern of change 
that is constant over time and the scenario under consideration, and 
which may or may not depend on a particular climate model (Allen 
and Ingram, 2002; Mitchell, 2003; Lambert and Allen, 2009; Andrews 
and Forster, 2010; Bony et al., 2013; Lopez et al., 2014). This approach 
assumes that external forcing does not affect the internal variability 
of the climate system, which may be regarded a stringent assumption 
when taking into account decadal and multi-decadal variability (Lopez 
et  al., 2014) and the potential non-linearity of the climate change 
signal. Moreover, pattern scaling is expected to have lower skill for 
variables with large spatial variability (Tebaldi and Arblaster, 2014). 
Pattern scaling also fails to capture changes in boundaries that move 
poleward such as sea ice extent and snow cover (Collins et al., 2013), 
and temporal frequency quantities such as frost days that decrease 
under warming but are bounded at zero. Spatial patterns are also 
expected to be different between transient and equilibrium simulations 
because of the long adjustment time scale of the deep ocean.

Further developments of the AR5 approach have since explored the 
role of aerosols in modifying regional climate responses at a specific 
degree of global warming and also the effect of different GCMs and 
scenarios on the scaled spatial patterns (Frieler et al., 2012; Levy et al., 
2013). Furthermore, the modified forcing-response framework (Kamae 
and Watanabe, 2012, 2013; Sherwood et al., 2015), which decomposes 
the total climate change into fast adjustments and slow response, 
identifies the fast adjustment as forcing-dependent and the slow 
response as forcing-independent, scaling with the change in GSAT.

For precipitation change, there is near-zero fast adjustment for solar 
forcing but suppression during the fast-adjustment phase for  CO2 
and black-carbon radiative forcing (Andrews et al., 2009; Bala et al., 
2010; Cao et al., 2015). By contrast, the slow response in precipitation 
change is independent of the forcing. This indicates that pattern 
scaling is not expected to work well for climate variables that have 

a  large fast-adjustment component. Even in such cases, pattern 
scaling still works for the slow response component, but a correction 
for the forcing-dependent fast adjustment would be necessary to 
apply pattern scaling to the total climate change signal. In a multi-
model setting, it has been shown that temperature change patterns 
conform better to pattern scaling approximation than precipitation 
patterns (Tebaldi and Arblaster, 2014).

Herger et al. (2015) have explored the use of multiple predictors for 
the spatial pattern of change at a given degree of global warming, 
following the approach of Joshi et al. (2013) that explored the role 
of the land–sea warming ratio as a second predictor. They found that 
the land–sea warming contrast changes in a  non-linear way with 
GSAT, and that it approximates the role of the rate of global warming 
in determining regional patterns of climate change. The inclusion 
of the land–sea warming contrast as the second predictor provides 
the largest improvement over the traditional technique. However, as 
pointed out by Herger et  al. (2015), multiple-predictor approaches 
still cannot detect non-linearities (or internal variability), such as the 
apparent dependence of spatial temperature variability in the mid- to 
high latitudes on GSAT (e.g., Fischer and Knutti, 2014; Screen, 2014).

An alternative to the traditional pattern scaling approach is the 
time-shift method described by Herger et al. (2015) which is applied in 
this chapter (also called the epoch approach; see Section 4.6.1). When 
applied to a transient scenario such as SSP5‑8.5, a future time-slab is 
referenced to a particular increase in the GSAT (e.g., 1.5°C or 2°C of 
global warming above pre-industrial levels). The spatial patterns that 
result represent a  direct scaling of the spatial variations of climate 
change at the particular level of global warming. An important 
advantage of this approach is that it ensures physical consistency 
between the different variables for which changes are presented 
(Herger et al., 2015). The internal variability does not have to be scaled 
and is consistent with the GSAT change. Furthermore, the time-shift 
method allows for a partial comparison of how the rate of increase 
in GSAT influences the regional spatial patterns of climate change. 
For example, spatial patterns of change for global warming of 2°C 
can be compared across the SSP2‑4.5 and SSP5‑8.5 scenarios. Direct 
comparisons can also be obtained between variations in the regional 
impacts of climate change for the case where global warming stabilizes 
at, for instance, 1.5°C or 2°C of global warming, as opposed to the case 
where the GSAT reaches and then exceeds the 1.5°C or 2°C thresholds 
(Tebaldi and Knutti, 2018). An important potential caveat is that 
forcing mechanisms such as aerosol radiative forcing are represented 
differently in different models, even for the same SSP. This may imply 
different regional aerosol direct and indirect effects, implying different 
regional climate change patterns. Hence, it is important to consider the 
variations in the forcing mechanisms responsible for a specific increase 
in GSAT towards understanding the uncertainty range associated with 
the variations in regional climate change. A minor practical limitation 
of this approach is that stabilization scenarios at 1.5°C or 2°C of global 
warming, such as SSP1‑2.6, do not allow for spatial patterns of change 
to be calculated from these scenarios at higher levels of global warming, 
while it is possible in scenarios such as SSP5‑8.5 (Herger et al., 2015).

In this chapter, the spatial patterns of change as a function of GWLs 
(defined in terms of the increase in the GSAT relative to 1850–1900) 
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are thus constructed using the time-shift approach, thereby 
accounting for various non-linearities and internal variability that 
influence the projected climate change signal. This implies a reliance 
on large ensemble sizes to quantify the role of uncertainties in 
regional responses to different degrees of global warming. The 
assessment in Section  4.6.1 also explores how the rate of global 
warming (as represented by different SSPs), aerosol effects, and 
transient as opposed to stabilization scenarios influence the spatial 
variations in climate change at specific levels of global warming.

4.2.5	 Quantifying Various Sources of Uncertainty

The AR5 assessed with very high confidence that climate models 
reproduce the general features of the global-scale annual mean surface 
temperature increase over the historical period, including the more 
rapid warming in the second half of the 20th century, and the cooling 
immediately following large volcanic eruptions. Furthermore, because 
climate and Earth system models are based on physical principles, they 
were assessed in AR5 to reproduce many important aspects of observed 
climate. Both aspects were argued to contribute to our confidence in the 
models’ suitability for their application in quantitative future predictions 
and projections (Flato et al., 2013). This Report assesses (in Section 3.8.2) 
with high confidence that for most large-scale indicators of climate 
change, the recent mean climate simulated by the latest generation 
climate models underpinning this assessment has improved compared 
to the models assessed in AR5, and with high confidence that the 
multi-model mean captures most aspects of observed climate change 
well. These assessments form the foundation of applying climate and 
Earth system models to the projections assessed in this chapter. Where 
appropriate, the assessment of projected changes is accompanied by an 
assessment of process understanding and model evaluation.

That said, fitness-for-purpose of the climate models used for long-term 
projections is fundamentally difficult to ascertain and remains an 
epistemological challenge (Parker, 2009; Frisch, 2015; Baumberger et al., 
2017). Some literature exists comparing previous IPCC projections to 
what has unfolded over the subsequent decades (Cubasch et al., 2013), 
and recent work has confirmed that climate models since around 1970 
have projected global surface warming in reasonable agreement with 
observations once the difference between assumed and actual forcing 
has been taken into account (Hausfather et al., 2020). However, the 
long-term perspective to the end of the 21st century or even out to 
2300 takes us beyond what can be observed in time for a standard 
evaluation of model projections, and in this sense the assessment of 
long-term projections will remain fundamentally limited.

The spread across individual runs within a  multi-model ensemble 
represents the response to a  combination of different sources of 
uncertainties (Section 1.4.3), specifically: scenario uncertainties, climate 
response uncertainties (also referred to as model uncertainties) 
related to parametric and other structural uncertainties in the 
model representation of the climate system, and internal variability 
(e.g., Hawkins and Sutton, 2009; Kirtman et al., 2013). While the nature 
of these uncertainties was introduced in Section 1.4.3, this subsection 
assesses methods to disentangle different sources of uncertainties and 
quantify their contributions to the overall ensemble spread.

As discussed extensively in AR5 (Collins et al., 2013), ensemble spread 
in projections performed with different climate models accounts for 
only part of the entire model uncertainty, even when considering the 
uncertainty in the radiative forcing in projections (Vial et al., 2013) 
and forced response. The AR5 uncertainty characterisation (Kirtman 
et  al., 2013) followed Hawkins and Sutton (2009) and diagnosed 
internal variability through a high-pass temporal filter. This approach 
has deficiencies particularly if internal variability manifests on the 
multi-decadal time scales (Deser et al., 2012a; Marotzke and Forster, 
2015) and is classified as (model) response uncertainty instead of 
internal variability. Single-model initial-condition large ensembles 
revealed that the AR5 approach underestimates the role of internal 
variability uncertainty and overestimates the role of model uncertainty 
(Maher et al., 2018; Stolpe et al., 2018; Lehner et al., 2020) particularly 
at the local scale while yielding a  reasonable approximation for 
uncertainty separation for GSAT (Lehner et al., 2020).

Single-model initial-condition large ensembles thus represent a crucial 
step towards a cleaner separation of model uncertainty and internal 
variability than available for AR5 (Deser et al., 2014, 2016; Saffioti et al., 
2017; Sippel et al., 2019; Milinski et al., 2020; von Trentini et al., 2020; 
Maher et al., 2021). Novel approaches have been proposed to further 
quantify internal variability in multi-model ensembles (Hingray and Saïd, 
2014; Evin et al., 2019; Hingray et al., 2019). For time horizons beyond 
the limit of decadal predictability (Branstator and Teng, 2010; Meehl 
et al., 2014; Marotzke et al., 2016), such as in the CMIP6 projections, 
the simulations are starting from random rather than assimilated 
initial conditions. Internal variability constitutes an uncertainty in the 
projection of the climate in a future period of 10 or 20 years that is 
irreducible, but can be precisely quantified for individual models using 
sufficiently large initial-condition ensembles (Fischer et al., 2013; Deser 
et al., 2016, 2020; Hawkins et al., 2016; Pendergrass et al., 2017; Luo 
et al., 2018; Dai and Bloecker, 2019; Maher et al., 2019).

Uncertainties in emissions of greenhouse gases and aerosols that affect 
future radiative forcings are represented by selected SSP scenarios 
(Sections 1.6.1 and 4.2.2). In addition to emission uncertainties, 
SSPs represent uncertainties in land use changes (van Vuuren et al., 
2011; Ciais et al., 2013; O’Neill et al., 2016; Christensen et al., 2018). 
Additional uncertainty comes from climate carbon-cycle feedbacks 
and the residence time of atmospheric constituents, and are at least 
partly accounted for in emissions-driven simulations as opposed to 
concentration-driven simulations (Friedlingstein et al., 2014; Hewitt 
et al., 2016). The climate carbon-cycle feedbacks affect the transient 
climate response to cumulative CO2 emissions (TCRE). Constraining 
this uncertainty is crucial for the assessment of remaining carbon 
budgets consistent with global mean temperature levels (Millar 
et al., 2017; IPCC, 2018a) and is covered in Chapter 5 of this Report. 
Finally, there are uncertainties in future solar and volcanic forcing 
(Cross-Chapter Box 4.1).

The relative magnitude of model uncertainty and internal variability 
depends on the time horizon of the projection, location, spatial 
and temporal aggregation, variable, and signal strength (Rowell, 
2012; Fischer et  al., 2013; Deser et  al., 2014; Saffioti et  al., 2017; 
Kirchmeier-Young et  al., 2019). New literature published after AR5 
systematically discusses the role of different sources of uncertainty 
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and shows that the relative contribution of internal variability is larger 
for short than for long projection horizons (Marotzke and Forster, 
2015; Lehner et al., 2020; Maher et al., 2021), larger for high latitudes 
than for low latitudes, larger for land than for ocean variables, larger 
at station level than for continental or global means, larger for annual 
maxima/minima than for multi-decadal means,  larger for dynamic 
quantities (and, by implication, precipitation) than for temperature 
(Fischer et al., 2014).

The method introduced by Hawkins and Sutton (2009) and applied to 
GSAT projections reveals that by the end of the 21st century, the fraction 
contribution of the climate model response uncertainty to the  total 
uncertainty is larger in CMIP6 than in CMIP5 whereas the relative 
contribution of scenario uncertainty is smaller (Lehner et  al., 2020). 
This is the case even when sub-selecting pathways and scenarios that 
are most similar in CMIP5 and CMIP6, that is, the range from RCP2.6 
to RCP8.5 vs SSP1‑2.6 to SSP5‑8-5, respectively (Lehner et al., 2020). 
The larger range of response uncertainty is further consistent with the 
larger range of TCR and GSAT warming for a comparable pathway in 
CMIP6 than CMIP5 (Forster et al., 2020; Tokarska et al., 2020).

Some uncertainties are not, or only partially accounted for in the CMIP6 
experiments, such as uncertainties in natural forcings from solar 
and volcanic forcings, long-term Earth system feedbacks including 
land–ice feedbacks, groundwater feedbacks (Smerdon,  2017) or 
some long-term carbon-cycle feedbacks (Fischer et al., 2018). Where 
appropriate, this chapter uses results from non-CMIP ESMs or EMICs 
to assess the role of these feedbacks. Still other uncertainties – such 
as further pandemics, nuclear holocaust, global natural disaster 
such  as tsunami or asteroid impact, or fundamental technological 
change such as fusion – are not accounted for at all.

4.2.6	 Display of Model Agreement and Spread

Maps of multi-model mean changes provide an average estimate for 
the forced model climate response to a certain forcing. However, they 
do not include any information on the robustness of the response across 
models nor on the significance of the change with respect to unforced 
internal variability (Tebaldi et  al., 2011). Models can consistently 
show absence of significant change, in which case they should not be 
expected to agree on the sign of a change (e.g., Tebaldi et al., 2011; 
Knutti and Sedláček, 2013; Fischer et al., 2014). If a multi-model mean 
map of precipitation shows no change, it is unclear whether the models 
consistently project insignificant changes or whether projections span 
both significant increases and significant decreases. Several methods 
have been proposed to distinguish significant conflicting signals from 
agreement on no significant change (Tebaldi et al., 2011; Knutti and 
Sedláček, 2013; McSweeney and Jones, 2013; Zappa et al., 2021). A set 
of different methods have been introduced in the literature to display 
model robustness and to put a climate change signal into the context 
of internal variability. Box 12.1 in AR5 provides a detailed assessment 
of different methods of mapping model robustness and Cross-Chapter 
Box Atlas.1 provides an update of recent proposals including the 
methods used in this Report.

Most methods for quantifying robustness assume that only one 
realization from each model is applied. There are challenges that 
arise from having heterogeneous multi-model ensembles with many 
members for some models and single members for others (Olonscheck 
and Notz, 2017; Evin et  al., 2019). Furthermore, the methods that 
map model robustness usually ignore that sharing parametrizations 
or entire components across coupled models can lead to substantial 
model interdependence (Fischer et  al., 2011; Kharin et  al., 2012; 
Knutti et al., 2013, 2017; Leduc et al., 2015; Sanderson et al., 2015, 
2017; Annan and Hargreaves, 2017; Boé, 2018; Abramowitz et  al., 
2019). This may lead to a  biased estimate of model agreement if 
a substantial fraction of models is interdependent. The methodologies 
and results in this literature since AR5 are higher in quality and 
clarity. However, quantifying and accounting for model dependence 
in a  robust way remains challenging (Abramowitz et  al.,  2019). 
Furthermore, absence of significant mean change in a certain climate 
variable does not imply absence of substantial impact, because 
there may be substantial change in variability, which is typically not 
mapped (McSweeney and Jones, 2013).

Chapter  4 uses the advanced approach, taking into account the 
sign and significance of the change (Cross-Chapter Box Atlas.1, 
approach  C). Where not applicable, such as due to a  lack of the 
necessary model output, the simple method is used taking into account 
only agreement on the sign of the change across the multi-model 
ensemble (Cross-Chapter Box Atlas.1, approach B). The advanced 
approach is similar to the method used in AR5 but isolates conflicting 
signals as proposed in Zappa et  al. (2021). It  uses three mutually 
exclusive categories and distinguishes (i) areas with significant change 
and high model agreement (no overlay), (ii) areas with no change or no 
robust change (diagonal lines), and (iii) areas with significant change 
but low agreement (crossed lines). Category (i) marks areas where 
the climate change signals likely emerge from internal variability, 
where two-thirds or more of the models project changes greater than 
internal variability and 80% or more of the models agree on the sign 
of the change. Category (ii) marks areas where fewer than two-thirds 
of the models project changes greater than internal variability, and 
category (iii) marks areas with significant but conflicting signals, where 
two-thirds or more of the models project changes greater than internal 
variability but less than 80% agree on the sign of the change.

In this chapter variability is defined as , where 
is the standard deviation of 20-year means in the pre-industrial 

control simulations (see Cross-Chapter Box, Atlas.1). Category (a) 
uses a definition very similar to the AR5 method for stippling, except 
that the model signal is compared to its corresponding internal rather 
than the multi-model mean variability, to account for the substantial 
model differences in pre-industrial internal variability (Parsons et al., 
2020). Changes smaller than internal variability can have potential 
impacts particularly if they persist over sustained periods such as 
several decades. Finally, even when changes do not exceed variability 
at the grid point level they may exceed variability if aggregated over 
catchment basins, regions, or continents (Cross-Chapter Box Atlas.1). 
Maps of mean changes also ignore potential changes in variability 
addressed by a  more comprehensive assessment of changes in 
temperature variability (Section  4.5.1) and modes of internal 
variability (Section 4.4.3).
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Box 4.1 | Ensemble Evaluation and Weighting

The AR5 used a pragmatic approach to quantify the uncertainty in CMIP5 GSAT projections (Collins et al., 2013). The multi-model 
ensemble was constructed by picking one realization per model per scenario. For most quantities, the 5–95% ensemble range was 
used to characterize the uncertainty, but the 5–95% ensemble range was interpreted as the 17–83% (likely) uncertainty range. 
The uncertainty was thus explicitly assumed to contain sources not represented by the model range. While straightforward and clearly 
communicated, this approach had several drawbacks.

i.	 The uncertainty breakdown into scenario uncertainty, model uncertainty, and internal variability (Cox and Stephenson, 2007; 
Hawkins and Sutton, 2009) in AR5 followed Hawkins and Sutton (2009) and diagnosed internal variability through a high-pass 
temporal filter (Kirtman et al., 2013), but it has since become clear that even multi-decadal trends contain substantial internal 
variability relative to the forced response in many variables (e.g., Deser et al., 2012a, 2020; Marotzke and Forster, 2015; Lehner et al., 
2020); hence a more comprehensive approach is needed. 

ii.	 The uncertainty characterization ignores observation-based information about internal climate variability during the most recent 
past, such as is used in initialized predictions. While this may matter little for the long-term projections (Collins et al., 2013), it 
is very important for the near-term future (Kirtman et al., 2013). The AR5 included additional uncertainty quantification for the 
near-term projections (Kirtman et  al., 2013), leading to a  downward adjustment of assessed near-term GSAT change, which 
created an inconsistency in the transition from near-term to long-term GSAT assessment in AR5.

iii.	 The AR5 used the range of CMIP5 equilibrium climate sensitivity (ECS) side-by-side with the ECS  likely  range assessed from 
multiple lines of evidence (the CMIP5 ensemble, instrumental observations, and paleo-information; Collins et al., 2013). While the 
CMIP5 range in ECS and AR5 ECS likely range did not differ much, the difference did create an inconsistency. Furthermore, AR5 
WGIII used the assessed likely range for ECS in their calculations of carbon budgets (IPCC, 2014), and these uncertainties matter 
a great deal when assessing remaining carbon budgets consistent with limiting global warming to 1.5°C above pre-industrial 
levels (Millar et al., 2017, 2018a, b; Rogelj et al., 2018b; Schurer et al., 2018). 

Another important consideration concerns the potential weighting of model contributions to an ensemble, based on model 
independence, model performance during the historical period, or both. Such model weighting (in fact, model selection) was performed 
in AR5 for projections of Arctic sea ice (Collins et al., 2013), but that particular application has subsequently been shown by Notz 
(2015) to be contaminated by internal variability, making the resulting weighting questionable (Stroeve and Notz, 2015). For a general 
cautionary note, see Weigel et al. (2010). Approaches that take into account internal variability and model independence have been 
proposed since AR5 (Knutti et al., 2017; Boé, 2018; Abramowitz et al., 2019; Brunner et al., 2020).

There are hence good reasons for basing an assessment of future global climate on lines of evidence in addition to the projection 
simulations. However, despite some progress, no universal, robust method for weighting a multi-model projection ensemble is available, 
and expert judgement must be included, as it did for AR5, in the assessment of the projections. The default in this chapter follows 
the AR5 approach for GSAT (Collins et al., 2013) and interprets the CMIP6 5–95% ensemble range as the likely uncertainty range.

Additional lines of evidence enter the assessment particularly for the most important indicator of global climate change, GSAT. The CMIP6 
ensemble generally shows larger projected warming by the end of the 21st century, relative to the average over the period 1995–2014, 
than the CMIP5 ensemble (Section 4.3.1). The warming has increased in part because of models with higher ECS in CMIP6, compared to 
CMIP5 (high confidence) (e.g., Meehl et al., 2020; Tokarska et al., 2020; Zelinka et al., 2020; J. Zhu et al., 2020), and in part because of 
higher ERF in CMIP6 than in CMIP5 (e.g., Tebaldi et al., 2021, Section 4.6.2). Because change in several other important climate quantities 
scales with change in GSAT (Section 4.2.4), bringing in additional lines of evidence is particularly important for the GSAT assessment. 

The Chapter 4 assessment uses information from the following sources: 

i.	 The CMIP6 multi-model ensemble (Eyring et al., 2016), augmented if appropriate by the CMIP5 ensemble (Taylor et al., 2012).
ii.	 Single-model large initial-condition ensembles (e.g., Kay et al., 2015; Sigmond and Fyfe, 2016; Maher et al., 2019) and combinations 

of control runs with CMIP transient simulations (e.g., Thompson et al., 2015; Olonscheck and Notz, 2017) to characterize internal 
variability. Several analyses using multiple large ensembles have recently become available and add robustness to the results 
(Maher et al., 2018, 2019, 2020, 2021; Deser et al., 2020; Lehner et al., 2020).

iii.	 Assessed best estimates, likely, and very likely ranges of ECS and TCR, from process understanding, warming in the instrumental record, 
paleoclimates, and emergent constraints (Tables 7.13 and 7.14, and Section 7.5). The ECS and TCR ranges are converted into GSAT 
ranges using as an emulator a two-layer energy balance model (EBM, e.g., Held et al., 2010) that is driven by the effective radiative 
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Box 4.1 (continued)

forcing (ERF) assessed in Chapter 7 (Cross-Chapter Box 7.1). Assuming for the ERF resulting from a doubling of the CO2 concentration, 
∆F2 × CO2 = 4.0 W m–2 (close to the best estimate of 3.93 W m–2, Section 7.3), and using the so-called zero-layer approximation to 
the EBM (e.g., Marotzke and Forster, 2015; Jiménez-de-la-Cuesta and Mauritsen, 2019) permits a one-to-one translation of any 
pair of ECS and TCR into a pair of climate feedback parameter α and ocean heat uptake coefficient κε, using the simple equations 
α = –∆F2 × CO2 ECS–1 and κε = ∆F2 × CO2 TCR–1 – ∆F2 × CO2 ECS–1 (e.g., Jiménez-de-la-Cuesta and Mauritsen, 2019; see Chapter 7 for 
a detailed discussion). The results are displayed in Box 4.1, Figure 1 and are used in the synthesis GSAT assessment in Section 4.3.4.

iv.	 Model independence diagnosed a priori, based on shared model components for atmosphere, ocean, land surface, and sea ice of 
CMIP5 models (Boé, 2018). CMIP5 models have been re-sampled assuming that two models sharing either the atmosphere or the 
ocean component are effectively the same model (Maher et al., 2021). Downweighting CMIP5 models that share a component 
with another has substantial influence on diagnosed model agreement on change in ENSO (Maher et al., 2021), but has negligible 
influence (much less than 0.1°C) on the ensemble mean and range of GSAT change over the 21st century. No corresponding 
diagnosis exists yet for CMIP6 models, and no weighting based on a-priori independence is applied here.

v.	 Performance in simulating the past and a-posteriori independence based on comparison against observations (Knutti et al., 2017; 
Abramowitz et al., 2019). This approach has been applied to CMIP6-simulated GSAT and has led to a substantial reduction in 
model range (Brunner et al., 2020; Liang et al., 2020; Section 4.3.4). The CMIP6-simulated Arctic sea ice area has been compared 
to the observed record, and models have been selected whose ensemble range across their individual realizations (Olonscheck and 
Notz, 2017) includes the observational range of uncertainty. A larger fraction of these selected simulations show an ice-free Arctic 
in September before 2050, compared to the entire CMIP6 ensemble (Notz and SIMIP Community, 2020; Section 4.3.2).

vi.	 A linear inverse method (kriging) has combined the entire GSAT record since 1850 with the CMIP6 historical simulations to 
produce constrained projections for the 21st  century; again the reduction in range has been substantial (Ribes et  al., 2021; 
Section 4.3.4; Section 4.3.4).

vii.	 Emergent constraints (e.g., Hall and Qu, 2006; Cox et al., 2018; Brient, 2020), which for the post-1970 warming have been applied 
to the CMIP5 (Jiménez-de-la-Cuesta and Mauritsen, 2019) and CMIP6 ensembles (Nijsse et al., 2020; Tokarska et al., 2020) and 
have likewise led to a substantial reduction in GSAT ensemble range (Section 4.3.4). 

viii.	Climate predictions initialized from recent observations (e.g., Kirtman et al., 2013) and the Decadal Climate Prediction Project 
(DCPP) contribution to CMIP6 (Boer et al., 2016; Smith et al., 2020; Sospedra-Alfonso and Boer, 2020). Initialized predictions for the 
period 2019–2028 exist for eight DCPP models and are used here (Box 4.1, Figure 1 and Section 4.4.1). The DCPP results have been 
drift-removed and referenced to the time-averaged hindcasts for 1995–2014 lead-year by lead-year, following (Kharin et al., 2012; 
Kruschke et al., 2016).

Box  4.1, Figure  1 shows annual mean GSAT simulated by CMIP6 models for both the historical period and forced 
by scenario SSP2‑4.5 until 2100, combined with various characterizations of uncertainty. First, internal variability is 
estimated with the 50-member ensemble simulated with CanESM5. The 5–95% ensemble range for annual mean GSAT 
in CanESM5 is slightly below 0.4°C; in other CMIP6 large ensembles this range is about 0.5°C (MIROC6, IPSL-CM6A) 
and slightly above 0.6°C (S-LENS/EC-Earth3). The CMIP5 large ensemble MPI-GE shows a  range of slightly below 0.5°C 
(Bengtsson and Hodges, 2019), in reasonable agreement with observed variability (Maher et  al., 2019). There is thus 
high confidence in the CMIP6-simulated level of internal variability in annual mean GSAT, as displayed in Box  4.1, Figure  1.

Second, Section 7.5 very likely ECS and TCR ranges are converted into GSAT ranges with the EBM as an emulator using, in this 
example, SSP2‑4.5 radiative forcing information. Because the ECS and TCR assessments in Section 7.5 are based on multiple lines 
of evidence and the EBM physics are well understood, there is likewise high confidence in the EBM-emulated warming. Third, the 
initialized-forecast ensembles from eight CMIP6 DCPP models are shown in the inset, for the period 2019–2028. During this period, 
the initialized forecasts are consistent, within internal variability, with the EBM-emulated range, further adding to the high confidence 
in the assessed-GSAT range.

The constrained range of GSAT change is useful for quantifying uncertainties in changes of other climate quanties that scale well 
with GSAT change, such as September Arctic sea ice area, global mean precipitation, and many climate extremes (Cross-Chapter 
Box 11.1). However, there are also quantities that do not scale linearly with GSAT change, such as global mean land precipitation, 
atmospheric circulation, AMOC, and modes of variability, especially ENSO SST variability. Because we do not have robust scientific 
evidence to constrain changes in other quantities, uncertainty quantification for their changes is based on CMIP6 projections and 
expert judgement. For the assessment for changes in GMSL, the contribution from land-ice melt has been added offline to the CMIP6 
simulated contributions from thermal expansion, consistent with Chapter 9 (Section 9.6).
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4.3 Projected Changes in Global Climate 
Indices i n the 21st Century

This section assesses the latest simulations of representative indicators 
of global climate change presented as time series and tabulated values 
over the 21st century and across the main realms of the global climate 
system. In the atmospheric realm (Section 4.3.1), we assess simulations 
of GSAT (Figure  4.2a) and global land precipitation (Figure  4.2b). 
Across the cryospheric, oceanic, and biospheric realms (Section 4.3.2), 
we assess simulations of Arctic SIA (Figure 4.2c), GMSL (Figure 4.2d), 
the AMOC, ocean and land carbon uptake, and pH. In Section 4.3.3 we 
assess simulations of several indices of climate variability, namely, the 
indices of the NAM, SAM, and ENSO. Finally, Section 4.3.4 assesses 
future GSAT change based on the CMIP6 ensemble in combination 
with other lines of evidence. An assessment of projected changes in 
related global extreme indices can be found in Chapter 11.

From the CMIP6 multi-model ensemble we consider historical 
simulations with observed external forcings to 2014 and extensions 
to 2100 based on the fi ve high-priority scenarios. We use the fi rst 
realization (‘r1’) contributed by each modelling group. In tabular form, 
we show ensemble-mean changes and uncertainties for the near-term 
(2021–2040), mid-term (2041–2060), and the long-term (2081–2100), 
relative to present-day (1995–2014) and the approximation to 
pre-industrial (1850–1900). Changes in precipitation over land 
near 1.5°C, 2.0°C, 3.0°C, and 4.0°C of global warming relative to 
1850–1900 are also assessed.

Box 4.1 (continued)

Box 4.1 Figure 1 | CMIP6 annual mean global sur face air temperature (GSAT) simulations and various contributions to uncertainty in the projections 
ensemble. The fi gure shows anomalies relative to the period 1995–2014 (left y-axis), converted to anomalies relative to 1850–1900 (right y-axis); the difference 
between the y-axes is 0.85°C (Cross-Chapter Box 2.3). Shown are historical simulations with 39 CMIP6 models (grey) and projections following scenario SSP2-4.5 
(dark yellow; thin lines: individual simulations; heavy line; ensemble mean; dashed lines: 5% and 95% ranges). The black curve shows the observations-based estimate 
(HadCRUT5; Morice et al., 2021). Light blue shading shows the 50-member ensemble CanESM5, such that the deviations from the CanESM5 ensemble mean have been 
added to the CMIP6 multi-model mean. The green curves are from the emulator and show the central estimate (solid) and very likely range (dashed) for GSAT. The inset 
shows a cut-out from the main plot and additionally in light purple for the period 2019–2028 the initialized forecasts from eight models contributing to DCPP (Boer et al., 
2016); the deep-purple curve shows the average of the forecasts. Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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4.3.1 Atmosphere

4.3.1.1 Surface Air Temperature

The AR5 asses sed from CMIP5 simu lations and other lines of 
evidence that GSAT will continue to rise over the 21st  century if 
greenhouse gas (GHG) concentrations continue increasing (Collins 
et al., 2013). The AR5 concluded that GSAT for 2081–2100, relative to 
1986–2005 will likely be in the 5–95% range of 0.3°C–1.7°C under 
RCP2.6 and 2.6°C–4.8°C under RCP8.5. The corresponding ranges for 
the intermediate emissions scenarios with emissions peaking around 
2040 (RCP4.5) and 2060 (RCP6.0) are 1.1°C–2.6°C and 1.4°C–3.1°C, 
respectively. The AR5 further assessed that GSAT averaged over 
the period 2081–2100 are projected to likely exceed 1.5°C above 

1850–1900 for RCP4.5, RCP6.0 and RCP8.5 (high  confi dence) and 
are likely to exceed 2°C above 1850–1900 for RCP6.0 and RCP8.5 
(high confi dence). Global surface temperature changes above 2°C 
under RCP2.6 were deemed unlikely (medium confi dence).

Here, for continuity’s sake, we assess the CMIP6 simulations of GSAT 
in a fashion similar to the AR5 assessment of the CMIP5 simulations. 
From these, we compute anomalies relative to 1995–2014 and display 
the evolution of ensemble means and 5–95% ranges (Figure  4.2). 
We also use the ensemble mean GSAT difference between 1850–1900 
and 1995–2014, 0.82°C, to provide an estimate of the changes since 
1850–1900 (Figure 4.2, right axis). Finally, we tabulate the ensemble 
mean changes between 1995–2014 and 2021–2040, 2041–2060, 
and 2081–2100 respectively (Figure 4.2).
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Figure 4.2 | Selected indicators of global climate    change from CMIP6 historical and scenario simulations. (a) Global surface air temperature changes relative 
to the 1995–2014 average (left axis) and relative to the 1850–1900 average (right axis; offset by 0.82°C, which is the multi-model mean and close to observed best estimate, 
Cross-Chapter Box 2.1, Table 1). (b) Global land precipitation changes relative to the 1995–2014 average. (c) September Arctic sea ice area. (d) Global mean sea level (GMSL) 
change relative to the 1995–2014 average. (a), (b) and (d) are annual averages, (c) are September averages. In (a–c), the curves show averages over the CMIP6 simulations, 
the shadings around the SSP1-2.6 and SSP3-7.0 curves show 5–95% ranges, and the numbers near the top show the number of model simulations used. Results are derived 
from concentration-driven simulations. In (d), the barystatic contribution to GMSL (i.e., the contribution from land-ice melt) has been added offl ine to the CMIP6 simulated 
contributions from thermal expansion (thermosteric). The shadings around the SSP1-2.6 and SSP3-7.0 curves show 5–95% ranges. The dashed curve is the low confi dence and 
low likelihood outcome at the high end of SSP5-8.5 and refl ects deep uncertainties arising from potential ice-sheet and ice-cliff instabilities. This curve at year 2100 indicates 
1.7 m of GMSL rise relative to 1995–2014. More information on the calculation of GMSL is available in Chapter 9, and further regional details are provided in the Atlas. 
Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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The CMIP6 models show a  5–95% range of GSAT change for 
2081–2100, relative to 1995–2014, of 0.6°C–2.0°C under 
SSP1‑2.6 where CO2 concentrations peak between 2040 and 2060 
(see Table 4.2). The corresponding range under the highest overall 
emissions scenario  (SSP5‑8.5) is 2.7°C–5.7°C. The ranges for the 
intermediate and high emissions scenarios (SSP2‑4.5 and SSP3‑7.0), 
where CO2 concentrations increase to 2100, but less rapidly than 
SSP5‑8.5, are 1.4°C–3.0°C and 2.2°C–4.7°C, respectively. The range 
for the lowest emissions scenario (SSP1‑1.9) is 0.2°C–1.3°C.

In summary, the CMIP6 models show a general tendency toward larger 
long-term globally averaged surface warming than did the CMIP5 
models, for nominally comparable scenarios (very high confidence). 
In SSP1‑2.6 and SSP2‑4.5, the 5–95% ranges have remained similar 
to the ranges in RCP2.6 and RCP4.5, respectively, but the distributions 
have shifted upward by about 0.3°C (high confidence). For SSP5‑8.5 
compared to RCP8.5, the 5% bound of the distribution has hardly 
changed, but the 95% bound and the range have increased by about 
20% and 40%, respectively (high confidence). About half of the warming 
increase has occurred because of more models with higher climate 
sensitivity in CMIP6, compared to CMIP5; the other half of the warming 
increase arises from higher effective radiative forcing in nominally 
comparable scenarios (medium confidence, see Section 4.6.2).

With regards to global warming levels (GWLs) of 1.5°C, 2.0°C and 
3.0°C, we note that there is unanimity across all of the CMIP6 model 
simulations that GSAT change relative to 1850–1900 will rise above: 
(i) 1.5°C following SSP2‑4.5, SSP3‑7.0, or SSP5‑8.5 (on average 
around 2030); (ii) 2.0°C following either SSP3‑7.0 or SSP5‑8.5 
(on average around 2043); and (iii) 3.0°C following SSP5‑8.5 (on 
average around 2062). Under SSP1‑1.9, 55% and 36% of the model 
simulations rise above 1.5°C and 2.0°C, respectively, while for 
SSP1‑2.6 those percentages increase to 87% and 58%, respectively. 
Here, the time of GSAT exceedance is determined as the first year 
at which 21-year running averages of GSAT exceed the given GWL. 

In Section 4.3.4, these values are reassessed using CMIP6 ensemble 
in combination with other lines of evidence.

CMIP6 models project increases in area-weighted land, ocean, tropical 
(30°S–30°N), Arctic (67.7°N–90°N), and Antarctic (90°S–55°S) 
surface air temperature (Table 4.2). Consistent with AR5, and earlier 
assessments, CMIP6 models project that annual average surface air 
temperature will warm about 50% more over land than  over the 
ocean, and that the Arctic will warm about more than 2.5  times 
the global average (Section  4.5.1). For 2081–2100, relative to 
1995–2014, the CMIP6 models show 5–95% ranges of warming 
over land of 0.3°C–2.0°C and 3.5°C–7.6°C following SSP1‑1.9 and 
SSP5‑8.5, respectively. The corresponding ranges for Arctic surface air 
temperature change are 0.5°C–6.6°C and 6.2°C–15.2°C, respectively.

The concentration-driven simulations presented above use 
a prescribed CO2 pathway calculated by the MAGICC7.0 model using 
the CMIP6 emissions (Meinshausen et  al., 2020). This is compared 
here with the CO2 concentration simulated by CMIP6 ESMs in 
response to the SSP5‑8.5 emissions (Figure  4.3). The 1995–2014 
mean simulated CO2 level is 375 ppm, very similar to the prescribed 
378 ppm, but the ESM 5–95% range is 357–391 ppm. By the end of 
the 21st century (2081–2100), the ESM mean is 953 ppm – below the 
prescribed CO2 pathway (1004 ppm), but with a large 5–95% range of 
848–1045 ppm, which spans the prescribed concentration level. This 
result differs from CMIP5, which showed that ESMs typically simulated 
CO2 concentrations higher than the prescribed concentration-driven 
RCP pathways. Reduced spread in CMIP6 carbon cycle feedbacks 
compared to CMIP5 has been postulated to be due to the inclusion 
of nitrogen cycle processes in about half of CMIP6 ESMs (Arora et al., 
2020). This means that the CMIP6 spread in GSAT response to CO2 
emissions is dominated by climate sensitivity differences between 
ESMs more than by carbon cycle differences (high  confidence) 
(Jones and Friedlingstein, 2020; Williams et al., 2020).

Table 4.2 | CMIP6 annual mean surface air temperature anomalies (°C). Displayed are multi-model averages and, in parentheses, the 5–95% ranges, for selected time 
periods, regions, and SSPs. The numbers of models used are indicated in Figure 4.2.

Time Period and Region SSP1‑1.9 (°C) SSP1‑2.6 (°C) SSP2‑4.5 (°C) SSP3‑7.0 (°C) SSP5‑8.5 (°C)

Global: 2021–2040
Relative to 1995–2014
Relative to 1850–1900

0.7 (0.3, 1.1)
1.5 (1.1, 2.2)

0.7 (0.4, 1.1)
1.6 (1.1, 2.2)

0.7 (0.4, 1.2)
1.6 (1.0, 2.3)

0.7 (0.5, 1.2)
1.6 (1.0, 2.4)

0.8 (0.5, 1.3)
1.7 (1.2, 2.4)

Global: 2041–2060
Relative to 1995–2014
Relative to 1850–1900

0.8 (0.3, 1.5)
1.7 (1.1, 2.4)

1.0 (0.6, 1.6)
1.9 (1.2, 2.7)

1.3 (0.8, 1.9)
2.1 (1.5, 3.0)

1.4 (0.9, 2.3)
2.3 (1.6, 3.2)

1.7 (1.2, 2.5)
2.6 (1.8, 3.4)

Global: 2081–2100
Relative to 1995–2014
Relative to 1850–1900

0.7 (0.2, 1.5)
1.5 (1.0, 2.2)

1.2 (0.6, 2.0)
2.0 (1.3, 2.8)

2.0 (1.4, 3.0)
2.9 (2.1, 4.0)

3.1 (2.2, 4.7)
3.9 (2.8, 5.5)

4.0 (2.7, 5.7)
4.8 (3.6, 6.5)

Land: 2081–2100
Relative to 1995–2014

0.9 (0.3, 2.0) 1.5 (0.8, 2.6) 2.7 (1.7, 4.0) 4.1 (3.0, 6.2) 5.3 (3.5, 7.6)

Ocean: 2081–2100
Relative to 1995–2014

0.6 (0.1, 1.2) 1.0 (0.5, 1.8) 1.8 (1.2, 2.7) 2.7 (1.8, 4.0) 3.4 (2.3, 4.9)

Tropics: 2081–2100
Relative to 1995–2014

0.5 (0.1, 1.1) 1.0 (0.5, 1.6) 1.8 (1.2, 2.5) 2.7 (2.0, 4.0) 3.5 (2.4, 4.9)

Arctic: 2081–2100
Relative to 1995–2014

2.4 (0.5, 6.6) 3.3 (0.4, 7.5) 5.4 (2.8, 10.0) 7.7 (4.5, 13.4) 10.0 (6.2, 15.2)

Antarctic: 2081–2100
Relative to 1995–2014

0.5 (0.0, 1.1) 1.1 (0.1, 2.9) 1.9 (0.6, 3.2) 2.8 (1.3, 4.5) 3.6 (1.7, 5.6)
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Simulated GSAT over 1995–2014, relative to 1850–1900 period, 
warms by very similar amounts in the two sets of simulations: 0.82°C 
(0.45–1.31) in emissions-driven compared with 0.75°C (0.53–1.09) 
in concentration-driven simulations. By the end of the 21st century, 
warming in emissions-driven simulations is very similar: 4.58°C 
(3.53–6.70), refl ecting the slightly lower CO2 concentration 
simulated by the ESMs compared with warming under the 
prescribed CO2 pathway of 4.69°C (3.70–6.77). This difference in 
model-mean response is more than an order of magnitude smaller 
than the 5–95% spread across model projections. The spread in CO2

concentration, compared with the prescribed default concentration, 
leads to a very small increase by about 0.1°C in the spread of GSAT 
projections, but it is not possible to tell if this is a direct consequence 
of the simulation confi guration or internal variability of the model 
simulations. These differences due to experimental confi guration 
would be smaller still under scenarios with lower CO2 levels, and 
so we assess that results from concentration-driven and emissions-
driven confi gurations do not affect the assessment of GSAT 
projections (high confi dence).

4.3.1.2 Precipitation

The AR5 assessed from CMIP5 projections that global mean 
precipitation over the 21st  century will increase by more than 
0.05 mm day–1 (about 2% of global precipitation) and 0.15 mm day–1

(about 5% of global precipitation) under the RCP2.6 and RCP8.5 
scenarios, respectively (Collins et  al., 2013). These changes are 
generally in line with those from the CMIP6 simulations following 
SSP1-2.6 and SSP5-8.5 (Table 4.3).

Unlike AR5, our focus here is on land rather than global precipitation 
because land precipitation has greater societal relevance. These are 
displayed as percent changes relative to 1995–2014 (Figure  4.2b). 
Based on these results, we conclude that global land precipitation 
is larger during the period 2081–2100 than during the period 
1995–2014, under all scenarios considered here (high confi dence) 
(Table  4.3). Global land precipitation for 2081–2100, relative to 
1995–2014, shows a 5–95% range of –0.2 to +4.7% under SSP1-1.9 
and 0.9–12.9% under SSP5-8.5, respectively. The corresponding ranges 
under the other emissions scenarios are 0.0–6.6% (SSP1-2.6), 1.5–
8.3% (SSP2-4.5), and 0.5–9.6% (SSP3-7.0). A detailed assessment of 
hydrological sensitivity, or change in precipitation per degree warming, 
can be found in Chapter 8 (Section 8.2.1).

