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Sequential and distributive forcings
without choice
Asaf Karagila and Jonathan Schilhan

Abstract. In the Zermelo–Fraenkel set theory with the Axiom of Choice, a forcing notion is
“κ-distributive” if and only if it is “κ-sequential.” We show that without the Axiom of Choice,
this equivalence fails, even if we include a weak form of the Axiom of Choice, the Principle of
Dependent Choice for κ. Still, the equivalence may still hold along with very strong failures of the
Axiom of Choice, assuming the consistency of large cardinal axioms. We also prove that although a
κ-distributive forcing notion may violate Dependent Choice, it must preserve the Axiom of Choice
for families of size κ. On the other hand, a κ-sequential can violate the Axiom of Choice for countable
families. We also provide a condition of “quasiproperness” which is sufficient for the preservation of
Dependent Choice, and is also necessary if the forcing notion is sequential.

1 Introduction

The method of forcing was developed by Paul Cohen in 1963 to prove that the
Continuum Hypothesis cannot be proved from the Zermelo–Fraenkel set theory
with the Axiom of Choice (ZFC