For scenarios where unanimity across all of the model simulations 
that GSAT change relative to 1850–1900 rises above 1.5°C (SSP2-4.5, 
SSP3-7.0, or SSP5-8.5), the ensemble-mean change in global land 
precipitation from 1850–1900 until the time of exceedance is on 
average about 1.6%. For scenarios with unanimous global warming 
above 2.0°C (SSP3-7.0, or SSP5-8.5) and 3.0°C (SSP5-8.5), the 
ensemble-mean increase in global land precipitation for those 
models that do exceed 2.0°C and 3.0°C is on average about 2.6% 
and 4.9%, respectively. On average under SSP1-1.9 and SSP1-2.6, 
the global land precipitation change for simulations where 
global warming exceeds 1.5°C and 2.0°C will be about 1.9% and 
3.0%, respectively.
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Figure 4.3 | Comparison of  concentration-driven and emissions-driven simulation. (a) Atmospheric CO2 concentration; (b) global surface air temperature from 
models which performed SSP5-8.5 scenario simulations in both emissions-driven (blue) and concentration-driven (red) confi gurations. For concentration driven simulations, CO2

concentration is prescribed, and follows the red line in panel (a) in all models. For emissions-driven simulations, CO2 concentration is simulated and can therefore differ for each 
model, blue lines in panel (a). Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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Relative to 1995–2014, and across all of the scenarios considered 
here, CMIP6 models show greater increases in precipitation over land 
than either globally or over the ocean (Table  4.3; high confi dence). 
Over the Northern Hemisphere (NH) extratropics, the 5–95% changes 
in precipitation over land between 1995–2014 and 2021–2040, 
2041–2060, and 2081–2100, following SSP5-8.5, are 0.6–4.9%, 
1.5–8.8%, and 4.7–17.2%, respectively (Figure 4.4). At the other end of 
scenario spectrum, SSP1-1.9, the corresponding changes are 0.6–5.4%, 
0.6–7.3%, and 0.2–7.7%, respectively. By contrast, over the North 
Atlantic subtropics, precipitation decreases by about 10% following 
SSP3-7.0 and SSP5-8. There is no change in subtropical precipitation 
in the North Atlantic following SSP1-1.9, SSP1-2.6, or SSP2-4.5 (high 
confi dence); thereby highlighting the potential limitations of pattern 
scaling for regional hydrological changes (Section 8.5.3). The reasons for 
the opposing changes in these two regions are assessed in Chapter 8.

4.3.2 Cryosphere,  Ocean and Biosphere

4.3.2.1 Arctic Sea Ice

The AR5 assessed from CMIP5 simulations that there will be year-
round reductions of Arctic sea ice coverage by the end of this century 
(Collins et al., 2013). These range from 43% under RCP2.6 and 94% 
under RCP8.5 in September, and from 8% under RCP2.6 and 34% 
under RCP8.5 in March (medium confi dence). Based on a fi ve-member 
selection of CMIP5 models, AR5 further assessed that for RCP8.5, 
Arctic sea ice coverage in September will drop below 1 million km2

and be practically ice free at some point between 2040 and 2060. 
The SROCC further assessed that the probability of an ice-free Arctic 
in September for stabilized global warming of 1.5°C and 2.0°C is 
approximately 1% and 10–35%, respectively (IPCC, 2019).

Table 4.3 | CMIP6 precipitation anomalies   (%) relative to averages over 1995–2014 for selected future periods, regions and SSPs. Displayed are the 
multi-model averages across the individual models and, in parentheses, the 5–95% ranges. Also shown are land precipitation anomalies at the time when global increase in 
GSAT relative to 1850–1900 exceeds 1.5°C, 2.0°C, 3.0°C, and 4.0°C, and the percentage of simulations for which such exceedances are true (to the right of the parentheses). 
Here, the time of GSAT exceedance is deter mined as the fi rst year at which 21-year running averages of GSAT exceed the given threshold. Land precipitation percent anomalies 
are then computed as 21-year averages about the year of the fi rst GSAT crossing. The numbers of models used are indicated in Figure 4.4.

Time Period and Region SSP1-1.9 (%) SSP1-2.6 (%) SSP2-4.5 (%) SSP3-7.0 (%) SSP5-8.5 (%)

Land

2021–2040 2.4 (0.7, 4.1) 2.0 (–0.6, 3.6) 1.5 (–0.4, 3.6) 1.2 (–1.0, 3.4) 1.7 (–0.1, 4.1)

2041–2060 2.7 (0.6, 5.0) 2.8 (–0.4, 5.2) 2.7 (0.3, 5.2) 2.5 (–0.8, 5.1) 3.7 (–0.1, 6.9)

2081–2100 2.4 (–0.2, 4.7) 3.3 (0.0, 6.6) 4.6 (1.5, 8.3) 5.8 (0.5, 9.6) 8.3 (0.9, 12.9)

Global 2081–2100 2.0 (0.4, 4.2) 2.9 (1.0, 5.2) 4.0 (2.3, 6.7) 4.7 (2.3, 8.2) 6.5 (3.4, 10.9)

Ocean 2081–2100 1.9 (0.6, 4.1) 2.8 (1.1, 5.4) 3.8 (2.0, 6.8) 4.4 (2.1, 7.9) 6.0 (2.9, 10.5)

Land

∆T > 1.5°C 2.0 (0.6, 4.4) 55 1.7 (–2.0, 6.9) 87 1.7 (–2.9, 6.2) 100 1.5 (–3.9, 6.6) 100 1.5 (–3.5, 6.4) 100

∆T > 2.0°C 3.8 (2.4, 5.8) 36 2.2 (–2.0, 4.6) 58 2.8 (–2.2, 8.1) 97 2.4 (–4.4, 7.7) 100 2.8 (–2.8, 8.3) 100

∆T > 3.0°C – (–, –) 0 – (–, –) 0 4.9 (1.5, 9.6) 54 4.3 (–4.4, 11.5) 97 4.9 (–2.6, 11.0) 100

∆T > 4.0°C – (–, –) 0 – (–, –) 0 4.2 (1.3, 6.3) 9 5.1 (–2.5, 11.1) 57 6.4 (–3.4, 15.0) 85
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Figure  4.4 |    CMIP6 annual mean precipitation changes (%) from historical and scenario simulations. (a) Northern Hemisphere extratropics (30°N–90°N).
(b) North Atlantic subtropics (5°N–30°N, 80°W–0°). Changes are relative to 1995–2014 averages. Displayed are multi-model averages and, in parentheses, 5–95% ranges. 
The numbers inside each panel are the number of model simulations. Results are derived from concentration-driven simulations. Further details on data sources and processing 
are available in the chapter data table (Table 4.SM.1).
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With regards to the model selection in AR5, model evaluation studies 
have since identifi ed shortcomings of the CMIP5 models to match 
the observed distribution of sea ice thickness in the Arctic (Stroeve 
et al., 2014; Shu et al., 2015) and the observed evolution of albedo 
on seasonal scales (Koenigk et  al., 2014). It was also found that 
many models’ deviation from observed sea ice cover climatology 
cannot be explained by internal variability, whereas the models’ 
deviation from observed sea ice cover trend (over the satellite 
period) can often be explained by internal variability (Olonscheck 
and Notz, 2017). This hinders a  selection of models according to 
their simulated trends, which additionally has been shown to only 
have a  weak effect on the magnitude of simulated future trends 
(Stroeve and Notz, 2015).

Based on results from the CMIP6 models, we conclude that on 
average the Arctic will become practically ice-free in September 
by the end of the 21st  century under SSP2-4.5, SSP3-7.0, and 
SSP5-8.5 (high confi dence) (Figure 4.2c and Table 4.4). Also, in the 
CMIP6 models, Arctic SIA in March decreases in the future, but to 
a much lesser degree, in percentage terms, than in September (high 
confi dence) (Table  4.4). A  more detailed assessment of projected 
Arctic and also Antarctic sea ice change can be obtained in Chapter 9 
(Section 9.3.1).

Studies focusing on the relationship of sea ice extent and changes in 
external drivers have consistently found a much-reduced likelihood 
of a  practically ice-free Arctic Ocean during summer for global 
warming of 1.5°C than for 2.0°C (Screen and Williamson, 2017; 
Jahn, 2018; Niederdrenk and Notz, 2018; Notz and Stroeve,  2018; 
Sigmond  et  al.,  2018; Olson et  al., 2019). This is shown here in 
a  large initial-condition ensemble of observationally constrained 
model simulations where GSAT are stabilized at 1.5°C, 2.0°C and 
3.0°C warming relative to 1850–1900 in the RCP8.5 scenario 
(Figure  4.5). Temperature stabilization is achieved by switching 
off all the anthropogenic emissions around the time that GSAT 
fi rst reaches the stabilization thresholds. Simulations have been 
observationally constrained to correct for a model bias in simulated 
historical September sea ice extent. In these simulations, Arctic sea 
ice coverage in September is simulated, on average, to drop below 
1 million km2 around 2040, consistent with the AR5 set of assessed 
models (Sigmond et al., 2018). The individual model simulations, for 
which there are twenty for each stabilized temperature level, show 

that the probability of the Arctic becoming practically ice free at the 
end of the 21st century is signifi cantly higher for 2°C warming than 
for 1.5°C warming above 1850–1900 levels (high confi dence).

4.3.2.2 Global Mean Sea Level

The AR5 assessed from CMIP5 process-based simulations that 
the rate of GMSL rise during the 21st century will very likely exceed 
the rate  observed during 1971–2010 for all RCP scenarios due to 
increases in ocean warming and loss of mass from glaciers and ice 
sheets (Church et  al., 2013). Further, AR5 concluded that for the 
period 2081–2100, compared to 1986–2005, GMSL rise is likely
(medium confi dence) to be in the 5–95% range of projections 
from process-based models, which give 0.26–0.55 m for RCP2.6, 

Table 4.4 | CMIP6 Arc  tic sea ice area for selected months, time periods, and across fi ve SSPs. Displayed are the multi-model averages across the individual models 
and, in parentheses, the 5–95% ranges. The number of models used in these calculations are shown in Figure 4.2c.

Month and Time Period
SSP1-1.9
(106 km2)

SSP1-2.6
(106 km2)

SSP2-4.5
(106 km2)

SSP3-7.0
(106 km2)

SSP5-8.5
(106 km2)

September

2021–2040 2.6 (1.1, 6.5) 2.7 (0.6, 6.4) 2.8 (0.7, 6.4) 3.1 (1.1, 6.4) 2.5 (0.4, 5.8)

2041–2060 2.2 (0.3, 6.5) 2.0 (0.2, 6.1) 1.7 (0.1, 5.6) 1.7 (0.1, 5.7) 1.2 (0.0, 5.2)

2081–2100 2.4 (0.2, 6.2) 1.7 (0.0, 6.0) 0.8 (0.0, 4.6) 0.5 (0.0, 3.3) 0.3 (0.0, 2.2)

March

2021–2040 14.0 (11.4, 18.7) 14.9 (11.9, 25.8) 14.9 (11.9, 23.5) 15.0 (11.7, 27.3) 14.9 (11.9, 24.7)

2041–2060 13.8 (10.9, 18.3) 14.5 (10.9, 25.7) 14.3 (11.1, 23.3) 14.2 (10.5, 27.1) 13.9 (10.2, 24.5)

2081–2100 13.7 (10.9, 18.5) 14.2 (10.6, 25.7) 13.1 (9.5, 22.2) 11.8 (5.4, 25.5) 9.7 (3.1, 21.6)
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Fi  gure 4.5 | Arctic sea ice extent in September in a large initial-condition 
ensemble of observationally-constrained simulations of an Earth system 
model (CanESM2). The black and red curves are averages over twenty simulations 
following historical forcings to 2015 and RCP8.5 extensions to 2100. The other curves 
are averages of over 20 simulations each after global surface air temperature has been 
stabilized at the indicated degree of global mean warming relative to 1850–1900. The 
bars to the right are the minimum to maximum ranges over 2081–2100 (Sigmond 
et  al., 2018). The horizontal dashed line indicates a  practically sea ice-free Arctic. 
Further details on data sources and processing are available in the chapter data table 
(Table 4.SM.1).
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0.32–0.63 m for RCP4.5, 0.33–0.63 m for RCP6.0, and 0.45–0.82 m 
for RCP8.5. For RCP8.5, the rise by 2100 is 0.52–0.98 m with a rate 
during 2081–2100 of 8–16 mm yr –1.

There have been substantial modelling advances since AR5, with 
most sea level projections corresponding to one of three categories: 
(i)  central-range projections, combining scenario-conditional 
probability distributions for the different contributions to estimate 
a  central range under different scenarios; (ii) probabilistic 
projections, which explicitly consider outcomes for a  wide range 
of likelihoods, including low-likelihood, high-impact outcomes; and 
(iii)  semi-empirical projections, based on statistical relationships 
between past GMSL changes and climate variables, which 
now calibrate individual contributions and are consistent with 
physical-model based estimates (Section 9.6.3).

Based on the assessment of the latest modelling information 
(Figure 4.2d and Section 9.6.3), we conclude that under the SSP3-7.0, 
the likely range of GMSL change averaged over 2081–2100 relative 
to 1995–2014 is 0.46–0.74 m. Under SSP1-2.6, the likely range 
over the long-term is 0.30–0.54 m. Further, in SSP2-4.5, SSP3-7.0, 
and SSP5-8.5, the rise in GMSL is projected to accelerate over the 
21st  century. A  detailed assessment of the processes contributing 
to these projected rises and accelerations in GMSL, together 
with a comparison to AR5 and SROCC, can be found in Chapter 9 
(Section 9.6.3). Projected changes in the thermosteric component of 
GMSL beyond 2300 are assessed in Section 4.7.1.

In summary, it is virtually certain that under any one of the assessed 
SSPs, there will be continued rise in GMSL through the 21st century.

4.3.2.3 Atlantic Mer  idional Overturning Circulation

The AR5 assessed from CMIP5 simulations that the Atlantic Meridional 
Overturning Circulation (AMOC) will very likely weaken over the 
21st century, and the projected weakening of the AMOC is consistent 
with CMIP5 projections of an increase of high-latitude temperature 
and high-latitude precipitation, with both effects causing the surface 
waters at high latitudes to become less dense and therefore more 
stable (Collins et al., 2013).

Based on CMIP6 models, we fi nd that over the 21st century, AMOC 
strength, relative to 1995–2014, shows a multi-model mean decrease 
in each of the SSP scenarios but with a  large spread across the 
individual simulations (Figure 4.6). We also note that the magnitude 
of the ensemble-mean strength decrease is approximately scenario 
independent up to about 2060 (Weijer et al., 2020). A more detailed 
assessment of these projected AMOC changes, and the mechanisms 
involved, can be found in Chapter 9 (Section 9.2.3).

In summary, we assess from the CMIP6 models that AMOC weakening 
over the 21st century is very likely; the rate of weakening is approximately 
independent of the emissions scenario (high confi dence).

Based on a  large initial condition ensemble of simulations with 
a  CMIP5 model (CanESM2) with emissions scenarios leading to 
stabilization of global warming of 1.5°C, 2.0°C, or 3.0°C relative 
to 1850–1900, AMOC continues to decline for 5–10 years after 
GSAT is effectively stabilized at the given GWL (Sigmond et  al., 
2020). This is followed by a  recovery of AMOC strength for about 
the next 150 years to a  level that is approximately independent of 
the considered stabilization scenario. These results are replicated in 
simulations in a CMIP6 model (CanESM5) with emissions cessation 
after diagnosed CO2 emissions reach 750 Gt, 1000 Gt, or 1500 Gt. 
These emissions levels lead to global warming stabilization at 1.5°C, 
2.0°C, or 3.0°C relative to 1850–1900. In summary, in these model 
simulations the AMOC recovers over several centuries after the 
cessation of CO2 emissions (medium confi dence).

4.3.2.4 Ocean and Land Carb on Uptake

The AR5 concluded with very high confi dence that ocean carbon 
uptake of anthropogenic CO2 will continue under all RCPs through the 
21st century, with higher uptake corresponding to higher concentration 
pathways. The future evolution of the land carbon uptake was assessed 
to be much more uncertain than for ocean carbon uptake, with a majority 
of CMIP5 models projecting a continued cumulative carbon uptake.
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Figure 4.6 | CMIP6 ann  ual mean Atlantic Meridional Overturning Circulation 
(AMOC) strength change in historical and scenario simulations. Changes are 
relative to averages from 1995–2014. The curves show ensemble averages and the 
shadings the 5–95% ranges across the SSP1-2.6 and SSP3-7.0 ensembles. The circles 
to the right of the panel show the anomalies averaged from 2081–2100 for each 
of the available model simulations. The numbers inside the panel are the number of 
model simulations. Here, the strength of the AMOC is computed as the maximum 
value of annual mean ocean meridional overturning mass stream function in the 
Atlantic at 26°N. Results are from concentration-driven simulations. Further details 
on data sources and processing are available in the chapter data table (Table 4.SM.1).
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Based on results from the CMIP6 models, we conclude that the fl ux 
of carbon from the atmosphere into the ocean increases continually 
through most of 21st  century in the two highest emissions 
and decreases continually under the other emissions scenarios 
(Figure 4.7a). The fl ux of carbon from the atmosphere to land shows 
a similar 21st century behaviour across the scenarios but with much 
higher year-to-year variation than ocean carbon fl ux (Figure 4.7b). 
A  more in-depth assessment and discussion of the mechanism 
involved can be found in Chapter 5 (Section 5.4.5).

In summary, we assess that the cumulative uptake of carbon by the 
ocean and by land will increase through the 21st century irrespective 
of the considered emissions scenarios except SSP1-1.9 (very 
high confi dence).

4.3.2.5 Surface Ocean pH

The AR5 assessed from CMIP5 simulations that it is virtually certain
that increasing storage of carbon by the ocean under all four RCPs 
through to 2100 will increase ocean acidifi cation in the future (Ciais 
et al., 2013). Specifi cally, AR5 reported that CMIP5 models project 
increased ocean acidifi cation globally to 2100 under all RCPs, 
and that the corresponding model mean and model spread in the 
decrease in surface ocean pH from 1986–2005 to 2081–2100 would 
be 0.065 (0.06–0.07) for RCP2.6, 0.145 (0.14–0.15) for RCP4.5, 
0.203 (0.20–0.21) for RCP6.0 and 0.31 (0.30–0.32) for RCP8.5.

Based on results from the CMIP6 models we conclude that, except 
for the lower-emissions scenarios SSP1-1.9 and SSP1-2.6, ocean 
surface pH decreases monotonically through the 21st  century 
(high confi dence) (Figure 4.8).
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Figure 4.7 | CMIP6 carbon up  take in historical and scenario simulations. (a) Atmosphere to ocean carbon fl ux (PgC yr –1). (b) Atmosphere to land carbon fl ux 
(PgC yr –1). The curves show ensemble averages and the shadings show the 5–95% ranges across the SSP1-2.6 and SSP3-7.0 ensembles. The numbers inside each panel are 
the number of model simulations. The land uptake is taken as Net Biome Productivity (NBP) and so includes any modelled net land-use change emissions. Results are from 
concentration-driven simulations. Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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Figure  4.8 | Global average surface o  cean pH. The shadings around the 
SSP1-2.6 and SSP5-7.0 curves are the 5–95% ranges across those ensembles. 
The numbers inside each panel are the number of model simulations. Results are from 
concentration-driven simulations. Further details on data sources and processing are 
available in the chapter data table (Table 4.SM.1).
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4.3.3 Modes of Variability

4.3.3.1  Northern and Southern Annu lar Modes

4.3.3.1.1 Northern Annular Mode

The Northern Annular Mode (NAM) is the leading mode of variability 
in the NH extratropical atmosphere (Section AIV.2.1). Throughout this 
chapter, we use a simple fi xed latitude-based NAM index defi ned as 
the difference in SLP between 35°N and 65°N (Section AIV.2.1; Li and 
Wang, 2003). The NAM index computed from the latitudinal gradient 
in SLP is strongly correlated with variations in the latitudinal position 
and strength of the mid-latitude westerly jets, and with the spatial 
distribution of Arctic sea ice (Caian et al., 2018). Projected changes 
in the position and strength of the mid-latitude westerly jets, storm 
tracks, and atmospheric blocking in both hemispheres are assessed 
in Section 4.5.1.6. The AR5 referred to the NAM, and its synonym the 
Arctic Oscillation (AO), through its regional counterpart, the North 
Atlantic Oscillation (NAO). Here, we use the term NAM to refer also 
to the AO and NAO (Section AIV.2.1), accepting that the AO and NAO 
are not identical entities.

We fi rst summarize the assessment of past NAM changes and their 
attribution from Chapters 2 and 3 to put into context the future 
projections described here. Strong positive trends for the NAM/NAO 
indices were observed since 1960, which have weakened since the 
1990s (high confi dence) (Section  2.4.1.1). The NAO variability in 
the instrumental record was likely not unusual in the millennial and 
multi-centennial context (Section 2.4.1.1). Climate models simulate 
the gross features of the NAM with reasonable fi delity, including 
its interannual variability, but models tend to systematically 
underestimate the amount of multi-decadal variability of the NAM 
and jet stream compared to observations (Section  3.7.1; J. Wang 
et  al., 2017b; Bracegirdle et  al., 2018; Simpson et  al., 2018), with 
the caveat of the observational record being relatively short to 

characterize decadal variability (Chiodo et  al., 2019). A  realistic 
simulation of the stratosphere and SST variability in the tropics and 
northern extratropics are important for a model to realistically capture 
the observed NAM variability. Despite some evidence from climate 
model studies that anthropogenic forcings infl uence the NAM, there 
is limited evidence for a signifi cant role for anthropogenic forcings in 
driving the observed multi-decadal variations of the NAM over the 
instrumental period (Section 3.7.1).

The AR5 assessed from CMIP5 simulations that the future boreal 
wintertime NAM is very likely to exhibit large natural variations and 
trends of similar magnitude to that observed in the past and is likely to 
become slightly more positive in the future (Collins et al., 2013). Based 
on CMIP6 model results displayed in Figure  4.9a, we conclude that 
the boreal wintertime surface NAM is more positive by the end of the 
21st century under SSP3-7.0 and SSP5-8.5 (high confi dence). For these 
high emissions scenarios, the 5–95% range of NAM index anomalies 
averaged from 2081–2100 are 0.3–3.8 hPa and 0.32–5.2  hPa, 
respectively. On the other hand, under neither of the lowest emissions 
scenarios, SSP1-1.9 and SSP1-2.6, does the NAM show a  robust 
change, by the end of the 21st century (high confi dence).

Signifi cant progress has been made since AR5 in understanding the 
physical mechanisms responsible for changes in the NAM, although 
uncertainties remain. It is now clear from the literature that the 
NAM response, and the closely-related response of the mid-latitude 
storm tracks, to anthropogenic forcing in CMIP5-era climate models 
is determined by a  ‘tug-of-war’ between two opposing processes 
(Harvey et al., 2014; Shaw et al., 2016; Screen et al., 2018a): (i) Arctic 
amplifi cation (Sections 4.5.1.1 and 7.4.4.1), which decreases the 
low-level meridional temperature gradient, reduces baroclinicity on 
the poleward fl ank of the eddy-driven jet, and shifts the storm tracks 
equatorward and leading to a negative NAM (see Box 10.1; Harvey et al., 
2015; Hoskins and Woollings, 2015; Peings et al., 2017; Screen et al., 
2018a); and (ii) enhanced warming in the tropical upper-troposphere, 
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Figure 4.9 | CMIP6 simulations of boreal w  inter (December –January–February, DJF) Annular Mode indices. (a) NAM and (b) SAM. The NAM is defi ned as the 
difference in zonal mean SLP at 35°N and 65°N (Li and Wang, 2003) and the SAM as the difference in zonal mean SLP at 40°S and 65°S (Gong and Wang, 1999). All anomalies 
are relative to averages from 1995–2014. The curves show multi-model ensemble averages over the CMIP6 r1 simulations. The shadings around the SSP1-2.6 and SSP3-7.0 
curves denote the 5–95% ranges of the ensembles. The numbers inside each panel are the number of model simulations. The results are for concentration-driven simulations. 
Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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due to GHG increases and associated water vapour and lapse rate 
feedbacks, which increases the upper-level meridional temperature 
gradient and causes a poleward shift of the storm tracks and a positive 
NAM (Harvey et al., 2014; Vallis et al., 2015; Shaw, 2019). The large 
diversity in projected NAM changes in CMIP5 multi-model ensemble 
(Gillett and Fyfe, 2013) appears to be at least partly explained by the 
relative importance of these two mechanisms in particular models 
(Harvey et al., 2014, 2015; Vallis et al., 2015; McCusker et al., 2017; 
Oudar et  al., 2017). Models that produce larger Arctic amplification 
also tend to produce larger equatorward shifts of the mid-latitude jets 
and associated negative NAM responses (Barnes and Polvani, 2015; 
Harvey et al., 2015; Zappa and Shepherd, 2017; McKenna et al., 2018; 
Screen et al., 2018a; Zappa et al., 2018).

Another area of progress is new understanding the role of cloud 
radiative effects in shaping the mid-latitude circulation response 
to anthropogenic forcing. Through their non-uniform distribution of 
radiative heating, cloud changes can modify meridional temperature 
gradients and alter mid-latitude circulation and the annular modes in 
both hemispheres (Ceppi et al., 2014; Voigt and Shaw, 2015, 2016; 
Ceppi and Hartmann, 2016; Ceppi and Shepherd, 2017; Lipat et al., 
2018; Albern et al., 2019; Voigt et al., 2019). In addition to the effects 
of changing upper and lower tropospheric temperature gradients on 
the NAM, progress has been made since AR5 in understanding the 
effect of simulated changes in the strength of the stratospheric polar 
vortex on winter NAM projections (Manzini et al., 2014; Zappa and 
Shepherd, 2017; Simpson et al., 2018).

4.3.3.1.2	 Southern Annular Mode

The Southern Annular Mode (SAM) is the leading mode of large-scale 
extratropical atmospheric variability in the Southern Hemisphere and 
influences most of the southern extratropics (Annex IV, Section AIV.2.2). 
In its positive phase, the SAM characterizes anomalously low pressure 
over the polar cap and high pressure in southern mid-latitudes (Marshall, 
2003). While there are some zonal asymmetries to the structure of the 
SAM (Section AIV.2.2), it is more symmetric than its NH counterpart 
(Fyfe et  al., 1999). Throughout this chapter, we use a  simple fixed 
latitude-based SAM index defined as the difference in zonal mean SLP 
between 40°S and 65°S (Gong and Wang, 1999; see Section AIV.2.2 for 
discussion of other SAM indices). Although the SAM is often used as 
a proxy for the location of the mid-latitude westerly wind belt, trends 
in the SAM can reflect a combination of changes in jet position, width, 
and strength. The changes in the Southern Hemisphere circulation 
associated with the SAM influence surface wind stress (Wang et al., 
2014) and hence affect the Southern Ocean.

Over the instrumental period, there has been a  robust positive 
trend in the SAM index, particularly since 1970 (high confidence) 
(Section  2.4.1.2). There is medium confidence that the recent 
trend in the SAM is unprecedented in the past several centuries 
(Section 2.4.1.2). There is high confidence that stratospheric ozone 
depletion and GHG increases have contributed to the positive SAM 
trend during the late 20th century, with ozone depletion dominating 
in austral summer, following the peak of the Antarctic ozone hole 
in September –October, and GHG increases dominating in other 
seasons  (Section  3.7.2). To capture the effects of stratospheric 

ozone changes on the SAM, climate models must include a realistic 
representation of ozone variations (Section 3.7.2). In models that do 
not explicitly represent stratospheric ozone chemistry, which includes 
the majority of the CMIP6 model ensemble, an ozone dataset is 
prescribed. To properly capture the effects of ozone depletion and 
recovery on the stratosphere and surface climate, the prescribed 
ozone dataset must realistically capture observed stratospheric ozone 
trends with sufficiently high temporal resolution (Neely et al., 2014; 
Young et al., 2014). The CMIP6 experiment protocol recommended 
the use of a prescribed 4-D monthly mean ozone concentration field 
for models without stratospheric chemistry (Eyring et al., 2016).

The AR5 assessed that the positive trend in the austral summer/
autumn SAM observed since 1970 (see Section  2.4.1.2) is likely to 
weaken considerably as stratospheric ozone recovers through the 
mid-21st  century, while in other seasons the SAM changes depend 
on the emissions scenario, with a  larger increase in SAM for higher 
emissions scenarios. In CMIP6 models, the austral summer SAM 
is more positive by the end of the 21st century under SSP3‑7.0 and 
SSP5‑8.5 (Figure  4.9b). On the other hand, under SSP1‑1.9 and 
SSP1‑2.6, the SAM is projected to be less positive, especially under 
SSP1‑1.9 where the 5–95% ranges of anomalies relative to 1995–2014 
are –3.1 to 0.0 hPa averaged from 2081–2100. In summary, under 
the highest emissions scenarios in the CMIP6 models, the SAM in 
the austral summer becomes more positive through the 21st century 
(high confidence).

4.3.3.2	 El Niño–Southern Oscillation

The El Niño–Southern Oscillation (ENSO) is the most dominant mode 
of variability on interannual time scales and also the dominant source 
of seasonal climate predictability (Box  11.3 and Annex IV, 
Section AIV.2.3; Timmermann et  al., 2018). The AR5 assessed from 
CMIP5 simulations that ENSO variability will very likely remain the 
dominant mode of interannual climate variability in the future, and 
that associated ENSO precipitation variability on regional scales is 
likely to intensify (Christensen et al., 2013). However, they assessed 
there was low confidence in projected changes in ENSO variability in 
the 21st century due to a strong component of internal variability.

Among a range of indices proposed for representing ENSO, we use 
the most prominent one, the Niño 3.4 index, defined as the average 
equatorial SST or precipitation across the central equatorial Pacific 
(5°S–5°N, 170°W–120°W; Section AIV.2.3). Here, we consider the 
evolution of the amplitude of Niño 3.4 index for SST and precipitation 
over the 21st  century as projected by CMIP6 models. Analysis of 
CMIP6 models shows there is no robust model consensus on the 
forced changes in the amplitude of ENSO SST variability even under 
the high-emissions scenarios SSP3‑7.0 and SSP5‑8.5, but a significant 
increasing trend in the amplitude of ENSO precipitation variability is 
projected across the 21st century in the four SSPs (Figure 4.10). This 
is broadly consistent with results from CMIP5 models (Christensen 
et al., 2013; Power et al., 2013; Cai et al., 2015; Chen et al., 2017; 
Wengel et al., 2018), recent studies with CMIP6 models (Brown et al., 
2020; Fredriksen et al., 2020; Freund et al., 2020; Yun et al., 2021), 
and large initial-condition ensemble experiments (Maher et al., 2018; 
Zheng et al., 2018; Haszpra et al., 2020).
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It is therefore very likely that the amplitude of ENSO rainfall variability 
will intensify in response to global warming over the 21st  century 
although there is no robust consensus from CMIP6 climate models 
for a systematic change in amplitude of ENSO SST variability even in 
the high-emissions scenarios of SSP3-7.0 and SSP5-8.5.

4.3.4 Synthesis Assessment of Projected Change 
in Global Sur     face Air Temperature

GSAT change is assessed using multiple lines of evidence 
including the CMIP6 projection simulations out to year 2100. The 
assessment combines CMIP6 projections driven by SSP scenarios 
with observational constraints on simulated past warming (Box 4.1 

and Figure 4.11a,b; Brunner et  al., 2020; Liang et  al., 2020; Nijsse 
et  al., 2020; Tokarska et  al., 2020; Ribes et  al., 2021), as well 
as the AR6-updated assessment of ECS and TCR in Section  7.5. 
The approaches of (Liang et  al., 2020; Tokarska et  al., 2020; Ribes 
et al., 2021) have fi rst been extended to all 20-year averaging periods 
between 2000 and 2100. For each 20-year period, the 5%, 50%, and 
95% percentile GSAT values of these three constrained CMIP6 results 
are averaged percentile by percentile (Figure 4.11c). Then, an emulator 
based on a two-layer energy balance model (e.g., Held et al., 2010) 
is driven by the Chapter 7-derived ERF. The emulator parameters are 
chosen such that the central estimate, lower bound of the very likely 
range, and upper bound of the very likely range of climate feedback 
parameter and ocean heat uptake coeffi cient take the values that 
map onto the corresponding combination of ECS (3°C, 2°C and 
5°C, respectively) and TCR (1.8°C, 1.2°C and 2.4°C, respectively) 
of Section 7.5 (see Box 4.1). As a fi nal step, the constrained-CMIP6 
and the emulator-based 5%, 50%, and 95% percentile GSAT values 
are averaged percentile by percentile (Figure 4.11c,d and Table 4.5). 
Constrained CMIP6 results and the ECS- and TCR-based emulator 
thus contribute one-half each to the GSAT assessment. Because the 
emulator results and (Ribes et al., 2021) represent the forced response 
only, and averaging over the other two individual estimates (Liang 
et al., 2020; Tokarska et al., 2020) further reduces the contribution 
from internal variability, the assessed GSAT time series are assumed 
to represent purely the forced response.

Averaged over the period 2081–2100, GSAT is very likely to be higher 
than in the recent past (1995–2014) by 0.3°C–0.9°C in the low-
emissions scenario SSP1-1.9 and by 2.6°C–4.7°C in the high-emission 
scenario SSP5-8.5. For the scenarios SSP1-2.6, SSP2-4.5, and SSP3-7.0, 
the corresponding very likely ranges are 0.6°C–1.4°C, 1.3°C–2.5°C, 
and 2.0°C–3.8°C, respectively (Figure  4.11 and Table  4.5). Because 
the different approaches for estimating long-term GSAT change 
produce consistent results (Figure  4.11), there is high confi dence 
in this assessment. These ranges of the long-term projected GSAT 
change generally correspond to AR5 ranges for related scenarios but 
the likelihood is increased to very likely ranges, in contrast to the likely
ranges in AR5. Over the mid-term period 2041–2060, the very 
likely GSAT ranges of SSP1-1.9 and SSP5-8.5 are almost completely 
distinct (high confi dence) (Table 4.5; see also Section 4.3.1).

CMIP6 models project a wider range of GSAT change than the assessed 
range (high confi dence) (Section 4.3.1). The CMIP6 models with a higher 
climate sensitivity simulate warming rates higher than assessed 
very likely here (Section 4.3.1); these rates are very unlikely but not 
impossible to occur and hence cannot be excluded. The implications of 
these very unlikely warming rates for patterns of surface temperature 
and precipitation change are assessed in Section 4.8.

For the near term, initialized decadal forecasts constitute another 
line of evidence over the period 2019–2028 (Box 4.1). The forecasts 
are consistent with the assessed GSAT very likely range (Box  4.1, 
Figure 1), strengthening the confi dence in the near-term assessment.

The assessed ranges of GSAT change can be converted to change 
relative to mean GSAT over the period 1850–1900 for a consistent 
comparison with AR5 (IPCC, 2013) and SR1.5 (IPCC, 2018a). 
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Figure 4.10 | Changes in amplitude of ENSO Variability.  Variability of (a) SST 
and (b) precipitation anomalies averaged over Niño 3.4 region for 1950–2014 
from CMIP6 historical simulations and for 2015–2100 from four SSPs. Thick lines 
stand for multi-model mean and shading is the 5–95% range across CMIP6 models 
for historical simulation (grey), SSP1-2.6 (blue) and SSP3-7.0 (pink), respectively. 
The amplitude of ENSO SST and rainfall variability is defi ned as the standard deviation 
of the detrended Niño 3.4-area averaged SST and rainfall index, respectively, over 
30-year running windows. The standard deviation in every single model is normalized 
by each model’s present-day standard deviation averaged from 1995 to 2014. 
The number of available models is listed in parentheses. This fi gure is adopted from 
Yun et al. (2021). Further details on data sources and processing are available in the 
chapter data table (Table 4.SM.1).
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GSAT was warmer in 1995–2014 (recent past) than 1850–1900 by 
0.85 [0.67 to 0.98] °C. GSAT diagnosed for 1986–2005 (AR5 recent 
past) relative to 1850–1900 is 0.08°C higher than was diagnosed 
in AR5, due to methodological and dataset updates (Cross-Chapter 
Box 2.3, Table 1).

The uncertainty in GSAT relative to 1850–1900 includes the very 
likely ranges of assessed GSAT change relative to 1995–2014 
(depending on scenario and period, between 0.5°C and 2.4°C; 
Figure  4.11d and Table  4.5), the uncertainty in historical GSAT 
change from the mean over 1850–1900 to 1995–2014 (about 0.3°C; 
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Figure 4.11 | Multiple lines of evidence for global surface air temper ature (GSAT) changes for the long-term period, 2081–2100, relative to the average 
over 1995–2014, for all fi ve priority scenarios. The unconstrained CMIP6 5–95% ranges (coloured bars) in (a) differ slightly because different authors used different 
subsamples of the CMIP6 archive. The constrained CMIP6 5–95% ranges (coloured bars) in (b) are smaller than the unconstrained ranges in (a) and differ because of 
different samples from the CMIP6 archive and because different observations and methods are used. In (c), the average of the ranges in (b) is formed (grey bars). Green bars in 
(c) show the emulator ranges, defi ned such that the best estimate, lower bound of the very likely range, and upper bound of the very likely range of climate feedback parameter 
and ocean heat uptake coeffi cient take the values that map onto the corresponding values of ECS and TCR of Section 7.5 (see Box 4.1). The time series in (d) are constructed 
by taking the average of the constrained CMIP6 ranges and the emulator ranges. The y-axes on the right-hand side are shifted upward by 0.85°C, the central estimate of the 
observed warming for 1995–2014, relative to 1850–1900 (Cross-Chapter Box 2.3, Table 1). Further details on data sources and processing are available in the chapter data 
table (Table 4.SM.1).
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Cross-Chapter  Box  2.3), and the estimate of internal variability in 
20-year GSAT averages (5–95% range about 0.15°C, Box 4.1; Maher 
et  al., 2019). These uncertainties are assumed to be independent 
and are added in quadrature, meaning that the total uncertainty is 
only slightly larger than the dominating contribution by the GSAT 
change relative to 1995–2014 (Table 4.5). The addition is done by 
numerically sampling a normal distribution fitted to the 5%, 50% and 
95% percentiles of the internal variability, as well as sampling skew-
normal distributions (e.g., O’Hagan and Leonard, 1976) fitted to the 
5%, 50% and 95% percentiles of both historical warming and GSAT 
relative to 1995–2014. The result is a joint probability distribution of 
GSAT change and 20-year period.

Averaged over the period 2081–2100, GSAT is very likely to be 
higher than in the period 1850–1900 by 1.0°C–1.8°C in the low-
emissions scenarios SSP1‑1.9 and by 3.3°C–5.7°C in the high-
emissions scenario SSP5‑8.5. For the scenarios SSP1‑2.6, SSP2‑4.5, 
and SSP3‑7.0, the corresponding very likely ranges are 1.3°C–2.4°C, 
2.1°C–3.5°C, and 2.8°C–4.6°C, respectively (Table 4.5).

Time series of assessed GSAT change are now used to assess the time 
when certain thresholds of GSAT increases are crossed (Table 4.5). 
The threshold-crossing time is defined as the midpoint of the first 
20-year period during which the average GSAT exceeds the threshold. 
During the near term (2021–2040), a 1.5°C increase in the 20-year 
average of GSAT, relative to the average over the period 1850–1900, 
is very likely to occur in scenario SSP5‑8.5, likely to occur in scenarios 
SSP2‑4.5 and SSP3‑7.0, and more likely than not to occur in scenarios 
SSP1‑1.9 and SSP1‑2.6. In all scenarios assessed here except SSP5‑8.5, 
the central estimate of crossing the 1.5°C threshold lies in the early 
2030s, in the early part of the likely range (2030–2052) assessed 

in SR1.5, which assumed continuation of the then-current warming 
rate. Roughly half of this difference arises from a  larger historical 
warming diagnosed in AR6, while the other half arises because for 
central estimates of climate sensitivity, most scenarios show stronger 
warming over the near term than was estimated as ‘current’ in SR1.5 
(medium confidence). The SR1.5 estimate with a  median of 0.2°C 
per decade has been confirmed in AR6 (Section 3.3.1); by contrast, 
the assessed GSAT change shows central-estimate rates over the 
period 2010 to 2035 that range from 0.21°C per decade under 
SSP1‑1.9 to 0.30°C per decade under SSP5-8.5. When considering 
scenarios similar to SSP1‑1.9 instead of linear extrapolation, the 
SR1.5 estimate of when 1.5°C global warming is crossed is close to 
the central estimate reported here (SR1.5, Table 2.SM. 12). If ECS and 
TCR lie near the lower end of the assessed very likely range, crossing 
the 1.5°C warming threshold is avoided in scenarios SSP1‑1.9 
and SSP1‑2.6 (medium confidence). It is more likely than not that 
under SSP1‑1.9, GSAT relative to 1850–1900 will remain below 
1.6°C throughout the 21st century, implying a potential temporary 
overshoot above 1.5°C of no more than 0.1°C. All statements about 
crossing the 1.5°C threshold assume that no major volcanic eruption 
occurs during the near term.

A warming level of 2°C in GSAT, relative to the period 1850–1900, 
is very likely to be crossed in the mid-term period 2041–2060 under 
SSP5‑8.5, likely to be crossed in the mid-term period under SSP3‑7.0, 
and more likely than not to be crossed during the mid-term period 
under SSP2‑4.5. During the entire 21st  century, a  warming level 
of 2°C in GSAT, relative to the period 1850–1900, will be crossed 
under SSP5‑8.5 and SSP3‑7.0, will extremely likely be crossed under 
SSP2‑4.5, will unlikely be crossed under SSP1‑2.6, and will extremely 
unlikely be crossed under SSP1‑1.9.

Table 4.5 | Assessment results for 20-year averaged GSAT change, based on multiple lines of evidence. The change is displayed in °C relative to the 1995–2014 
and 1850–1900 reference periods for selected time periods (near term 2021–2040, mid-term 2041–2060, and long term 2081–2100), and as the time when certain temperature 
thresholds are crossed, relative to the period 1850–1900. The recent reference period 1995–2014 was higher in GSAT than the period 1850–1900 by 0.85 [0.67 to 0.98] °C, 
(Cross-Chapter Box 2.3). The entries give both the central estimate and, in parentheses, the very likely (5–95%) range. An entry of ‘n.c.’ means that the global warming threshold 
is ‘not crossed’ during the period 2021–2100.

Time Period SSP1‑1.9 (°C) SSP1‑2.6 (°C) SSP2‑4.5 (°C) SSP3‑7.0 (°C) SSP5‑8.5 (°C)

Near Term: 2021–2040
Relative to 1995–2014
Relative to 1850–1900

0.6 [0.4 to 0.9]
1.5 [1.2 to 1.7]

0.6 [0.4 to 0.9]
1.5 [1.2 to 1.8]

0.7 [0.4 to 0.9]
1.5 [1.2 to 1.8]

0.7 [0.4 to 0.9]
1.5 [1.2 to 1.8]

0.8 [0.5 to 1.0]
1.6 [1.3 to 1.9]

Mid-term: 2041–2060
Relative to 1995–2014
Relative to 1850–1900

0.7 [0.4 to 1.1]
1.6 [1.2 to 2.0]

0.9 [0.5 to 1.3]
1.7 [1.3 to 2.2]

1.1 [0.8 to 1.6]
2.0 [1.6 to 2.5]

1.3 [0.9 to 1.7]
2.1 [1.7 to 2.6]

1.5 [1.1 to 2.1]
2.4 [1.9 to 3.0]

Long Term: 2081–2100
Relative to 1995–2014 
Relative to 1850–1900

0.6 [0.2 to 1.0]
1.4 [1.0 to 1.8]

0.9 [0.5 to 1.5]
1.8 [1.3 to 2.4]

1.8 [1.2 to 2.6]
2.7 [2.1 to 3.5]

2.8 [2.0 to 3.7]
3.6 [2.8 to 4.6]

3.5 [2.4 to 4.8]
4.4 [3.3 to 5.7]

1.5°C
Relative to 1850–1900

2025–2044
[2013–2032 to n.c.]

2023–2042
[2012–2031 to n.c.]

2021–2040
[2012–2031 to 

2037–2056]

2021–2040
[2013–2032 to 

2033–2052]

2018–2037
[2011–2030 to 

2029–2048]

2°C
Relative to 1850–1900

n.c.
[n.c. to n.c.]

n.c.
[2031–2050 to n.c.]

2043–2062
[2028–2047 to 

2075–2094]

2037–2056
[2026–2045 to 

2053–2072]

2032–2051
[2023–2042 to 

2044–2063]

3°C
Relative to 1850–1900

n.c.
[n.c. to n.c.]

n.c.
[n.c. to n.c.]

n.c.
[2061–2080 to n.c.]

2066–2085
[2050–2069 to n.c.]

2055–2074
[2042–2061 to 

2074–2093]

4°C
Relative to 1850–1900

n.c.
[n.c. to n.c.]

n.c.
[n.c. to n.c.]

n.c.
[n.c. to n.c.]

n.c.
[2070–2089 to n.c.]

2075–2094
[2058–2077 to n.c.]
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4.4	 Near-term Global Climate Changes

This section assesses changes in large-scale climate over the period 
2021–2040 and includes information from both projections and 
initialized decadal predictions. The structure is similar to Section 4.3. 
Unless noted otherwise, the assessment assumes that there will be 
no major volcanic eruption in the near term. The climatic effects of 
volcanic eruptions are assessed in Section 4.4.4 and Cross-Chapter 
Box 4.1; Section 4.4.4 also assesses the climate effects of short-lived 
climate forcers.

4.4.1	 Atmosphere

4.4.1.1	 Average Global Surface Air Temperature

The AR5 assessed that it is likely that GSAT will increase in the 
range 0.3°C–0.7°C over the period 2016–2035 relative to 
1986–2005 (medium confidence), and that there were not large 
differences in the GSAT change among different RCPs in this period 
(Kirtman et  al., 2013). The AR5 further assessed that it is more 
likely than not that the mean GSAT for the period 2016–2035 will 
be more than 1°C above the mean for 1850–1900, and it is very 
unlikely that it will be more than 1.5°C above the 1850–1900 mean 
(medium confidence). It was shown that in the period 2016–2035, 
differences in GSAT across RCP scenarios for a single climate model 
are typically smaller than differences between climate models under 
a single RCP scenario, indicating that model structural uncertainty 
is larger than scenario uncertainty over that period (Hawkins and 
Sutton, 2009).

Near-term (2021–2040) GSAT changes relative to 1995–2014 
exhibit only minor dependence on SSP scenario, consistent with 
AR5 (Table 4.5). Averaged over the twenty years of the near term 
and across all scenarios, GSAT is very likely to be higher than over 
1995–2014 by 0.4°C–1.0°C (Table 4.5), with most of the uncertainty 
arising from that in ECS and TCR (high confidence) (Section 4.3.4; 
e.g.,  Lehner et  al., 2020). The assessed near-term warming is thus 
larger than in AR5 by 0.1°C to 0.2°C. This upward revision has the 
same magnitude as the ad-hoc downward adjustment to near-term 
projected GSAT change that was performed in AR5 (Box  4.1; 
Kirtman et al., 2013).

Averaged near-term GSAT is as likely as not at least 1.5°C higher than 
during 1850–1900, across the five SSP scenarios used here (Table 4.5 
and Section 4.3.4). This much higher likelihood of near-term warming 
reaching 1.5°C than in AR5 arises both because surface warming has 
continued since AR5 (the period 1995–2014 was warmer by 0.16°C 
than 1986–2005; Cross-Chapter Box  2.3, Table  1), and because 
of methodological and dataset updates (the AR6 assessment of 
1986–2005 GSAT change relative to 1850–1900 is 0.08°C higher 
than in the AR5; Cross-Chapter Box 2.3, Table 1).

For annual mean GSAT, uncertainty in near-term projections arises 
in roughly equal measure from internal variability and model 
uncertainty (high confidence) (Box  4.1). Forecasts initialized from 

recent observations simulate GSAT changes for the period 2019–2028 
relative to the recent past that are consistent with the assessed 
very likely range in annual mean GSAT (high confidence) (Box  4.1, 
Figure 1, and Table 4.5). Because annual mean GSAT shows a higher 
level of internal variability than the 20-year mean, individual years 
are expected to cross the 1.5°C earlier than the assessed GSAT does. 
For example, Smith et al. (2018) apply a multi-model decadal-forecast 
ensemble to assess the likelihood that global warming of 1.5°C higher 
than over 1850–1900 will be temporarily exceeded in the near future.

When we repeat the uncertainty quantification for GSAT as in 
Section  4.3.4 but with the corresponding higher level of internal 
variability for annual instead of 20-year averages added in quadrature, 
we can estimate the likelihood that an individual year would 
cross the GSAT 1.5°C threshold. By 2030, GSAT in any individual 
year could exceed 1.5°C relative to 1850–1900 with a  likelihood 
between 40 and 60 percent, across the scenarios considered here 
(medium confidence).

4.4.1.2	 Spatial Patterns of Surface Warming

Consistent with AR5 and earlier assessments, Figure  4.12 shows 
for SSP1‑2.6 and SSP3‑7.0 that the largest warming occurs at high 
latitudes, particularly in boreal winter in the Arctic (Section 4.5.1.1), 
and larger warming over land than over the ocean (Section 4.5.1.1). In 
both scenarios, the increase in seasonal mean surface temperatures 
over many NH land regions exceeds 1°C relative to 1995–2014. In the 
near term, the two scenarios show surface temperature changes that 
are similar in magnitude. The trajectories for well-mixed GHGs, and as 
a consequence the effective radiative forcing, in the scenarios have 
not yet diverged that much (O’Neill et al., 2016; Riahi et al., 2017). 
Based on the currently available CMIP6 models, regions that do not 
show robust warming in the near-term include the northern North 
Atlantic, parts of India, parts of North America and Eurasia in winter, 
and the subtropical eastern Pacific in the Southern Hemisphere.

The ERF patterns from aerosols and well-mixed GHGs are distinct 
(Chapter 7), and warming patterns therefore depend on the precise 
mix of forcing agents in the scenarios. The spatial efficacies – the 
change in surface temperature per unit ERF  – for CO2, sulphate 
and black carbon aerosols and solar forcing have been recently 
evaluated in climate models (Modak et  al., 2016, 2018; Duan 
et  al., 2018; Modak and Bala, 2019; Richardson et  al., 2019). On 
average, the spatial patterns of near-surface warming are largely 
similar for different external drivers (Xie et  al., 2013; Richardson 
et  al., 2019; Samset et  al., 2020), despite the patterns of forcing 
being different and despite the large spread across different models 
(Richardson et al., 2019).

Internal variability in near-surface temperature change is large 
in many regions, particularly in mid-latitudes and polar regions 
(Hawkins and Sutton, 2012). Projections from individual realizations 
can therefore exhibit divergent regional responses in the near-term 
in areas where the amplitude of a  forced signal is relatively small 
compared to internal variability (Deser et al., 2012b, 2014, 2016).
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4.4.1.3	 Precipitation

The AR5 assessed that zonal mean precipitation will very likely 
increase in high and some of the mid latitudes and will more likely than 
not decrease in the subtropics. The AR5 further assessed that the 
near-term changes in precipitation are largely uncertain at regional 
scales, and much of the non-robustness in near-term projections is 
attributable to internal variability and model uncertainty.

The mean patterns of seasonal precipitation change in CMIP6 models 
are consistent with AR5, increasing at high latitudes, over oceanic 
regions, and in wet regions over the tropics; and decreasing in dry 
regions including large parts of the subtropics (Figure  4.13). The 
magnitude of projected changes in precipitation in the near term, 
especially on regional scales is small compared to the magnitude 
of internal variability (Section  10.4.3; Hawkins and Sutton, 2011, 
2016; Hoerling et al., 2011; Deser et al., 2012b; Power et al., 2012). 

Analyses  of CMIP5, CMIP6, and single-model large-ensemble 
simulations show that for the uncertainty in near-term precipitation 
projections, model uncertainty and internal variability dominate 
while the scenario uncertainty is very small (Section 8.5; Lehner et al., 
2020). Based on large ensembles of climate change experiments, 
it was shown that internal variability decreases over time for 
both temperature and precipitation on decadal scales (Zhang and 
Delworth, 2018; Tebaldi et  al., 2021). The precipitation projections 
from CMIP6 models shows larger model uncertainty associated with 
the higher average transient climate response (Lehner et al., 2020).

The ‘wet get wetter, dry get drier’ paradigm, which has been used to 
explain the global precipitation pattern responding to global warming 
(Held and Soden, 2006), might not hold, especially over subtropical 
land regions (Greve et  al., 2014; Feng and Zhang, 2015; Greve and 
Seneviratne, 2015). Over the tropical oceans, precipitation changes are 
largely driven by the pattern of SST changes (He et al., 2018), and in 
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Figure  4.12 | Near-term change of seasonal mean surface temperature. Displayed are projected spatial patterns of CMIP6 multi-model mean change (°C) in 
(top) December –January–February (DJF) and (bottom) June–July–August (JJA) near-surface air temperature for 2021–2040 from SSP1‑2.6 and SSP3‑7.0 relative to 1995–2014. 
The number of models used is indicated in the top right of the maps. No overlay indicates regions where the change is robust and likely emerges from internal variability, that 
is, where at least 66% of the models show a change greater than the internal-variability threshold (Section 4.2.6) and at least 80% of the models agree on the sign of change. 
Diagonal lines indicate regions with no change or no robust significant change, where fewer than 66% of the models show change greater than the internal-variability threshold. 
Crossed lines indicate areas of conflicting signals where at least 66% of the models show change greater than the internal-variability threshold but fewer than 80% of all models 
agree on the sign of change. Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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the subtropics, precipitation response is driven primarily by the fast 
adjustment to CO2 forcing (He and Soden, 2017). In addition to the 
response to GHG forcing, forcing from natural and anthropogenic 
aerosols exert impacts on regional patterns of precipitation 
(Section  10.3.1; Ramanathan et  al., 2005; Bollasina et  al., 2011; 
Polson et al., 2014; Krishnan et al., 2016; L. Liu et al., 2018; Shawki 
et al., 2018). The large uncertainties in near-term regional precipitation 
projections arise due to the interplay between internal variability and 
anthropogenic external forcing (Endo et al., 2018; Wang et al., 2021). 
Uncertainties in future aerosol emissions scenarios contribute to 
uncertainties in regional precipitation projections (Wilcox et al., 2020). 
Aerosol changes induce a drying in the SH tropical band compensated 
by wetter conditions in the NH counterpart (Acosta Navarro et al., 2017). 
The spatially uneven distribution of the aerosol forcing may also induce 
changes in tropical precipitation caused by shifts in the mean location 
of the intertropical convergence zone (ITCZ) (Hwang et al., 2013; Ridley 
et al., 2015; Voigt et al., 2017). Because of the large uncertainty in the 
aerosol radiative forcing and the dynamical response to the aerosol 
forcing there is medium confidence in the impacts of aerosols on near-

term projected changes in precipitation. Precipitation changes in the 
near term show seasonal amplification, precipitation increase in the 
rainy season and decrease in the dry season (Fujita et al., 2019).

Consistent with AR5, we conclude that projected changes of seasonal 
mean precipitation in the near term will increase at high latitudes. 
Near-term projected changes in precipitation are uncertain mainly 
because of natural internal variability, model uncertainty, and uncertainty 
in natural and anthropogenic aerosol forcing (medium confidence).

4.4.1.4	 Global Monsoon Precipitation and Circulation

The global monsoon is a forced response of the coupled atmosphere–
land–ocean system to the annual cycle of solar insolation and 
characterized by a  seasonal reversal of circulation and a  seasonal 
alternation of dry and wet conditions (Section 8.3.2, Figure 8.11 and 
Annex V). The global monsoon concept helps to dissect the mechanisms 
and controlling factors of monsoon variability at various temporal-
spatial scales (Wang and Ding, 2008; P.X. Wang et al., 2017).

Seasonal mean precipitation change

DJF SSP1-2.6 (2021-40) DJF SSP3-7.0 (2021-2040)
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Figure 4.13 | Near-term change of seasonal mean precipitation. Displayed are projected spatial patterns of CMIP6 multi-model mean change (%) in (top) December –January–
February (DJF) and (bottom) June–July–August (JJA) precipitation from SSP1‑2.6 and SSP3‑7.0 in 2021–2040 relative to 1995–2014. The number of models used is indicated 
in the top right of the maps. No overlay indicates regions where the change is robust and likely emerges from internal variability, that is, where at least 66% of the models show 
a change greater than the internal-variability threshold (Section 4.2.6) and at least 80% of the models agree on the sign of change. Diagonal lines indicate regions with no change 
or no robust significant change, where fewer than 66% of the models show change greater than the internal-variability threshold. Crossed lines indicate areas of conflicting signals 
where at least 66% of the models show change greater than the internal-variability threshold but fewer than 80% of all models agree on the sign of change. Further details on 
data sources and processing are available in the chapter data table (Table 4.SM.1).
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In AR5, there was no specific assessment on global monsoon changes 
in the near term, but information can be derived from CMIP5 
projections of the spatial patterns of precipitation change. While 
the basic pattern of wet regions, including global monsoon regions, 
tending to get wetter and dry regions tending to get drier is apparent, 
large response uncertainty is evident in the substantial spread in 
the magnitude of projected change from different simulations. 
Over the global land monsoon regions, model uncertainty and 
internal variability together explain 99.7% of the fraction of total 
variance (Zhou et al., 2020), near-term projected multi-model mean 
precipitation changes are almost everywhere smaller than the 
estimated standard deviation of internal variability (Figure 4.13).

The global land monsoon precipitation index, defined as the area-
weighted precipitation rate in the global land monsoon domain, tends 
to increase in the near term under all five core SSPs (Figure 4.14a) (Chen 
et al., 2020), but changes are small compared to the intermodel spread 
in the historical period. The Northern Hemisphere summer monsoon 
circulation index, defined as the vertical shear of zonal winds between 
850 and 200 hPa averaged in a zone stretching from Mexico eastward 
to the Philippines (0°–20°N, 120°W–120°E), tends to decrease under 
four of the five SSP scenarios (Figure 4.14b), potentially offsetting 
monsoon precipitation increase. Projected changes in the global 
monsoon circulation are also uncertain, because they are influenced 
by internal variability such as AMV and PDV (see Section  3.3.3.2) 
and structural differences across models. In the near-term, for CMIP6 
projections (Figure 4.14a), the multi-model mean (5–95% range) of 
global land monsoon precipitation change is 1.9% (–0.4 to 4.9%), 
1.6% (–1.0 to 5.2%), 1.3% (–1.7 to 3.7%), and 1.9% (–0.8 to 5.2%) 
under SSP1‑2.6, SSP2‑4.5, SSP3‑7.0, and SSP5‑8.5, respectively.

In summary, we assess that near-term changes in global monsoon 
precipitation and circulation will be affected by the combined effects 
of model uncertainty and internal variability, such as AMV and PDV, 
which together are larger than the forced signal (medium confidence).

4.4.2	 Cryosphere, Ocean and Biosphere

4.4.2.1	 Arctic Sea Ice

The AR5 assessed that for RCP8.5, Arctic sea ice coverage in September 
will drop below 1 million km2, or become practically ice-free, at some 
point between 2040 and 2060 (Collins et al., 2013). Since AR5, there 
has been substantial progress in understanding the response of 
Arctic sea ice to near-term changes in external forcing. In particular, 
it is very likely that different trajectories of the near-term evolution 
of anthropogenic forcing cause distinctly different likelihood ranges 
for very low sea ice coverage to occur over the next two decades 
(Notz and Stroeve, 2018). For example, there is an unlikely drop of 
September Arctic sea ice coverage to below 1 million km2 before 2040 
for RCP 2.6, and a likely drop of September Arctic sea ice coverage 
to below 1 million km2 before 2040 for RCP 8.5 (medium confidence 
given the single study). The much higher likelihood of a practically 
sea ice free Arctic Ocean during summer before 2040 in RCP8.5 
compared to RCP2.6 is consistent with related studies assessed in 
SROCC that find a  substantially increased likelihood of an ice-free 
Arctic Ocean for 2.0°C compared to 1.5°C mean global warming 
relative to pre-industrial levels (Screen and Williamson, 2017; Jahn, 
2018; Niederdrenk and Notz, 2018; Notz and Stroeve, 2018; Sigmond 
et al., 2018; Olson et al., 2019).

Based on results from CMIP6 models, we conclude that Arctic SIA will 
decrease in September in the near term (Figure 4.15, high confidence). 
In the case of 10-year trends ending in the near term, 79% of the 
simulations considered across all the core SSPs project decreasing 
Arctic sea ice area in September. Due to less of an influence from 
internal variability, this number rises to 98% in the case of 30-year 
trends. A more detailed assessment of near-term Arctic sea ice changes 
can be found in Chapter 9 (Section 9.3.1). A detailed assessment of 
Antarctic sea ice changes is in Chapter 9 (Section 9.3.2).

Figure 4.14 | Time series of global land monsoon precipitation and Northern Hemisphere summer monsoon (NHSM) circulation index anomalies. (a) Global 
land monsoon precipitation index anomalies (unit: %) defined as the area-weighted mean precipitation rate in the global land monsoon domain (as defined by Wang et al. 
(2013a) for the CMIP6 historical simulation (1950–2014) and five SSPs (2015–2100). (b) Anomalies in NHSM circulation index (unit: m s–1), defined as the vertical shear of 
zonal winds between 850 and 200 hPa averaged in a zone stretching from Mexico eastward to the Philippines (0°–20°N, 120°W–120°E; Wang et al., 2013a) for the CMIP6 
historical simulation and five SSPs. One realization is averaged from each model. Anomalies are shown relative to the present-day (1995–2014) mean. The curves show averages 
over the simulations, the shadings around the SSP1‑2.6 and SSP3‑7.0 curves show 5–95% ranges, and the numbers near the top show the number of model simulations used. 
Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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4.4.2.2 Ocean and Land Carbon Flux

Ocean carbon fl ux is both a  key feature of the physical ocean in 
mitigating the rise of atmospheric CO2 and a driver of changes in the 
ocean biosphere, including changes in ocean acidity. Based on results 
from CMIP6 models, we conclude that SSP2-4.5, SSP3-7.0, and 
SSP5-8.5 all clearly lead to increasing 10-, 20-, and 30-year trends in 
ocean carbon fl ux over the near term (high confi dence) (Figure 4.16,). 
Increasing trends in ocean carbon fl ux are less obvious in the lower-
emissions scenarios. Ensemble-mean trends in land carbon fl ux over 

the near term are generally increasing, but these are unlikely to be 
detected given a  large component of terrestrial variability combined 
with model uncertainty. A more detailed assessment is in Chapter 5 
(Section 5.2.1).

In summary, it is likely that ocean carbon fl ux will increase in the near 
term under the higher emissions scenarios, while a large component 
of terrestrial variability makes it is unlikely that an increase in land 
carbon fl ux will be detected over this period.

4.4.3 Modes of Variability

This subsection assesses the near-term evolution of the l arge-scale 
modes of climate variability. Assessment of the physical mechanisms 
and the individual feedbacks involved in the future change of each 
mode and their role on future regional climate variability are provided 
in Sections 8.4.2, 9.2.3 and 10.1.3, and Cross-Chapter Box 10.1.

4.4.3.1 Northern and Southern Annular Modes

4.4.3.1.1 The Northern   Annular Mode

The AR5 assessed from CMIP5 simulations that there is only 
medium confi dence in near-term projections of a northward shift 
of NH storm track and westerlies, and an associated increase in 
the NAM index, because of the large response uncertainty and 
the potentially large infl uence of internal variability. A tendency in 
the near term towards a slightly more positive NAM in the three 
highest emissions scenarios during boreal fall, winter, and spring is 
apparent in Figure 4.17a. However, in general the projected near-
term multi-model mean change in the NAM is small in magnitude 
compared to the inter-model and/or multi-realization variability 
within the ensemble (Figure  4.17a; Deser et  al., 2012b, 2017; 
Barnes and Polvani, 2015).
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Figure  4.15 | CMIP6 linear trends in September Arctic se   a-ice area for 
10-year, 20-year, and 30-year periods ending in 2021–2040 following 
fi ve SSPs. Plotted are the 5–95% ranges across the ensembles of simulations. 
The numbers at the top of the plot are the number of model simulations in each 
SSP ensemble. The numbers near the bottom of the plot indicate the percentage 
of simulations across all the SSPs with decreasing sea-ice area. Results are from 
concentration-driven simulations. Further details on data sources and processing are 
available in the chapter data table (Table 4.SM.1).
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Figure 4.16 | CMIP6 trends in ocean and land carbon fl ux f or 10-year, 20-year, and 30-year periods ending in 2021–2040. (a) Ocean carbon fl ux. (b) Land 
carbon fl ux. Plotted are the 5–95% ranges across the ensembles of simulations, for fi ve SSPs. The numbers at the top of the plots are the number of model simulations in each 
SSP ensemble. Units are PgC yr –1 per decade. Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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On seasonal to interannual time scales, there is new evidence since 
AR5 that initialized predictions show lower potential predictability 
for the boreal winter NAO than the correlation skill with respect 
to observations (Eade et  al., 2014; Baker et  al., 2018; Scaife and 
Smith, 2018; Athanasiadis et  al., 2020). This has been referred to 
in the literature as a ‘signal-to-noise paradox’ and means that very 
large ensembles of predictions are needed to isolate the predictable 
component of the NAO. While the processes that contribute to the 
predictability of the winter NAO on seasonal time scales may be 
distinct from the processes that drive multi-decadal trends, there is 
emerging evidence that initialized predictions also underrepresent the 
predictability of the winter NAO on decadal time scales (D.M. Smith 
et al., 2019). Post-processing and aggregation of initialized predictions 
may therefore reveal signifi cant skill for predicting the winter NAO on 
decadal time scales (Smith et al., 2020). Considering these new results 
since AR5, in the near-term it is likely that any anthropogenic forced 
signal in the NAM will be of comparable magnitude or smaller than 
natural internal variability in the NAM (medium confi dence).

4.4.3.1.2 The Southern Annular Mode

The AR5 assessed that it is likely that increases in GHGs and the 
projected recovery of the Antarctic ozone hole will be the principal 
drivers of future SAM trends. Additionally, the positive trend in 
austral summer/autumn SAM observed over the past several decades 
(Section 2.4.1.2; Chapter 2 in AR5, Hartmann et al., 2013), is likely
to weaken considerably as stratospheric ozone recovers through to 
the  mid-21st  century. The effects of ozone depletion and recovery 
on the SH circulation primarily occur in austral summer, while GHGs 
infl uence the SH circulation year round (Gillett and Fyfe, 2013; Grise 
and Polvani, 2014b). Therefore, they are likely to be the dominant driver 
of projected circulation changes outside of austral summer (Gillett 
and Fyfe, 2013; Barnes et al., 2014; Solomon and Polvani, 2016). Based 
on current scenarios specifying future atmospheric decline of ozone 
depleting substances (WMO, 2011), chemistry-climate models project 

the Antarctic ozone hole in October to recover by around 2060 (WMO, 
2014, 2018; Dhomse et al., 2018). Observational evidence s ince AR5 
shows the onset of Antarctic ozone hole recovery (Solomon et  al., 
2016; WMO, 2018) that has been attributed to a pause in the summer 
SAM trend over the past couple of decades (Saggioro and Shepherd, 
2019; Banerjee et al., 2020). In austral summer, ozone recovery and 
increasing GHGs will have opposing effects on the SAM over the next 
several decades (Barnes et al., 2014).

Since AR5, there have been advances in understanding the role of 
internal climate variability for projected near-term SH circulation 
trends (Solomon and Polvani, 2016). A large initial-condition ensemble 
following the RCP4.5 emissions scenario shows a monotonic positive 
SAM trend in austral winter. In austral summer, the SAM trend over 
the fi rst half of the 21st century is weaker compared to the strongly 
positive trend observed and simulated over the late 20th  century. 
In that model, the number of realizations required to identify 
a  detectable change in decadal mean austral winter SAM index 
from a year 2000 reference state decreased to below fi ve by around 
2025–2030 (Solomon and Polvani, 2016). However, in December –
January–February (DJF) the same criterion is not met until the second 
half of the 21st century, owing to the near-term opposing effects of 
ozone recovery and GHGs on the austral-summer SAM. In austral 
summer, forced changes in the SAM index in the near-term are 
therefore likely to be smaller than changes due to internal variability 
(Figure 4.17b; Barnes et al., 2014; Solomon and Polvani, 2016).

CMIP6 models show a  tendency in the near-term towards a  more 
positive SAM index especially in the austral winter (June–July–
August, JJA; Figure 4.17b). In all seasons, the differences between 
the central estimates of the change in the SAM index for each SSP 
are much smaller than the inter-model ensemble spread. The number 
of CMIP6 realizations in Figure 4.17b is larger than the suggested 
threshold of fi ve realizations needed to detect a signifi cant near-term 
change in decadal-mean austral winter SAM index for a single CMIP5 
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Figure 4.17 | CMIP6 Annular Mode index change (hPa) from 1995  –2014 to 2021–2040. (a) Northern Annular Mode (NAM); (b) Southern Annular Mode (SAM). 
The NAM is defi ned as the difference in zonal mean sea level pressure (SLP) at 35°N and 65°N (Li and Wang, 2003) and the SAM as the difference in zonal mean SLP at 40°S 
and 65°S (Gong and Wang, 1999). The shadings are the 5–95% ranges across the simulations. The numbers near the top of each panel are the numbers of model simulations 
in each SSP ensemble. Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).

https://doi.org/10.1017/9781009157896.006
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 22 Aug 2025 at 18:47:28, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.006
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


589

Future Global Climate: Scenario-based Projections and Near-term Information� Chapter 4

4

model (Solomon and Polvani, 2016), and yet the 5–95% intervals on 
the CMIP6 ensemble spread encompass zero for all core SSPs. This 
suggests both internal variability and model uncertainty contribute 
to the CMIP6 ensemble spread in near-term SAM index changes. 
Based on these results, it is more likely than not that in the near-term 
under all assessed SSP scenarios the SAM index would become more 
positive than in present-day in austral autumn, winter and spring.

An influence of forcing agents other than stratospheric ozone and 
GHGs, such as anthropogenic aerosols, on SAM changes over the 
historical period has been reported in some climate models (Rotstayn, 
2013), but the response across a larger set of CMIP5 models is not 
robust (Steptoe et  al., 2016) and depends on how tropospheric 
temperature responds to aerosols (Choi et al., 2019). This gives low 
confidence in the potential influence of anthropogenic aerosols on 
the SAM in the future.

4.4.3.2	 El Niño–Southern Oscillation

The AR5 assessed that it is very likely that the ENSO will remain 
the dominant mode of interannual variability in the future but did 
not specify its change in near term. A subset of CMIP5 models that 
simulate the ENSO Bjerknes index most realistically show an increase 
of ENSO SST amplitude in the near-term future and decline thereafter 
(Kim et al., 2014). However, detection of robust near-term changes of 
ENSO SST variability in response to anthropogenic forcing is difficult 
to achieve due to pronounced unforced low-frequency modulations 
of ENSO (Wittenberg, 2009; Maher et al., 2018; Wengel et al., 2018). 
Figure 4.10 in Section 4.3.3.2, using CMIP6 models, also shows no 
robust change in ENSO SST variability in the near term.

While there is no strong model consensus on the change in amplitude 
of ENSO SST variability, the amplitude of ENSO-associated rainfall 
variability likely increases (Power et al., 2013; Cai et al., 2015). Analysis 
of CMIP6 models shows a  slight increasing trend in amplitude of 
rainfall variability over Niño 3.4 region in the near term attributable to 
mean moisture increase, regardless of changes in ENSO SST variability 
(Figure 4.10). However, there are no distinguishable changes in the 
rainfall variability among five SSPs with significant model spread in 
the near term. Hence, no robust change in amplitude of ENSO SST 
and rainfall variability is expected in the near term although the 
rainfall variability slightly increases (medium confidence).

4.4.3.3	 Indian Ocean Basin and Dipole Modes

Important modes of interannual climate variability with pronounced 
climate impacts in the Africa–Indo-Pacific areas of the globe are 
the Indian Ocean Dipole (IOD), which is closely related to, and 
often coincides with, ENSO phases (Stuecker et al., 2017), and the 
Indian Ocean basin (IOB) mode. This is often described as a capacitor 
effect in response to ENSO (Xie et al., 2009; Du et al., 2013) and can 
feed back onto ENSO evolution (Cai et al., 2019). IOD and IOB are 
extensively described in Annex IV (Section AIV2.4).

The projected climate mean state changes in the tropical Indian 
Ocean resemble a  positive IOD state, with faster warming in the 
west compared to the east. This mean state change will potentially 

lead to a  reduction in the amplitude of IOD events, albeit with no 
robust change in IOD frequency (Cai et al., 2014b). There is no robust 
evidence yet suggesting a cessation of IOD variability or a significant 
change in the IOB mode in the near-term.

4.4.3.4	 Tropical Atlantic Modes

Interannual variability of the tropical Atlantic can be described in 
terms of two main climate modes: the Atlantic equatorial mode 
and the Atlantic meridional mode (AMM; Annex IV, Section AIV2.5). 
The  Atlantic equatorial mode, also commonly referred to as the 
Atlantic Niño or Atlantic Zonal Mode, is associated with SST 
anomalies near the equator, peaking in the eastern basin, while the 
AMM is characterized by an inter-hemispheric gradient of SST and 
wind anomalies. Both modes are associated with changes in the 
ITCZ and related winds and exert a strong influence on the climate in 
adjacent and remote regions.

Despite considerable improvements in CMIP5 with respect to CMIP3, 
most CMIP5 models have difficulties in simulating the mean climate 
of the tropical Atlantic (Mohino et  al., 2019) and are not able to 
correctly simulate the main aspects of Tropical Atlantic Variability 
(TAV) and associated impacts. This is presumably the main reason 
why there is a lack of specific studies dealing with near-term changes 
in tropical Atlantic modes. Nevertheless, AR5 reported that the ocean 
is more predictable than continental areas at the decadal time scale 
(Kirtman et al., 2013). In particular, the predictability in the tropical 
oceans is mainly associated with decadal variations of the external 
forcing component. Since the AMV affects the tropical Atlantic, 
near-term variations of the AMV can modulate the equatorial mode 
and the AMM as well as associated impacts.

There are no specific studies focusing on near-term changes in 
tropical Atlantic modes; nevertheless, decadal predictions show 
that although the North Atlantic stands out in most CMIP5 models 
as the primary region where skill might be improved because of 
initialization, encouraging results have also been found in the 
tropical Atlantic (Meehl et  al., 2014). The effect of initialization in 
the tropical Atlantic is not only visible in surface temperature but also 
in the subsurface ocean (Corti et al., 2015). In particular, initialization 
improves the skill via remote ocean conditions in the North Atlantic 
subpolar gyre and tropical Pacific, which influence the tropical 
Atlantic through atmospheric teleconnections (Dunstone et al., 2011; 
Vecchi et  al., 2014; García-Serrano et  al., 2015). Improvements of 
some aspects of climate prediction systems (initialization techniques, 
large ensembles, increasing model resolution) have also led to skill 
improvements over the tropical Atlantic (Pohlmann et  al., 2013; 
Monerie et al., 2017; Yeager and Robson, 2017).

Recent studies have shown that the AMV can modulate not only 
the characteristics of the Atlantic Niños, but also their inter-basin 
teleconnections (Indian and Pacific). In particular, the Atlantic 
Niño–ENSO relationship is strongest during negative AMV phases 
(Martín-Rey et al., 2014; Losada and Rodríguez-Fonseca, 2016) when 
equatorial Atlantic SST variability is enhanced (Martín-Rey et al., 2017; 
Lübbecke et al., 2018).
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Based on CMIP5 and available CMIP6 results, we conclude that there 
is a lack of studies on the near-term evolution of TAV and associated 
teleconnections for a  comprehensive assessment. However, some 
studies show that despite severe model biases there are skilful 
predictions in the mean state of tropical Atlantic surface temperature 
several years ahead (medium confidence), though skill in simulated 
variability has not been assessed yet. Decadal changes in the Atlantic 
Niño spatial configuration and associated teleconnections might be 
modulated by the AMV, but there is limited evidence and therefore 
low confidence in these results.

4.4.3.5	 Pacific Decadal Variability

Climate variability of the Pacific Ocean on decadal and inter-decadal 
time scales is described in terms of a number of quasi-oscillatory SST 
patterns such as the Pacific Decadal Oscillation (PDO; Mantua et al., 
1997) and the Inter-decadal Pacific Oscillation (IPO; Folland, 2002), 
which are referred to as the Pacific Decadal Variability (PDV; Newman 
et al., 2016). PDV comprises an inter-hemispheric pattern that varies 
at decadal to inter-decadal time scales (Figure  3.35). However, 
although the spatial domains to derive the IPO and PDO indices differ, 
and despite uncertainty related to trend removal and time-filtering 
(Newman et al., 2016; Tung et al., 2019), the IPO and PDO are highly 
correlated in time and they will be assessed together as the PDV 
(Annex IV, Section AIV.2.6).

The AR5 assessed that near-term predictions of PDV (then referred 
to as PDO or IPO) were largely model dependent (Mochizuki 
et  al., 2012; van Oldenborgh et  al., 2012), not robust to sampling 
of initialization start-dates, overall not statistically significant, 
and worse than persistence (Doblas-Reyes et  al., 2013), although 
some studies showed positive skill for PDV (Mochizuki et al., 2010; 
Chikamoto et  al., 2013). The CMIP5 decadal-prediction ensemble 
yielded no prediction skill of SST over the key PDV centres of action 
in the Pacific Ocean, both at two-to-five-year and six-to-nine-year 
forecast averages (Doblas-Reyes et al., 2013; Guemas et al., 2013; 
Boer and Sospedra-Alfonso, 2019).

Since AR5, the processes causing the multi-decadal variability in the 
Pacific Ocean have become better understood (Newman et al., 2016; 
Henley, 2017). However, the relative importance of tropical and 
extratropical processes underlying PDV remains unclear; although it 
seems to be stochastically driven rather than self-excited (Liu, 2012; 
Liu and Di Lorenzo, 2018), the South Pacific being a  key region 
for the tropical branch of PDV (Chung et  al., 2019; Liguori and 
Di Lorenzo, 2019).

Because PDV represents not one, but many dynamical processes, it 
represents a challenge as a target for near-term climate predictions 
and projections. The new generation of decadal forecast systems 
keeps showing poor (Shaffrey et al., 2017) to moderate (D.M. Smith 
et al., 2019) multi-year prediction skill for PDV, although the potential 
for forecasting capabilities is demonstrated in case studies (Meehl 
and Teng, 2012; Meehl et al., 2014). For the near-term, a transition of 
PDV from the negative phase (1999–2012) towards a positive phase 
is predicted in the coming years (2013–2022; Meehl et al., 2016).

The PDV has been shown to influence the pace of global warming 
(Cross-Chapter Box 3.1), but the extent to which PDV is externally forced 
or internally generated (Mann et al., 2020) remains an open question, 
and there is still no robust evidence. Thus, there is low confidence on 
how the PDV will evolve in the near-term (Bordbar et al., 2019).

4.4.3.6	 Atlantic Multi-decadal Variability

The Atlantic Multi-decadal Variability (AMV) is a large-scale climate 
mode accounting for the main fluctuations in North Atlantic SST on 
multi-decadal time scales (Section AIV.2.7). The AMV influences air 
temperatures and precipitation over adjacent and remote continents, 
and its undulations can partially explain the observed variations in 
the NH mean temperatures (Steinman et al., 2015). The origin of this 
variability is still uncertain. Ocean dynamics (e.g.,  changes in the 
AMOC), external forcing, and local atmospheric forcing all seem to 
play a role (Menary et al., 2015; Ruprich-Robert and Cassou, 2015; 
Brown et  al., 2016; Cassou et  al., 2018; Wills et  al., 2019). Recent 
studies have discussed that the ocean dynamics play an active role 
in generating AMV (Oelsmann et al., 2020) and its interplay with the 
NAO (Vecchi et  al., 2017; R. Zhang et  al., 2019; Kim et  al., 2020), 
although natural and anthropogenic external forcing might be 
crucial in modulating its amplitude and timing (Bellucci et al., 2017; 
Bellomo et  al., 2018; Andrews et  al., 2020; Borchert et  al., 2021; 
Mann et al., 2021; see Sections 3.7.7 and AIV.2.7).

The AR5 assessed with high confidence that initialized predictions can 
improve the skill for temperature over the North Atlantic, in particular 
in the sub-polar branch of AMV, compared to the projections, for 
the first five years (see AR5 WGI Figures 11.3 and 11.4). However, 
non-initialized predictions showed positive correlation over the 
same time-range as well, consistent with the notion that part of this 
variability is caused by external forcing (Section 3.7.7).

Since AR5, near-term initialized predictions, both multi-model (Bellucci 
et al., 2015a; García-Serrano et al., 2015; D.M. Smith et al., 2019) and 
single-model ensembles (Marotzke et al., 2016; Simpson et al., 2018; 
Yeager et al., 2018; Hermanson et al., 2020; Bilbao et al., 2021), confirm 
substantial skill in hindcasting North Atlantic SST anomalies on a time 
range of eight to ten years. On the same time range, Borchert et al. 
(2021) show a  substantial improvement in the prediction of the 
subpolar gyre SST (the northern component of the AMV) in CMIP6 
models compared to CMIP5, in both initialized and non-initialized 
simulations. The higher skill of CMIP6 models can be attributed to 
a  more accurate response of SST variations in the subpolar gyre 
to  natural forcing, possibly originating from the AMOC-related 
delayed response to volcanic eruptions (Hermanson et al., 2020).

Initialization contributes to the reduction of uncertainty and to 
predicting subpolar SST amplitude (Borchert et al., 2021). Yet, skill in 
predicting the AMV is not always translated into equally successful 
predictions of temperature and precipitation over the nearby land 
and ocean regions (Langehaug et al., 2017). This might be related to 
systematic model errors in the simulation of the spatial and temporal 
structure of the AMV and too weak associated teleconnections 
(Section 3.7.7), and also to the larger noise in regional land variables 
compared to the AMV index. However, AMV predictions can be 
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used as proxies to predict other variables such as precipitation over 
Western Europe and Eurasia and SAT over Mediterranean, Northern 
Europe and north-east Asia (Årthun et al., 2018; Borchert et al., 2019; 
Ruggieri et al., 2021) whose relationship with North Atlantic SST is 
robust in observations, but not well captured in climate models.

Encouraging results about the prediction of land precipitation linked 
to the warm AMV phase (Section 3.7.7 and Annex IV, Figure AIV.2.7) 
on a  two-to-nine-year time scale are reported in the multi-model 
study by D.M. Smith et  al. (2019). Positive correlations with 
observations are found in the Sahel, South America, the Maritime 
Continent. Analyses from large-ensemble decadal prediction systems 
such as the community Earth system model decadal prediction large 
ensemble (CESM-DPLE; Yeager et  al., 2018) show an improvement 
with respect to the CMIP5 decadal hindcasts (Martin and Thorncroft, 
2014b) in forecasting Sahel precipitation over three to seven years, 
which is consistent with the current understanding of AMV impact 
over Africa (Mohino et al., 2016; D.M. Smith et al., 2019). CESM-DPLE 
predicts drought conditions over the Sahel through 2020, which is 
compatible with a shift towards a negative phase of AMV as a result 
of a  weakening of the AMOC, advocated by a  number of studies 
(Hermanson et al., 2014; Robson et al., 2014; Yeager et al., 2015).

In summary, the confi dence in the predictions of AMV and its effects 
is medium. However, there is high confi dence that the AMV skill 
over fi ve-to-eight-year lead times is improved by using initialized 
predictions, compared to non-initialized simulations.

4.4.4 Response to Short-lived Climate Forcers 
and Volcanic Eruptions

Mitig  ation of SLCFs affects future climate projections and could 
alter th e time of emergence of anthropogenic climate change 
signals. The AR5  assessed that emission reductions aimed at 
decreasing local air pollution could have a  near-term warming 
impact on climate (high confi dence) (Kirtman et al., 2013). Because 
of their shorter lifetimes,  reductions in emissions of SLCF species 
mainly infl uence near-term GSAT trends (Chalmers et  al., 2012; 
Shindell et  al., 2017; Shindell and Smith, 2019), but on decadal 
time scales the near-term response to even very large reductions 
in SLCFs may be diffi cult to detect in the presence of large internal 
climate variability (Samset et  al., 2020). The changes in SLCF 
emissions during the COVID-19 pandemic has resulted in a small 
net radiative forcing without a discernible impact on GSAT (Cross-
Chapter Box 6.1). SLCF mitigation also leads to a higher GSAT in 
the mid- to long-term (Smith and Mizrahi, 2013; Stohl et al., 2015; 
Hienola et al., 2018) and can infl uence peak warming during the 
21st century (Rogelj et al., 2014; Hienola et al., 2018). This section 
focuses on the total effect of SLCF changes on GSAT projections 
in the SSP scenarios. A more detailed breakdown of the separate 
climate effects of SLCF species and precursor species can be found 
in Sections 6.7.2 and 6.7.3.

A model experiment based on the SSP3-7.0 scenario with aerosols, 
their precursors, and non-methane tropospheric ozone precursors 
set to SSP1-1.9 abundances (SSP3-7.0-lowSLCF-highCH4; Collins 

et al., 2017) shows a projected multi-model mean GSAT anomaly 
that is higher by 0.22°C at mid-century (2045-2054) compared 
to SSP3-7.0 (Figure 4.18; Allen et al., 2020), but this difference is 
smaller than the inter-model spread of the SSP3-7.0 projections 
based on the CMIP6 models. Note the SSP3-7.0-lowSLCF-highCH4 
experiment does not perturb methane from SSP3-7.0 concentrations. 
A modifi ed SSP3-7.0-lowSLCF-lowCH4 scenario that also includes 
methane mitigation shows a lower GSAT by mid-century compared 
to SSP3-7.0 (Allen et al., 2021).

Building on CMIP6 results for the effects of reducing SLCF 
emissions from a baseline of SSP3-7.0, the overall contribution of 
SLCFs to GSAT changes in the marker SSPs are now quantifi ed using 
a simple climate model emulator. For consistency with Section 6.7.2 
and Figure  6.22, the basket of SLCF compounds considered 
includes aerosols, ozone, methane, black carbon on snow and 
hydrofl uorocarbons (HFCs) with lifetimes of less than 50 years. In 
the fi ve marker SSPs considered, the net effect of SLCFs contributes 
to a higher GSAT in the near, mid- and long term (Table 4.6 and 
Section  6.7.2). In the SSP1-1.9 and SSP1-2.6 scenarios, SLCFs 
contribute to a higher GSAT by a central estimate of around 0.3°C 
compared to 1995–2014 across the three-time horizons. In the 
long-term, the 0.3 C warming due to SLCFs in SSP1-2.6 can be 
compared to the assessed very likely GSAT change for this period of 
0.5°C–1.5°C (Section 4.3.4 and Table 4.5). The SSP2-4.5, SSP3-7.0 
and SSP5-8.5 scenarios all show a  larger SLCF effect on GSAT in 
the long term relative to the near term. In SSP3-7.0, the long-
term warming due to SLCFs by 0.7°C can be compared with the 
assessed very likely GSAT anomaly for this period of 2.0°C –3.7°C 
(Section 4.3.4). In summary, it is very likely that changes in SLCFs 
contribute to an overall warmer GSAT over the near, mid- and long 
term in the fi ve SSP scenarios considered (Table 4.6, Section 6.7.2 
and Figure 6.22).
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Figure 4.18 | Infl uence of SLCFs on projected GSAT change. Change is shown 
relative to the 1995–2014 average (left axis) and relative to the 1850–1900 average 
(right axis). The comparison is for CMIP6 models for the AerChemMIP (Collins et al., 
2017) SSP3-7.0-lowSLCF-highCH4 experiment (red dashed; note in the original 
experiment protocol this is called SSP3-7.0-lowNTCF), where concentrations of short-
lived species are reduced compared to reference SSP3-7.0 scenario (red solid). Black 
shows the historical simulation until 2014 for the same 9 models as the projections. 
The curves show averages over the r1 simulations contributed to the CMIP6 exercise, 
the shadings around the historical and SSP3-7.0 curves shows 5–95% ranges and the 
numbers near the top show the number of model simulations.
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In addition to effects on GSAT, SLCFs affect other aspects of the global 
climate system (Section 6.7.2). The additional warming at high northern 
latitudes associated with projected reductions in aerosol emissions 
over the 21st century leads to a more rapid reduction in Arctic sea 
ice extent in the RCP scenarios (Gagné et  al., 2015). Furthermore, 
mitigation of non-methane SLCFs in the SSP3‑7.0-lowSLCF-highCH4 
scenario causes an increase in global mean precipitation, with larger 
regional changes in southern and eastern Asia (Allen et al., 2020).

The main uncertainties in climate effects of SLCFs in the future come 
from: (i) the uncertainty in anthropogenic aerosol ERF (Section 7.3.3); 
(ii) uncertainty in the relative emissions of different SLCFs that have 
warming and cooling effects in the current climate (Section 6.2); and 
(iii) physical uncertainty including the efficacy of the climate response 
to SLCFs compared to long-lived GHGs (Marvel et al., 2016; Richardson 
et al., 2019). One example of physical uncertainty is that the shortwave 
radiative forcing from methane was neglected in previous calculations 
(Etminan et al., 2016; Collins et al., 2018), which affects understanding 
of present day and future methane ERF (Modak et al., 2018). Another 
example of physical uncertainty is projected changes in lightning-
NOx production, which contribute to future ozone radiative forcing 
(Banerjee et al., 2014, 2018; Finney et al., 2018).

Another factor that could substantially alter projections in the 
near-term would be the occurrence of a  large explosive volcanic 
eruption, or even a decadal to multi-decadal sequence of small-to-
moderate volcanic eruptions as witnessed over the early 21st century 
(Cross-Chapter Box 4.1; Santer et al., 2014). An eruption similar to 
the last large tropical eruption, Mount Pinatubo in the Philippines 
in June 1991, is expected to cause substantial Northern Hemisphere 
(NH) cooling, peaking between 0.09°C and 0.38°C and lasting for 
three to five years, as indicated by climate model simulations over the 
past millennium (e.g., Jungclaus et al., 2010). Phase 3 of Paleoclimate 
Modelling Intercomparison Project (PMIP3) simulated a  significant 
NH cooling in response to individual volcanic events (peaks between 
0.1°C and 0.5°C, depending on model, during the first year after 
the eruption) that lasts for three to five years. On a regional scale, 
the double volcanic events that occurred in 536 and 540 CE resulted 
in a cooling of 2°C (Büntgen et al., 2016; Toohey et al., 2016).

Since AR5, there has been growing progress in understanding the 
climate impacts of volcanic eruptions. Volcanic forcing is regarded as 
the dominant driver of forced variability in preindustrial surface air 
temperature (Schurer et al., 2013, 2014). Large eruptions in the tropics 
and high latitudes were primary drivers of interannual-to-decadal 

temperature variability in the Northern Hemisphere during the past 
2,500 years, with cooling persisting for up to ten years after some 
of the largest eruptive episodes (Sigl et al., 2015). Repeated clusters 
of volcanic eruptions can induce a net negative radiative forcing that 
results in a centennial- and global-scale cooling trend via a decline 
in mixed-layer oceanic heat content (McGregor et  al., 2015). The 
response to multi-decadal changes in volcanic forcing (representing 
clusters of eruptions) shows similar cooling in both simulations and 
reconstructions of NH temperature. Volcanic eruptions generally 
result in decreased global precipitation for up to a few years following 
the eruption (Iles and Hegerl, 2014, 2015; Man et  al., 2014), with 
climatologically wet regions drying and climatologically dry regions 
wetting (medium confidence), which is opposite to the response 
under global warming (Held and Soden, 2006; Iles et al., 2013; Zuo 
et  al., 2019a, b). El Niño-like warming appears after large volcanic 
eruptions, as seen in both observations (Adams et al., 2003; McGregor 
et al., 2010; Khodri et al., 2017) and climate model simulations (Ohba 
et al., 2013; Pausata et al., 2015; Colose et al., 2016; Stevenson et al., 
2016; Khodri et al., 2017; Predybaylo et al., 2017; Zuo et al., 2018). 
The large tropical eruptions are coincident with positive Indian Ocean 
dipole events (Maher et al., 2015).

In AR5, uncertainty due to future volcanic activity was not considered 
in the assessment of the CMIP5 21st  century climate projections 
(Taylor  et  al., 2012; O’Neill et  al., 2016). Since AR5, there has been 
considerable progress in quantifying the impacts of volcanic eruptions 
on decadal climate prediction and longer-term climate projections 
(Meehl et al., 2015; Swingedouw et al., 2015, 2017; Timmreck et al., 
2016; Bethke et al., 2017; Illing et al., 2018). By exploring 60 possible 
volcanic futures under RCP4.5, it has been demonstrated that the 
inclusion of time-varying volcanic forcing may enhance climate 
variability on annual-to-decadal time scales (Bethke et  al., 2017). 
Consistent with a  tropospheric cooling response, the change in 
ensemble spread in the volcanic cases is skewed towards lower GSAT 
relative to the non-volcanic cases (Cross-Chapter Box 4.1, Figure 1). 
In  these simulations with multiple volcanic forcing futures there is: 
(i) an increase in the frequency of extremely cold individual years; (ii) an 
increased likelihood of decades with negative GSAT trend (decades 
with negative GSAT trends become 50% more commonplace); 
(iii)  later anthropogenic signal emergence (the mean time at which 
the signal of global warming emerges from the noise of natural 
climate variability is delayed almost everywhere) (high confidence); 
and (iv) a 10% overall reduction in global land monsoon precipitation 
and a 20% overall increase in the ensemble spread (Man et al., 2021).

Table 4.6 | The net effect of SLCFs on GSAT change. Changes in 20-year averaged GSAT relative to 1995–2014 for 2021–2040, 2041–2060, and 2081–2100 for the five 
marker SSP scenarios. Values give the median and, in parentheses, the 5–95% range calculated from a 2237-member ensemble of the two-layer emulator that is driven with 
the ERF projections, including uncertainties, described in Chapter 7 Supplementary Material 7.SM.1.4. The ensemble is constrained to assessed ranges of ECS, TCR, ocean heat 
content change, GSAT response, and carbon cycle metrics (Section 7.3.5; Chapter 7 Supplementary Material 7.SM.2.2). The GSAT contribution of individual forcer responses 
use the difference between parallel runs of the constrained two-layer model with all anthropogenic forcing and all anthropogenic forcing with the component of interest 
(e.g., methane) removed (Chapter 7 Supplementary Material 7.SM.2.3). Values are given to one decimal place.

Time Period SSP1‑1.9 (°C) SSP1‑2.6 (°C) SSP2‑4.5 (°C) SSP3‑7.0 (°C) SSP5‑8.5 (°C)

Near Term (2021–2040) 0.2 (0.1, 0.3) 0.2 (0.1, 0.3) 0.2 (0.1, 0.3) 0.2 (0.1, 0.3) 0.3 (0.2, 0.4)

Mid-Term (2041–2060) 0.2 (0.0, 0.4) 0.2 (0.0, 0.4) 0.3 (0.2, 0.4) 0.3 (0.2, 0.4) 0.5 (0.3, 0.7)

Long Term (2081–2100) 0.1 (-0.1, 0.4) 0.2 (0.0, 0.4) 0.3 (0.1, 0.6) 0.5 (0.4, 0.8) 0.7 (0.4, 1.0)
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Cross-Chapter Box 4.1 | The Climate Effects of Volcanic Eruption

Contributing Authors: Sarah L. Connors (France/United Kingdom), Amanda Maycock (United Kingdom), Peter W. Thorne (Ireland/
United Kingdom), Nicolas Bellouin (United Kingdom/France), Ingo Bethke (Norway/Germany), Deliang Chen (Sweden), Annalisa Cherchi 
(Italy), Alejandro Di Luca (Australia/Canada/Argentina), Piers Forster (United Kingdom), Nathan P. Gillett (Canada), Darrell S. Kaufmann 
(The United States of America), June-Yi Lee (Republic of Korea), Elizaveta Malinina (Canada/Russian Federation), Seung-Ki Min (Republic 
of Korea), Johannes Quaas (Germany), Alex C. Ruane (The United States of America), Jean-Baptiste Sallée (France), Sonia I. Seneviratne 
(Switzerland), Chris Smith (United Kingdom), Matthew Toohey (Canada, Germany/Canada), Andrew  Turner (United Kingdom), 
Cunde Xiao (China), Tianjun Zhou (China)

Before the industrial period, explosive volcanic eruptions were the largest source of forced climate variability globally on interannual to 
centennial time scales (Section 2.2). While usually omitted from scenarios used for future climate projections, as they are unpredictable, 
volcanic eruptions have the potential to influence future climate on multi-annual to decadal time scales and affect many climatic 
impact drivers (as defined in Sections 12.1 and 12.3). Since AR5, more comprehensive paleo evidence and observations, as well as 
improved modelling have advanced understanding of the climate response to past volcanic eruptions. Building on multiple chapter 
assessments, this box synthesizes how volcanic eruptions affect climate and considers implications of possible future events.

How frequent are volcanic eruptions?
Proxy records show that large volcanic eruptions with effective radiative forcing (ERF) more negative than –1 W m–2 occurred on 
average twice a century throughout the last 2500 years, the most recent being Pinatubo in 1991 (Section 2.2.2). About eight larger 
eruptions (ERF stronger than –5 W m–2) also occurred during this period (Figure 2.2), notably Tambora about 1815 and Samalas 
about 1257. A Samalas-type eruption may occur one to two times per millennium on average (Newhall et al., 2018). Typically, three 
in every four centuries have experienced at least one eruption stronger than –1 W m–2 (Pinatubo or larger). The volcanic aerosol 
burden was 14% lower during the 20th century compared to the average of the preceding 24 centuries (Section 2.2.2), whereas the 
13th century was among the most volcanically active, with four eruptions exceeding that of Pinatubo-1991 (Sigl et al., 2015).

Past climate responses to volcanic activity
Major eruptions drive a range of climate system responses for several years depending upon whether the eruption occurs in the tropics 
(stratospheric aerosol dispersion into both hemispheres) or the extratropics (dispersion into the hemisphere of eruption) owing to the 
Brewer-Dobson circulation. The climatic response also depends on the effective injection height, sulphur mass injected, and time of 
year of the eruption (Marshall et al., 2019, 2020). These factors determine the total mass, lifetime and optical properties of volcanic 
aerosol in the stratosphere and influence the stratospheric aerosol optical depth (SAOD). The ERF from volcanic stratospheric aerosol 
is assessed to be –20 ± 5 W m–2 per unit sAOD (Section 7.3.4.6).

Due to the direct radiative effect of volcanic stratospheric aerosols, large volcanic eruptions lead to an overall decrease of GSAT, which can 
extend to multi-decadal or century time scales in the case of clustered volcanism (Section 3.3.1.1; Schurer et al., 2013; McGregor et al., 
2015; Sigl et al., 2015; Kobashi et al., 2017; Zambri et al., 2017; Brönnimann et al., 2019; Neukom et al., 2019). Large eruptions also increase 
the frequency of extremely cold individual years and the likelihood of cooling trends occurring in individual decades (Cross-Chapter 
Box 3.1 and Section 4.4.4; Paik and Min, 2018). Re-dating of ice core chronologies now confirms that the coldest decades of the past 
approximately 2000 years are the outcome of volcanic eruptions (Sigl et al., 2015; Büntgen et al., 2016; Toohey et al., 2016; Neukom et al., 
2019). CMIP5 and CMIP6 models reproduce the decreased GSAT that follows periods of intense volcanism. New reconciliations between 
simulations and proxy-based reconstructions of past eruptions have been achieved through better Earth System Model representation 
of volcanic plume chemical compositions (Legrande et al., 2016; Marshall et al., 2020; F. Zhu et al., 2020). Yet, remaining disagreements 
reflect differences in the volcanic forcing datasets used in the simulations (medium confidence) (Section 3.3.1.1 and Figure 3.2c).

Although incomplete, proxy records show large impacts upon contemporary society from eruptions such as 1257 Samalas and 1815 
Tambora, the latter resulting in ‘the year without a summer’ with multiple harvest failures across the Northern Hemisphere (e.g., Raible 
et al., 2016). Comparing CMIP5 multi-model simulations with observations has improved understanding of the hydrological responses 
to 20th century eruptions, particularly global land monsoon drying, and associated uncertainties (Section 3.3.2.3). Global mean land 
precipitation decreases for up to a few years following the eruption, with climatologically wet regions drying and dry regions wetting 
(Sections 3.3.2.3 and 4.4.4). Changes in monsoon circulations occur with a general weakening of tropical precipitation (Section 8.5.2.3) 
and a decrease in extreme precipitation over global monsoon regions (Section 11.4.4). Monsoon precipitation in one hemisphere tends 
to be enhanced by eruptions occurring in the other hemisphere or reduced if they occur in the same hemisphere (Sections 3.3.2.3 
and 8.5.2.3). Volcanic eruptions have been linked to the onset of El Niño followed by La Niña although this connection remains 
contentious (Adams et al., 2003; Bradley et al., 2003; McGregor et al., 2010; Khodri et al., 2017; F. Liu et al., 2018; Sun et al., 2019; 
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Cross-Chapter Box 4.1 (continued)

Paik et al., 2020; Predybaylo et al., 2020). Volcanic activity could drive short-term (one-to-three-year) positive changes in the annual 
SAM index through modulations in the extratropical temperature gradient and wave driving of the polar stratosphere (Yang and Xiao, 
2018). In the cryosphere, Arctic sea ice extent increases for years to decades (Gagné et al., 2017a), and modelling indicates that sea 
ice/ocean feedbacks can prolong cooling long after volcanic aerosols are removed (Miller et al., 2012). On annual time scales, the ocean 
buffers the atmospheric response to volcanic eruptions by storing the cooling in the ocean subsurface, then feeding it back to the 
atmosphere. Large eruptions affect ocean heat content and thermosteric sea level over decadal-to-centennial scales (Section 9.2.2.1).

Potential implications on 21st century projections
Given the unpredictability of individual eruptions, volcanic forcing is prescribed as a constant background loading in CMIP6 models 
(Eyring et al., 2016). This means the effects of potential large volcanic eruptions are largely absent from model projections, and few studies 
have addressed the potential implications on 21st century warming. One study considered future scenarios with hypothetical volcanic 
eruptions consistent with levels of Common Era volcanic activity (Bethke et al., 2017) under RCP4.5 and found that climate projections 
could be substantially altered (Cross-Chapter Box 4.1, Figure 1). Although temporary, close to pre-industrial level temperatures could be 
experienced globally for a few years after a 1257 Samalas-sized eruption. Several other key climate indicators are also changed substantially, 
consistent with evidence from past events. Bethke et al. (2017) suggest that an eruption early in the 21st century could delay the timing 
of crossing 1.5°C global warming by several years. Clustered eruptions would have substantial impact upon GSAT evolution throughout 
the century (Cross-Chapter Box 4.1, Figure 1), and could have far-reaching implications, as observed for past eruptions. For near-term 
response options, decadal prediction models can update 21st-century projections once a volcanic eruption occurs (Timmreck et al., 2016).

Summary
It is likely that at least one large eruption will occur during the 21st century. Such an eruption would reduce GSAT for several years, 
decrease global mean land precipitation, alter monsoon circulation, modify extreme precipitation, and change the profi le of many 
regional climatic impact-drivers. A low-likelihood, high-impact outcome would be several large eruptions that would greatly alter the 
21st century climate trajectory compared to SSP-based ESM projections.

Cross-Chapter Box  4.1, Figure  1 | Potential impact of volcanic eruption on future global temperature change. CMIP5 projections of possible 
21st-century futures under RCP4.5 after a 1257 Samalas magnitude volcanic eruption in 2044, from Bethke et al. (2017). (a) Volcanic ERF of the most volcanically 
active ensemble member, estimated from SAOD. (b) Annual mean global surface air temperature. Ensemble mean (solid) of future projections including volcanoes 
(blue) and excluding volcanoes (red) with 5–95% range (shading) and ensemble minima/maxima (dots); evolution of the most volcanically active member (black). 
Data created using a SMILE approach with NorESM1 in its CMIP5 confi guration. See Sections 2.2.2 and 4.4.4 for more details. Further details on data sources and 
processing are available in the chapter data table (Table 4.SM.1).
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4.5	 Mid- to Long-term Global 
Climate Change

4.5.1	 Atmosphere

This section assesses how the global atmospheric indicators assessed 
in Section 4.3 manifest themselves in large-scale spatial patterns of 
atmospheric change in the mid-term (2041–2060) and long term 
(2081–2100). The patterns of change in any given future period 
represent a combination of unforced internal variability and a forced 
response including their interaction (Deser et al., 2016). The role of 
internal variability is much larger at the local to regional scale than 
in the global mean projections. We here assess multi-model mean 
patterns based on CMIP6 models without any weighting or emergent 
constraints. The mean represents an estimate of the forced response 
and is a more homogeneous pattern than the 20-year mean change 
patterns in any individual model realization (Knutti et al., 2010).

4.5.1.1	 Near-surface Air Temperature

Patterns of near-surface air temperature changes show widespread 
warming by 2041–2060 and 2081–2100 (Figure  4.19) for all SSPs 
relative to 1995–2014. The area fraction experiencing warming 
increases with the level of global mean warming. As GSAT continues 
to increase, it is very likely that by the middle and the end of the 
21st century most of the global land and ocean areas will be warmer 
than in 1995–2014 (high confidence, Section 4.3.1.1).

The multi-model mean temperature change pattern (Figure  4.19) 
shows some robust key characteristics that are independent of the 
time horizon and scenario, such as a land–ocean warming contrast, 
amplified warming over the Arctic region, assessed below, or the 
comparatively small warming or even cooling in the North Atlantic 
subpolar gyre (Section  9.2.1.1). Furthermore, changes in aerosol 
concentrations and land use and land management can have 
a direct imprint on the regional warming pattern (Bright et al., 2017; 

Annual mean temperature change

SSP1-2.6 (2041–60) SSP1-2.6 (2081–2100)

SSP3-7.0 (2041–60) SSP3-7.0 (2081–2100)
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Figure 4.19 | Mid- and long-term change of annual mean surface temperature. Displayed are projected spatial patterns of multi-model mean change in annual mean 
near-surface air temperature (°C) in 2041–2060 and 2081–2100 relative to 1995–2014 for (top) SSP1‑2.6 and (bottom) SSP3‑7.0. The number of models used is indicated in 
the top right of the maps. No overlay indicates regions where the change is robust and likely emerges from internal variability, that is, where at least 66% of the models show 
a change greater than the internal-variability threshold (see Section 4.2.6) and at least 80% of the models agree on the sign of change. Diagonal lines indicate regions with 
no change or no robust significant change, where fewer than 66% of the models show change greater than the internal-variability threshold. Crossed lines indicate areas of 
conflicting signals where at least 66% of the models show change greater than the internal-variability threshold but fewer than 80% of all models agree on the sign of change. 
Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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Kasoar et al., 2018). Note that the global average of the pattern 
shown in Figure  4.19 corresponds to CMIP6 multi-model mean 
GSAT warming (Section 4.3.1) and is thus somewhat warmer than 
the warming pattern consistent with the central estimate of the 
GSAT range assessed in Section  4.3.4. Since the regional mean 
warming scales well with global warming levels independent 
of the emissions scenario (Section  4.2.4), the key characteristics 
of the spatial pattern assessed here are largely independent of the 
difference between CMIP6 multi-model global mean and assessed 
global GSAT change.

4.5.1.1.1	 Land–ocean warming contrast

It is virtually certain that future average warming will be higher over 
land than over the ocean. Section 2.2.1 of SRCCL (G. Jia et al., 2019) 
assessed that it is certain that land temperatures have increased 
more than global mean temperatures since the pre-industrial period. 
This so-called land–ocean warming contrast is a striking feature of 
observed trends (Lambert and Chiang, 2007; Byrne and O’Gorman, 
2018) and projected changes in surface-air temperature (Sutton 
et  al., 2007; Joshi and Gregory, 2008; Dong et  al., 2009; Lambert 
et al., 2011; Drost et al., 2012; Bayr and Dommenget, 2013; Byrne 
and O’Gorman, 2013b; Izumi et al., 2013; Joshi et al., 2013). Between 
1979 and 2016, average temperature over land increased by 42% 
more than over the ocean (Byrne and O’Gorman, 2018). A  similar 
warming contrast is found in CMIP5 projections though with large 
differences across models and latitudes (Sutton et  al., 2007; Drost 
et al., 2012; Byrne and O’Gorman, 2013b; Joshi et al., 2013), which 
is also consistent with paleoclimate evidence (Izumi et  al., 2013; 
Schmidt et al., 2014). The ratio of land-to-ocean warming is greater 
than one for almost all regions (high confidence) and is larger for 
dry subtropical continents (about 1.5) than for moist regions in the 
tropics and mid-latitudes (about 1.2; Byrne and O’Gorman, 2013a). 
Projected warming over land and ocean only is shown in Table 4.2 
for different scenarios, and the global average ratio of land-to-ocean 
warming in CMIP6 is 1.5 with a likely range of 1.4 to 1.7, which is 
consistent with estimates based on CMIP5.

Since AR5, a robust physical understanding of the warming contrast 
been developed. A simple theory based on atmospheric dynamics and 
moisture transport shows that surface-air temperature and relative 
humidity over land are strongly coupled, and demonstrates that the 
warming contrast occurs because air over land is drier than over 
the ocean (Joshi et al., 2008; Byrne and O’Gorman, 2013a, b, 2018). 
The warming contrast causes land relative humidity to decrease 
(Byrne and O’Gorman, 2016, 2018; Chadwick et al., 2016) and this 
feeds back on and strengthens the warming contrast. Differences 
in land-relative humidity responses across models are the primary 
cause of uncertainty in the land–ocean warming contrast (Byrne 
and O’Gorman, 2013b). These land-relative humidity changes are 
ultimately controlled by moisture transport between the land and 
ocean boundary layers (Byrne and O’Gorman, 2016; Chadwick et al., 
2016) and are also sensitive to characteristics of land surfaces that 
are challenging to model, including stomatal conductance and soil 
moisture (Berg et al., 2016; Zarakas et al., 2020).

4.5.1.1.2	 Polar amplification

It is very likely that under all SSPs the warming in the Arctic will be 
more pronounced than in the global average over the 21st century. 
Since AR5 the understanding of the physical mechanisms driving 
polar amplification has improved.

The Arctic surface is projected to warm more than the global average 
over the 21st century, with annual-average Arctic warming of about 
3°C (SSP1‑2.6), 10°C (SSP3‑7.0) and 12°C in (SSP5‑8.5) by 2081–2100 
relative to 1995–2014 (Figure  4.19). This phenomenon, known as 
polar or Arctic amplification, is a ubiquitous feature of the response 
to GHG forcing simulated by climate models (Manabe and Wetherald, 
1975, 1980; Manabe and Stouffer, 1980; Robock, 1983; Hansen et al., 
1984; Manabe et  al., 1991; Holland and Bitz, 2003; Winton, 2006; 
Pithan and Mauritsen, 2014) and has been observed over recent 
decades concurrent with Arctic sea ice loss (Section 2.3.2.1; Serreze 
and Barry, 2011). Based on robust scientific understanding and 
agreement across multiple lines of evidence (Section 7.4.4.1), there is 
high confidence that the rate of Arctic surface warming will continue 
to exceed the global average over the 21st century.

A variety of mechanisms contribute to Arctic amplification 
(Section 7.4.4.1.1). While surface-albedo feedbacks associated with 
the loss of sea ice and snow have long been known to play important 
roles (Arrhenius, 1896; Manabe and Stouffer, 1980; Robock, 1983; 
Hall, 2004), it is now recognized that temperature (lapse-rate and 
Planck) feedbacks also contribute to Arctic amplification through 
a less efficient longwave radiative damping to space with warming 
at high latitudes (Winton, 2006; Pithan and Mauritsen, 2014; Goosse 
et al., 2018; Stuecker et al., 2018). Increases in poleward atmospheric 
latent heat transport and oceanic heat transport also contribute to 
Arctic warming (Holland and Bitz, 2003; Bitz et al., 2006; Lee et al., 
2011, 2017; Alexeev and Jackson, 2013; Marshall et al., 2014, 2015; 
Woods and Caballero, 2016; Nummelin et al., 2017; Singh et al., 2017; 
Merlis and Henry, 2018; Oldenburg et al., 2018; Armour et al., 2019; 
Beer et al., 2020). Projected reduction in the strength of the AMOC 
over the 21st century is expected to reduce Arctic warming, but even 
a  strong AMOC reduction would not eliminate Arctic amplification 
entirely (medium confidence) (Liu et  al., 2017; Y. Liu et  al., 2018; 
Wen et al., 2018).

There remains substantial uncertainty in the magnitude of projected 
Arctic amplification (Smith et  al., 2020), with the Arctic warming 
ranging from two to four times the global average in models (Holland 
and Bitz, 2003; Nummelin et  al., 2017). This uncertainty primarily 
stems from different representations of polar surface-albedo, lapse-
rate, and cloud feedbacks, and from different projected poleward 
energy transport changes (Holland and Bitz, 2003; Crook et al., 2011; 
Mahlstein and Knutti, 2011; Pithan and Mauritsen, 2014; Bonan 
et al., 2018). The magnitude of Arctic amplification may also depend 
on the mix of radiative forcing agents (Najafi et al., 2015; Sand et al., 
2016; Stjern et al., 2019) such as the contribution of ozone depleting 
substances (Polvani et al., 2020). Tropospheric aerosol emissions tend 
to reduce simulated Arctic warming over the middle of the 20th century 
(Gagné et al., 2017b) and consequently aerosol emission reductions 
in observations and SSP scenarios enhance simulated Arctic warming 
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over recent and future decades (Section  6.4.3; Gagné et  al., 2015; 
Acosta Navarro et al., 2016; Wobus et al., 2016; Wang et al., 2018).

Climate models project a weaker polar amplification in the SH than in 
the NH under transient warming (Figure 4.19). Model simulations (Hall, 
2004; Danabasoglu and Gent, 2009; Li et al., 2013) and paleoclimate 
proxies indicate polar amplification in both hemispheres near 
equilibrium, but generally with less warming in the Antarctic than 
the Arctic (Section 7.4.4.1.2). The primary driver of delayed warming 
of the southern high latitudes is the upwelling in the Southern Ocean 
and associated ocean heat uptake that is then transported away 
from Antarctica by northward flowing surface waters (Frölicher et al., 
2015; Marshall et al., 2015; Armour et al., 2016; W. Liu et al., 2018), 
although asymmetries in feedbacks between the poles also play 
a role (Section 7.4.4.1.1). Changes in westerly surface winds over the 
Southern Ocean have the potential to affect the rate of sea-surface 
warming, but there is currently low confidence in even the sign of 
the effect based on a diverse range of climate model responses to 
wind changes (Marshall et  al., 2014; Ferreira et  al., 2015; Kostov 
et al., 2017; Seviour et al., 2019). A substantial increase in freshwater 
input to the ocean from the Antarctic ice sheet could further slow the 
emergence of SH polar amplification by cooling the Southern Ocean 
surface (Bronselaer et  al., 2018; Golledge et  al., 2019; Schloesser 
et al., 2019), but this process is not represented in current climate 
models which lack dynamic ice sheets. Thus, while there is high 
confidence that the SH high latitudes will warm by more than the 
tropics on centennial time scales, there is low confidence that such 
a feature will emerge this century (Section 7.4.4.1).

Seasonal warming patterns
The warming pattern shows distinct seasonal characteristics. 
The  majority of models show a  stronger hemispheric winter than 
summer warming over land poleward of about 55°N and 55°S 
(Figure 4.20) and thereby a reduced amplitude of the temperature cycle 

(Dwyer et al., 2012; Donohoe and Battisti, 2013). On the other hand, 
over most of the subtropics and mid-latitudinal land regions except for 
parts of Asia, models project stronger warming in hemispheric summer 
than winter (Donohoe and Battisti, 2013; Santer et al., 2018), leading 
to an amplification of the seasonal cycle. This phenomenon has been 
studied particularly in the case of the amplified summer warming over 
the Mediterranean region (Seager et al., 2014a; Kröner et al., 2017; 
Brogli et al., 2019).

4.5.1.1.3	 Changes in temperature variability

It has long been recognized that along with mean temperatures 
also variance and skewness of the temperature distribution may 
be changing (Gregory and Mitchell, 1995; Mearns et  al., 1997). 
By amplifying or dampening changes in the tail of temperature 
distribution such changes are potentially highly relevant to extremes 
(Section  11.3.1) and pose a  serious challenge to adaptation 
measures. Changes in temperature variability can occur from diurnal 
to multi-decadal time scales and from the local to the global scale 
with potentially even opposing signals in different seasons and at 
the different spatial scales

Changes in GSAT variability are poorly understood. Based on model 
experiments it has been suggested that unforced variability of GSAT 
tends to decrease in a warmer world as a result of reduced albedo 
variability in high latitudes resulting from melting snow and sea ice 
(Huntingford et al., 2013; Brown et al., 2017), but confidence remains 
low and an observed change has not been detected. An assessment of 
changes in global temperature variability is inherently challenging due 
to the interplay of unforced internal variability and forced changes.

Changes in tropical temperature variability may arise from changes 
in the amplitude of ENSO (Section  4.5.3.2). Over the extratropics, 
several studies have identified robust large-scale patterns of changes 

Warming difference JJA vs. DJF (SSP1-2.6) Warming difference JJA vs. DJF (SSP3-7.0)
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Figure 4.20 | Difference of surface temperature change between June–July–August (JJA) and December –January–February (DJF). Displayed are spatial 
patterns of multi-model mean difference in projected warming in JJA minus warming in DJF in 2081–2100 relative to 1995–2014 for (left) SSP1‑2.6 and (right) SSP3‑7.0. 
Diagonal lines mark areas where fewer than 80% of the models agree on the sign of change, and no overlay where at least 80% of the models agree. Further details on data 
sources and processing are available in the chapter data table (Table 4.SM.1).
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in variability of annual and particularly seasonal mean temperature, 
including (i) a reduction in mid- to high-latitude winter temperature 
variability and (ii) an increase in summer temperature variability 
over land in the tropics and subtropics (Huntingford et  al., 2013; 
Holmes et  al., 2016; see Figure  4.21). The multi-ensemble average 
across seven single-model initial-condition large ensembles projects 
a consistent reduction in year-to-year December –January–February 
(DJF) variability around about 50°N–70°N and June–July–August 
(JJA) variability around 55°S–70°S along the edge of the sea ice- and 
snow-covered region (Figure 4.21). There is growing evidence that 
year-to-year and day-to-day temperature variability decreases in 
winter over northern mid- to high-latitudes (Fischer et  al., 2011; 
De Vries et al., 2012; Screen, 2014; Schneider et al., 2015; Holmes 
et al., 2016; Borodina et al., 2017; Tamarin-Brodsky et al., 2020) which 
implies that the lowest temperatures rise more than the respective 
climatological mean temperatures (medium confidence). Over the 
NH, reduced high-latitude temperature variability is associated 
with disproportionally large warming in source region of cold-air 
advection due to Arctic amplification and land–sea contrast (De Vries 
et al., 2012; Screen, 2014; Holmes et al., 2016). It has further been 
argued that a  reduction in snow and sea ice coverage from partly 
to completely snow- and ice-free ocean and land surface would 
substantially reduce cold-season temperature variability (Gregory and 
Mitchell, 1995; Fischer et al., 2011; Borodina et al., 2017) and lead to 
a shortening of the cold season and earlier onset of the warm season 
(Cassou and Cattiaux, 2016). Mid-latitudinal winter temperature 
variability is further affected by a complex interplay of a multitude 
of processes including potential changes in atmospheric circulation, 
but there is low confidence in the dominant contribution of Arctic 
warming compared to other drivers (Cross-Chapter Box 10.1).

In JJA, the multi-model average projects an increase in year-to-year 
JJA variability over Central Europe and North America (Figure 4.21). 
In particular an increase in daily to interannual summer temperature 
variability has been projected over central Europe as a result of larger 
year-to-year variability in soil moisture conditions varying between 
a  wet and dry regime and leading to enhanced land–atmosphere 
interaction (Seneviratne et  al., 2006; Fischer et  al., 2012; Holmes 
et  al., 2016). Furthermore, the amplified warming in the source 
regions of warm-air advection due to land–ocean warming contrast 
and amplified Mediterranean warming (Seager et al., 2014a; Brogli 
et  al., 2019), may lead to disproportionally strong warming of 
the hottest days and summers and thereby increased variability. 
Enhanced temperature variability is further projected over some land 
regions in the subtropics and tropics (Bathiany et al., 2018).

In summary, there is medium confidence that continued warming will 
regionally lead to increased and decreased year-to-year temperature 
variability in the extratropics and there is medium confidence that 
year-to-year temperature variability will decrease over parts of the 
mid- to high- latitudes of the winter hemisphere.

4.5.1.2	 Annual Mean Atmospheric Temperature

Section  12.4.3.2 of AR5 assessed that there is high confidence in 
the overall pattern of projected end of 21st  century tropospheric 
temperature change and that it is very likely that some of the largest 
warming will occur in the northern high latitudes. They further 
assessed that proportionately larger warming is likely to occur 
in the tropical upper troposphere than at the tropical surface, but 
with medium confidence owing to the relatively large observational 

Change in DJF temperature variability
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Figure  4.21 | Percentage change in interannual variability of (left) December –January–February (DJF) and (right) June–July–August (JJA) mean 
temperature averaged across seven large initial condition ensembles. Average changes across seven single-model, initial-condition large ensembles are shown for 
RCP8.5 in 2081–2100 (and where not available for 2080–2099) relative to 1995–2014. Standard deviations are calculated across all members of the large ensembles for every 
given year to avoid inflation due to the underlying trend and then averaged across the period. Changes are averaged across the ensembles MPI-GE (100 members, Maher 
et al., 2019), CanESM2 (50 members, Kirchmeier-Young et al., 2017), NCAR-CESM (30 members, Kay et al., 2015), GFDL-CM3 (20 members, Sun et al., 2018), GFDL-ESM2M 
(30 members, Rodgers et al., 2015), CSIRO-Mk3-6-0 (30 members, Jeffrey et al., 2013) and EC-EARTH (16 members, Hazeleger et al., 2010). Also see Deser et al. (2020) for 
further information on those ensembles. Diagonal lines indicate areas with low model agreement where fewer than 80% of the models agree on the sign of the change, and 
no overlay areas with high model agreement where at least 80% of the models agree on the sign of the change. Further details on data sources and processing are available 
in the chapter data table (Table 4.SM.1).
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uncertainties and contradictory analyses regarding model accuracy in 
simulating tropical upper tropospheric temperature trends.

CMIP6 projections show warming throughout the troposphere by the 
end of this century and a mix of warming and cooling in the stratosphere 
depending on the emissions scenario (Figure 4.22). The patterns of 
tropospheric temperature change are highly consistent with those 
derived from earlier generations of climate models as assessed in 
AR5, AR4 and TAR. In SSP1‑2.6, the multi-model mean warming 
remains below 3°C everywhere in the troposphere except near the 
surface in the Arctic; this is similar to the findings in AR5 based on 
CMIP5 models for RCP2.6. In SSP3‑7.0, the zonal mean tropospheric 
warming is also largest in the tropical upper troposphere, reaching 
more than 5°C, and near the surface in the Arctic where warming 
exceeds 8°C (Figure 4.22). It is likely that the warmer projected GSAT 
in the unconstrained CMIP6 model ensemble contributes to larger 
warming in the tropical upper troposphere and in the Arctic lower 
troposphere. This assessment is based on the understanding of polar 
amplification assessed in Chapter  7 (Section  7.4.4.1), and at low 
latitudes is based on the understanding of moist convective processes 
as well as the relationship between CMIP5- and CMIP6-simulated 
surface temperatures and tropical upper tropospheric warming over 
the historical period (Section 3.3.1.2).

Projected stratospheric temperature trends are determined by 
a balance between the major radiative drivers from ozone recovery, 
rising CO2 and other greenhouse gases (including stratospheric 
water vapour) (Maycock, 2016), as well as future changes in the 
Brewer –Dobson circulation, which can alter the latitudinal pattern of 
stratospheric temperature trends (Fu et al., 2015, 2019). In the lower 

stratosphere, the CMIP6 models project a weak cooling in the inner 
tropics in SSP1‑2.6 and a warming at other latitudes (Figure 4.22). 
There is enhanced lower stratospheric warming over the Antarctic 
pole owing to the effects of ozone hole recovery on polar temperatures 
(Maycock, 2016; Solomon et al., 2017). The projected strengthening of 
the Brewer –Dobson circulation in the future (Hardiman et al., 2014) 
also affects stratospheric temperature trends, with adiabatic cooling 
at low latitudes and warming in middle and high latitudes (Fu et al., 
2015, 2019). In SSP3‑7.0, there is widespread cooling across much 
of the stratosphere, as expected from the higher GHG emissions, 
with a smaller warming in the Antarctic lower stratosphere. Owing 
to the importance of ozone recovery for the radiative balance of 
the stratosphere, future global and local stratospheric temperature 
trends do not scale with projected GSAT change.

In summary, new results since AR5 do not generally alter the 
understanding of projected zonal mean atmospheric temperature 
changes. There is high confidence in the overall pattern of projected 
tropospheric temperature changes given its robustness across many 
generations of climate models. It is further very likely that projected 
long-term tropospheric warming will be larger than the global 
mean in the Arctic lower troposphere. It is likely that tropical upper 
tropospheric warming will be larger than at the tropical surface, 
however with an uncertain magnitude owing to the potentially large 
role of natural internal variability and differences across models in 
the simulated free tropospheric temperature response to a  given 
forcing scenario (Section 3.3.1.2). It is very likely that global mean 
stratospheric cooling will be larger by the end of the 21st  century 
in a pathway with higher atmospheric CO2 concentrations.
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Figure 4.22 | Long-term change of annual and zonal mean atmospheric temperature. Displayed are multi-model mean change in annual and zonal mean atmospheric 
temperature (°C) in 2081–2100 relative to 1995–2014 for (left) SSP1‑2.6 and (right) SSP3‑7.0. The number of models used is indicated in the top right of the maps. Diagonal 
lines indicate regions where less than 80% of the models agree on the sign of the change and no overlay where 80% or more of the models agree on the sign of the change. 
Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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4.5.1.3	 Near-surface Relative Humidity

The AR5 contrasted future changes in near-surface relative humidity 
(RH) over land and ocean, concluding with medium confidence that 
reductions in near-surface RH over many land areas are likely. The 
decrease in near-surface RH over most land areas is associated with 
the larger warming rates over land than over the ocean and is termed 
the last-saturation-temperature constraint, as explained in AR5.

Since AR5, significant effort has been devoted to understanding the 
mechanisms for the decrease in near-surface land RH under global 
warming, and the relevance of RH changes for the land–sea warming 
contrast and the water cycle. For the near-surface RH decrease over 
land, both the moisture transport from the ocean and land–atmosphere 
feedback processes contribute. For changes in specific humidity over 
land, the moisture transport from the ocean is dominant while the 
role of evapotranspiration is secondary (Byrne and O’Gorman, 2016; 
Chadwick et  al., 2016). Nevertheless, the changes in near-surface 

land RH are also strongly influenced by evapotranspiration, which is 
suppressed by the drying of soils and plant responses to increasing 
CO2 related to stomatal closure under climate change (Byrne and 
O’Gorman, 2015; Berg et  al., 2016; Chadwick et  al., 2016; Swann 
et  al., 2016; Lemordant et  al., 2018). The combination of oceanic 
and continental influences can explain the spatially diverse trends 
in the near-surface RH over land in the observations for the recent 
decades, with a generally dominant negative trend at the global scale 
(Vicente-Serrano et  al., 2018). There is a  strong feedback between 
the near-surface land RH decrease and land–ocean warming contrast 
under future warming projections (Section 4.5.1.1).

Changes in land RH can modulate the response of the water cycle to 
global warming (Chadwick et al., 2013; Byrne and O’Gorman, 2015). 
Most CMIP5 models project higher precipitation associated with higher 
near-surface RH and temperature under climate change (Lambert 
et  al., 2017). Over land, the spatial gradients of fractional changes 
in near-surface RH contribute to a  drying tendency in  precipitation 

Seasonal mean relative humidity change
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Figure  4.23 | Long-term changes in seasonal mean relative humidity. Displayed are projected spatial patterns of multi-model mean change (%) in seasonal 
(top) December –January–February (DJF) and (bottom) June–July–August (JJA) mean near-surface relative humidity in 2081–2100 relative to 1995–2014, for (left) SSP1‑2.6 
and (right) SSP3‑7.0. The number of models used is indicated in the top right of the maps. No overlay indicates regions where the change is robust and likely emerges from 
internal variability, that is, where at least 66% of the models show a change greater than the internal variability threshold (Section 4.2.6) and at least 80% of the models agree 
on the sign of change. Diagonal lines indicate regions with no change or no robust significant change, where fewer than 66% of the models show change greater than the 
internal-variability threshold. Crossed lines indicate areas of conflicting signals where at least 66% of the models show change greater than the internal-variability threshold but 
fewer than 80% of all models agree on the sign of change. Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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minus evapotranspiration with warming, which partly explains why 
the ‘wet gets wetter, dry gets drier’ paradigm does not hold over land 
(Byrne and O’Gorman, 2015). Terrestrial aridity is projected to increase 
over land, as manifested by a decrease in the ratio of precipitation to 
potential evapotranspiration, in which the decrease in near-surface 
land RH has a  contribution of about 35% in CMIP5 models under 
doubled CO2 forcing (Fu and Feng, 2014). The aridity can be further 
amplified by the feedbacks of projected drier soils on land surface 
temperature, RH, and precipitation (Berg et al., 2016).

The CMIP6 multi-model ensemble projects general decreases in 
near-surface relative humidity over a  large fraction of land areas, 
but moderate increases over the ocean (Figure 4.23). The projected 
changes depend on emissions scenario and season. Changes in 
near-surface RH under SSP1‑2.6 are insignificant compared to 
natural variability. Under SSP3‑7.0, during boreal summer, significant 
decreases relative to natural variability are projected in continental 
Europe and the Middle East, North America, South America and 
South Africa.

In summary, there is medium confidence that continued warming will 
lead to decreased near-surface relative humidity over a large fraction 
of land areas, but moderate increases over the ocean. There is high 
confidence that near-surface relative humidity will decrease over 
parts of the tropical and subtropical latitudes over land.

4.5.1.4	 Precipitation

The AR5 assessed that changes in mean precipitation in a warmer 
world will exhibit substantial spatial variation. Also, the contrast of 
mean precipitation between dry and wet regions and between dry 
and wet seasons will increase over most of globe as temperatures 
increase. The general pattern of change indicates that high latitude 
land masses are likely to experience greater amounts of precipitation 
due to the increased specific humidity of the warmer troposphere as 
well as increased transport of water vapour from the tropics by the 
end of this century under the RCP8.5 scenario. Many mid-latitude 
and subtropical arid and semi-arid regions will likely experience 
less precipitation, while many moist mid-latitude regions will likely 
experience more precipitation by the end of this century under the 
RCP8.5 scenario.

Since AR5, progress has been achieved in understanding changes 
in patterns and rates of precipitation with GSAT rise. The projected 
precipitation changes can be decomposed into a part that is related 
to atmospheric circulation referred to as dynamical component 
and a  part related to water vapour changes, the thermodynamic 
component. Based on process understanding and modelling (Fläschner 
et al., 2016; Samset et al., 2016), global mean precipitation will very 
likely increase by 1–3% per °C of GSAT warming (Section  8.2.1). 
The increase in atmospheric water vapour is a robust change under 
global warming, the sensitivity of global precipitation change to 
warming is smaller (2% per °C) as compared to water vapour change 
(7% per °C; Held and Soden, 2006). Global energy balance places 
a  strong constraint on the global mean precipitation (Allen and 
Ingram, 2002; Pendergrass and Hartmann, 2014; Myhre et al., 2018; 
Siler et  al.,  2019). Tropospheric radiative cooling constrains global 

precipitation (Pendergrass and Hartmann, 2014), leading to a slow 
SST-dependent response and a forcing-dependent rapid adjustment. 
Rapid adjustments account for large regional differences in 
hydrological sensitivity across multiple drivers (Samset et al., 2016; 
Myhre et  al., 2017). The rapid regional precipitation response to 
increased CO2 is robust across models, implying that the uncertainty 
in long-term changes is mainly associated with the response to 
SST-mediated feedbacks (Richardson et  al., 2016). Precipitation 
response to fast adjustments and slow temperature-driven responses 
are assessed in detail in Chapter 8 (Section 8.2.1).

The thermodynamic response to global warming is associated with 
a ‘wet get wetter’ mechanism, with enhanced moisture flux leading 
to subtropical dry regions getting drier and tropical and mid-latitude 
wet regions getting wetter (Held and Soden, 2006; Chou et al., 2009). 
Recent studies suggest that the dry-get-drier argument does not hold, 
especially over subtropical land regions (Greve et  al., 2014; Feng 
and Zhang, 2015; Greve and Seneviratne, 2015). The discrepancy 
may be partly arising due to differences in model climatologies 
and by change in the location of wet and dry regions (Polson and 
Hegerl, 2017). Over the 21st century, significant rate of precipitation 
change is associated with a spatial stabilization and intensification 
of moistening and drying patterns (Chavaillaz et  al., 2016). In the 
tropics, weakening of circulation leads to a ‘wet gets drier, dry gets 
wetter’ pattern (Chadwick et  al., 2013). Climate model agreement 
for precipitation change in the tropics is lower than for other regions 
(Knutti and Sedláček, 2013; McSweeney and Jones, 2013). Sources 
of inter-model uncertainty in regional rainfall projections arise from 
circulation changes (Kent et al., 2015; Chadwick, 2016) and spatial 
shifts in convection and convergence, associated with SST pattern 
change and land–sea thermal contrast change (Kent et  al., 2015; 
Chadwick et  al., 2017) with a  secondary contribution from the 
response to direct CO2 forcing (Chadwick, 2016). Factors governing 
changes in large-scale precipitation patterns are assessed in detail in 
Sections 8.2.2 and 10.4.1.

Long-term multi-model mean change in seasonal precipitation 
(JJA and DJF) from CMIP6 models (Figure  4.24) shows substantial 
regional differences and seasonal contrast. Changes in seasonal 
precipitation under SSP1‑2.6 are small compared to internal 
variability. Consistent with the AR5, patterns of precipitation 
change are very likely to increase in the high latitudes especially 
during local winter and over tropical oceans under SSP3‑7.0 (high 
confidence). CMIP6 projections show an increase in precipitation 
over larger parts of the monsoon regions and decreases in many 
subtropical regions including the Mediterranean, southern Africa 
and south-west Australia (medium confidence). The large-scale 
patterns of precipitation shown in Figure 4.24 are consistent with the 
patterns presented in Section 8.4.1.3. Precipitation changes exhibit 
strong seasonal characteristics (Box 8.2), and, in many regions, the 
sign of the precipitation changes varies with season. Precipitation 
variability is projected to increase over a majority of global land area, 
as assessed in Chapter 8 (Section 8.4.1.3.3), over a wide range of 
time scales in response to warming (Pendergrass et al., 2017).
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Most of the projected changes in precipitation exhibit a  sharp 
contrast between land and ocean (Sections 8.2.1 and 8.4.1). 
Temperature-driven intensification of land-mean precipitation during 
the 20th  century has been masked by fast precipitation responses 
to anthropogenic sulphate and volcanic forcing (Allen and Ingram, 
2002; Richardson et  al., 2018a). Based on the Precipitation Driver 
and Response Model Intercomparison Project (PDRMIP), land-mean 
precipitation is expected to increase more rapidly with the projected 
decrease in sulphate forcing and continued warming, contributing to 
increased global mean precipitation (Table 4.3) and will be clearly 
observable by the mid-21st  century based on RCP4.5 and RCP8.5 
scenarios (Richardson et al., 2018a).

Consistent with the findings of AR5, a  gradual increase in global 
mean precipitation is projected over the 21st  century with an 
increase of approximately 2.9% (1.0–5.2%) under SSP1‑2.6 and 4.7% 
(2.3–8.2%) under SSP3‑7.0 during 2081–2100 relative to 1995–2014. 

The corresponding increase in annual mean global land precipitation is 
3.3% (0–6.6%), in the SSP1‑2.6 and 5.8% (0.5–9.6%) in the SSP3‑7.0 
(Table  4.3). CMIP6 models show greater increases in precipitation 
over land than either globally or over the ocean (high confidence).

Based on the assessment of CMIP6 models, we conclude that it 
is very likely that, in the long term, global mean land and global 
mean ocean precipitation will increase with increasing GSAT. Annual 
mean and global mean precipitation will very likely increase by 
1–3% per  °C GSAT warming. The patterns of precipitation change 
will exhibit substantial regional differences and seasonal contrast as 
GSAT increases over the 21st century (high confidence). Precipitation 
will very likely increase over high latitudes and the tropical ocean 
and will likely increase in large parts of the monsoon regions. 
However, it is likely to decrease over the subtropics, including 
Mediterranean, southern Africa and south-west Australia, in response 
to GHG-induced warming.

Seasonal mean precipitation change
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Figure 4.24 | Long-term change of seasonal mean precipitation. Displayed are projected spatial patterns of multi-model mean change (%) in (top) December –January–
February (DJF) and (bottom) June–July–August (JJA) mean precipitation in 2081–2100 relative to 1995–2014, for (left) SSP1‑2.6 and (right) SSP3‑7.0. The number of models 
used is indicated in the top right of the maps. No map overlay indicates regions where the change is robust and likely emerges from internal variability, that is, where at 
least 66% of the models show a change greater than the internal-variability threshold (Section 4.2.6) and at least 80% of the models agree on the sign of change. Diagonal 
lines indicate regions with no change or no robust significant change, where fewer than 66% of the models show change greater than the internal-variability threshold. 
Crossed lines indicate areas of conflicting signals where at least 66% of the models show change greater than the internal-variability threshold but fewer than 80% of all 
models agree on the sign of change. Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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4.5.1.5	 Global Monsoon Precipitation and Circulation

The AR5 assessed changes of the global monsoon in the context 
of long-term trends across the 21st  century and the change by 
2081–2100. The AR5 showed growing evidence of improved skill 
of climate models in reproducing the climatological features of the 
global monsoon. Taken together with identified model agreement on 
future changes, the global monsoon precipitation, aggregated over all 
regional monsoon regions, is likely to strengthen in the 21st century 
with increases in its area and intensity, while the monsoon circulation 
weakens. In all RCP scenarios, the global monsoon area is very likely 
to increase, and the global monsoon precipitation intensity is likely to 
increase, resulting in a  very likely increase in the global monsoon 
total precipitation, by 2081–2100 (Kitoh et al., 2013).

Since AR5, there has been progress in understanding physical 
mechanisms for the projected changes in global monsoon and 
quantifying the sources of uncertainty in projections. The increase in 
global monsoon precipitation under warming is primarily attributed 
to the increase of moisture convergence, which comes mainly from 
the thermodynamic effect due to increasing atmospheric moisture 
but is partly offset by reduced convergence (W. Zhang et  al., 
2019; Chen et  al., 2020). The dynamic effect, such as monsoon 
circulation changes, dominates regional differences in the projected 
monsoon  precipitation  changes (Chen et  al., 2020). Specifically, 
NH monsoon precipitation will increase more strongly than its 
SH counterpart, due to an increase in hemispheric temperature 
difference between the NH and SH, enhancement of the Hadley 
circulation, and atmospheric moistening, countered by stabilization 
of the troposphere (Lee and Wang, 2014). The seasonality of 
global monsoon rainfall is projected to be enhanced in response to 
warming, featuring a greater wet–dry season contrast (Lee and Wang 
2014; Zhang et al. 2019). In addition, the interannual variability of 
global monsoon rainfall is projected to intensify mainly over land, 
with a strengthened relationship between global monsoon and ENSO 
(Hsu et al., 2013; Wang et al., 2020, 2021).

For the uncertainty in mean monsoon precipitation projections, the 
model uncertainty is the dominant contributor throughout the century 
and explains more than 70% of the inter-model variance during near 
term, mid-term, and long term. The contribution of internal variability 
is only important at the beginning in early decades, while scenario 
uncertainty becomes important at the end of the 21st  century. The 
sources of uncertainty for the mean and extreme monsoon precipitation 
mainly differ in the long-term projection, when the contribution of 
scenario uncertainty is comparable to the model uncertainty for extreme 
precipitation (Zhou et al., 2020). Although the magnitude of internal 
variability differs between CMIP5 models and single-model, initial-
condition large ensembles, the impact is only evident in the beginning 
decades. For the mid- and long term, the magnitude difference does not 
alter that model uncertainty is the dominant source of uncertainty in 
the projections of global land monsoon precipitation (Zhou et al., 2020).

Based on the projections of changes in precipitation from CMIP6 
under the four SSPs, the global monsoon precipitation is likely to 
strengthen in the 21st century with increases in its intensity, while 
NH summer monsoon circulation weakens (Figure 4.14). Global land 

monsoon precipitation will likely increase by 1.3–2.4% per °C GSAT 
warming among the four scenarios considered here. In the  long 
term, the multi-model mean change (5–95% range of the available 
41 projections) of global land monsoon precipitation index is 2.9% 
(–0.8  to +7.8%), 3.7% (–2.5 to +8.6%), 3.77% (–3.2  to  +8.1%), 
and 5.7% (–2.8 to +12.3%) under SSP1-2.6, SSP2-4.5, SSP3-7.0, and 
SSP5-8.5, respectively. This enhancement is caused by thermodynamic 
responses due to increased moisture, which is partly offset by 
dynamic responses due to a weakened circulation (Chen et al., 2020). 
The patterns of monsoon rainfall change in the mid- to long-term 
include a north–south asymmetry characterized by greater increase 
in the NH than the SH, and an East–West asymmetry characterized 
by enhanced Asian-African monsoons and weakened North American 
monsoon (medium confidence) (Lee and Wang, 2014; Mohtadi et al., 
2016; Pascale et al., 2017; Wang et al., 2021).

Based on the assessment of CMIP6 models, we conclude that it is likely 
that, in the mid- to long term, the global land monsoon precipitation 
will increase with GSAT rise despite a weakened monsoon circulation. 
The global land monsoon precipitation will likely increase by 1.3–2.4% 
per °C GSAT warming among the four scenarios. Monsoon precipitation 
responses depend on region and emissions scenario (high confidence).

4.5.1.6	 Sea Level Pressure, Large-scale Atmospheric 
Circulation, Storm Tracks and Blocking

This subsection provides a  global overview of long-term changes 
in atmospheric dynamical features that is complementary to the 
regional assessment of links to the hydrological cycle in Chapter 8 
(Section 8.4.2), and assessment of the connections to extreme events 
in Chapter 11 (Section 11.7.2).

4.5.1.6.1	 Sea level pressure

The AR5 assessed that mean sea level pressure is projected to decrease 
in high latitudes and to increase in mid-latitudes. Such a pattern is 
associated with a poleward shift in the storm track and an increase 
in the annular mode index. This broad pattern is also found in CMIP6 
models (Figure 4.25). Under SSP1‑2.6, the pattern in sea level pressure 
change resembles that for SSP3‑7.0, but the amplitudes are small 
compared to internal variability in 20-year means (Figure 4.25). One 
exception is found in the SH mid-latitudes, where pressure robustly 
increases in SSP3‑7.0 in both austral summer and winter, but shows 
no robust change in SSP1‑2.6. This is likely attributable to the larger 
GHG forcing in SSP3‑7.0 compared to SSP1‑2.6, which contributes 
to a poleward shift of the SH mid-latitude circulation and becomes 
relatively more important than the effect of ozone recovery which 
drives an equatorward shift in the circulation (see Section 4.5.3.1 on 
the Southern Annular Mode; Barnes and Polvani, 2013; Barnes et al., 
2014; Bracegirdle et al., 2020b). The poleward shift in SH mid-latitude 
circulation in SSP3‑7.0 likely contributes to the wetting trend at high 
southern latitudes (Figure 4.25).

As was found in AR5, several regional sea level pressure features 
stand out from the zonal-mean change. Sea level pressure markedly 
decreases in north-eastern North America and north-eastern Asia in 
boreal winter. In boreal summer, sea level pressure robustly decreases 
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in the Mediterranean and the Middle-East, a decrease that has been 
linked to a large-scale heat low forced by the amplified warming of 
the region (Haarsma et al., 2009). It is likely that sea level pressure 
will increase across the south-western North America and Central 
America in boreal summer under SSP3‑7.0 due to an intensification 
of the eastern North Pacific subtropical summer high (Li et al., 2012) 
and a weakening of the North American monsoon (Section 4.5.1.5; 
Pascale et al., 2017; Wang et al., 2020). These changes in circulation 
are connected to drying across the eastern subtropical Pacific and 
Central America regions (Figure 4.24).

4.5.1.6.2	 Zonal wind and westerly jets

Storm tracks and mid-latitude westerly jets are dynamically related 
aspects of mid-latitude circulation. The AR5 assessed that a poleward 
shift of the SH westerlies and storm track is likely by the end of the 
21st  century under RCP8.5 (medium confidence). In contrast, low 
confidence was assessed for the storm-track response in the NH.

Under both SSP1‑2.6 and SSP3‑7.0 there is a strengthening and lifting 
of the subtropical jets in both hemispheres (Figure 4.26), consistent 
with the response to large-scale tropospheric warming found in earlier 
generations of climate models (Collins et al., 2013). In the SH, GHG 
emissions tend to force a poleward shift of the jet, but this is opposed, 
particularly in austral summer, by the stratospheric ozone hole recovery 
(Barnes and Polvani, 2013; Barnes et  al., 2014; Bracegirdle et  al., 
2020b). Consistent with sea level pressure changes, CMIP6 models 
project a  strengthening and poleward shift of the SH jet in austral 
summer and winter under SSP3‑7.0, but smaller and non-robust 
changes in SH mid-latitude zonal winds under SSP1‑2.6 (Figure 4.26; 
see also Section 4.5.3.1). CMIP6 models show an improved simulation 
of the SH jet stream latitude (Bracegirdle et al., 2020a; Curtis et al., 
2020). This has been linked to a reduction in the projected poleward 
shift of the SH jet in austral summer compared to the CMIP5 models 
(Curtis et  al., 2020; Goyal et  al.,  2021), although differences in the 
pattern of SST response may also play a  role (Wood  et  al., 2020). 
In the NH extratropics, the changes in lower-tropospheric zonal-mean 
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Figure 4.25 | Long-term change of seasonal-mean sea level pressure. Displayed are projected spatial patterns of multi-model mean change in (top) December –January–
February (DJF) and (bottom) June–July–August (JJA) mean sea level pressure (hPa) in 2081–2100 relative to 1995–2014, for (left) SSP1‑2.6 and (right) SSP3‑7.0. The number 
of models used is indicated in the top right of the maps. No overlay indicates regions where the change is robust and likely emerges from internal variability, that is, where at 
least 66% of the models show a change greater than the internal-variability threshold (Section 4.2.6) and at least 80% of the models agree on the sign of change. Diagonal 
lines indicate regions with no change or no robust significant change, where fewer than 66% of the models show change greater than the internal-variability threshold. Crossed 
lines indicate areas of conflicting signals where at least 66% of the models show change greater than the internal-variability threshold but fewer than 80% of all models agree 
on the sign of change. Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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zonal winds by the end of the century are generally smaller than in the 
SH. In boreal winter, there is a weak poleward shift of the NH zonal-
mean westerly jet maximum in SSP3‑7.0.

CMIP5 and CMIP6 models show a  strong seasonal and regional 
dependence in the response to climate change of NH westerlies (Barnes 
and Polvani, 2013; Grise and Polvani, 2014b; Simpson et al., 2014; Zappa 
et al., 2015; Harvey et al., 2020; Oudar et al., 2020). CMIP5 projections 
indicate a  poleward shift of the westerlies in the North Atlantic in 

boreal summer, while the North Pacific jet weakens in this season 
(Simpson et al., 2014; Davini and D’Andrea, 2020; Harvey et al., 2020). 
There is a poleward shift in the westerlies in both the North Pacific and 
North Atlantic in Autumn (Barnes and Polvani, 2013; Simpson et al., 
2014). However, the shift of the westerlies is more uncertain in the 
other seasons, particularly in the North Atlantic in winter (Simpson 
et al., 2014; Zappa and Shepherd, 2017). Here, the circulation response 
is not well described as a simple shift, since the North Atlantic jet tends 
to be squeezed on both its equatorward and poleward flanks, together 
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Figure 4.26 | Long-term change of zonal-mean, zonal wind. Displayed are multi-model mean changes in (left) boreal winter (December –January–February, DJF) and 
(right) austral winter (June–July–August, JJA) zonal mean, zonal wind (m s–1) in 2081–2100 for (top) SSP1‑2.6 and (bottom) SSP3‑7.0 relative to 1995–2014. The 1995–2014 
climatology is shown in contours with spacing 10 m s–1. Diagonal lines indicate regions where less than 80% of the models agree on the sign of the change and no overlay 
where at least 80% of the models agree on the sign of the change. Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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with an eastward extension into Europe (Li et al., 2018; Peings et al., 
2018; Simpson et al., 2019a; Harvey et al., 2020; Oudar et al., 2020). 
Simulations indicate that most of the changes in winter storminess 
over the Euro-Atlantic region will occur only after exceeding the 1.5°C 
warming level (Barcikowska et al., 2018).

Progress since AR5 has improved understanding of the climate change 
aspects that can drive these different, and potentially opposite, 
responses in the mid-latitude jets and storm tracks. A poleward shift 
of the jets and storm tracks is expected in response to an increase 
in the atmospheric stratification and in the upper-tropospheric 
equator-to-pole meridional temperature gradient, while it is opposed 
by the decrease in the meridional temperature gradient in the 
lower troposphere associated with the polar amplification of global 
warming (Harvey et  al., 2014; Shaw et  al., 2016). Recent analyses 
have identified additional climate aspects that can drive mid-latitude 
jet changes, including patterns in sea surface warming (Mizuta 
et al., 2014; Langenbrunner et al., 2015; Ceppi et al., 2018; Wood et al., 
2020), land–sea warming contrast (Shaw and Voigt, 2015), loss of sea 
ice (Deser et al., 2015; Harvey et al., 2015; Screen et al., 2018b; Zappa 
et al., 2018), and changes in the strength of the stratospheric polar 
vortex (Manzini et al., 2014; Grise and Polvani, 2017; Simpson et al., 
2018; Ceppi and Shepherd, 2019). From an energetics perspective, 
the uncertainty in the response of the jet streams depends on the 
response of clouds, their non-spatially uniform radiative feedbacks 
shaping the meridional profile of warming (Ceppi et al., 2014; Voigt 
and Shaw, 2015, 2016; Ceppi and Hartmann, 2016; Ceppi and 
Shepherd, 2017; Lipat et  al., 2018; Albern et  al., 2019; Voigt et  al., 
2019). Climate models seem to underestimate the forced component 
of the year-to-year variability in the atmospheric circulation, 
particularly in the North Atlantic sector (Scaife and Smith, 2018), 
which suggests some relevant dynamical processes may not be well 
represented. Whether and how this may affect long-term projections 
is unknown. In conclusion, due to the influence from competing 
dynamical drivers and the absence of observational evidence, there 
is medium confidence in a projected poleward shift of the NH zonal-
mean low-level westerlies in autumn and summer and low confidence 
in the other seasons. There is also overall low confidence in projected 
regional changes in the NH low-level westerlies, particularly for the 
North Atlantic basin in boreal winter.

The anthropogenic forced signal in extratropical atmospheric circulation 
may well be small compared to internal variability (Deser et al., 2012b, 
2014) and, as assessed in AR5, there is generally low agreement across 
models in many aspects of regional atmospheric circulation change 
particularly in the NH (Shepherd, 2014). The latter means that, in some 
regions, a multi-model average perspective of atmospheric circulation 
change represents a  small residual after averaging over large 
intermodel spread. This is in strong contrast to thermodynamic aspects 
of climate change, such as surface temperature change, for which 
model results are generally highly consistent (see, e.g., Figure 4.19). 
Furthermore, models share systematic biases in some aspects of 
extratropical atmospheric circulation such as mid-latitude jets, which 
can have complex implications for understanding forced changes 
(Simpson and Polvani, 2016). Given these issues, an emerging field 
of research since AR5 has focused on the development of ‘storylines’ 
for regional atmospheric circulation change (Shepherd,  2019). 

The  storyline approach is grounded in the identification of a  set of 
physical predictors of atmospheric circulation change, such as those 
described above (Harvey et al., 2014; Manzini et al., 2014; Shepherd 
et al., 2018), which act together to determine a specific outcome in 
the projected atmospheric circulation change. The consequences 
of multi-model spread in the physical predictors of atmospheric 
circulation change can be investigated, conditioned on a  specified 
level of global warming (see also Section 1.4.4.2 and Box 10.2; Zappa 
and Shepherd, 2017; Zappa, 2019; Mindlin et al., 2020).

4.5.1.6.3	 Storm tracks

As stated in AR5, the number of extratropical cyclones (ETC) 
composing the storm tracks is projected to weakly decline in future 
projections, but by no more than a few percent change. The reduction 
is mostly located on the equatorward flank of the storm tracks, which 
is associated with the Hadley cell expansion and a poleward shift in 
the mean genesis latitude of ETCs (Tamarin-Brodsky and Kaspi, 2017). 
Furthermore, the poleward propagation of individual ETCs is expected 
to increase with warming (Graff and LaCasce, 2014; Tamarin-Brodsky 
and Kaspi, 2017), thus contributing to a  poleward shift in the 
mid-latitude transient-eddy kinetic energy. The increased poleward 
propagation results from the strengthening of the upper tropospheric 
jet and increased cyclone-associated precipitation (Tamarin-Brodsky 
and Kaspi, 2017), which are robust aspects of climate change.

In the NH boreal winter, CMIP6 models show a  northward shift 
of the ETC density in the North Pacific, a  tripolar pattern in the 
North Atlantic, and a  weakening of the Mediterranean storm 
track (Figure  4.27a). CMIP6 models show overall low agreement 
on changes in ETC density in the North Atlantic in boreal winter 
(Figure 4.27a). A poleward shift of the storm track is evident in the 
SH (Figure 4.27b), particularly in the Indian and Pacific Ocean sectors. 
CMIP6 models still feature long-standing biases in the representation 
of storm tracks; for example, the winter storm track into Europe is 
too zonal, though different measures of storm track activity indicate 
some improvements compared to the previous generations of models 
(Harvey et al., 2020; Priestley et al., 2020).

Regarding the dynamical intensity of the storm tracks (Section 11.7.2), 
the number of ETCs associated with intense surface wind speeds and 
undergoing explosive pressure deepening are projected to strongly 
decrease in the NH winter (Seiler and Zwiers, 2016; Chang, 2018). 
The weakening of surface winds of ETCs in the NH is attributed to 
the reduced low-level baroclinicity from SST and sea ice changes 
(Harvey et al., 2014; Seiler and Zwiers, 2016; J. Wang et al., 2017a). 
There are, however, regional exceptions such as in the northern North 
Pacific, where explosive and intense ETCs are projected to increase 
in association with the poleward shift of the jet and increased upper-
level baroclinicity (Seiler and Zwiers, 2016). Eddy kinetic energy 
and intense cyclone activity are also projected to decrease in the 
NH summer in association with a  weakening of the jet (Lehmann 
et al., 2014; Chang et al., 2016). However, explosive cyclones tend 
to be too weak in climate models (Seiler and Zwiers, 2016; Priestley 
et al., 2020), though this bias seems to be reduced in high-resolution 
simulations (Jiaxiang et al., 2020). Furthermore, models may not fully 
capture the contribution of the future increase in mesoscale latent 
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heating to cyclone intensification (Li et al., 2014; Pfahl et al., 2015; 
Willison et al., 2015; Michaelis et al., 2017). In conclusion, there is 
only medium confidence in the projected decrease in the frequency 
of intense NH ETCs.

In contrast to the Northern Hemisphere, the Southern Hemisphere 
shows an increase in the frequency of intense ETCs in CMIP5 models 
(Chang, 2017), and there is high confidence that wind speeds 
associated with ETCs are expected to intensify in the SH storm 
track for high emissions scenarios. These changes in intensity are 
accompanied by an overall southward shift of the SH winter storm 
track (Figure 4.27b) due to the poleward shift in the upper-level jet 
and the increase in the meridional SST gradient linked to the slower 
warming of the Southern Ocean (Grieger et al., 2014).

Regardless of dynamical intensity changes, there is high confidence 
that the number of ETCs associated with extreme precipitation 
is projected to increase with warming, due to the increased 
moisture-loading capacity of the atmosphere (Section 8.4.2; Yettella 
and Kay, 2017; Hawcroft et al., 2018). 

4.5.1.6.4	 Atmospheric blocking

Blocking is associated with a class of quasi-stationary, high-pressure 
weather systems in the middle and high latitudes that disrupt the 
prevailing westerly flow. These events can persist for extended 
periods, such as a week or longer, and can cause long-lived extreme 

weather conditions, from heat waves in summer to cold spells in 
winter (see Section 11.7.2 for a detailed discussion of these features 
and Section 3.3.3.3 for the assessment of blocking biases in models 
simulations). The AR5 assessed with medium confidence that the 
frequency of blocking would not increase under enhanced GHG 
concentrations, while changes in blocking intensity and persistence 
remained uncertain.

The CMIP5 projections suggest that the response of blocking 
frequency to climate change might be quite complex (Dunn-Sigouin 
et  al., 2013; Masato et  al., 2013). An eastward shift of winter 
blocking activity in the NH is indicated (Masato et al., 2013; Kitano 
and Yamada, 2016; Lee and Ahn, 2017; Matsueda and Endo, 2017) 
while during boreal summer, blocking frequency tends to decrease 
in mid-latitudes (Matsueda and Endo, 2017), with the exception of 
the eastern Europe–western Russia region (Masato et al., 2013). The 
projected decrease of blocking in boreal summer partially contrasts 
with the observed increase in Greenland blocking (Hanna et al., 2018; 
Davini and D’Andrea, 2020). However, as shown in Woollings et al. 
(2018), the spatial distribution and the magnitude of the suggested 
changes are sensitive to the blocking detection methods (Schwierz 
et al., 2004; Barriopedro et al., 2010; Davini et al., 2012). In the SH, 
blocking frequency is projected to decrease in the Pacific sector 
during austral spring and summer. However, seasonal and regional 
changes are not totally consistent across the models (Parsons et al., 
2016), and, as assessed in Section 3.3.3.3, model biases might affect 
their response.

Color High model agreement
Low model agreement

Figure 4.27 | Changes in extratropical storm track density. Displayed are projected spatial pattern of multi-model mean change of extratropical storm track density in 
winter (Northern Hemisphere December –January–Februrary, NH DJF, and Southern Hemisphere June–July–August, SH JJA) in 2080–2100 for SSP5‑8.5 relative to 1979–2014 
based on 13 CMIP6 models. Diagonal lines indicate regions where fewer than 80% of the models agree on the sign of the change and no overlay where at least 80% of the 
models agree on the sign of change. Units are number density per 5° spherical cap per month. Further details on data sources and processing are available in the chapter data 
table (Table 4.SM.1).
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To better understand the uncertainty in future blocking activity, 
a process-oriented approach has been proposed that aims to link 
blocking responses to different features of the global warming 
pattern. Upper-level tropical warming might be the key factor 
leading to a  reduced blocking, because of the strengthening 
of zonal winds (Kennedy et  al., 2016). The more controversial 
influence of near-surface Arctic warming might lead to an increased 
blocking frequency (Mori et  al., 2014; Francis and Vavrus, 2015) 
(see Chapter 10, Box 10.1).

Figure 4.28 shows a clear decrease in blocking activity over Greenland 
and North Pacific for SSP7.0 and SSP8.5. Models with the largest 
decrease in blocking frequency in boreal winter are those showing 
the smallest frequency bias during the historical period (Davini 
and D’Andrea, 2020). In conclusion, there is medium confidence 
that the  frequency of atmospheric blocking events over Greenland 
and the North Pacific will decrease in boreal winter in the SSP3‑7.0 
and SSP5‑8.5 scenarios.

4.5.2	 Ocean

4.5.2.1	 Ocean Temperature

Projections of long-term ocean thermal properties are assessed 
comprehensively in Chapter 9 (Sections 9.2.1.1 and 9.2.2.1) and are 
not covered here to avoid unnecessary overlap.

4.5.2.2	 Ocean Acidification

The model-simulated, long-term trend of ocean acidification is assessed 
in Section 4.3.2.5 and Chapter 5 (Section 5.3.4.1). It is virtually certain 
that surface ocean acidification will continue in response to the rise 
in atmospheric CO2, and continued penetration of anthropogenic 
CO2 from the surface to the deep ocean will acidify the ocean interior 
(Figure 4.29). By the end of this century, under SSP3‑7.0, a pH reduction 
of about 0.3 is found at a  few hundred metres depth of the global 
ocean, with stronger acidification in the interior North Atlantic and the 
mid- to high-latitude Southern Ocean. At a depth of about 1 km, a pH 
reduction of about 0.1 is found.

Projections with CMIP6 ESMs (Kwiatkowski et  al., 2020) show 
a surface pH decline of –0.16 ± 0.002 (±1 standard deviation) under 
SSP1‑2.6 and –0.44 ± 0.005 under SSP5‑8.5 from 1870–1899 to 
2080–2099. The high-latitude oceans, in particular the Arctic, show 
greater decline in pH and accelerated acidification (Terhaar et  al., 
2020). For the same period, model-projected bottom-water pH 
decline is –0.018 ± 0.001 under SSP1‑2.6 and –0.030 ± 0.002 under 
SSP5‑8.5. The projected large-scale surface ocean acidification will be 
primarily determined by the pathway of atmospheric CO2, with weak 
dependence on change in climate (high confidence) (Section 5.3.4.1; 
Hurd et  al., 2018). However, for a given atmospheric CO2 scenario, 
uncertainty in projected ocean acidification increases with ocean 
depth because of model-simulated differences in ocean circulation 
that transports anthropogenic CO2 from the surface to bottom ocean 
(high confidence) (Kwiatkowski et al., 2020). For example, projected 
surface pH fully separates between SSPs scenarios before 2050, but 
some overlap across SSPs is still found for projected bottom-water pH 
in 2080 (Kwiatkowski et al., 2020).
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(a) Central Europe
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(b) Greenland
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Figure 4.28 | Projected winter atmospheric blocking frequencies. Box plot showing December –March atmospheric blocking frequencies from historical simulations 
over 1995–2014 and projections over 2081–2100, over (a) the Central European region (20°W–20°E, 45°N–65°N); (b) the Greenland region (65°W–20°W, 62.5°N–72.5°N); 
(c) the North Pacific region (130°E–150°W, 60°N–75°N). Values show the percentage of blocked days per season following the (Davini et al., 2012) index. Median values are 
the thick black horizontal bar. The lower whiskers extend from the first quartile to the smallest value in the ensemble, and the upper whiskers extend from the third quartile 
to the largest value. The whiskers are limited to an upper bound that is 1.5 times the interquartile range (the distance between the third and first quartiles). Black dots show 
outliers from the whiskers. The numbers below each bar report the number of models included. Observationally-based values are obtained as the average of the ERA-Interim 
Reanalysis, the JRA-55 Reanalysis and the NCEP/NCAR Reanalysis. Adapted from Davini and D’Andrea (2020). Further details on data sources and processing are available in 
the chapter data table (Table 4.SM.1).
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4.5.3	 Modes of Variability

4.5.3.1	 Northern and Southern Annular Modes

4.5.3.1.1	 The Northern Annular Mode

The AR5 assessed from CMIP5 simulations that the future boreal 
wintertime NAM is very likely to exhibit natural variability and 
forced trends of similar magnitude to that observed in the historical 
period and is likely to become slightly more positive in the future. 
Considerable uncertainty is related to physical mechanisms to explain 
the observed and projected changes in the NAM, but NAM trends are 
clearly closely connected to projected shifts in the mid-latitude jets 
and storm tracks.

NAM projections from climate models analysed since AR5 reveal 
broadly similar results to the late 21st century. CMIP6 models show 
a  positive ensemble-mean trend in most seasons and the higher 
emissions scenarios that is comparable to between-model or between-
realization variability (Figure  4.30a). The NAM generally becomes 

more positive by the end of the century except in boreal summer (JJA) 
when there is no change in the NAM in these simulations. In boreal 
winter (DJF) under SSP5‑8.5, the central estimate is an increase in 
the NAM by almost 3 hPa in the long-term compared to 1995–2014. 
This can be compared to a multi-model mean interannual standard 
deviation in the winter NAM index of 3.4 hPa during the period 
1850–1900. We conclude with high confidence that in the mid- to 
long-term, the boreal wintertime surface NAM is more positive under 
SSP3‑7.0 and SSP5‑8.5, while under SSP1‑1.9 and SSP1‑2.6, the NAM 
does not show any robust change.

4.5.3.1.2	 The Southern Annular Mode

The AR5 assessed it is likely that the evolution of the SAM over the 
21st century will be primarily determined by the interplay between 
the effects of ozone recovery and changing GHG concentrations and 
influence the SAM in opposing ways. Owing to the relative effects 
of these two drivers, CMIP5 model SAM and Southern Hemisphere 
circulation projections differed markedly across forcing scenarios 
and across seasons (Barnes and Polvani, 2013; Barnes et al., 2014). 
CMIP5 models simulated a  weak negative SAM trend in austral 
summer for RCP4.5 by the end of the century (F. Zheng et al., 2013), 
while for RCP8.5 they simulated a weak positive SAM trend in austral 
summer (F. Zheng et al., 2013). A substantial fraction of the spread in 
CMIP5 projections of the end of century SH summer jet shift under 
RCP8.5 may be attributable to differences in the simulated change in 
break-up of the stratospheric polar vortex, with models that produce 
a later break-up date showing a larger summertime poleward jet shift 
(Ceppi and Shepherd, 2019). For RCP2.6, the effect of ozone recovery 
on the SAM has been found to dominate over that of GHGs in austral 
summer (Eyring et  al., 2013). In austral winter, the poleward shift 
of the SH circulation in CMIP5 models, and the associated increase 
in the SAM index, tends to be larger, on average, in higher forcing 
scenarios though with substantial inter-model spread (Barnes et al., 
2014). New research since the AR5 shows that the previous theory 
for the apparent relationship across models between the annual 
mean climatological SH jet position and the amplitude of forced SH 
jet shift (Kidston and Gerber, 2010) does not hold at seasonal time 
scales (Simpson and Polvani, 2016).

In most seasons, the SAM becomes more positive by the end of 
the century relative to 1995–2014 under SSP2‑4.5, SSP3‑7.0, and 
SSP5‑8.5 (Figure 4.30b). Conversely, under SSP1‑1.9 and SSP1‑2.6, 
in most seasons the SAM index does not show a  robust change 
compared to 1995–2014 except in austral summer when it becomes 
significantly more negative. The greatest change in the SAM occurs 
in austral winter, where CMIP6 models show an ensemble-mean 
increase in the SAM index of almost 5 hPa in SSP5‑8.5. This can be 
compared to a  multi-model mean interannual standard deviation 
in the austral winter SAM index of 4.0 hPa during 1850–1900. In 
conclusion, there is high confidence that in high emissions scenarios 
(SSP3‑7.0 and SSP5‑8.5) the SAM becomes more positive in all 
seasons, while in the lowest scenario (SSP1‑1.9) there is a  robust 
decrease in austral summer.

Color High model agreement
Low model agreement

Figure 4.29 | Long-term change of annual and zonal ocean pH. Displayed 
are multi-model mean change in annual and zonal ocean pH in 2081–2100 relative 
to the mean of 1995–2014 for SSP1‑2.6 and SSP3‑7.0, respectively. Eleven CMIP6 
model results are used. Diagonal lines indicate regions where fewer than 80% of 
the models agree on the sign of the change and no overlay where at least 80% of the 
models agree on the sign of change. Further details on data sources and processing 
are available in the chapter data table (Table 4.SM.1).
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4.5.3.2 El Niño–Southern Oscillation

The AR5 assessed that it is very likely that the El Niño–Southern 
Oscillation (ENSO) will remain the dominant mode of interannual 
variability in the future. Moreover, due to increased moisture 
availability, the associated precipitation variability on regional scales 
was assessed to likely intensify. An eastward shift in the patterns of 
temperature and precipitation variations in the North Pacifi c and North 
America related to El Niño and La Niña teleconnections was projected 
with medium confi dence. The stability of teleconnections to other 
regional implications including those in Central and South America, 
the Caribbean, parts of Africa, most of Asia, Australia and most Pacifi c 
Islands were assessed to be uncertain (Christensen et al., 2013).

There is no consensus on changes in amplitude of ENSO SST 
variability across CMIP iterations. The main factors driving the 
diversity of ENSO SST amplitude change in climate models are internal 
variability, SST-mean warming pattern, and model systematic biases. 
First, pronounced low-frequency modulations of ENSO exist even in 
unforced control simulations due to internal variability, which leads 
a large uncertainty in quantifying future ENSO changes (Wittenberg, 
2009; Vega-Westhoff and Sriver, 2017; Zheng et  al., 2018). Second, 
ENSO characteristics depend on the climate mean state of the tropical 
Pacifi c; however, ENSO can also infl uence the mean state through 
non-linear processes (Cai et al., 2015; Timmermann et al., 2018). The 
response of the tropical Pacifi c mean state to anthropogenic forcing 
is characterized by a  faster warming on the equator compared to 
the off-equatorial region, a faster warming of the eastern equatorial 
Pacifi c compared to the central tropical Pacifi c (e.g., El Niño-like mean 
SST warming, see Section  7.4.4.2), and a  weakening of the Walker 
circulation in most models. Those models with a El Niño-like warming 
tend to project a  strengthening of ENSO SST variability whereas 
models with a La Niña-like warming tend to project a weakening of 
variability (Zheng et al., 2016; Kohyama and Hartmann, 2017; J. Wang 
et  al., 2017b; Cai et  al., 2018a; Fredriksen et  al., 2020). Third, how 
to take model biases into account leads to different ENSO changes. 
Kim et  al. (2014) suggested that a  subset of CMIP5 models that 

simulate linear ENSO stability realistically exhibit a  decrease in 
ENSO amplitude by the second half of the 21st century. However, an 
increase of ENSO SST variability has been projected when considering 
biases in ENSO pattern simulation by different models (Zheng et al., 
2016; Cai et al., 2018a). This highlights the importance of constraining 
tropical Pacifi c mean state changes in order to enhance confi dence in 
the projected response of ENSO.

There is also no robust consensus on changes in ENSO diversity. 
Several studies suggest that an increase in Eastern Pacifi c (EP)-ENSO 
events tends to be projected particularly in the models with an 
El Niño-like warming (Zheng et al., 2016; Cai et al., 2018a; Fredriksen 
et al., 2020). However, Freund et al. (2020) suggested that models 
with a  El Niño-like mean warming show a  tendency toward more 
Central Pacifi c (CP) events but fewer EP events compared to models 
with an La Niña-like warming in both CMIP5 and CMIP6 models.

Even though there is low agreement in simulated changes in ENSO 
SST variability, the majority of models project an increase in 
amplitude of ENSO rainfall variability attributable to the increase 
in mean SST and moisture in CMIP5 (Power et al., 2013; Watanabe 
et  al., 2014; Huang and Xie, 2015) and CMIP6 (Yun et  al., 2021). 
It is likely that extreme El Niño events, accompanied by the eastern 
equatorial Pacifi c rainfall exceeding the 5 mm day–1 rainfall threshold, 
will increase in intensity (Cai et  al., 2014a, 2017). However, it has 
also been suggested that historical model biases over the equatorial 
Pacifi c cold tongue in CMIP5 may lead to the greater precipitation 
mean change and amplifi cation of extreme ENSO-associated rainfall 
in CMIP5 (Stevenson et al., 2021).

There is limited intermodel agreement on future changes in ENSO 
teleconnections largely depending on changes in the mean state and 
changes in ENSO properties (Yeh et al., 2018). Many CMIP5 and CMIP6 
models project that the centres of the extratropical teleconnection over 
North Pacifi c and North America will shift eastward in association with 
an eastward shift in tropical convective anomalies (Yeh et al., 2018; 
Fredriksen et al., 2020). There is an indication that tropical cyclones 
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Figure 4.30 | CMIP6 Annular Mode index change from 1995–2014 to 2081–2100. (a) Northern Annular Mode (NAM) and (b) Southern Annular Mode (SAM). 
The NAM is defi ned as the difference in zonal mean SLP at 35°N and 65°N (Li and Wang, 2003) and the SAM as the difference in zonal mean SLP at 40°S and 65°S (Gong and 
Wang, 1999). The shadings are the 5–95% ranges across the simulations. The numbers near the top are the numbers of model simulations in each SSP ensemble. Further details 
on data sources and processing are available in the chapter data table (Table 4.SM.1).
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will become more frequent during future El Niño events (and less 
frequent during future La Niña events) by the end of the 21st century 
(Chand et  al., 2017), thus contributing to the projected increase in 
ENSO-associated hydro-climate impacts.

While CMIP6 models show no robust change in ENSO SST amplitude 
in the mid- and long-term period across all four SSPs, a  robust 
increase in ENSO rainfall amplitude is found particularly in SSP2‑4.5, 
SSP3‑7.0, and SSP5‑8.5 (Figure 4.10). The changes in ENSO rainfall 
amplitude in the long-term future (2081–2100) relative to the recent 
past (1995–2014) are statistically significant at the 95% confidence.

To conclude, the forced change in ENSO SST variability is highly 
uncertain in CMIP5 and CMIP6 models (medium confidence). However, 
it is very likely that ENSO-related rainfall variability will increase 
significantly regardless of ENSO amplitude changes in the mid- and 
long-term future. It is likely that the pattern of ENSO teleconnection 
over the North Pacific and North America will shift eastward.

4.5.3.3	 Indian Ocean Basin and Dipole Modes

In the mid- to long-term, projected climate mean state changes in the 
tropical Indian Ocean are expected to resemble a positive IOD state, 
with faster warming in the west compared to the east (Cai et al., 2013; 
X.-T. Zheng et al., 2013). However, it was argued that this projected 
mean state change could be due to the large mean state biases in 
the simulated current climate and potentially not a realistic outcome 
(G. Li et al., 2016). Mean state biases also lead to lack of consensus 
on projected equatorial Indian Ocean SST variability and equatorial 
modes of climate variability independent of the IOD (DiNezio et al., 
2020). If mean state change will indeed resemble a  positive IOD 
state, however, this would lead to a  reduction in the amplitude 
difference between positive and negative IOD events, but with no 
robust change in IOD frequency (Cai et al., 2013). For a small subset 
of CMIP5 models that simulate IOD events best, a  slight increase 
in IOD frequency was found under the CMIP5 RCP4.5 scenario 
(Chu et al., 2014).

However, it was also found that the frequency of extreme positive 
IOD events, which exhibit the largest climate impacts, might increase 
by a  factor of about three under the CMIP5 RCP8.5 scenario 
(Cai et al., 2014b). Partially consistent with the above result, a more 
recent study by Cai et al. (2021), based on CMIP5 RCP8.5 and CMIP6 
SSP5‑8.5 simulations, shows a  robust increased SST variability of 
large positive IOD events, but a  decreased variability of moderate 
IOD events. An approximate doubling of these extreme positive IOD 
events was still found for global warming of 1.5°C warming above 
pre-industrial levels, without a  projected decline thereafter (Cai 
et al., 2018b). These results depend, however, on the realism of the 
projected mean state change in the Indian Ocean (G. Li et al., 2016).

To conclude, the forced change in IOD in mid- and long-term 
future remains uncertain due to limited lines of evidence and its 
dependence on model mean biases. However, there is low confidence 
that the frequency of extreme positive IOD events will increase under 
the high-emissions scenario of SSP5‑8.5.

4.5.3.4	 Tropical Atlantic Modes

The AR5 assessed that there is low confidence in projected changes 
of the Tropical Atlantic Variability (TAV) because of the general failure 
of climate models to simulate main aspects of this variability such 
as the northward displaced ITCZ. The models that best represent the 
Atlantic meridional mode (AMM) show a weakening for future climate 
conditions. However, model biases in representation of Altantic Niños 
strongly limit an assessment of future changes.

Long-term changes in TAVs and associated teleconnections are 
expected as a result of global warming, but large uncertainties exist 
due to the models’ systematic underestimation of the connection 
between PDV and Indo-Pacific SST variations (Lübbecke et al., 2018; 
Cai et al., 2019). Observational analyses show large discrepancies in 
SST and trade wind strength (Servain et al., 2014; Mohino and Losada, 
2015). Single-model sensitivity experiments show that Atlantic Niño 
characteristics at the end of 21st  century remain consistent with 
those of the 20th century, though changes in the climatological SSTs 
can lead to changes in the associated teleconnections (Mohino and 
Losada, 2015).

The weakening of the AMOC expected from global warming 
(see  Section  4.3.2.3) has been suggested to have an influence on 
the mean background state of tropical-Atlantic surface conditions, 
thereby enhancing equatorial Atlantic variability and resulting in 
a stronger tropical Atlantic–ENSO teleconnection (see Section 3.7.5 
for a detailed discussion; Svendsen et al., 2014). A recent multi-model 
study, based on CMIP5, concluded that the TAV-Pacific teleconnection 
will weaken under global warming due to the increased thermal 
stability of the atmosphere (F. Jia et al., 2019). However, there is still 
a clear lack of model studies, and hence no robust evidence on the 
long-term evolution of TAV and associated teleconnections.

4.5.3.5	 Pacific Decadal Variability

The AR5 assessed that there is low confidence in projections of 
future changes in Pacific decadal variability (PDV) due to the inability 
of CMIP5 models to represent the connection between PDV and 
Indo-Pacific SST variations. Because the PDV appears to encompass 
the combined effects of different dynamical processes operating 
at different time scales, representation of PDV in climate models 
remains a challenge (Section 3.7.6) and its long-term evolution under 
climate change uncertain.

In addition to uncertainty from the future evolution of the mechanisms 
that determined the PDV, it is also unclear how the background state 
in the Pacific Ocean will change due to time-varying radiative forcing, 
and how this change will interact with variability at interannual and 
low-frequency time scales (Fedorov et  al., 2020). Recent research 
suggests that the PDV will have a  weaker amplitude and higher 
frequency with global warming (Zhang and Delworth, 2016; Xu and 
Hu, 2017; Geng et al., 2019). The former appears to be associated 
with a decrease in SST variability and the meridional gradient over 
the Kuroshio-Oyashio region, with a reduction in North Pacific wind 
stress and meandering of the subpolar/subtropical gyre interplay 
(Zhang and Delworth, 2016). The latter is hypothesized to rely on 
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the enhanced ocean stratification and shallower mixed layers of 
a  warmer climate, which would increase the phase speed of the 
westward-propagating oceanic waves, hence shortening the decadal 
to inter-decadal component (Goodman and Marshall, 1999; Zhang 
and Delworth, 2016; Xu and Hu, 2017). The weakening of the PDV 
in a  warmer climate may reduce the internal variability of global 
mean surface temperature, to which PDV seems associated (Zhang 
et al., 1997; Kosaka and Xie, 2016; Geng et al., 2019). Thus, a weaker 
and higher frequency PDV could reduce the contribution of internal 
variability to the GSAT trend and eventually lead to a  reduced 
probability of surface-warming hiatus events.

In summary, based on CMIP5, there is medium confidence that 
a weaker and higher frequency PDV is expected under global warming.

4.5.3.6	 Atlantic Multi-decadal Variability

Based on paleoclimate reconstructions and model simulations, AR5 
assessed that AMV is unlikely to change its behaviour in the future. 
However, AMV fluctuations over the coming decades are likely 
to influence regional climate, enhancing or offsetting some of the 
effects of global warming.

Recent proxy-derived reconstructions of AMV-related signals show 
persistent multi-decadal variability over the last three centuries 
(Kilbourne et al., 2014; Svendsen et al., 2014; Moore et al., 2017), 
up to the last millennium (Chylek et  al., 2011; Zhou et  al., 2016; 
J. Wang et  al., 2017b) and beyond (Knudsen et  al., 2011). This 
implies that in the past AMV properties were little affected by large 
climatic excursions.

AMV long-term changes under future warming scenarios have so 
far scarcely been investigated. A  study on the CMIP5 multi-model 
simulations under RCP8.5 scenario by (Villamayor et al., 2018) found 
no substantial differences in the simulated SST patterns (and  in 
the related tropical rainfall response) when RCP8.5, historical and 
piControl simulations are compared. Such results suggest that the 
AMV is not expected to change under global warming. A  more 
recent single-model large ensemble study (Hand et al., 2020) shows 
a  pronounced change in the AMV pattern under global warming 
linked to a strong reduction of the mean AMOC and its variability. 
However, since a  superposition of multiple processes controls the 
AMV, as extensively discussed in Annex IV (Section AIV.2.7), in 
Chapter  3 (Section  3.7.7), and in Chapter  9 (Section  9.2.3.1), the 
length of the RCP8.5 simulations might be not sufficient to properly 
evaluate the respective weight and interplay of internal components 
and influences from external forcing on AMV projections.

In conclusion, on the basis of paleoclimate reconstructions and 
CMIP5 model simulations, there is low confidence that the AMV 
is not expected to change in the future.

4.6	 Implications of Climate Policy

4.6.1	 Patterns of Climate Change for Specific Levels 
of Global Warming

This subsection provides an assessment of changes in climate 
at 1.5°C, 2°C, 3°C, and 4°C of global warming relative to the 
period 1850–1900 (Section  1.6.2), in particular a  discussion of 
the regional patterns of change in temperature (Section  4.6.1.1), 
precipitation (Section 4.6.1.2), and aspects of atmospheric circulation 
(Section  4.6.1.3). An assessment of changes in extreme weather 
events as a function of different levels of global warming is provided 
in Chapter  11, while corresponding analyses of regional climate 
change are provided in Chapter  12 and in the Atlas. This section 
builds upon assessments from AR5 (Bindoff et al., 2013; Christensen 
et al., 2013; Collins et al., 2013; Hartmann et al., 2013) and SR1.5 
(SR1.5; Hoegh-Guldberg et  al., 2018), as well as new literature 
related to projections of climate at 1.5°C, 2°C, and higher levels of 
global warming above pre-industrial levels.

Several methodologies have been applied to estimate the spatial 
patterns of climate change associated with a given level of global 
warming. These include performing model simulations under 
stabilisation scenarios designed to achieve a  specific level of 
global warming, the analysis of epochs identified within transient 
simulations that systematically exceed different thresholds of global 
warming (e.g., Mitchell et al., 2017; Dosio et al., 2018; Hoegh-Guldberg 
et al., 2018; Kjellström et al., 2018), and analysis based on statistical 
methodologies that include empirical scaling relationships (ESR; 
Schleussner et al., 2017; Dosio and Fischer, 2018; Seneviratne et al., 
2018) and statistical pattern scaling (e.g., Kharin et al., 2018). These 
different methodologies are assessed in some detail in Section 4.2.4 
(James et  al., 2017) and generally provide qualitatively consistent 
results regarding changes in the spatial patterns of temperature and 
rainfall means and extremes (see Chapter 11) at different levels of 
global warming.

In this subsection, we present the projected patterns of climate change 
obtained following the epoch approach (also called the time-shift 
method, see Section 4.2.4) under the Tier 1 SSPs (SSP1‑2.6, SSP2‑4.5, 
SSP3‑7.0 and SSP5‑8.5). For each model simulation considered under 
each of these SSPs, 20-year moving averages of the global average 
atmospheric surface temperature are first constructed, then this time 
series is used to detect the first year during when GSAT exceeds the 
1.5°C, 2°C, 3°C and 4°C thresholds with respect to the 1850–1900 
(Cross-Chapter Box  11.1). The temperature thresholds are not 
exceeded in all the model simulations across the Tier 1 SSPs. That 
is, decreasing numbers of simulations are available for the analysis 
of patterns of change as the temperature threshold increases. For 
each simulation within which a  given temperature threshold is 
exceeded, a 20-year global climatology is subsequently constructed 
to represent that level of global warming, centred on the year for 
which the threshold was first exceeded. The composite of all such 
climatologies across the Tier 1 SSPs and model simulations constitute 
the spatial patterns of change for a  given temperature threshold. 
Some of the complexities of scaling patterns of climate change with 
different levels of global warming are also discussed in the following 
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sections. These include overshoot versus stabilization scenarios and 
limitations of pattern scaling for strong mitigation and stabilization 
scenarios (Tebaldi and Arblaster, 2014). At least for the case of annual 
mean temperature and precipitation, strong evidence exists that even 
for strong mitigation and stabilization scenarios, patterns of change 
at lower levels of warming scale similarly to those reconstructed 
from transient simulations using either standard pattern-correlation 
or time-shift methodologies (Tebaldi and Knutti, 2018).

Pattern scaling performance based on scenario experiments is 
generally better for near-surface temperature than for precipitation 
(Ishizaki et  al., 2013). For precipitation, rapid adjustments due to 
different forcing agents must be accounted for (Richardson et  al., 
2016). Possible non-linear responses to different forcing levels are 
also important (Good et  al., 2015, 2016). Pattern scaling does not 
work as well at high forcing levels (Osborn et al., 2018). It is also 
important to distinguish the forced response from internal variability 
when comparing similar warming levels (Suárez-Gutiérrez et  al., 
2018). The purpose of this section is not to repeat the analysis for 
all the variables considered in Sections 4.4 and 4.5, but rather to 
show a selected number of key variables that are important from the 
perspective of understanding the response of the physical climate 
system to different levels of warming.

4.6.1.1	 Temperature

Global warming of 1.5°C implies higher mean temperatures 
compared to 1850–1900, with generally higher warming over land 
compared to ocean areas (virtually certain) and larger warming in 
high latitudes compared to low latitudes (Figure 4.31). In addition, 
global warming of 2°C versus 1.5°C results in robust increases in 
the mean temperatures in almost all locations, both on land and 
in the ocean (virtually certain), with subsequent further warming 
at almost all locations at higher levels of global warming (virtually 
certain) (Hoegh-Guldberg et al., 2018). For each particular level of 
global warming, relatively larger mean warming is projected for land 
regions (virtually certain) (see Figure 4.31; Christensen et al., 2013; 
Collins et al., 2013; Seneviratne et al., 2016). The projected changes 
at 1.5°C and 2°C global warming are consistent with observed 
historical global trends in temperature and their attribution to 
anthropogenic forcing (Chapter 3), as well as with observed changes 
under the recent global warming of 0.5°C (Schleussner et al., 2017; 
Hoegh-Guldberg et al., 2018). That is, spatial patterns of temperature 
changes associated with the 0.5°C difference in GMST warming 
between 1991–2010 and 1960–1979 (Schleussner et  al., 2017; 
Hoegh-Guldberg et al., 2018) are consistent with projected changes 
under 1.5°C and 2°C of global warming.

The largest increase in annual mean temperature is found in the 
high latitudes of the Northern Hemisphere across all levels of 
global warming (virtually certain) (Figure  4.31). This phenomenon 
peaks in the Arctic and is known as Arctic amplification, with the 
underlying physical mechanisms assessed in detail in Section 4.5.1 
and Chapter  7 (Section  7.4.4.1). For the CMIP6 ensemble average 
considered here, Arctic annual mean temperatures warm by a factor 
of 2.3, 2.5, 2.4 and 2.4 for 1.5°C, 2°C, 3°C and 4°C of global warming, 
respectively. That is, Arctic warming scales approximately linearly 
with GSAT. Generally, when Arctic amplification is considered across 
individual models, warming occurs at a factor of two to four times the 
global level of warming. It is unlikely that warming in the Southern 
Hemisphere high latitudes in the 21st century will exceed the change 
in GSAT, or that it will substantially exceed warming in the tropics, 
for GSAT change ranging between 1.5°C and 4°C (Figure 4.31 and 
Table  4.2). Correspondingly, there is low confidence of Antarctic 
amplification occurring under transient, 21st century low mitigation 
scenarios (Table 4.2 and Section 7.4.4.1). The Antarctic continent is 
projected to warm at a higher rate than the mid-latitude Southern 
Ocean, however, at all levels of global warming (Figure  4.31). 
The relevant physical mechanisms that reduce the amplitude of polar 
amplification over Antarctica compared to the Arctic are assessed in 
detail in Section 4.5.1 and Chapter 7 (Section 7.4.4.1). In the Southern 
Hemisphere the strongest warming over land is to occur, at any given 
level of global warming, over the subtropical areas of South America, 
southern Africa and Australia (high confidence). The relatively 
strong warming in subtropical southern Africa may be attributed to 
strong soil-moisture–temperature coupling and projected increased 
dryness under enhanced subsidence (Engelbrecht et al., 2015; Vogel 
et  al., 2017). Across the globe, in the tropics, subtropics, and mid- 
to high latitudes, temperatures tend to scale linearly with the level 
of increase in GSAT and patterns of change are largely scenario 
independent (high confidence).
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Figure 4.31 | Projected spatial patterns of change in annual average near-surface temperature (°C) at different levels of global warming. Displayed are 
(a–d) spatial patterns of change in annual average near-surface temperature at 1.5°C, 2°C, 3°C, and 4°C of global warming relative to the period 1850–1900 and (e–g) spatial 
patterns of differences in temperature change at 2°C, 3°C, and 4°C of global warming compared to 1.5°C of global warming. The number of models used is indicated in the top 
right of the maps. No overlay indicates regions where the change is robust and likely emerges from internal variability. That is, where at least 66% of the models show a change 
greater than the internal-variability threshold (Section 4.2.6) and at least 80% of the models agree on the sign of change. Diagonal lines indicate regions with no change or no 
robust significant change, where fewer than 66% of the models show change greater than the internal-variability threshold. Crossed lines indicate areas of conflicting signals 
where at least 66% of the models show change greater than the internal-variability threshold but fewer than 80% of all models agree on the sign of change. Values were 
assessed from a 20-year period at a given warming level, based on model simulations under the Tier-1 SSPs of CMIP6. Further details on data sources and processing are 
available in the chapter data table (Table 4.SM.1).
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4.6.1.2	 Precipitation

While global mean precipitation increases as GSAT rises with the 
very likely range of 1–3% per 1°C (high confidence) (Sections 8.2.1 
and 8.4.1), patterns of precipitation change do not scale as 
linearly with GSAT increase. Nevertheless, common features of 
precipitation change in the multi-model mean across scenarios 
still exist for different levels of global warming (Figure  4.32). 
Precipitation will very likely increase in the high latitudes and 
over tropical regions, and will likely increase in large parts of the 
monsoon region, but are likely to decrease over the subtropical 
regions, including the Mediterranean, southern Africa, parts of 
Australia and South America at all four levels of global warming. 
The increases and decreases in precipitation will amplify at higher 
levels of global warming (high confidence) (Figure 4.32). Changes 
in extreme precipitation events under different levels of global 
warming are assessed in Chapter 11.

The SR1.5 stated low confidence regarding changes in global 
monsoons at 1.5°C versus 2°C of global warming, as well as 
differences in monsoon responses at 1.5°C versus 2°C. Generally, 
statistically significant changes in regional annual average 
precipitation are expected at a global mean warming of 2.5°C–3°C 
or more (Tebaldi et  al., 2015). Over the austral-winter rainfall 
regions of south-western South America, South Africa and Australia, 
projected decreases in mean annual rainfall show high agreement 
across models and a  strong climate change signal even under 
1.5°C of global warming, with further amplification of the signal 
at higher levels of global warming (high confidence) (Mindlin et al., 
2020). This is a signal evident in observed rainfall trends over these 
regions (Sections 2.3.1.3 and 8.3.1.6 ). Also, over the Asian monsoon 
regions,  increases in rainfall will occur at 1.5°C and 2°C of global 
warming (Chevuturi et  al., 2018). At warming levels of 1.5°C and 
2°C, the changes in global monsoons are strongly dependent on 
the modelling strategies used, such as fully coupled transient, fully 
coupled quasi-equilibrium, and atmosphere-only quasi-equilibrium 
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(a) Change at 1.5°C global warming

(c) Change at 3°C global warming
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Figure 4.32 | Projected spatial patterns of change in annual average precipitation (expressed as a percentage change) at different levels of global 
warming. Displayed are (a–d) spatial patterns of change in annual precipitation at 1.5°C, 2°C, 3°C, and 4°C of global warming relative to the period 1850–1900. No map 
overlay indicates regions where the change is robust and likely emerges from internal variability, that is, where at least 66% of the models show a change greater than the 
internal-variability threshold (Section 4.2.6) and at least 80% of the models agree on the sign of change. Diagonal lines indicate regions with no change or no robust significant 
change, where fewer than 66% of the models show change greater than the internal-variability threshold. Crossed lines indicate areas of conflicting signals where at least 
66% of the models show change greater than the internal-variability threshold but fewer than 80% of all models agree on the sign of change. Values were assessed from 
a 20-year period at a given warming level, based on model simulations under the Tier-1 SSPs of CMIP6. Further details on data sources and processing are available in the 
chapter data table (Table 4.SM.1).
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simulations. In particular, the differences of regional monsoon 
changes among model setups are dominated by strategy choices 
such as transient versus quasi-equilibrium set-up, prescription of SST, 
and treatment of aerosols (Zhang and Zhou, 2021).

The global and land area fractions with significant precipitation 
changes with global warming are shown in Figure 4.33. It is virtually 
certain that average warming will be higher over land. As warming 
increases, a  larger global and land area will experience statistically 
significant increases or decreases in precipitation (medium confidence). 
The increase of the area fraction with significant precipitation increase 
is larger over land than over the ocean, but the increase of the area 
fraction with significant precipitation decrease is larger over the ocean 

than over land (Figure 4.33). Precipitation variability in most climate 
models increases over the global land area in response to warming 
(Pendergrass et al., 2017).

In summary, based on the assessment of CMIP6 models, there is high 
confidence that global mean precipitation will increase with increase 
in global mean surface temperature. Precipitation will very likely 
increase in the high latitudes and over tropical regions, likely increase 
in large parts of the monsoon region, but will likely decrease over 
the subtropical regions. There is high confidence that increases and 
decreases in precipitation will amplify over higher levels of global 
warming. As warming increases, there is medium confidence that 
a larger land area will experience statistically significant increases or 
decreases in precipitation.

4.6.1.3	 Atmospheric Circulation

The AR5 reported that the application of pattern scaling to extract 
information on variables other than surface temperature and 
precipitation was relatively unexplored. Since AR5, new studies 
have examined the relationship between projections of mid-latitude 
atmospheric circulation and GSAT both in terms of interpreting spread 
in responses across the CMIP5 multi-model ensemble (Grise and 
Polvani, 2014a, 2016) and to investigate variations in the circulation 
response as a  function of GSAT change over time within a  given 
forcing experiment (Grise and Polvani, 2017; Ceppi et al., 2018).

At a  fixed time horizon, the CMIP5 multi-model spread in GSAT 
explains only a small fraction of the spread in the shift of the Northern 
Hemisphere mid-latitude circulation due to an abrupt quadrupling in 
CO2 (Grise and Polvani, 2016). The fraction of model spread explained 
by GSAT in the shift of the Southern Hemisphere circulation is larger, 
but still fairly small (Grise and Polvani, 2014a, 2016). At a fixed time 
horizon and for a  given emissions scenario, CMIP5 multi-model 
spread in storm track shifts, and the closely related mid-latitude jets, 
can be better explained by multi-model spread in lower and upper 
level meridional temperature gradients than by GSAT (Harvey et al., 
2014; Grise and Polvani, 2016).

In the North Atlantic, North Pacific, and Southern Hemisphere, 
the transient response of the mid-latitude jets to forcing behaves 
non-linearly with GSAT (Grise and Polvani, 2017; Ceppi et al., 2018). 
This is a  consequence of the time-dependence of the relationship 
between radiative forcing and GSAT and the temporal evolution of 
SST patterns (Ceppi et al., 2018), with a potential seasonal component 
in the SH associated with polar stratospheric temperature changes 
(Grise and Polvani, 2017). Consequently, the epoch approach applied 
to a  transient simulation of the 21st  century will overestimate the 
mid-latitude circulation response in a  stabilized climate. Dedicated 
time slice experiments simulating stabilized climates are therefore 
required to assess differences in mid-latitude circulation at given 
levels of global warming (Li et al., 2018). A further complication in 
the SH is the competing influences of ozone recovery and increasing 
GHG concentrations on the austral-summer mid-latitude circulation 
during the first half the 21st  century (Barnes and Polvani, 2013; 
Barnes et  al., 2014). Using transient 21st  century experiments to 
diagnose changes in SH mid-latitude circulation at different levels 
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Figure  4.33 | Area fraction of significant precipitation change at 1.5°C, 
2°C, 3°C, and 4°C of global warming. Range of land fraction (top) and global 
area fraction (bottom) with significant precipitation increase (left-hand side) and 
decrease (right-hand side) in the projected annual precipitation change (%) at 
levels of global warming compared to the period 1850–1900. Values were assessed 
from a 20-year period at a given warming level from SSP1‑2.6, SSP3‑7.0 and SSP5‑8.5 
in CMIP6. The solid line illustrates the CMIP6-multi model mean and the shaded band 
is the 5–95% range across models that reach a given level of warming. Further details 
on data sources and processing are available in the chapter data table (Table 4.SM.1).
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of warming therefore confounds the effects of ozone recovery and 
GHG increases (Ceppi et al., 2018). Given these various limitations, 
we do not apply epoch analysis to assess mid-latitude atmospheric 
circulation changes and related annular modes of variability.

4.6.2 Climate Goals, Overshoot, and Path-Dependence

Many scenarios aiming at limiting warming by 2100 to 1.5°C involve 
overshoot – ERF temporarily exceeds a certain level before peaking 
a nd declining again (Annex VII: Glossary). To quantify the implications 
of any such overshoot, this subsection assesses reversibility of 
climate due to temporary overshoot of GSAT levels during the 
21st century, and implications for the use of carbon budgets. It also 
assesses differences in climate outcomes under different pathways, 
with a  focus on comparing the SSPs used in CMIP6 with the RCPs 
used in CMIP5.

4.6.2.1 Climate Change Under Overshoot

The SR1.5 (IPCC, 2018b) concluded with high confi dence that 
overshoot trajectories ‘result in higher impacts and associated 
challenges compared to pathways that limit global warming to 
1.5°C with no or limited overshoot’. The degree and duration of 
overshoot affects the risks and impacts likely to be experienced 
(Hoegh-Guldberg et al., 2018) and the emissions pathway required to 
achieve it (Akimoto et al., 2018). Consequences relating to ice sheets 
and climatic extremes have been found to be greater at 2°C of global 
warming than at 1.5°C (Schleussner et  al., 2016; Hoegh-Guldberg 
et al., 2018) but even on recovery to lower temperatures, these effects 
may not reverse. Overshoot has been found to lead to irreversible 
changes in thermosteric sea level (Tokarska and Zickfeld, 2015; Palter 
et al., 2018; Tachiiri et al., 2019), AMOC (Palter et al., 2018), ice sh eets, 
and permafrost carbon (Sections 4.7.2 and 5.4.9) and to long-lasting 
effects on ocean heat (Tsutsui et  al., 2006). Abrupt changes and 

CO2 (ppm) CO2 (ppm)

Figure 4.34 | Simulated changes in climate indices for SSP5-3.4-OS plotted against atmospheric CO2 concentration (ppm) from 480 up to 571 and back to 496 
by 2100. (a) Global surface air temperature chang  e; (b) Global land precipitation change; (c) September Arctic sea ice area change; (d) Global thermosteric sea level change. Plotted 
changes are relative to the 2034–2053 mean which has same CO2 as 2081–2100 mean (shaded grey bar). Red lines denote changes during the period up to 2062 when CO2 is 
rising, blue lines denote changes after 2062 when CO2 is decreasing again. Thick line is multi-model mean; thin lines and shading show individual models and complete model range. 
Numbers in square brackets indicate number of models used in each panel. Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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tipping points are not well understood, but the higher the warming 
level and the longer the duration of overshoot, the greater the risk of 
unexpected changes (Section 4.7.2). Non-reversal of the hydrological 
cycle has also been found in some studies with an increase in global 
precipitation following CO2 decrease being attributed to a build-up of 
ocean heat (Wu et al., 2010), and to a fast atmospheric adjustment to 
CO2 radiative forcing (Cao et al., 2011).

Global temperature is expected to remain approximately constant if 
emissions of CO2 were to cease (Section 4.7.1.1), and so reductions 
in GSAT are only possible in the event of net negative global CO2 
emissions. We assess here results from an overshoot scenario 
(SSP5‑3.4-OS; O’Neill et al., 2016), which explores the implications 
of a peak and decline in forcing during the 21st century. Reversibility 
under more extreme and idealized carbon dioxide removal (CDR) 
scenarios is assessed in Section 4.6.3. In SSP5‑3.4-OS, CO2 peaks 
at 571 ppm in the year 2062 and reverts to 497 ppm by 2100 – 
approximately the same level as in 2040. SSP5‑3.4-OS has strong 
net negative emissions of CO2, exceeding those in SSP1‑2.6 
and SSP1‑1.9 from 2070 onwards and reaching –5.5  PgC  yr –1 
(–20 GtCO2 yr –1) by 2100. While this causes global mean temperature 
to decline, changes in climate have not fully reversed by 2100 under 
this reversal of CO2 concentration (Figure  4.34). Quantities are 
compared for 2081–2100 relative to a 20-year period (2034–2053) 
of the same average CO2. Differences between these two periods of 
the same CO2 are: GSAT: 0.28 ± 0.30°C (mean ± standard deviation); 
global land precipitation: 0.026 ± 0.011 mm day–1; September 
Arctic sea ice area: –0.32 ± 0.53 million km2; thermosteric sea level: 
12 ± 0.8 cm. As assessed in Section  9.3.1.1, Arctic sea ice area 
is linearly reversible with GSAT. Although these climate quantities 
are not fully reversible, the overshoot scenario results in reduced 
climate change compared with stabilisation or continued increase 
in greenhouse gases (Tsutsui et al., 2006; Palter et al., 2018; Tachiiri 
et al., 2019) (high confidence).

The transient climate response to cumulative CO2 emissions, 
TCRE, allows climate policy goals to be associated with remaining 
carbon budgets as global temperature increase is near-linear with 
cumulative emissions (Section 5.5). Research since AR5 has shown 
that the concept of near-linearity of climate change to cumulative 
carbon emissions holds for measures other than just GSAT, such as 
regional climate (Leduc et al., 2016) or extremes (Harrington et al., 
2016; Seneviratne et  al., 2016). However, ocean heat and carbon 
uptake do exhibit path dependence, leading to deviation from the 
TCRE relationship for levels of overshoot above 300 PgC (Zickfeld 
et al., 2016; Tokarska et al., 2019). Sea level rise, loss of ice sheets, 
and permafrost carbon release may not reverse under overshoot 
and recovery of GSAT and cumulative emissions (Section 4.7). TCRE 
remains a valuable concept to assess climate policy goals and how 
to achieve them but given the non-reversibility of different climate 
metrics with CO2 and GSAT reductions, it has limitations associated 
with evaluating the climate response under overshoot scenarios and 
CO2 removal (medium confidence).

4.6.2.2	 Consistency Between Shared Socio-economic 
Pathways and Representative Concentration Pathways

As CMIP5 and CMIP6 employed different scenario sets (RCPs and SSPs, 
respectively; see Section 1.6.1.1 and Cross-Chapter Box 1.4), we assess 
how much of the differences in projections are due to the scenario 
change and how much due to model changes. The CMIP6-simulated 
GSAT increases tend to be larger than in CMIP5, for nominally 
comparable scenarios (Section 4.3.1; Tebaldi et al., 2021).

The radiative forcing labels on SSP and RCP scenarios is approximate 
and enables the multiple climate forcings within the scenario to be 
characterized by a  single number. While the scenarios are similar in 
terms of the stratospheric adjusted radiative forcing (Tebaldi et  al., 
2021), they differ more in their effective radiative forcing (ERF). The 
combination of component forcings (CO2, non-CO2 greenhouse gases, 
aerosols) within the scenario also differ (Meinshausen et  al., 2020). 
The ERF levels in the RCP and SSP scenarios have been calculated 
by sampling uncertainty in forcing from a  range of different GHG 
species and aerosols (see 7.SM.1.4 for details). Figure  4.35 shows 
the time evolution and 2081–2100 mean across the families of 
scenarios and how this affects projections of GSAT. That the ERFs differ 
between corresponding SSP and RCP scenarios makes a comparison 
between  CMIP6 and CMIP5 projections challenging (Tebaldi et  al., 
2021). Wyser et  al. (2020) find the EC-Earth3-Veg model exhibits 
stronger radiative forcing and substantially greater warming under 
SSP5‑8.5 than RCP8.5, and similar, but smaller additional warmings 
for SSP2‑4.5 and SSP1‑2.6 compared with RCP4.5 and RCP2.6, 
respectively. In addition to the global response, climate can vary 
regionally due to non-CO2 components of forcing (Samset et al., 2016; 
Richardson et al., 2018a, b).

Emulators (Cross-Chapter Box 7.1) can be used to aid understanding 
of differences between generations of scenarios. The AR5 (Collins 
et  al., 2013) explored the differences between CMIP3 and CMIP5 
(their Figure  12.40). Here we use an emulator calibrated to AR6 
assessed GSAT ranges, thus eliminating the effect of differences 
in the model ensembles, to analyse the differences between 
SSP and RCP scenarios. MAGICC7.5 in its WGIII-calibrated setup 
(see Cross-Chapter Box 7.1) projects differences in 2081–2100 mean 
warming between the RCP2.6 and SSP1‑2.6 scenarios of around 
0.2°C, between RCP4.5 and SSP2‑4.5 of around 0.3°C and between 
RCP8.5 and SSP5‑8.5 of around 0.3°C (Figure  4.35b). The SSP 
scenarios also have a wider 5–95% range simulated by MAGICC7.5 
explaining about half of the increased range seen when comparing 
CMIP5 and CMIP6 models. Higher climate sensitivity is, though, the 
primary reason behind the upper end of the warming for SSP5‑8.5 
reaching 1.5°C higher than the CMIP5 results. Compared with the 
differences between the CMIP5 and CMIP6 multi-model ensembles 
for the same scenario pairs (Table A6 in Tebaldi et  al., 2021), the 
higher ERFs of the SSP scenarios contribute approximately half of 
the warmer CMIP6 SSP outcomes (medium confidence).

In summary, there is medium confidence that about half of the warming 
increase in CMIP6 compared to CMIP5 is due to higher  climate 
sensitivity in CMIP6 models; the other half arises from higher ERF in 
nominally comparable scenarios (e.g., RCP8.5 and SSP5‑8.5).
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4.6.3 Climate Response to Mitigation, Carbon Dioxide 
Removal and Solar Radiation Modifi cation

Most strong-mitigation scenarios assume – in addition to emissions 
reductions  – some form of carbon dioxide remov al (CDR). 
Anthropogenic activities that remove CO2 from the atmosphere and 
durably store it i n geological, terrestrial, or ocean reservoirs, or in 
products (see Glossary). The SR1.5 (Rogelj et  al., 2018b) assessed 
that all pathways that limit warming to 1.5°C by 2100 with no or 
limited overshoot use CDR. In  the SSP class of scenarios, SSP1-1.9 
is characterized by a rapid decline of net CO2 emissions to zero by 
2050 and net negative CO2 emissions in the second half of this 
century (O’Neill et al., 2016; Rogelj et al., 2018a), implying the use of 
CDR. The term ‘net CO2 emissions’ refers to the difference between 
anthropogenic CO2 emissions and removal by CDR options, and ‘net 
negative CO2 emissions’ imply a scenario where CO2 removal exceeds 
emissions (van Vuuren et  al., 2011, 2016). The terms ‘negative 

emissions’ and ‘net negative emissions’ refer to and include all GHGs 
(see Glossary).

Climate change can be also offset by solar radiation modifi cation 
(SRM) me asures that modify the Earth’s radiation budget to reduce 
global warming (see Glossary). CDR and SRM approaches have been 
together referred to as ‘geoengineering’ or ‘climate engineering’ 
in the literature (The Royal Society, 2009; NRC, 2015a, b; Schäfer 
et  al., 2015). However, following SR1.5 (de Coninck et  al., 2018), 
these terms are inconsistently used in the literature, so that CDR 
and SRM are explicitly differentiated here. SRM contrasts with 
climate change mitigation because it introduces a  ‘mask’ to the 
climate  change  problem by altering the Earth’s radiation budget, 
rather than attempting to address the root cause of the problem, 
which is the increase in GHGs in the atmosphere.

Section 4.6.3.1 assesses the emergence of the climate response to 
mitigation, which is refl ected by the difference between high- and 
low-emissions scenarios. Section  4.6.3.2 then assesses the climate 
response to mitigation through CDR options, usually assumed 
against the background of some emissions scenario; note that the 
CDR options themselves are assessed in Chapter 5 (Section 5.6.2). 
Section 4.6.3.3 assesses the climate system response to SRM options. 
The biogeochemical implications of CDR and SRM are assessed in 
Chapter 5 (Sections 5.6.2 and 5.6.3, respectively). The importance of 
CDR for reaching net zero or negative CO2 emissions in mitigation 
pathways is assessed in the AR6 WGIII report (Chapters 3, 4, 6, 7 
and 12). The risks for and impacts on human and natural systems 
due to SRM are assessed in the AR6 WGII report (Chapter 16), and 
the international governance issues related to SRM and CDR are 
assessed in the AR6 WGIII report (Chapter 14).

4.6.3.1 Emergence of the Climate Response to Mitigation

Reducing GHG emissions will eventually slow and limit the degree of 
climate change relative to high-emissions scenarios such as SSP5-8.5 
(very high confi dence). Even when   CO2 emissions are reduced, 
however, atmospheric CO2 conce ntrations continue to increase 
as long as emissions exceed removal by sinks (Millar et al., 2017). 
Surface warming would likewise initially continue under scenarios of 
decreasing emissions, resulting in a substantial lag between a peak 
in CO2 emissions and peak warming (high confi dence) (Ricke and 
Caldeira, 2014; Zickfeld and Herrington, 2015). The lag between 
peak emissions and warming depends on the emissions history 
prior to the peak and also on the rate of the subsequent emissions 
reductions (Matthews, 2010; Ricke and Caldeira, 2014; Zickfeld and 
Herrington, 2015).

In addition to the lag between peak emissions and peak warming, 
 the climate response to reduced emissions would be overlain by 
internal variability, which can amplify or attenuate the forced 
response. The resulting masking of differences between scenarios is 
illustrated in Figure 4.36 for GSAT trends over 2021–2040 (Maher 
et al., 2020). The overall trends conform to expectations in that most 
simulations show warming almost everywhere, especially under 
scenario RCP8.5 (Figure 4.36 bottom row). But any individual grid 
point can in principle show no warming or even cooling, even under 

(a) Effective Radiative Forcing

(b) Surface Air Temperature Change
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Figure 4.35 | Comparison of RCPs and SSPs run by a single emulator to 
estimate scenario differences. Time series with 5–95% ranges and medians of 
(a) effective radiative forcings, calculated as described in A nnex 7.A.1; and (b) global 
surface air temperature projections relative to 1850–1900 for the RCP and SSP 
scenarios from MAGICC 7.5. Note that the nameplate radiative forcing level refers 
to stratospheric adjusted radiative forcings in AR5-consistent settings (Tebaldi et al., 
2021) while ERFs may differ. MAGICC7.5 is here run in the recommended setup for 
WGIII, prescribing observed GHG concentrations for the historical period and switching 
to emissions-driven runs in 2015. Further details on data sources and processing are 
available in the chapter data table (Table 4.SM.1).
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RCP 8.5, over the near term (Figure 4.36, middle row). The magnitude 
of pointwise maximum and minimum temperature trends can be as 
large as 0.5°C per year (Figure 4.36, top and middle rows), exceeding 
possible trends in the global mean by one order of magnitude. While 
it is only a small fraction of the surface that simultaneously can show 
cooling, cooling at any given location is fully consistent with globally 
averaged surface warming over the near term (high confidence, since 
the findings of Maher et al. (2020) are consistent across six different 
large initial-condition ensembles).

An important development since AR5 has been the quantification 
of when the climate response to mitigation can be expected to 
emerge from the background noise of internal variability (illustrated 
in Figure 4.36; see Section 1.4.2.2 and Glossary). A basic ambiguity 
arises because once mitigation measures are in place, it is no longer 

possible to observe what the climate would have been without these 
measures, and any statement about emergence of the response to 
mitigation is contingent upon the assumed strength of mitigation in 
relation to an assumed (‘counterfactual’) no-mitigation scenario. Still, 
there is high agreement on the emergence of the climate response 
to mitigation across a number of independent studies using different 
models and different statistical approaches.

Among global quantities, emergence of the response to differing CO2 
emissions – representing differences between low- and high-emissions 
scenarios – is first expected to arise in global mean CO2 concentrations, 
about 10 years after emissions pathways have started diverging (high 
confidence) (Tebaldi and Friedlingstein, 2013; Peters et  al., 2017; 
Schwartzman and Keeling, 2020; Spring et al., 2020). In these studies, 
emergence is generally defined as the time at which the global mean 
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Figure 4.36 | Masking of climate response to mitigation by internal variability in the near term. Near-term (2021–2040) pointwise maximum (top row) and 
pointwise minimum (middle row) surface air temperature trends in the large initial-condition ensemble from MPI (left and centre columns), and CESM (right-hand 
column) models in the RCP2.6 (left-hand column) and RCP8.5 scenarios (centre and right columns). The percentage of ensemble members with a warming trend in 
the near term is shown in the bottom panels. Figure modified from Maher et al. (2020). Further details on data sources and processing are available in the chapter data table 
(Table 4.SM.1).
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concentration first differs between mitigation and non-mitigation 
scenarios by more than two standard deviations of internal variability, 
although there are some methodological differences.

Emergence in GSAT would be delayed further, owing to the inertia in 
the climate system. Although not investigating emergence as defined 
here in AR6, Tebaldi et al. (2021) used a 20-year running-mean GSAT 
and compared pairwise either model-by-model or between CM IP6 
ensemble means from the core set of five scenarios assessed in 
this chapter. Differences by more than 0.1°C showed up in most 
cases in the near term,  with only some of the individual models 
and the comparisons of the closest scenarios showing a delay until 
the mid-term. Taking internal variability explicitly into account, Tebaldi 
and Friedlingstein (2013) and Samset et al. (2020) found emergence 
of mitigation benefits in GSAT changes about 25–30 years after 
RCP2.6 emissions diverge from the higher-emissions trajectories 
in RCP4.5 and RCP8.5. Consistently, Marotzke (2019) found about 
one-third likelihood that a trend reduction in GSAT, over the period 
2021–2035 relative to 2005–2020, would be attributable to the 
emissions reductions implied by the difference between RCP2.6 and 
RCP4.5. Emergence of the GSAT response to mitigation of individual 
short-lived climate forcers (SLCFs) would likewise not occur until 
several decades after emissions trajectories diverge, owing to the 
relatively small influence of individual SLCFs on the total ERF (Samset 
et al., 2020), see also Section 4.4.4 and Figure 4.18.

In contrast to the earlier studies, emergence in GSAT within the 
near-term has recently been found by McKenna et  al. (2021) who 
investigated the likelihood that under the SSP scenarios GSAT trends 
will exceed the largest historical observed 20-year trends. They found 
that under scenario SSP1‑1.9, the 20-year GSAT trends would likely be 
lower than in SSP3‑7.0 and SSP5‑8.5 within the near term. This earlier 
diagnosed time of emergence compared to Marotzke (2019), while 
using a similar statistical approach, presumably arose because of the 
longer-period trends (20 rather than 15 years) and the larger difference 
between emissions trajectories considered (medium confidence). 
Using 20-year temperature anomalies relative to 1995–2014 instead 
of 20-year trends yielded a low probability of emergence (McKenna 
et  al., 2021), consistent with the AR5 (Collins et  al., 2013; Kirtman 
et al., 2013; Tebaldi and Friedlingstein, 2013; Samset et al., 2020). It is 
not yet understood why GSAT trends appear to show faster emergence 
of mitigation benefits, compared to GSAT anomalies.

Emergence of mitigation benefits has been studied much less 
for quantities other than globally and annually averaged CO2 
concentration and surface temperature. Boreal-winter temperatures 
are more challenging for emergence, due to larger variability in 
boreal winter and adding a  decade to the time of emergence, 
whereas emergence times for boreal-summer averages are similar 
to the annual temperature averages (Tebaldi and Friedlingstein, 
2013). Emergence happens later at the regional scale, with a median 
time of emergence of 30–45 years after emissions paths separate in 
RCP2.6 relative to RCP4.5 and RCP8.5; a stricter requirement of 95% 
confidence level instead of median induces a delay of several decades, 
bringing time of emergence toward the end of the 21st century at 
regional scales (Tebaldi and Friedlingstein, 2013).

Attribution to emissions reductions, for the case of RCP2.6 relative 
to RCP4.5, is not substantially more likely for 2021–2035 trends 
in upper-2000 m OHC than for GSAT (Marotzke, 2019), although 
OHC change is thought to be less susceptible to internal variability. 
Furthermore, Marotzke (2019) found only around 10% likelihood 
of mitigation-benefit emergence during 2021–2035 for change 
in AMOC and September Arctic sea ice area. Tebaldi and Wehner 
(2018) showed that the differences in temperature extremes 
between RCP4.5 and RCP8.5 over all land areas become statistically 
significant by 2050. The seemingly contrasting result of Ciavarella 
et  al. (2017) that mitigation benefits arise earlier for climate 
extremes poses no contradiction, because Ciavarella et  al. (2017) 
did not look at emergence as defined here but at the extremes of 
a distribution, which differ between scenarios already at a time when 
the distributions are still largely overlapping.

In summary, if strong mitigation is applied from 2020 onward as 
reflected in SSP1‑1.9, its effect on 20-year trends in GSAT would 
likely emerge during the near term, measured against an assumed 
non-mitigation scenario such as SSP3‑7.0 and SSP5‑8.5. However, 
the response of many other climate quantities to mitigation would 
be largely masked by internal variability during the near term, 
especially on the regional scale (high confidence). The mitigation 
benefits for these quantities would emerge only later during the 
21st century (high confidence). During the near term, a small fraction 
of the surface can show cooling under all scenarios assessed here, 
so near-term cooling at any given location is fully consistent with 
globally averaged surface warming (high confidence).

4.6.3.2	 Climate Response to Mitigation by Carbon 
Dioxide Removal

CDR options include afforestation, soil carbon sequestration, bioenergy 
with carbon capture and storage (BECCS), wet land restoration, ocean 
fertilization, ocean alkalinisation, enhanced terrestrial weathering 
and direct air capture and storage (see Section 5.6.2 and Table 5.9 for 
a more complete discussion). Chapter 8 (Section 8.4.3) assesses the 
implications of CDR for water cycle changes. The potential of different 
CDR options in terms of the amount of CO2 removed per year from the 
atmosphere, costs, co-benefits and side effects of the CDR approaches 
are assessed in SR1.5 (de Coninck et al., 2018), the AR6 WGIII Report 
(see Chapters 7 and 12), and in several review papers (Fuss et  al., 
2018; Lawrence et al., 2018; Nemet et al., 2018). In the literature, CDR 
options are also referred to as ‘negative CO2 emissions technologies’.

Deployment of CDR will lead to a reduction in atmospheric CO2 levels 
only if uptake by sinks exceeds net CO2 emissions. Hence, there could 
be a  substantial delay between the initiation of CDR and net CO2 
emissions turning negative (van Vuuren et al., 2016), and the time to 
reach net negative CO2 emissions and the evolution of atmospheric 
CO2 and climate thereafter would depend on the combined pathways 
of anthropogenic CO2 emissions, CDR, and natural sinks. The cooling 
(or avoided warming) due to CDR would be proportional to the 
cumulative amount of CO2 removed from the atmosphere by CDR 
(Tokarska and Zickfeld, 2015; Zickfeld et al., 2016), as implied by the 
near-linear relationship between cumulative carbon emissions and 
GSAT change (Section 5.5).
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Emissions pathways that limit globally averaged warming to 1.5°C 
or 2°C by the year 2100 assume the use of CDR approaches in 
combination with emissions reductions to follow net negative CO2 
emissions trajectory in the second half of this century. For instance, 
in SR1.5, all analysed pathways limiting warming to 1.5°C by 2100 
with no or limited overshoot include the use of CDR to some extent to 
offset anthropogenic CO2 emissions and the median of CO2 removal 
across all scenarios was 730 GtCO2 in the 21st  century (Rickels 
et al., 2018; Rogelj et al., 2018b). Affordable and environmentally 
and socially acceptable CDR options at scale well before 2050 are 
an important element of 1.5°C-consistent pathways especially in 
overshoot scenarios (de Coninck et  al., 2018). The required scale 
of removal by CDR can vary from 1–2 GtCO2 yr –1 year from 2050 
onwards to as much as 20 GtCO2 yr –1 (Waisman et  al., 2019). 
In the SSP class of scenarios, net CO2 emissions turn negative from 
around 2050 in SSP1‑1.9 and around 2070 in SSP1‑2.6 and in the 
overshoot scenario SSP5‑3.4-OS (O’Neill et  al., 2016). Thus, CDR 
would play a pivotal role in limiting climate warming to 1.5°C or 
2°C (Minx et al., 2018). In stark contrast, however, two extensive 
reviews (Lawrence et al., 2018; Nemet et al., 2018) conclude that it 
is implausible that any CDR technique can be implemented at the 
scale needed by 2050.

When CDR is applied continuously and at scales as large as currently 
deemed possible, under RCP8.5 as the background scenario, the 
widely discussed CDR options such as afforestation, ocean iron 
fertilization and surface ocean alkalinisation are individually 
expected to be relatively ineffective, with limited (8%) warming 
reductions relative to the scenario with no CDR option (Keller et al., 
2014). Hence, the potential role that CDR will play in lowering 
the temperature in high-emissions scenarios is limited (medium 
confidence). The challenges involved in comparing the climatic 
effects of various CDR options has also been recognized in recent 
studies (Sonntag et  al., 2018; Mengis et  al., 2019). For instance, 
due to compensating processes such as biogeophysical effects of 
afforestation (warming from albedo decrease when croplands are 
converted to forests) more carbon is expected to be removed from 
the atmosphere by afforestation than by ocean alkalinisation to 
reach the same global mean cooling.

The climate response to CDR-caused net negative CO2 emissions 
has been studied in Earth system models by prescribing idealized 
ramp-down of CO2 concentrations (MacDougall, 2013; Zickfeld 
et al., 2016; Schwinger and Tjiputra, 2018), CO2 concentrations of 
RCP scenarios that have net negative CO2 emissions (C.D. Jones 
et al., 2016b), and idealized net negative CO2 emissions scenarios 
(Tokarska and Zickfeld, 2015). The Carbon Dioxide Removal Model 
Intercomparison Project (CDRMIP) uses multiple ESMs to explore 
the climate response, effectiveness of CO2 removal, and challenges 
of CDR options (Keller et al., 2018). Idealized CDRMIP simulations 
increase CO2 concentrations at 1% per year from the level in the 
pre-industrial control run (piControl) to 4×CO2 and subsequently 
decrease at the same rate to the piControl level. This section 
assesses the lag in climate response to CDR-caused negative 
emissions; climate ‘reversibility’ is assessed in Section  4.7.2. 
The  ramp-down phase, though unrealistic, represents the ‘net 
negative CO2 emissions’ phase.

Figure  4.37 illustrates the first results from CDRMIP (Keller et  al., 
2018). Other studies that use similar (Zickfeld et al., 2016; Schwinger 
and Tjiputra, 2018; Jeltsch-Thömmes et al., 2020) or other idealized 
scenarios (MacDougall, 2013) or more realistic net negative CO2 
emissions scenarios such as RCP2.6 (C.D. Jones et  al., 2016b) and 
scenarios that limit warming to 2°C or less after different levels of 
overshoot (Tokarska and Zickfeld, 2015) arrive at similar conclusions. 
Changes in key climate variables substantially lag behind the decline 
in CO2 (Figure 4.37). The precipitation increase at the beginning of 
the ramp-down phase agrees with the increase in precipitation for an 
abrupt decline in CO2 (Cao et al., 2011). Notwithstanding a decline in 
atmospheric CO2, global mean thermosteric sea level would continue 
to rise. When atmospheric CO2 returns to the piControl level, global 
mean thermosteric sea level is higher than its value at peak CO2 
(Figure 4.37), and it is likely that thermosteric global sea level would 
not return to piControl levels for over 1000 years after atmospheric 
CO2 is restored to piControl concentrations (Tokarska and Zickfeld, 
2015; Ehlert and Zickfeld, 2018). Therefore, there is high confidence 
that sea level rise will not be reversed by CDR at least for several 
centuries Chapter  9 (Section  9.6.3.5). A  comparison of different 
models shows recovery of AMOC intensity during net negative CO2 
emissions, but the results are model dependent – strengthening with 
an overshoot in most models (Jackson et al., 2014) and strengthening 
but not reaching the initial state in some models (Sgubin et al., 2015). 
The overall lag in response is qualitatively similar to the lagged 
climate system response in the overshoot scenario SSP5‑34-OS where 
CO2 rises until 2062 and decreases thereafter (Figure 4.34). The lag 
in climate response to CDR causes hysteresis between key climate 
variables such as temperature, precipitation, AMOC and sea level, 
and atmosphere CO2 with the hysteresis characteristics dependent 
on the rate of CDR and climate sensitivity (MacDougall, 2013; Jeltsch-
Thömmes et al., 2020).

Termination of CDR refers to a sudden and sustained discontinuation 
of CDR deployment (see Section  4.6.3.3 for termination effects of 
SRM). The literature on the termination effects of CDR is limited, 
mostly considering scenarios where CDR implementation is explicit 
and does not result in net negative CO2 emissions (Keller et  al., 
2014; González et  al., 2018). In simulations where CDR is applied 
on the RCP8.5 scenario at scales as large as currently deemed 
possible, the increase in global mean warming rates following CDR 
termination are relatively small in comparison to SRM termination 
(Keller et al., 2014). The exception is artificial ocean upwelling where 
surface cooling is mainly caused by bringing cold water from the 
deep ocean; upon termination this causes larger rates of surface 
warming (Oschlies et al., 2010). When background emissions are as 
high as in RCP8.5, termination of a  large global-scale application 
of CDR such as ocean alkalinisation for multiple decades could also 
result in large regional warming rates (up to 0.15°C per year) that 
are comparable to those caused by termination of SRM (González 
et al., 2018). In such cases, large amounts of CO2 would be removed 
from the atmosphere before termination, and termination would 
cause a temporal trajectory of atmospheric CO2 that is parallel to the 
high-emissions scenario but from an atmosphere with much lower 
CO2 levels. Because CO2 radiative forcing is a logarithmic function of 
CO2 concentration, large regional warming rates are simulated in such 
terminations. Thus, there is high confidence that the climate effect of 
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Figure 4.37 | Delayed climate response to carbon dioxide removal (CDR)-caused net negative CO2 emissions. Multi-model simulated response in global and 
annual mean climate variables for a ramp-up followed by ramp-down of CO2. Atmospheric CO2 increases from the pre-industrial level at a rate of 1% yr –1 to 4×CO2, then 
decreases at the same rate to the pre-industrial level and then remains constant. The ramp-down phase represents the period of net negative CO2 emissions. (a) Normalized 
ensemble mean anomaly of key variables as a function of year, including atmospheric CO2, surface air temperature, precipitation, thermosteric sea level change (see Glossary), 
global sea ice area, Northern Hemisphere sea ice area in September, and Atlantic meridional overturning circulation (AMOC); (b) surface air temperature; (c) precipitation; 
(d) September Arctic sea ice area; (e) AMOC; (f) thermosteric sea level; five-year running means are shown for all variables except the sea level change. In (b, f), red lines 
represent the phase of CO2 ramp-up, blue lines represent the phase of CO2 ramp-down, brown lines represent the period after CO2 has returned to pre-industrial level, and black 
lines represent the multi-model mean. For all of the segments in (b, f), the solid coloured lines are CMIP6 models, and the dashed lines are other models (i.e., EMICs, CMIP5-era 
models). Vertical dashed lines indicate peak CO2 and when CO2 again reaches pre-industrial value. The number of CMIP6 and non-CMIP6 models used is indicated in each panel. 
The time series for the multi-model means (b, f) and the normalized anomalies (a) are terminated when data from all models are not available, in order to avoid the discontinuity 
in the time series. Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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CDR termination would depend on the amount CO2 removed by CDR 
prior to termination and the rate of background CO2 emissions at the 
time of termination. See also Chapter 5, Table 5.9, which summarizes 
the termination effects of individual CDR options.

In summary, there is high confidence that, due to the near-linear 
relationship between cumulative carbon emissions and GSAT change, 
cooling or avoided warming due to a  CDR option would depend 
on the cumulative amount of CO2 removed by that CDR option. 
The climate system response to the deployment of CDR is expected 
to be delayed by years (e.g.,  in temperature, precipitation, sea ice 
extent) to centuries (e.g.,  sea level and AMOC) (high confidence). 
The climate response to a  sudden and sustained CDR termination 
would depend on the amount of CDR-induced cooling prior to 
termination and the rate of background CO2 emissions at the time of 
termination (high confidence).

4.6.3.3	 Climate Response to Solar Radiation Modification

Most SRM approaches, including stratospheric aerosol injection (SAI), 
marine cloud brightening (MCB), and surface albedo enhancements 
(Table 4.7), aim to cool the Earth by deflecting more solar radiation 
to space. Although cirrus cloud thinning (CCT) aims to cool the planet 
by increasing the longwave emission to space, it is included in the 

portfolio of SRM options (Table 4.7) for consistency with AR5 (Boucher 
et al., 2013) and SR1.5 (de Coninck et al., 2018). Other approaches 
such as injection of sulphate aerosols into the Arctic troposphere 
and sea ice albedo enhancements for moderating regional warming 
have also been suggested (MacCracken, 2016; Field et  al., 2018). 
As noted in SR1.5 (de Coninck et al., 2018), SRM is only considered as 
a potential supplement to deep mitigation, for example in overshoot 
scenarios (MacMartin et al., 2018).

The AR5 assessed the climate response to, as well as risks and side 
effects of, several SRM options (Boucher et al., 2013) and concluded 
with high confidence that SRM, if practicable, could substantially 
offset a  global temperature rise and partially offset some other 
impacts of global warming, but the compensation for the climate 
change caused by GHGs would be imprecise. The AR5 furthermore 
concluded that models consistently suggest that SRM would generally 
reduce climate differences compared to a world with elevated GHG 
concentrations and no SRM; however, there would also be residual 
regional differences in climate (e.g., temperature and rainfall) when 
compared to a climate without elevated GHGs. The AR5 concluded 
with high confidence that scaling SRM to substantial levels would 
carry the risk that if the SRM were terminated for any reason, surface 
temperatures would increase rapidly (within a  decade or two) to 
values consistent with the GHG forcing (Boucher et al., 2013).

Table 4.7 | A summary of the various SRM approaches.

SRM Approach
Proposed Mechanism and Associated 
Uncertainties of the SRM Approach

Global Mean Negative 
Radiative Forcing Potential 

and Characteristics

Key Climate and 
Environmental Effects

References

Stratospheric 
Aerosol Injection 
(SAI)

Injection of aerosols or their precursor gases 
into the stratosphere to scatter sunlight back 
to space; Aerosol types such as sulphates, 
calcium carbonate, and titanium dioxide have 
been proposed; large uncertainties associated 
with type of aerosol, aerosol radiative 
properties, microphysics, chemistry, stratospheric 
processes, and temporal and spatial strategy 
of aerosol injection.

1–8 W m–2, depending on the 
amount and pattern of injection, 
and transport and growth of injected 
particles; compared to other SRM 
approaches, radiative forcing could 
be more homogenously distributed.

Change in temperature and 
precipitation pattern; precipitation 
reduction in some monsoon regions; 
decrease in direct and increase 
in diffuse sunlight at surface; 
stratospheric heating and changes 
to stratospheric dynamics and 
chemistry; potential delay in ozone 
hole recovery; changes in surface UV 
radiation; changes in crop yields.

Visioni et al. (2017); 
Tilmes et al. (2018b); 
Simpson et al. (2019b)

Marine Cloud 
Brightening (MCB)

Injection of sea salt or other types of aerosols 
to increase the albedo of marine stratocumulus 
clouds; regional option to reduce SST in hurricane 
formation regions and in coral reef areas; large 
uncertainties associated with cloud microphysics 
and aerosol–cloud-radiation interactions.

1–5 W m–2, depending on the scale 
and amount of sea salt injection; 
heterogeneous radiative forcing.

Change in land–sea contrast 
and precipitation patterns.

Latham et al., (2012, 
2014); Ahlm et al. (2017); 
Stjern et al. (2018)

Cirrus Cloud 
Thinning (CCT)

Inject ice nuclei in the upper troposphere to 
reduce the lifetime and optical thickness of cirrus 
clouds to allow more longwave radiation to 
escape to space; large uncertainties associated 
with cirrus cloud formation processes, cirrus 
microphysics, and interaction with aerosol.

1–2 W m–2, depending on cirrus 
microphysical response and seeding 
strategy; heterogeneous radiative 
forcing; loss in cirrus clouds could 
also cause significant shortwave 
forcing regionally; risk of overseeding 
and consequent warming.

Changes in temperature and 
precipitation pattern; increase in 
solar radiation reaching surface.

Storelvmo and 
Herger (2014); 
Jackson et al. (2016); 
Gasparini et al. (2020)

Surface-
Based Albedo 
Modification

Increase ocean albedo by creating microbubbles; 
add reflective material to increase desert albedo; 
paint the roof of buildings white to increase roof 
reflectivity; increase albedo of agriculture land 
via no-till farming or modifying crop albedo, add 
reflective material to increase sea ice albedo.

Radiative forcing of a few W m–2 
might be achieved via increase 
in ocean and desert albedo, but 
the large-scale implementation is 
not feasible; less than 0.5 W m–2 
for white roof and crop albedo 
enhancement; heterogeneous 
radiative forcing.

Change in land–sea contrast 
and precipitation pattern for 
ocean and desert albedo increase; 
more localized effect for white 
roofs, no-till farming, and crop 
albedo modification.

Evans et al. (2010); 
Davin et al. (2014); 
Zhang et al. (2016); 
Field et al. (2018); 
Kravitz et al. (2018)
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The SR1.5 (de Coninck et  al., 2018) assessed SRM in terms of its 
potential to limit warming to below 1.5°C in temporary overshoot 
scenarios and the associated impacts. It concluded that SAI could 
limit warming to below 1.5°C but that the climate response to SAI is 
uncertain and varies across climate models. Overall, the assessment 
concluded that the combined uncertainties related to SRM approaches, 
including technological maturity, limited physical understanding of the 
response to SRM, potential impacts, and challenges of governance, 
constrain potential deployment of SRM in the near future.

This subsection assesses the global and large-scale physical climate 
system response to SRM based on theoretical and modelling studies. 
There is no mature technology today to implement any of the 
SRM options assessed here. A  short summary of the SRM options, 
including the proposed mechanism of each SRM approach, radiative 
forcing potential, and key climate and environmental effects, is listed 
in Table 4.7. Chapter 5 (Section 5.6.3) assesses the biogeochemical 
implications of SRM, Chapter 6 (Section 6.4.6) assesses the potential 
ERF of the aerosol-based SRM options and Chapter 8 (Section 8.6.3) 
assesses the abrupt water cycle changes in response to initiation or 
termination of SRM. The risks to human and natural systems, impacts 
of SRM, ethics, and perceptions are assessed in the WGII Report 
(Chapter  16). Governance issues associated with SRM research 
and deployment are assessed in the WGII and WGIII Reports. The 
assessment of technical feasibility and engineering aspects of SRM is 
beyond the scope of this Report.

The AR5 assessed SRM modelling mainly based on idealized 
simulations that used solar constant reductions. Since then, more 
in-depth investigations into specific SRM approaches have been 
conducted with more sophisticated treatment of aerosol–cloud–
radiative interactions and stratospheric dynamics and chemistry 
underlying SAI, MCB, and CCT. Another major development since AR5 
is the investigation into whether multiple climate policy goals may be 
met by optimally designed SRM strategies, including large-ensemble 
SAI simulations using multiple injection locations. There are large 
uncertainties in important SRM-related processes such as aerosol 
microphysics and aerosol–cloud–radiation interaction and hence the 
level of understanding is low.

As assessed in SR1.5 (de Coninck et al., 2018), most of the knowledge 
about SRM is based on idealized model simulations and some 
natural analogues. In addition to single-model studies, more results 
from the coordinated modelling work of Geoengineering Model 
Intercomparison Project (GeoMIP) have become available. GeoMIP 
was initiated at the time of AR5 (Kravitz et al., 2011, 2013a) and is 
now in its second phase under the framework of CMIP6 (GEOMIP6, 
Kravitz et al., 2015). However, studies based on GeoMIP6 data are 
currently limited and hence the assessment on climate response to 
SRM here is derived mostly from GeoMIP literature together with 
studies with single models.

Simple calculations and climate modelling studies show that about 
2% extra solar irradiance reflected away from Earth or a  one 
percentage point increase in planetary albedo (0.31 to 0.32) would 
suffice to offset global mean warming from a doubling of the CO2 

concentration (The Royal Society, 2009; Kravitz et al., 2013a, 2021). 

To offset the same amount of CO2-induced GSAT increase, 
different levels of ERF are required for different methods of SRM 
(Schmidt et al., 2012; Chiodo and Polvani, 2016; Modak et al., 2016; 
Duan et  al.,  2018; Russotto and Ackerman, 2018; Krishnamohan 
et al., 2019; Zhao et al., 2021).

As assessed in AR5 (Boucher et al., 2013), abruptly introducing SRM to 
fully offset global warming reduces temperature toward 1850–1900 
values with an e-folding time of only about five years (Matthews and 
Caldeira, 2007). A more realistic approach would be a slow ramp-up 
of SRM to offset further warming (MacCracken, 2016; Tilmes et al., 
2016). Modelling studies have consistently shown that SRM has the 
potential to offset some effects of increasing GHGs on global and 
regional climate, including the melting of Arctic sea ice (Berdahl et al., 
2014; Moore et al., 2014) and mountain glaciers (Zhao et al., 2017), 
weakening of Atlantic meridional overturning circulation (AMOC; Cao 
et al., 2016; Hong et al., 2017; Tilmes et al., 2020), changes in extremes 
of temperature and precipitation (Curry et al., 2014; Ji et al., 2018; 
Muthyala et  al., 2018), and changes in frequency and intensity of 
tropical cyclone (Moore et al., 2015; Jones et al., 2017).

The climate response to SRM depends greatly on the characteristics of 
SRM implementation approaches. There could be substantial residual 
or overcompensating climate change at both the global and regional 
scales and seasonal time scales (Kravitz et  al., 2014; McCusker 
et al., 2015; Irvine et al., 2016; Fasullo et al., 2018; Jiang et al., 2019; 
Gertler et  al., 2020). This is because the climate response to SRM 
options is different from the response to GHG increase (Figure 4.38). 
For  instance, when global mean warming is offset by a  uniform 
reduction in incoming sunlight, there is residual warming in the high 
latitudes and overcooling in the tropics (Kravitz et al., 2013a; Kalidindi 
et al., 2015), and a reduction in tropical mean rainfall (Tilmes et al., 
2013). In simulations of stratospheric SO2 injection, SRM diminishes 
the amplitude of the seasonal cycle of temperature at many high‐
latitude locations, with warmer winters and cooler summers (Jiang 
et  al., 2019). Further, the rates of response could differ between 
surface temperature and slow components in the climate system 
such as sea level rise (Irvine et  al., 2012; Jones et  al., 2018). SRM 
implemented at a moderate intensity, for example by offsetting half 
of the global warming, has the potential to reduce negative effects 
such as reduced precipitation that are associated with fully offsetting 
global mean warming (Irvine et al., 2019; Irvine and Keith, 2020).

For the same amount of global mean cooling achieved, the pattern 
of climate response would depend on SRM characteristics (Niemeier 
et al., 2013; Duan et al., 2018; Muri et al., 2018). This is illustrated 
in Figure 4.38 for temperature and precipitation change relative to 
a  high-CO2 world for scenarios of CO2 reduction, solar irradiance 
reduction, SAI, and MCB. The pattern differences for different 
methods are much larger for precipitation than for temperature. The 
pattern of climate change resulting from SRM is also different from 
that resulting from CO2 reduction (Figure 4.38). It is virtually certain 
that SRM approaches would not be able to precisely offset the GHG-
induced anthropogenic climate change at global and regional scales.

Because of different sensitivity of precipitation change to CO2 and 
solar forcings (Myhre et  al., 2017), if shortwave-based SRM is used 
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Figure 4.38 | Multi-model response per degree global mean cooling in temperature and precipitation in response to CO2 forcing and SRM forcing. Top 
row shows the response to a CO2 decrease, calculated as the difference between pre-industrial control simulation and abrupt4xCO2 simulations where the CO2 concentration 
is quadrupled abruptly from the pre-industrial level (11-model average); second row shows the response to a globally uniform solar reduction, calculated as the difference 
between  GeoMIP experiment G1 and abrupt4xCO2 (11-model average); third row shows the response to stratospheric sulphate aerosol injection, calculated as the 
difference between GeoMIP experiment G4 (a continuous injection of 5 Tg SO2 year –1 at one point on the equator into the lower stratosphere against the RCP4.5 background 
scenario) and RCP4.5 (six-model average); and the bottom row shows the response to marine cloud brightening, calculated as the difference between GeoMIP experiment 
G4cdnc (increase cloud droplet concentration number in marine low cloud by 50% over the global ocean against RCP4.5 background scenario) and RCP4.5 (eight-model 
average). All differences (average of years 11–50 of simulation) are normalized by the global mean cooling in each scenario, averaged over years 11–50. Diagonal lines 
represent regions where fewer than 80% of the models agree on the sign of change. The values of correlation represent the spatial correlation of each SRM-induced temperature 
and precipitation change pattern with the pattern of change caused by a reduction of atmospheric CO2. RMS (root mean square) is calculated based on the fields shown in the 
maps (normalized by global mean cooling). Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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to fully offset GHG-induced global mean warming, there would 
be a  overcompensation of GHG-induced increase in global mean 
precipitation (Kravitz et  al., 2013a; Tilmes et  al., 2013; Irvine et  al., 
2016). Further, regional SRM approaches such as aerosol injections 
into the Arctic stratosphere are likely to remotely influence on tropical 
monsoon precipitation by shifting the mean position of ITCZ (Nalam 
et al., 2018). However, the shift could be avoided by simultaneously 
cooling the southern hemisphere (MacCracken et  al., 2013; Kravitz 
et al., 2016; Nalam et al., 2018). The SRM response of precipitation 
minus evapotranspiration (P–E) is found to be smaller than that 
of precipitation because of reduction in both precipitation and 
evapotranspiration (Tilmes et al., 2013; Nalam et al., 2018; Irvine et al., 
2019). Thus, global mean soil moisture could be effectively maintained, 
though with significant regional variability (Cheng et al., 2019).

The Geoengineering Large Ensemble Project (GLENS) has investigated 
achieving multiple climate policy goals by adjusting the rate of 
stratospheric SO2 injection at four different latitudes. GSAT, the 
inter-hemispheric temperature difference, and the equator-to-pole 
temperature gradient could be maintained simultaneously at the 
year-2020 level under RCP 8.5 (Tilmes et al., 2018a). The possibility of 
using SAI to simultaneously stabilize non-temperature metrics such 
as tropical precipitation and Arctic sea ice extent is also explored (Lee 
et al., 2020). Furthermore, the potential of achieving multiple climate 
policy goals by combining two SRM approaches is also examined 
in a few modelling studies, with low confidence in the outcome of 
combining various approaches and the related climate response 
(Boucher et al., 2017; Cao et al., 2017).

4.6.3.3.1	 Stratospheric aerosol injection

Most SRM research has focused on stratospheric aerosol injection 
(SAI) and most SAI studies have assessed the effects of injection. Most 
research has focused on stratospheric aerosol injection (SAI): the 
injection of sulphate particles or its precursor gases such as SO2, which 
would then be oxidized to H2SO4. Injection of other types of aerosol 
particles, such as calcite (CaCO3), titanium dioxide (TiO2), aluminium 
oxide (Al2O3), and engineered nanoparticles has also been proposed 
(Keith, 2010; Ferraro et al., 2011; Pope et al., 2012; Weisenstein et al., 
2015; A.C. Jones et  al., 2016; Keith et  al., 2016), but are much less 
studied compared to sulphate injection. The natural analogue for 
sulphate aerosol injection is major volcanic eruptions (Cross-Chapter 
Box  4.1). While volcanic eruptions are not perfect analogues for 
SAI (Robock et  al., 2013; Plazzotta et  al., 2018; Duan et  al., 2019), 
studies on climate impacts of past volcanic eruptions can inform on 
the potential impact of stratospheric sulphate injection. For example, 
emergent constraints (Chapters 1 and 5) that relate the climate system 
response to volcanic eruptions can be used to reduce uncertainty of 
the land surface temperature response to SAI (Plazzotta et al., 2018).

The cooling potential of SAI using sulphate aerosols depends on 
many factors (Visioni et al., 2017) including the amount of injection 
(Niemeier and Timmreck, 2015), aerosol microphysics (Krishnamohan 
et al., 2020), the spatial and temporal pattern of injection (Tilmes et al., 
2017), response of stratospheric dynamics and chemistry (Richter 
Jadwiga et al., 2018), and aerosol effect on cirrus clouds (Visioni et al., 
2018). A negative radiative forcing of a few W m–2 (ranging from one 

to eight W m–2) could be achieved depending on the amount and 
location of SO2 injected into the stratosphere (Aquila et  al., 2014; 
Pitari et al., 2014; Niemeier and Timmreck, 2015; Kravitz et al., 2017; 
Kleinschmitt et al., 2018; Tilmes et al., 2018a). The simulated efficacy 
of SAI by emission of SO2 (radiative forcing per mass of injection rate) 
generally decreases with the increase in injection rate because of the 
growth of larger particles (about 0.5 microns) through condensation 
and coagulation reducing the mass scattering efficiency (Niemeier 
and Timmreck, 2015; Kleinschmitt et  al., 2018). However, efficacy 
changes little for total injection rate up to about 25 Tg sulphur 
per year when SO2 is injected at multiple locations simultaneously 
(Kravitz et  al., 2017; Tilmes et  al., 2018a). Differences in model 
representation of aerosol microphysics, evolution of particle size, 
stratospheric dynamics and chemistry, and aerosol microphysics–
radiation–circulation interactions all contribute to the uncertainty in 
simulated cooling efficiency of SAI. Compared to sulphate aerosols, 
injection of non-sulphate particles would result in different cooling 
efficacy, but understanding is limited (Pope et al., 2012; Weisenstein 
et al., 2015; A.C. Jones et al., 2016).

Earlier modelling studies focused on the effect of equatorial sulphate 
injection that tends to overcool the tropics and undercool the poles. 
Compared to equatorial injection, off-equatorial injection at multiple 
locations shows a  closer resemblance to the baseline climate in 
many aspects, including temperature, precipitation, and sea ice 
coverage (Kravitz et  al., 2019). However, significant regional and 
seasonal residual and overcompensating climate change is reported, 
including regional shifts in precipitation, continued warming of 
polar oceans, and shifts in the seasonal cycle of snow depth and 
sea ice cover (Fasullo et al., 2018; Jiang et al., 2019; Simpson et al., 
2019b). By appropriately adjusting the amount, latitude, altitude, and 
timing of the aerosol injection, modelling studies suggest that SAI is 
conceptually able to achieve some desired combination of radiative 
forcing and climate response (medium confidence) (MacMartin et al., 
2017; Dai et al., 2018; Lee et al., 2020; Visioni et al., 2020b).

There is large uncertainty in the stratospheric response to SAI, and 
the change in stratospheric dynamics and chemistry would depend 
on the amount, size, type, location, and timing of injection. There is 
high confidence that aerosol-induced stratospheric heating will play 
an important role in surface climate change (Simpson et al., 2019b) 
by altering the effective radiative forcing (Krishnamohan et al., 2019), 
lower stratosphere stability (Ferraro and Griffiths, 2016), quasi-biennial 
oscillation (QBO) (Aquila et  al., 2014; Niemeier and Schmidt, 2017; 
Kleinschmitt et  al., 2018), polar vortexes (Visioni et  al., 2020a), and 
North Atlantic Oscillation (Jones et  al., 2021). Model simulations 
indicate stronger polar jets and weaker storm tracks and a poleward 
shift of the tropospheric mid-latitude jets in response to stratospheric 
sulphate injections in the tropics (Ferraro et al., 2015; Richter Jadwiga 
et al., 2018), as the meridional temperature gradient is increased in the 
lower stratosphere by the aerosol-induced heating. The aerosol-induced 
warming would also offset some of the GHG-induced stratospheric 
cooling. Compared to equatorial injection, off-equatorial injection is 
likely to result in reduced change in stratospheric heating, circulation, 
and QBO (Richter Jadwiga et al., 2018; Kravitz et al., 2019). Stratospheric 
ozone response to sulphate injection is uncertain depending on the 
amount, altitude, and location of injection (WMO,  2018). It is likely 
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that sulphate injection would cause a  reduction in polar column 
ozone concentration and delay the recovery of Antarctic ozone hole 
(Pitari et al., 2014; Richter Jadwiga et al., 2018; Tilmes et al., 2018b), 
which would have implications for UV radiation and surface ozone 
(Pitari et al., 2014; Xia et al., 2017; Richter Jadwiga et al., 2018; Tilmes 
et al., 2018b). Injection of non-sulphate aerosols is likely to result in less 
stratospheric heating and ozone loss (Pope et al., 2012; Weisenstein 
et  al., 2015; Keith et  al., 2016). One side effect of SAI is increased 
sulphate deposition at surface. A  recent modelling study indicates 
that to maintain global temperature at 2020 levels under RCP 8.5, 
increased sulphate deposition from stratospheric sulphate injection 
could be globally balanced by the projected decrease in tropospheric 
anthropogenic SO2 emissions, but the spatial distribution of sulphate 
deposition would move from low to high latitudes (Visioni et al., 2020c).

4.6.3.3.2	 Marine cloud brightening

Marine cloud brightening (MCB) involves injecting small aerosols 
such as sea salt into the base of marine stratocumulus clouds 
where the aerosols act as cloud condensation nuclei (CCN). In the 
absence of other changes, an increase in CCN would produce higher 
cloud droplet number concentration with reduced droplet sizes, 
increasing cloud albedo. Increased droplet concentration may also 
increase cloud water content and optical thickness, but recent studies 
suggest that liquid water path response to anthropogenic aerosols is 
weak due to the competing effects of suppressed precipitation and 
enhanced cloud water evaporation (Toll et al., 2019). An analogue 
for MCB are reflective, persistent ‘ship tracks’ observed after the 
passage of a  sea-going vessel emitting combustion aerosols into 
susceptible clouds (Christensen and Stephens, 2011; Chen et  al., 
2012; Gryspeerdt et al., 2019). A recent study (Diamond et al., 2020) 
found a  substantial increase in cloud reflectivity from shipping in 
south-east Atlantic basin, suggesting that a  regional-scale test of 
MCB in stratocumulus‐dominated regions could be successful.

Modelling studies suggest that MCB has the potential to achieve 
a negative forcing of about 1 to 5 W m–2, depending on the deployment 
area and strategies of cloud seeding (Hill and Ming, 2012; Partanen 
et al., 2012; Alterskjær et al., 2013; Ahlm et al., 2017; Stjern et al., 
2018). Regional applications of MCB has also been suggested for 
offsetting severe impacts from tropical cyclones whose genesis is 
associated with higher SST (MacCracken, 2016; Latham et al., 2014) 
and for protecting coral reefs from higher SST (Latham et al., 2013). 
However, such regional approaches also involve large uncertainties 
in the magnitude of the responses and consequences.

Several modelling studies suggest that the direct scattering effect by 
injected particles might also play an important role in the cooling effect 
of MCB, but the relative contribution of aerosol–cloud and aerosol–
cloud–radiation effect is uncertain (Partanen et  al., 2012; Kravitz 
et al., 2013b; Ahlm et al., 2017). Relative to the high-GHG climate, 
it is likely that MCB would increase precipitation over tropical land 
due to the inhomogeneous forcing pattern of MCB over ocean and 
land (medium confidence) (Bala et al., 2011; Alterskjær et al., 2013; 
Niemeier et al., 2013; Ahlm et al., 2017; Muri et al., 2018; Stjern et al., 
2018). Because of the high level of uncertainty associated with cloud 
microphysics and aerosol–cloud–radiation interaction (Section 7.3), 

the climate response to MCB is as uncertain. Results from global 
climate models are subject to large uncertainty because of different 
treatment of cloud microphysics and inadequate representation of 
sub-grid aerosol and cloud processes (Alterskjær and Kristjánsson, 
2013; Stuart et al., 2013; Connolly et al., 2014; Stjern et al., 2018). 
Sea salt deposition over land (Muri et al., 2015) and the effect of sea 
salt emission on atmospheric chemistry (Horowitz et al., 2020) are 
some of the potential side effects of MCB.

4.6.3.3.3	 Cirrus cloud thinning

Cirrus clouds trap more outgoing thermal radiation than they 
reflect incoming solar radiation and thus have an overall warming 
effect  on the climate system (Mitchell and Finnegan, 2009). The 
aim of cirrus cloud thinning (CCT) is to reduce cirrus cloud optical 
depth by increasing the heterogeneous nucleation via seeding cirrus 
clouds with an optimal concentration of ice nucleating particles, 
which might cause larger ice crystals and rapid fallout, resulting in 
reduced lifetime and coverage of cirrus clouds (Muri et  al., 2014; 
Gasparini et al., 2017; Lohmann and Gasparini, 2017; Gruber et al., 
2019). CCT  aims to achieve the opposite effect of contrails that 
increase cirrus cover and cause a  small positive ERF (Section 7.3). 
A high-resolution modelling study of CCT over a limited area of the 
Arctic suggested that cirrus seeding causes a decrease in ice crystal 
number concentration and a reduction in mixed-phase cloud cover, 
both of which cause a cooling effect (Gruber et al., 2019).

Under present-day climate, cirrus clouds exerts a  net positive 
radiative forcing of about 5 W m–2 (Gasparini and Lohmann, 2016; 
Hong et  al., 2016), indicating a maximum cooling potential of the 
same magnitude if all cirrus cloud were removed from the climate 
system. However, modelling results show a  much smaller cooling 
effect of CCT. For the optimal ice nuclei seeding concentration and 
globally non-uniform seeding strategy, a net negative cloud radiative 
forcing of about 1 to 2 W m–2 is achieved (Storelvmo and Herger, 
2014; Gasparini et  al., 2020). A  few studies find that no seeding 
strategy could achieve a significant cooling effect, owing to complex 
microphysical mechanisms limiting robust climate responses to 
cirrus seeding (Penner et al., 2015; Gasparini and Lohmann, 2016). 
A higher than optimal concentration of ice nucleating particles could 
also result in over-seeding that increases rather than decreases cirrus 
optical thickness (Storelvmo et  al., 2013; Gasparini and Lohmann, 
2016). Thus, there is low confidence in the cooling effect of CCT, due 
to limited understanding of cirrus microphysics, its interaction with 
aerosols, and the complexity of seeding strategy.

Relative to the high-GHG climate and for the same amount of global 
cooling, CCT is simulated to cause an increase in global precipitation 
compared to shortwave-based SRM options such as SAI and MCB 
(Duan et al., 2018; Muri et al., 2018) because of the opposing effects of 
CCT and increased CO2 on outgoing longwave radiation (Kristjánsson 
et  al., 2015; Jackson et  al., 2016). Combining SAI and CCT has 
suggested that GHG-induced changes in global mean temperature 
and precipitation can be simultaneously offset (Cao et al., 2017), but 
there is low confidence in the applicability of this result to the real 
world owing to the large uncertainty in simulating aerosol forcing 
and the complex cirrus microphysical processes.
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4.6.3.3.4	 Surface-based albedo modification

Surface-based albedo modification could, in principle, achieve 
a negative radiative forcing of a few W m–2 by enhancing the albedo 
of the ocean surface (Gabriel et  al., 2017; Kravitz et  al., 2018). 
However, the technology does not exist today to increase ocean 
albedo at large scale. An increase in crop albedo or roof albedo in 
urban areas could help to reduce warming in densely populated and 
important agricultural regions, but the effect would be limited to 
local scales and ineffective at counteracting global warming (Crook 
et al., 2015; Zhang et al., 2016). Large changes in desert albedo could 
in principle result in substantial global cooling, but would severely 
alter the hydrological cycle (Crook et al., 2015).

In addition to above-mentioned SRM methods, a  number of local 
intervention methods have been proposed to limit the loss of 
cryosphere, such as applying reflective materials over sea ice (Field 
et  al., 2018), pumping seawater on top of the ice surface (Desch 
et  al., 2017; Zampieri and Goessling, 2019), depositing a  massive 
amount of snow over ice sheets (Feldmann et al., 2019), and blocking 
warm seawater from reaching glaciers (J.C. Moore et  al., 2018). 
The  stabilization of ice sheets through local intervention methods 
would reduce sea level commitment (Section 9.6.3.5). However, these 
methods are subject to large uncertainty concerning their feasibility 
and effectiveness, and their effects would be largely localized.

4.6.3.3.5	 Detectability of climate response to solar 
radiation modification

Internal variability could mask the response to solar radiation 
modification (SRM)-related forcing in the near term (Section 4.6.3.1). 
A detection of the global scale climate system response to stratospheric 
sulphate aerosol injection will likely require a  forcing of the size 
produced by the 1991 Mount Pinatubo eruption (Robock et al., 2010). 
In model simulations of where 5 Tg SO2 is injected into the stratosphere 
continuously (roughly one fourth of the 1991 Pinatubo eruption per 
year) under RCP 4.5, it is shown that, relative to the high-GHG world 
without SRM, the effect of SRM on global temperature and precipitation 
is detectable after one to two decades (Bürger and Cubasch, 2015; 
Lo et al., 2016) which is similar to the time scale for the emergence of 
GSAT trends due to strong mitigation (Section 4.6.3.1). The detection 
time is sensitive to detection methods and filtering techniques 
(Lo et  al., 2016). An  analysis using GLENS simulation (MacMartin 
et  al., 2019) compares response in temperature, precipitation, and 
precipitation minus evapotranspiration (P-E) between a climate state 
with GHG-induced 1.5°C global mean temperature change and that 
with the same global mean temperature but under RCP4.5 emissions 
and a limited deployment of SO2 injection. It is found that at grid-scale, 
difference in climate response between these two climate states are 
not detectable by the end of this century. However, for higher emissions 
scenarios of the RCP8.5 and correspondingly larger SRM deployment 
for maintaining the same global mean temperature change of 1.5°C, 
the regional differences are detectable before the end of the century. 
In addition to surface temperature and precipitation, observations of 
aerosol burden and temperature in the stratosphere via the deployment 
of stratospheric aerosol observing system might facilitate the detection 
of climate response to SAI.

4.6.3.3.6	 Climate response to termination of solar 
radiation modification

A hypothetical, sudden and sustained termination of SRM in a world 
with high GHG concentrations has been simulated to cause climate 
rebound effects such as rapid increase in global temperature, 
precipitation, and sea level, and rapid reduction in sea ice area (Jones 
et al., 2013; McCusker et al., 2014; Crook et al., 2015; Muri et al., 
2018). Model simulations also show reduced precipitation over 
land areas in the first few years following termination, indicating 
general drying that would exacerbate the effects of rapid warming 
(McCusker et al., 2014). A sudden and sustained termination of SRM 
is also expected to weaken carbon sinks, accelerating atmospheric 
CO2 accumulation and warming (Tjiputra et  al., 2016; Muri et  al., 
2018; Plazzotta et al., 2019). A gradual phase-out of SRM combined 
with mitigation and CDR could reduce the large warming rates 
from sudden SRM termination (MacMartin et  al., 2014; Keith and 
MacMartin, 2015; Tilmes et al., 2016), though this would be limited 
by how rapidly emission reductions can be scaled up (Ekholm and 
Korhonen, 2016).

4.6.3.3.7	 Synthesis of the climate response to solar 
radiation modification

Modelling studies have consistently shown that SRM has the potential 
to offset some effect of increasing GHGs on global and regional 
climate (high confidence), but there would be substantial residual or 
overcompensating climate change at the regional scale and seasonal 
time scale (high confidence). Large uncertainties associated with 
aerosol–cloud–radiation interactions persist in our understanding 
of climate response to aerosol-based SRM options. For the same 
amount of global mean cooling, different SRM options would cause 
different patterns of climate change (medium confidence). Modelling 
studies suggest that it is conceptually possible to achieve multiple 
climate policy goals by optimally designed SRM strategies.

The effect of SRM options on global temperature and precipitation 
response would be detectable after one or two decades, which is 
similar to the time scale for the detection of strong mitigation. There 
is high confidence that a sudden and sustained termination of a high 
level of SRM against a high-GHG background would cause a rapid 
increase in temperature at a rate that far exceeds that projected for 
climate change without SRM. However, a gradual phase-out of SRM 
combined with mitigation and CDR would more likely than not avoid 
large rates of warming.

4.7	 Climate Change Beyond 2100

This section assesses changes in climate beyond 2100. An advance 
since AR5 is the availability of ESM results for scenarios beyond 2100 
and for much longer stabilisation simulations compared with analysis 
predominantly based on Earth system models of intermediate 
complexity (EMICs) at the time of AR5 (e.g., Eby et al., 2013; Zickfeld 
et al., 2013). Long-term commitment of sea level rise due to thermal 
expansion and ice-sheet loss is assessed in Chapter 9 (Section 9.6.3.5 
and Figure  9.30). Here we assess projections of GSAT, global 
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precipitation, and Arctic sea ice. Uncertainties relating to potential 
long-term changes in AMOC are treated in Section 9.2.3.1.

On multi-century time scales it is common to explore changes that 
are due to long-term commitment. Here we differentiate between:

•	 Committed emissions due to infrastructure. Infrastructure 
that causes greenhouse gas emissions cannot be changed straight 
away leading to a commitment from existing infrastructure that 
some emissions will continue for a  number of years into the 
future (Davis and Socolow, 2014; C.J. Smith et al., 2019). Further 
consideration of this aspect of commitment will be assessed 
by WGIII.

•	 Climate response to constant emissions. Some of the scenario 
extensions beyond 2100 make assumptions about constant 
emissions (either positive or negative). Section 4.7.1 will assess 
changes in climate under scenario extensions beyond 2100.

•	 Committed climate change to constant atmospheric 
composition. There is widespread literature on how the climate 
continues to change after stabilisation of radiative forcing. 
This includes diagnosing the long-term climate response to 
a doubling of CO2 (ECS, Chapter 7). Since AR5, more GCMs have 
run stabilized forcing simulations for many centuries allowing 
new insights into their very long-term behaviour (Section 7.4.3).

•	 Committed response to zero emissions. How climate would 
continue to evolve if all emissions ceased. The SR1.5 assessed 
changes in climate if emissions of all greenhouse gases and 
aerosols ceased. Section 4.7.2 assesses new results considering 
cessation of CO2-only emissions which forms a significant term in 
calculating remaining carbon budgets.

•	 Irreversibility. Some changes do not revert if the forcing is 
removed, leaving a committed change to the system. Section 4.7.2 
assesses changes in the Earth system which may be irreversible.

•	 Abrupt changes. If a  tipping point in the climate system is 
passed, then some elements may continue to respond if the 
forcing which caused them is removed. Section  4.7.2 assesses 
the potential for abrupt changes in the Earth system.

4.7.1	 Commitment and Climate Change Beyond 2100

4.7.1.1	 Climate Change Following Zero Emissions

The zero emissions commitment (ZEC) is the climate change 
commitment that would result, in terms of projected GSAT, from 
setting carbon dioxide (CO2) emissions to zero. It is determined by both 
inertia in physical climate system components (ocean, cryosphere, 
land surface) and carbon cycle inertia (see Annex VII). In its widest 
sense it refers to emissions of all compounds including greenhouses 
gases, aerosols and their pre-cursors. A specific sub-category of zero 
emissions commitment is the zero CO2 emissions commitment, which 
refers to the climate system response to a cessation of anthropogenic 
CO2 emissions excluding the impact of non-CO2 forcers. Assessment 
of remaining carbon budgets requires an assessment of zero CO2 
emissions commitment as well as of the transient climate response 
to cumulative carbon emissions (TCRE; Section 5.5.2).

There is an offset of continued warming following cessation 
of emissions by continued CO2 removal by natural sinks (high 
confidence) (e.g.,  Matthews and Caldeira, 2008; Solomon et  al., 
2009; Joos et  al., 2013; Ricke and Caldeira, 2014). Some models 
continue warming by up to 0.5°C after emissions cease at 2°C of 
warming (Frölicher et al., 2014; Frölicher and Paynter, 2015; Williams 
et al., 2017), while others simulate little to no additional warming 
(Nohara et  al., 2015). In SR1.5, the available evidence indicated 
that past CO2 emissions do not commit to substantial further 

0 20 40 60 80 100
Time (Years)

−120

−100

−80

−60

−40

−20

0

Δ 
At

mo
sp

he
ric

 C
O 2 (p

pm
)

0 20 40 60 80 100
Time (Years)

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Ze
ro

 E
mi

ss
ion

s C
om

mi
tm

en
t (

o C)

(a) (b)

Figure 4.39 | Zero emissions commitment (ZEC). Changes in (a) atmospheric CO2 concentration and (b) evolution of global surface air temperature (GSAT) following 
cessation of CO2 emissions branched from the 1% per year experiment after emissions of 1000 Pg C (Jones et al., 2019; MacDougall et al., 2020). ZEC is the temperature 
anomaly relative to the estimated temperature at the year of cessation. ZEC50 is the 20-year mean GSAT change centred on 50 years after the time of cessation (see Table 4.8) – 
this period is marked with the vertical dotted lines. Multi-model mean is shown as thick black line, individual model simulations are in grey. Further details on data sources and 
processing are available in the chapter data table (Table 4.SM.1).
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warming (Allen et al., 2018). A ZEC close to zero was thus applied 
for the computation of the remaining carbon budget (Rogelj et al., 
2018b). However, the  available literature consisted of simulations 
from a  small number of models using a  variety of experimental 
designs, with some simulations showing a  complex evolution of 
temperature following cessation of emissions (e.g.,  Frölicher et al., 
2014; Frölicher and Paynter, 2015; Williams et al., 2017).

Here we draw on new simulations to provide an assessment of ZEC 
using multiple ESMs (Jones et  al., 2019) and EMICs (MacDougall 
et al., 2020). Figure 4.39 shows results from 20 models that simulate 
the evolution of CO2 and the GSAT response following cessation of 
CO2 emissions for an experiment where 1000 PgC is emitted during 
a 1% per year CO2 increase. All simulations show a strong reduction in 
atmospheric CO2 concentration following cessation of CO2 emissions 
in agreement with previous studies and basic theory that natural 
carbon sinks will persist. Therefore, there is very high confidence that 
atmospheric CO2 concentrations would decline for decades if CO2 
emissions cease. Temperature evolution in the 100 years following 
cessation of emissions varies by model and across time scales, with 
some models showing declining temperature, others having ZEC close 
to zero, and others showing continued warming following cessation 
of emissions (Figure  4.39). The GSAT response depends on the 
balance of carbon sinks and ocean heat uptake (MacDougall et al., 
2020). The 20-year average GSAT change 50 years after the cessation 
of emissions (ZEC50) is summarized in Table 4.8. The mean value of 
ZEC50 is –0.079°C, with 5–95% range –0.34°C–0.28°C. There is no 
strong relationship between ZEC50 and modelled climate sensitivity 

(neither ECS nor TCR; MacDougall et al., 2020). It is therefore likely 
that the absolute magnitude of ZEC50 is less than 0.3°C, but we 
assess low confidence in the sign of ZEC on 50-year time scales. This 
is small compared with natural variability in GSAT.

4.7.1.2	 Change in Global Climate Indices Beyond 2100

This subsection assesses changes in global climate indices out to 
2300 using extensions of the SSP scenarios (Meinshausen et al., 2020) 
and literature based on extensions to the RCP scenarios from CMIP5 
(Meinshausen et al., 2011), which differ from the SSPs despite similar 
labelling of global radiative forcing levels (Section 4.6.2). Meinshausen 
et al. (2020) describe the extensions to the SSP scenarios, which differ 
slightly from the ScenarioMIP documentation (O’Neill et al., 2016). 
A simplified approach across scenarios reduces emissions such that 
after 2100, land-use CO2 emissions are reduced to zero by 2150; any 
net negative fossil CO2 emissions are reduced to zero by 2200, and 
positive fossil CO2 emissions are reduced to zero by 2250. Non-CO2 
fossil fuel emissions are also reduced to zero by 2250 while land-
use-related non-CO2 emissions are held constant at 2100 levels. The 
extensions are created up to the year 2500, but ESM simulations 
have only been requested, as part of the CMIP6 protocol, to run 
to 2300. As a  result, unlike the RCP8.5 extension, SSP5‑8.5 sees 
a decline in CO2 concentration after 2250, but the radiative forcing 
level is similar, reaching approximately 12 W m–2 during most of the 
extension. Both SSP1‑2.6 and SSP5‑3.4-OS decrease radiative forcing 
after 2100. SSP5‑3.4-OS is designed to return to the same level of 
forcing as SSP1‑2.6 during the first half of the 22nd century. Because 
relatively few CMIP6 ESMs have submitted results beyond 2100, 
GSAT projections using the MAGICC7 emulator (see Cross-Chapter 
Box 7.1) are also shown here.

Changes in climate at 2300 have impacts and commitments 
beyond this timeframe (high confidence). Sea level rise may 
exceed 2 m on millennial time scales even when warming is 
limited to 1.5°C–2°C, and tens of metres for higher warming levels 
(Table 9.10). Randerson et al. (2015) showed increasing importance 
on carbon cycle feedbacks of slow ocean processes, Mahowald 
et  al. (2017) showed the long-lasting legacy of land-use effects 
and J.K. Moore et al. (2018) show how changes in Southern Ocean 
winds affect nutrients and marine productivity well beyond 2300. 
Clark et al. (2016) show that physical and biogeochemical impacts 
of 21st century emissions have a potential committed legacy of at 
least 10,000 years.

Table 4.8 | The 20-year average GSAT change 50 years after the cessation 
of emissions (ZEC50). Displayed are ZEC50 estimated from eleven ESMs (top) and 
nine EMICs (bottom).

Model ZEC50 (°C)

ACCESS-ESM1.5 0.01

CanESM5 –0.14

CESM2 –0.31

CNRM-ESM2-1 0.06

GFDL-ESM2M –0.27

GFDL-ESM4 –0.21

GISS-E2-1-G –0.15

MIROC-ES2L –0.08

MPI-ESM1.2-LR –0.27

NorESM2-LM –0.33

UKESM1-0-LL 0.28

Bern3D-LPX 0.01

DCESS1.0 0.06

CLIMBER-2 –0.07

IAPRAS 0.28

LOVECLIM 1.2 –0.04

MESM 0.01

MIROC-lite –0.06

PLASM-GENIE –0.36

UVic ESCM 2.10 0.03
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4.7. 1.2.1 Global surface air temp erature

Both CMIP6 and CMIP5 results show that global temperature beyond 
2100 is strongly dependent on scenario, and the difference in GSAT 
projections between high- and low-emissions scenarios continues to 
increase (high confi dence). Under the extended RCP2.6 (Caesar et al., 
2013) and SSP1-2.6 scenarios, where CO2 concentration and radiative 
forcing continue to decline beyond 2100, GSAT stabilizes during the 
21st century before decreasing and remaining below 2°C until 2300, 
except in some of the very high climate-sensitivity ESMs, which 
project GSAT to stay above 2°C by 2300 (Figure 4.40). Under RCP8.5, 
regional temperature changes above 20°C have been reported in 
multiple models over high-latitude land areas (Caesar et al., 2013; 
Randerson et  al., 2015). Non-CO2 forcing and feedbacks remain 
important by 2300 (high confi dence). Randerson et al. (2015) found 
that 1.6°C of warming by 2300 came from non-CO2 forcing alone 
in RCP8.5, and Rind et  al. (2018) show that regional forcing  from 
aerosols can have notable effects on ocean circulation on centennial 

time scales. High latitude warming led to longer growing seasons 
and increased vegetation growth in the CESM1 model (Liptak 
et al., 2017), and Burke et al. (2017) found that carbon release from 
permafrost areas susceptible to this warming may amplify future 
climate change by up to 17% by 2300.

Too few CMIP6 models performed the extension simulations to allow 
a  robust assessment of GSAT projection, and some of those which 
did had higher than average climate sensitivity values. Therefore, we 
base our assessment of GSAT projections (Table 4.9) on the MAGICC7 
emulator calibrated against assessed GSAT to 2100 (Section  4.3.4, 
Cross-Chapter Box 7.1). Because the emulator approach has not been 
evaluated in depth up to 2300 in the same way as it has up to 2100 
(Cross-Chapter Box 7.1) we account for possible additional uncertainty 
by assessing the 5–95% range from MAGICC as likely instead of very 
likely. It is therefore likely that GSAT will exceed 2°C above that of 
the period 1850–1900 at the year 2300 in the extended SSP scenarios 
SSP2-4.5, SSP3-7.0 and SSP5-8.5  (Figure  4.40). For  SSP1-2.6 and 

Fig      ure 4.40 | Simulated climate changes up to 2300 under the extended SSP scenarios. Displayed are (a) projected global surface air temperature (GSAT) change, 
relative to 1850–1900, from CMIP6 models (individual lines) and MAGICC7 (shaded plumes); (b) as (a) but zoomed in to show low-emissions scenarios; (c) global land 
precipitation change; and (d) September Arctic sea ice area. Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).
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SSP1‑1.9, mean warming at 2300 is 1.5°C and 0.9°C respectively. 
GSAT differences between SSP5‑3.4-overshoot and SSP1‑2.6 peak 
during the 21st century but decline to less than about 0.25°C after 
2150 (medium confidence).

To place the temperature projections for the end of the 23rd century 
into the context of paleo temperatures, GSAT under SSP2‑4.5 (likely 
2.3°C–4.6°C higher than over the period 1850–1900) has not been 
experienced since the Mid Pliocene, about three million years ago. 
GSAT projected for the end of the 23rd  century under SSP5‑8.5 
(likely  6.6°C–14.1°C higher than over the period 1850–1900) 
overlaps with the range estimated for the Miocene Climatic Optimum 
(5°C–10°C higher) and Early Eocene Climatic Optimum (10°C–18°C 
higher), about 15 and 50 million years ago, respectively (medium 
confidence) (Chapter 2).

4.7.1.2.2	 Global land precipitation

Global land precipitation will continue to increase in line with GSAT 
under high emissions scenarios (medium confidence). Precipitation 
changes over land show larger variability and a  less clear signal 
than global total precipitation. Caesar et  al. (2013) showed that 
under the CMIP5 extension simulations, HadGEM2-ES projected 
global land precipitation to remain roughly the same in RCP2.6, to 
increase by about 4% in RCP4.5 and to increase by about 7% in 
RCP8.5. Their results showed global precipitation increasing linearly 
with temperature while radiative forcing increases, but then more 
quickly if forcing is stabilized or reduced. This backs up findings of an 
intensification of the hydrological cycle following CO2 decrease which 
has been attributed to a build-up of ocean heat (Wu et al., 2010), and 
to a fast atmospheric adjustment to CO2 radiative forcing (Cao et al., 
2011). Figure  4.40 shows that global land precipitation increases 
in CMIP6 models until 2300 for SSP5‑8.5 but stabilizes in SSP1‑2.6 
and SSP5‑3.4-OS. SSP1‑2.6 and SSP5‑3.4-OS are not distinguishable 
in behaviour of projected global land precipitation after 2100.

4.7.1.2.3	 Arctic sea ice

Chapter  9 assesses with high confidence that on decadal and 
longer time scales, Arctic summer sea ice area will remain highly 
correlated with global mean temperature until the summer sea ice 
has vanished (Section  9.3.1.1). This means that Arctic sea ice will 
continue to decline in scenarios of continued warming but will begin 
to recover in scenarios where GSAT begins to decrease. Under the 

CMIP5 extension simulations, minimum (September) Arctic sea ice 
area began to recover for most models under RCP2.6 out to 2300, 
while RCP4.5 and RCP8.5 extensions became ice-free in September 
(Hezel et al., 2014; Bathiany et al., 2016). They also found increasingly 
strong winter responses under continued warming such that under 
the RCP8.5 extension, the Arctic became ice-free nearly year-round 
by 2300. Consistent with the assessment in Section  9.3.1.1 that 
Arctic sea ice area is correlated with GSAT, CMIP6 projections to 2300 
show partial sea ice recovery by 2300 in SSP1‑2.6 in line with GSAT 
(Figure 4.40), with one model (MRI-ESM2-0) showing near complete 
recovery to present-day values. SSP1‑2.6 and SSP5‑3.4-OS are not 
distinguishable in behaviour of Arctic sea ice in these models after 
2100. SSP5‑8.5 remains ice-free in September up to 2300.

4.7.2	 Potential for Abrupt and Irreversible 
Climate Change

Similar to AR5 and SROCC, AR6 defines an abrupt climate change as 
a  large-scale abrupt change  in the climate system that takes place 
over a few decades or less, persists (or is anticipated to persist) for at 
least a few decades and causes substantial impacts in human and/or 
natural systems (Glossary). Further, AR6 considers such a perturbed 
state of a  dynamical system as irreversible on a  given time scale, 
if the recovery time scale from this state due to natural processes 
takes substantially longer than the time scale of interest (Glossary). 
The AR6 adopts the related definition of a tipping point as a critical 
threshold beyond which a  system reorganizes, often abruptly and/
or irreversibly, and a tipping element as a component of the Earth 
system that is susceptible to a tipping point (Glossary). Tipping points 
may involve global or regional climate changes from one stable state 
to another stable state or to changes that occur faster than the rate 
of change of forcing (Alley et al., 2003) and include shifts from one 
equilibrium state to another and other responses of the climate system 
to external forcing (Section  1.2.4.2). While reversibility has been 
defined alternatively in the literature with respect to the response 
specifically to idealized CO2 forcing and generally GSAT change, AR6 
considers both definitions synonymous, because it has been widely 
demonstrated that the GSAT change is reversible in models with 
respect to CO2 with a several-year lag (Boucher et al., 2012).

Abrupt and irreversible changes in the climate system are assessed 
across multiple chapters in AR6. This section provides a cross-chapter 
synthesis of these assessments as an update to Table  12.4 in AR5 
and Table 6.1 in SROCC. Understanding of abrupt climate change and 
irreversibility has advanced considerably since AR5 with many of the 
projected changes in proposed Tipping Elements having grown more 
confident (Table 4.10). Many aspects of the physical climate changes 
induced by GHG warming previously demonstrated to be reversible 
in a single model have been confirmed in multiple models (Boucher 
et al., 2012; Tokarska and Zickfeld, 2015) with others such as sea level 
rise or terrestrial ecosystems confirmed to continue to respond on long 
time scales (Clark et al., 2016; Zickfeld et al., 2017; Pugh et al., 2018).

The Carbon Dioxide Removal Model Intercomparison Project 
(CDR-MIP; Keller et  al., 2018) comprises a  set of 1% ramp-up, 
ramp-down simulations aimed at establishing a  multi-model 

Table 4.9 | Change of global surface air temperature at 2300. Displayed are 
the median and 5–95% range of GSAT change at 2300 relative to 1850–1900 for the 
six scenarios used with MAGICC7.

Scenario Median (°C) 5–95% Range (°C)

SSP5‑8.5 9.6 6.6–14.1

SSP3‑7.0 8.2 5.7–11.8

SSP2‑4.5 3.3 2.3–4.6

SSP5‑3.4-OS 1.6 1.1–2.2

SSP1‑2.6 1.5 1.0–2.2

SSP1‑1.9 0.9 0.6–1.4
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assessment of reversibility of Earth system components. Preliminary 
results from CDRMIP are presented in Section  4.6.3. Results from 
the SSP5‑3.4-Overshoot scenario and other quantities of climate 
change at the same CO2 level before and after overshoot are 
assessed in Section  4.6.2. Forcing reversal is followed by reversal 
of ocean surface and land temperature along with land and ocean 
precipitation, snow cover, and Arctic sea ice with a lag of a few years 
to decades (Table 4.10). Other tipping elements have much longer 
time scales of reversibility from decades to millennia. Drijfhout et al. 
(2015) provided an assessment of 13 regional mechanisms of abrupt 
change, finding abrupt changes in sea ice, oceanic flows, land ice, 
and terrestrial ecosystem response, although with little consistency 
among the models. The potential for abrupt changes in ice sheets, 
the AMOC, tropical forests, and ecosystem responses to ocean 
acidification were also recently reviewed by (Good et  al., 2018). 

They found that some degree of irreversible loss of the West Antarctic 
Ice Sheet (WAIS) may have already begun, that tropical forests are 
adversely affected by drought, and rapid development of aragonite 
undersaturation at high latitudes affecting calcifying organisms.

New since AR5 is the fundamental recognition in SRCCL and in 
this Report (Chapter 5) that projected changes in forests strongly 
depend on the human disturbance and that tropical forest dieback 
in the absence of disturbance is largely driven by the increased 
potential for drought, while that in boreal forests includes both 
thermal and hydrological factors (Drijfhout et al., 2015). For some 
proposed tipping elements, the role of seasonal change has become 
better understood. For example, the lack of a tipping point in the 
reduction of summer Arctic sea ice area (Stroeve and Notz, 2015) 
has been further substantiated. The role of abrupt change at the 

Table 4.10 | Cross-chapter assessment updating AR5 and SROCC of components in the Earth system that have been proposed as susceptible to tipping 
points/abrupt change, irreversibility, projected 21st  century change, and overall change in assessment from previous IPCC reports. Also provided are 
confidence levels and, in parentheses, the main section(s) of this Report in which proposed tipping elements are assessed.

Earth System 
Component/Tipping 

Element

Potential Abrupt 
Climate Change?

Irreversibility if Forcing 
Reversed (Time Scales 

Indicated)

Projected 21st Century Change Under 
Continued Warming

Change in 
Assessment

Global Monsoon 
(4.5.1.5; 8.6)

Yes, under AMOC 
collapse, medium 
confidence

Reversible within years to 
decades, medium confidence

Medium confidence in global monsoon increase; medium 
confidence in Asian-African strengthening and North 
American weakening

More lines of evidence 
than AR5

Tropical Forest  
(5.4.8; 8.6.2)

Yes, low confidence
Irreversible for multi-decades, 
medium confidence

Medium confidence of increasing vegetation carbon storage 
depending on human disturbance

More confident rates 
than AR5

Boreal Forest  
(5.4.8)

Yes, low confidence
Irreversible for multi-decades, 
medium confidence

Medium confidence in offsetting lower latitude dieback and 
poleward extension depending on human disturbance

More confident rates 
than AR5

Permafrost Carbon  
(5.4.8)

Yes, high confidence
Irreversible for centuries, 
high confidence

Virtually certain decline in frozen carbon; low confidence 
in net carbon change

More confident rates 
than SROCC

Arctic Summer Sea Ice 
(4.3.2; 4.6.2.1; 9.3.1)

No, high confidence
Reversible within years to 
decades, high confidence

Likely complete loss
More specificity than 
SROCC

Arctic Winter Sea Ice 
(4.3.2; 9.3.1)

Yes, high confidence
Reversible within years to 
decades, high confidence

High confidence in moderate winter declines
More specificity than 
SROCC

Antarctic Sea Ice  
(9.3.2)

Yes, low confidence Unknown, low confidence Low confidence in moderate winter and summer declines
Improved CMIP6 
simulation

Greenland Ice Sheet  
(9.4.1)

No, high confidence
Irreversible for millennia, 
high confidence

Virtually certain mass loss under all scenarios
More lines of evidence 
than SROCC

West Antarctic Ice Sheet 
and Shelves (9.4.2; Box 9.4)

Yes, high confidence
Irreversible for decades to 
millennia, high confidence

Likely mass loss under all scenarios; deep uncertainty 
in projections for above 3°C

Added deep uncertainty 
at GWL >3°C

Global Ocean Heat Content 
(4.5.2.1; 4.6.2.1; 9.2.2; 
CCBox 7.1)

No, high confidence
Irreversible for centuries, 
very high confidence

Very high confidence oceans will continue to warm
Better consistency with 
ECS/TCR

Global Sea-Level Rise 
(4.6.2.1; 4.6.3.2; 9.6.3.5; 
Box 9.4)

Yes, high confidence
Irreversible for centuries, 
very high confidence

Very high confidence in continued rise; deep uncertainty 
in projections above 3°C

Added deep uncertainty 
at GWL >3°C

AMOC  
(4.6.3.2; 8.6.1; 9.2.3.1)

Yes, medium confidence
Reversible within centuries, 
high confidence

Very likely decline; medium confidence of no collapse
More lines of evidence 
than SROCC

Southern MOC  
(9.2.3.2)

Yes, medium confidence
Reversible within decades to 
centuries, low confidence

Medium confidence in decrease in strength
More lines of evidence 
than SROCC

Ocean Acidification 
(4.3.2.5; 5.4.2; 5.4.4)

Yes, high confidence
Reversible at surface; irreversible 
for centuries to millennia at 
depth, very high confidence

Virtually certain to continue with increasing CO2; 
likely polar aragonite undersaturation

More lines of evidence 
than SROCC

Ocean Deoxygenation 
(5.3.3.2)

Yes, high confidence
Reversible at surface; irreversible 
for centuries to millennia at 
depth, medium confidence

Medium confidence in deoxygenation rates and 
increased hypoxia

Improved CMIP6 
simulation
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edges (Bathiany et al., 2020) has also been clarified, as has been 
the importance of distinguishing summer from winter mechanisms 
and associated abruptness, because ice area reduces gradually in 
summer, but not necessarily in winter (Bathiany et al., 2016). For 
other tipping elements including AMOC (Section  9.2.3.1), mixed 
layer depth (Section 9.2.1.3), and sea level rise (Section 9.6.3.5), 
an increase in the diversity of model structure and sensitivity to 
multiple factors has led to a better understanding of the complexity 
of the problem, with some increase in assessed uncertainty and an 
assessed deep uncertainty (Glossary) related to projected sea level 
rise with global warming levels above 3°C (Section 9.6.3.5). In still 
other cases such as Antarctic sea ice (Section 9.3.2) and Southern 
Ocean Meridional Overturning Circulation (MOC; Section 9.2.3.1), 
uncertainty remains high. Finally, it has also been postulated that 
models may be prone to being too stable (Valdes, 2011) based on 
the limitations of models as well as other lines of evidence such 
paleo-evidence of abrupt events (Dakos et  al., 2008; Klus et  al., 
2018; Sime et al., 2019).

4.8	 Low-likelihood, High-warming Storylines

Previous IPCC assessments have primarily assessed the projected 
likely range of changes (e.g., Collins et al., 2013; see also Box 1.1). 
The focus on the likely range partly results from the design of model 
intercomparison projects that are not targeted to systematically 
assess the upper and lower bounds of projections, which in principle 
would require a  systematic sampling of structural and parametric 
model uncertainties. The upper and lower bounds of model 
projections may further be sensitive to the missing representation 
of processes and to deep uncertainties about aspects of the climate 
system (Section 1.2.3.1).

However, a  comprehensive risk assessment requires taking into 
account high potential levels of warming whose likelihood is low, 
but potential impacts on society and ecosystems are high (Xu and 
Ramanathan, 2017; Sutton, 2018). Climate-related risks have been 
argued to increase with increasing levels of global warming even if 
their likelihood decreases (O’Neill et al., 2017). Thus, it has recently 
been argued that an assessment that is too narrowly focused on 
the likely range potentially ignores the changes in the physical 
climate system associated with the highest risks (Sutton, 2018; 
see Section 1.4.4.1).

Given that the CMIP experiments can be considered ensembles of 
opportunity that are not designed for probabilistic assessments, 
alternative approaches such as physically plausible high-impact 
scenarios (Sutton, 2018) or storylines have been suggested to 
investigate the tail of the distribution (Lenderink et al., 2014; Zappa 
and Shepherd, 2017; Kjellström et al., 2018; Shepherd et al., 2018; 
see Section  1.4.4). Such storylines informed by a  combination of 
process understanding, model evidence, and paleo information can 
be used for risk assessment and adaptation planning to test how 
well adaptation strategies would cope if the impacts of climate 
change were more severe than suggested by the likely model range 
(Section  1.4.4). Note that by definition the lower bound of the 
likely model range (Box  4.1) is equally likely as the upper bound. 

However,  low-warming storylines are not specifically assessed in 
this section to focus on storylines associated with highest risks. This 
section further focuses on storylines of high and very high global 
warming levels along with their manifestation in global patterns 
of temperature and precipitation changes. However, this does not 
account for the largest potential changes at regional levels, which 
would require taking into account storylines of regional changes 
dependent on changes in atmospheric circulation, land–atmosphere 
interactions, and regional to local feedbacks.

This section adopts an approach suggested in Sutton (2018). Since 
changes in temperature and precipitation tend to increase with 
the level of warming (Section 4.6.1), low-likelihood, high-warming 
storylines are here illustrated for a level of warming consistent with 
the upper bound of the assessed very likely range (Section 4.3.4) and 
for a level of warming above the very likely range. ECS and TCR are 
the dominant sources of uncertainty in projections of future warming 
under moderate to strong emissions scenarios (Section 7.5.7). Thus, 
a very high level of warming may occur if ECS and TCR are close to 
or above the upper bound of the assessed very likely range, which, 
to agree with historical trends, would require a  strong historical 
aerosol cooling and/or strong SST pattern effects, combined with 
strong positive cloud feedback and substantial biases in paleoclimate 
temperature reconstructions, each of which are assessed as either 
unlikely or very unlikely, though not ruled out (Section 7.5.5).

For SSP1‑2.6, the warming consistent with the upper bound of the 
assessed very likely range corresponds to a  warming of 1.5°C in 
2081–2100 relative to 1995–2014 and 2.4°C relative to 1850–1900 
(Section 4.3.4), a warming well above the 2°C warming level even in 
SSP1‑2.6. Based on different lines of evidence, Figure 4.41 illustrates 
by how much such a  low-likelihood, high-warming storyline 
exceeds the warming pattern consistent with the assessed best 
estimate GSAT warming of 0.9°C relative to 1995–2014. The  first 
estimate  (Figure  4.41, second row) is based on the assumption 
that the multi-model mean temperature pattern scales linearly with 
global mean warming. While linear scaling provides an appropriate 
approximation for changes in temperatures patterns at lower levels 
of warming (Section 4.2.4), this assumption cannot easily be tested 
for an extrapolation to higher levels of warming. Thus, a  second 
estimate (Figure 4.41, third row) is based on the average of the five 
models that simulate a GSAT warming most consistent with the upper 
bound of the assessed very likely range (Section 4.3.4 and Box 4.1; 
note some of the models share components). The two estimates 
for the annual mean temperature pattern for a  low-likelihood, 
high-warming storyline consistently show a  warming pattern that 
substantially exceeds the best estimate warming pattern in most 
regions except around the North Atlantic and the parts of the Arctic. 
Pattern scaling suggests more than 50% warming above the best 
estimate, with 2°C–3°C warming over much of Eurasia and North 
America and more than 4°C warming relative to 1995–2014 over the 
Arctic (Figure 4.41c). The other approach based on five models shows 
less warming than the best estimate and even larger area of cooling 
in the North Atlantic but more warming than the best estimate over 
much of the tropical Pacific, Atlantic, around Antarctica and other the 
land regions (Figure 4.41e).
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Figure 4.41 | High-warming storylines for changes in annual mean temperature. (a, b) Changes in 2081–2100 relative to 1995–2014 consistent with the assessed 
best global surface air temperature (GSAT) estimate (0.9°C and 3.5°C relative to 1995–2014 for SSP1‑2.6 and SSP5‑8.5, respectively). The CMIP6 multi-model mean is linearly 
pattern-scaled to the best GSAT estimate. (c–h) Annual mean warming above the best estimate, relative to panels (a) and (b) respectively; note the different colour bar in a high 
and very high-warming storyline for 2081–2100. (c, d) Multi-model mean warming pattern scaled to very high GSAT level corresponding to the upper bound of the assessed 
very likely range (4.8°C for SSP5‑8.5 and 1.5°C for SSP1‑2.6; see Section 4.3.4). (e, f) Average of five models with high GSAT warming nearest to the upper estimate of the very 
likely range (CESM2, CESM2-WACCM, CNRM-CM6-1, CNRM-CM6-1-HR, EC-Earth3 for SSP1‑2.6 and ACCESS-CM2, CESM2, CESM2-WACCM, CNRM-CM6-1, CNRM-CM6-
1-HRfor SSP5‑8.5); (g, h) Average of four and five models, respectively (ACCESS-CM2, HadGEM3-GC31-LL, HadGEM3-GC31-MM, UKESM1-0-LL for SSP1‑2.6 and CanESM5, 
CanESM5-CanOE, HadGEM3-GC31-LL: HadGEM3-GC31-MM, UKESM1-0-LL for SSP5‑8.5) projecting very high GSAT warming exceeding the very likely range. Further details 
on data sources and processing are available in the chapter data table (Table 4.SM.1).

https://doi.org/10.1017/9781009157896.006
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 22 Aug 2025 at 18:47:28, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.006
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


637

Future Global Climate: Scenario-based Projections and Near-term Information� Chapter 4

4

For the high-emissions scenarios SSP3‑7.0 and SSP5‑8.5, 
a  high-warming storyline is associated with wide-spread warming 
that exceeds the already high best-estimate warming by another 
35–50%. For SSP5‑8.5, this corresponds to a warming of 1°C–3°C in 
addition to the best estimate over most land regions, which implies 
more than 6°C relative to 1995–2014 over most extratropical land 
regions and Amazonia. Over large parts of the Arctic, annual mean 
temperatures increase by more than 10°C relative to 1995–2014 
in such a  high-warming storyline under SSP5‑8.5. The two lines 
of evidence yield more consistent patterns for SSP5‑8.5 than for 
SSP1‑2.6, but there are substantial differences concerning whether 
the strongest warming above the best estimate occurs over the 
tropics or extratropical land regions.

While individual models project even stronger warming over 
extratropical land regions (Figure 4.41 bottom row), their projected 
GSAT warming exceeds the assessed very likely 5–95% range and 
thus correspond to an extremely unlikely (below 5% likelihood) 
storyline. While all the models consistent with such a storyline tend 
to overestimate the observed warming trend over the historical 
period (Brunner et al., 2020; Liang et al., 2020; Nijsse et al., 2020; 
Tokarska et al., 2020; Ribes et al., 2021), some of them show a good 
representation of several aspects of the present-day climate (Andrews 
et al., 2019; Sellar et al., 2019; Swart et al., 2019). Such a very high-
warming storyline implies widespread warming of more than 1.5°C 
and 3°C above the best-estimate warming pattern under SSP1‑2.6 
and SSP5‑8.5, respectively. Under SSP1‑2.6, this corresponds to 
more than 3°C warming relative to 1995–2014 over land regions in 
the northern mid- to high latitudes and more than 6°C in the Arctic 
(Figure 4.41g). Under SSP5‑8.5, such a very high-warming storyline 
implies more than 8°C warming over parts of Amazonia and more 
than 6°C over most other tropical land regions (Figure 4.41h).

High-warming storylines are very likely also associated with 
substantial changes in the hydrological cycle due to strong 
thermodynamic changes, which can be amplified or offset by 
dynamical changes (Emori and Brown, 2005; Seager et  al., 2014b; 
Chavaillaz et al., 2016; Kröner et al., 2017; Chen et al., 2019). Here 
the assessment of the hydrological cycle in high-warming storylines 
is limited to changes in annual mean precipitation, but changes in 
seasonal mean precipitation can be even stronger due to enhanced 
seasonality in many regions (Box 8.2).

Quantifying precipitation changes associated with high-warming 
storylines is challenging since models show the largest changes 
in precipitation over different regions (Sections 4.5.1 and 4.6.1). 
In some areas, models project opposing signals in different seasons 
or a  combination of decreasing mean and increasing extreme 
precipitation (Kendon et  al., 2014; Ban et  al., 2015; Giorgi et  al., 
2016; Pendergrass et al., 2017). Models with the most pronounced 
GSAT warming are not necessarily associated with the strongest 
precipitation response in all regions, in part due to projected 
changes in atmospheric dynamics (Madsen et al., 2017; Zappa and 
Shepherd, 2017; Li et al., 2018).

Different alternative estimates of changes in annual mean precipitation 
patterns consistent with high-warming levels are compared here. 
The first estimate (Figure 4.42b) is based on a linear pattern scaling of 
the multi-model mean precipitation pattern for SSP5‑8.5 (Figure 4.42a) 
to be consistent with the upper bound of the assessed very likely 
GSAT range (see above). This estimate is reasonably consistent with 
the average response of the five models with GSAT warming most 
consistent with the upper bound of the very likely warming range 
(Figure 4.42c) except for Australia. Both estimates show about 30–40% 
larger changes in annual mean precipitation than the response pattern 
consistent with the best GSAT estimate. In a high-warming storyline, 
widespread increases of more than 30% occur in many regions north 
of 50°N and over parts of the tropics. Around the Mediterranean and 
other parts of the subtropics, a high-warming storyline is associated 
with a  reduction in annual mean precipitation of more than 30% 
depending on the season.

Both the multi-model mean and the pattern-scaled responses show 
a smoother pattern than in individual simulations (Tebaldi and Knutti, 
2007; Knutti et al., 2010), because the multi-model mean filters out 
internal variability and because model differences in the location 
of the largest change tend to cancel. Individual model simulations 
show opposing signs in precipitation change such as over parts of 
Australia, the west coast of North America, parts of West Africa and 
India (Figure 4.42d), which tend to offset in the multi-model mean 
response. The spatial probability distribution of precipitation changes 
shows that areas of strong precipitation increase or decrease occur 
in all models (Figure  4.42g, see also Section  4.6.1). However, due 
to the spatial smoothing, the multi-model mean response shows 
a  lower area fraction of drying than most of the individual models 
(Tebaldi and Knutti, 2007; Knutti et al., 2010). The five models with 
GSAT warming consistent with a high-warming storyline and the two 
models projecting GSAT warming exceeding the very likely GSAT 
warming range show a  much larger area fraction of drying and 
somewhat larger fraction of strong precipitation increases than the 
multi-model mean (Figure 4.42b–d).

The high-warming storyline shown in Figure  4.42b,c does not 
correspond to an upper or lower estimate of annual precipitation 
increase and decrease over individual locations, which in many 
regions may differ in the sign of the response (Figure  4.42e,f) 
due to differences in the model response and internal variability 
(Madsen et  al., 2017). Figure  4.42e,f illustrates upper and lower 
local estimates corresponding to the 5–95% model range of local 
uncertainties as opposed to the global-warming storylines. Note, 
however, that Figure  4.42e,f does not show a  physically plausible 
global precipitation response pattern, because information at the 
different grid points is taken from different model simulations.

Again, the manifestation of changes in the hydrological cycle for 
a  high-warming storyline is not limited to precipitation, but would 
substantially affect other variables such as soil moisture, runoff, 
atmospheric humidity, and evapotranspiration. The changes are also 
not limited to annual mean precipitation but may be stronger or weaker 
for individual seasons and for precipitation extremes and dry spells.
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Figure 4.42 | High-warming storylines for changes in annual mean precipitation. 

https://doi.org/10.1017/9781009157896.006
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 22 Aug 2025 at 18:47:28, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009157896.006
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


639

Future Global Climate: Scenario-based Projections and Near-term Information� Chapter 4

4

Figure 4.42 (continued): (a) Estimates for annual mean precipitation changes in 2081–2100, relative to 1995–2014, consistent with the best global surface air temperature 
(GSAT) estimate derived by linearly scaling the CMIP6 multi-model mean changes to a GSAT change of 3.5°C. (b, c) Estimates for annual mean precipitation changes in 
2081–2100 relative 1995–2014 in a storyline representing a physically plausible high-global-warming level. (b) Multi-model-mean precipitation scaled to high-global-warming 
level (corresponding to 4.8°C, the upper bound of the very likely range; see Section 4.3.4). (c) Average of five models with GSAT warming nearest to the high level of 
warming (ACCESS-CM2, CESM2, CESM2-WACCM, CNRM-CM6-1, CNRM-CM6-1-HR) (d) Annual mean precipitation changes in four of the five individual model simulations 
averaged in (c). (e, f) Local upper estimate (95% quantile across models) and lower estimate (5% quantile across models) at each grid point. Information at individual grid 
points comes from different model simulations and illustrates local uncertainty range but should not be interpreted as a pattern. (g) Area fraction of changes in annual mean 
precipitation 2081–2100 relative to 1995–2014 for (i) all CMIP6 model simulations (thin black lines), (ii) models shown in (c) (red lines), and (iii) models showing very high 
warming above the models shown in (c) (dark red lines). The grey range illustrates the 5–95% range across CMIP6 models and the solid black line the area fraction of the 
multi-model mean pattern shown in (a). Further details on data sources and processing are available in the chapter data table (Table 4.SM.1).

While this assessment is limited to temperature and precipitation, 
such a  high-warming storyline would manifest itself also in other 
climate variables (Sanderson et  al., 2011) assessed in this chapter 
such as Arctic sea ice, atmospheric circulation changes, and sea 
level rise (Ramanathan and Feng, 2008; Xu and Ramanathan, 2017; 
Steffen et al., 2018).

In summary, while high-warming storylines – those associated with 
global warming levels above the upper bound of the assessed very 
likely range  – are by definition extremely unlikely, they cannot be 
ruled out. For SSP1‑2.6, such a  high-warming storyline implies 
warming well above rather than well below 2°C (high confidence). 
Irrespective of scenario, high-warming storylines imply changes 
in many aspects of the climate system that exceed the patterns 
associated with the best estimate of GSAT changes by up to more 
than 50% (high confidence).
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Frequently Asked Questions

FAQ 4.1 | How Will the Climate Change Over the Next Twenty Years?

The parts of the climate system that have shown clear increasing or decreasing trends in recent decades will 
continue these trends for at least the next twenty years. Examples include changes in global surface temperature, 
Arctic sea ice cover, and global average sea level. However, over a period as short as twenty years, these trends are 
substantially influenced by natural climate variability, which can either amplify or attenuate the trend expected 
from the further increase in greenhouse gas concentrations.

Twenty years are a long time by human standards but a short time from a climate point of view. Emissions of 
greenhouse gases will continue over the next twenty years, as assumed in all the scenarios considered in this 
Report, albeit with varying rates. These emissions will further increase concentrations of greenhouse gases in 
the atmosphere (see FAQ 4.2), leading to continued trends in global surface warming and other parts of the 
climate system, including Arctic sea ice and global average sea level (see FAQ 9.2). FAQ 4.1, Figure 1 shows that 
both global surface temperature rise and the shrinking of sea ice in the Arctic will continue, with little difference 
between high- and low-emissions scenarios over the next 20 years (that is, between the red and blue lines).

However, these expected trends will be overlain by natural climate variability (see FAQ 3.2). First, a major volcanic 
eruption might occur, such as the 1991 eruption of Mt. Pinatubo on the Philippines; such an eruption might cause 
a global surface cooling of a few tenths of a degree Celsius lasting several years. Second, both atmosphere and 
ocean show variations that occur spontaneously, without any external influence. These variations range from 
localized weather systems to continent- and ocean-wide patterns and oscillations that change over months, years, 
or decades. Over a period of twenty years, natural climate variability strongly influences many climate quantities, 
when compared to the response to the increase in greenhouse gas concentrations from human activities. The effect 
of natural variability is illustrated by the very different trajectories that individual black, red or blue lines can 
take in FAQ 4.1, Figure 1. Whether natural variability would amplify or attenuate the human influence cannot 
generally be predicted out to twenty years into the future. Natural climate variability over the next twenty years 
thus constitutes an uncertainty that at best can be quantified accurately but that cannot be reduced.

Locally, the effect of natural variability would be much larger still. Simulations (not shown here) indicate that, 
locally, a cooling trend over the next twenty years cannot be ruled out, even under the high-emissions scenario – 
at a small number of locations on Earth, but these might lie anywhere. Globally, though, temperatures would 
rise under all scenarios.

In summary, while the direction of future change is clear for the two important climate quantities shown here – 
the global surface temperature and the Arctic sea ice area in September – the magnitude of the change is much 
less clear because of natural variability.
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FAQ 4.1 (continued)
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FAQ 4.1: How will climate change over 
the next 20 years? 
Current climatic trends will continue in the next 2 decades 
but their exact magnitude cannot be predicted, because of 
natural variability.
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FAQ 4.1, Figure 1 | Simulations over the period 1995–2040, encompassing the recent past and the next twenty years, of two important 
indicators of global climate change. (Top) Global surface temperature, and (bottom), the area of Arctic sea ice in September. Both quantities are 
shown as deviations from the average over the period 1995–2014. The grey curves are for the historical period ending in 2014; the blue curves represent 
a low-emissions scenario (SSP1-2.6) and the red curves one high-emissions scenario (SSP3-7.0).
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Frequently Asked Questions

FAQ 4.2 | How Quickly Would We See the Effects of Reducing Carbon Dioxide Emissions?

The effects of substantial reductions in carbon dioxide emissions would not be apparent immediately, and 
the time required to detect the effects would depend on the scale and pace of emissions reductions. Under the 
lower-emissions scenarios considered in this Report, the increase in atmospheric carbon dioxide concentrations 
would slow visibly after about five to ten years, while the slowing down of global surface warming would be 
detectable after about twenty to thirty years. The effects on regional precipitation trends would only become 
apparent after several decades.

Reducing emissions of carbon dioxide (CO2) – the most important greenhouse gas emitted by human activities – 
would slow down the rate of increase in atmospheric CO2 concentration. However, concentrations would only 
begin to decrease when net emissions approach zero, that is, when most or all of the CO2 emitted into the 
atmosphere each year is removed by natural and human processes (see FAQ 5.1 and FAQ 5.3). This delay between 
a peak in emissions and a decrease in concentration is a manifestation of the very long lifetime of CO2 in the 
atmosphere; part of the CO2 emitted by humans remains in the atmosphere for centuries to millennia.

Reducing the rate of increase in CO2 concentration would slow down global surface warming within a decade. 
But this reduction in the rate of warming would initially be masked by natural climate variability and might 
not be detected for a few decades (see FAQ 1.2, FAQ 3.2 and FAQ 4.1). Detecting whether surface warming has 
indeed slowed down would thus be difficult in the years right after emissions reductions begin.

The time needed to detect the effect of emissions reductions is illustrated by comparing low- and high-emissions 
scenarios (FAQ 4.2, Figure 1). In the low-emissions scenario (SSP1‑2.6), CO2 emissions level off after 2015 and begin 
to fall in 2020, while they keep increasing throughout the 21st century in the high-emissions scenario (SSP3‑7.0). 
The uncertainty arising from natural internal variability in the climate system is represented by simulating each 
scenario ten times with the same climate model but starting from slightly different initial states back in 1850 
(thin lines). For each scenario, the differences between individual simulations are caused entirely by simulated 
natural internal variability. The average of all simulations represents the climate response expected for a given 
scenario. The climate history that would actually unfold under each scenario would consist of this expected 
response combined with the contribution from natural internal variability and the contribution from potential 
future volcanic eruptions (the latter effect is not represented here).

FAQ 4.2, Figure 1 shows that the atmospheric CO2 concentrations differ noticeably between the two scenarios 
about five to ten years after the emissions have begun to diverge in year 2015. In contrast, the difference in 
global surface temperatures between the two scenarios does not become apparent until later – about two to 
three decades after the emissions histories have begun to diverge in this example. This time would be longer if 
emissions were reduced more slowly than in the low-emissions scenario illustrated here and shorter in the case 
of stronger reductions. Detection would take longer for regional quantities and for precipitation changes, which 
vary more strongly from natural causes. For instance, even in the low-emissions scenario, the effect of reduced 
CO2 emissions would not become visible in regional precipitation until late in the 21st century.

In summary, it is only after a few decades of reducing CO2 emissions that we would clearly see global temperatures 
starting to stabilize. By contrast, short-term reductions in CO2 emissions, such as during the COVID-19 pandemic, 
do not have detectable effects on either CO2 concentration or global temperature. Only sustained emissions 
reductions over decades would have a widespread effect across the climate system.
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FAQ 4.2 (continued)
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would become apparent in atmospheric concentration 
after 5–10 years and in the temperature after 20–30 years.
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FAQ 4.2, Figure 1 | Observing the benefi ts of emissions reductions. (Top) Carbon dioxide (CO2) emissions, (middle) CO2 concentration in the atmosphere 
and (bottom) effect on global surface temperature for two scenarios: a low-emissions scenario (SSP1-2.6, blue) and a high-emissions scenario (SSP3-7.0). In the 
low-emissions scenario, CO2 emissions begin to decrease in 2020 whereas they keep increasing throughout the 21st century in the high-emissions scenario. 
The thick lines are the average of the 10 individual simulations (thin line) for each scenario. Differences between individual simulations refl ect natural variability.
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Frequently Asked Questions

FAQ 4.3 | At a Given Level of Global Warming, What Are the Spatial Patterns of Climate Change?

As the planet warms, climate change does not unfold uniformly across the globe, but some patterns of regional 
change show clear, direct and consistent relationships to increases in global surface temperature. The Arctic 
warms more than other regions, land areas warm more than the ocean surface, and the Northern Hemisphere 
more than the Southern Hemisphere. Precipitation increases over high latitudes, tropics and large parts of 
the monsoon regions, but decreases over the subtropics. For cases like these, we can infer the direction and 
magnitude of some regional changes – particularly temperature and precipitation changes – for any given level 
of global warming.

The intensity of climate change will depend on the level of global warming. It is possible to identify certain 
patterns of regional climate change that occur consistently, but increase in amplitude, across increasing levels of 
global warming. Such robust spatial patterns of climate change are largely independent of the specific scenario 
(and pathway in time) that results in a given level of global warming. That is, as long as different scenarios result 
in the same global warming level, irrespective of the time when this level is attained in each scenario, we can 
infer the patterns of regional change that would result from this warming. When patterns of changes are robust, 
regional consequences can be assessed for all levels of global warming, for all future time periods, and for all 
scenarios. Temperature and precipitation show such robust patterns of changes that are particularly striking.

The high latitudes of the Northern Hemisphere are projected to warm the most, by two to four times the level 
of global warming – a phenomenon referred to as Arctic amplification (FAQ 4.3, Figure 1, left). Several processes 
contribute to this high rate of warming, including increases in the absorption of solar radiation due to the loss 
of reflective sea ice and snow in a warmer world. In the Southern Hemisphere, Antarctica is projected to warm 
faster than the mid-latitude Southern Ocean, but the Southern Hemisphere high latitudes are projected to 
warm at a reduced amplitude compared to the level of global warming (FAQ 4.3, Figure 1, left). An important 
reason for the relatively slower warming of the Southern Hemisphere high latitudes is the upwelling of Antarctic 
deep waters that drives a large surface heat uptake in the Southern Ocean.

The warming is generally stronger over land than over the ocean, and in the Northern Hemisphere compared to 
the Southern Hemisphere, and with less warming over the central subpolar North Atlantic and the southernmost 
Pacific. The differences are the result of several factors, including differences in how land and ocean areas 
absorb and retain heat, the fact that there is more land area in the Northern Hemisphere than in the Southern 
Hemisphere, and the influence of ocean circulation. In the Southern Hemisphere, robust patterns of relatively 
high warming are projected for subtropical South America, southern Africa, and Australia. The relatively strong 
warming in subtropical southern Africa arises from strong interactions between soil moisture and temperature 
and from increased solar radiation as a consequence of enhanced subsidence.

Precipitation changes are also proportional to the level of global warming (FAQ 4.3, Figure 1, right), although 
uncertainties are larger than for the temperature change. In the high latitudes of both the Southern and Northern 
Hemispheres, increases in precipitation are expected as the planet continues to warm, with larger changes 
expected at higher levels of global warming (FAQ 4.3, Figure 1, right). The same holds true for the projected 
precipitation increases over the tropics and large parts of the monsoon regions. General drying is expected 
over the subtropical regions, particularly over the Mediterranean, southern Africa and parts of Australia, South 
America, and south-west North America, as well as over the subtropical Atlantic and parts of the subtropical 
Indian and Pacific Oceans. Increases in precipitation over the tropics and decreases over the subtropics amplify 
with higher levels of global warming.

Some regions that are already dry and warm, such as southern Africa and the Mediterranean, are expected to 
become progressively drier and drastically warmer at higher levels of global warming.

In summary, climate change will not affect all the parts of the globe evenly. Rather, distinct regional patterns of 
temperature and precipitation change can be identified, and these changes are projected to amplify as the level 
of global warming increases.
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FAQ 4.3 (continued)

FAQ 4.3: Climate change and regional patterns
Climate change is not uniform and proportional to the level of global warming.

Precipitation will increase in high latitudes, the tropics 
and monsoon regions and decrease in the subtropics

Warming will be stronger in the Arctic, 
on land and in the Northern Hemisphere

Warmer WetterDrier

+1.5°C

+3.0°C

1°C 3°C 5°C 0%-40% -20% 20% 40%

FAQ 4.3, Figure 1 | Regional changes in temperature (left) and precipitation (right) are proportional to the level of global warming, 
irrespective of the scenario through which the level of global warming is reached. Surface warming and precipitation change are shown relative 
to the 1850–1900 climate, and for time periods over which the globally averaged surface warming is 1.5°C (top) and 3°C (bottom), respectively. Changes 
presented here are based on 31 CMIP6 models using the high-emissions scenario SSP3-7.0.
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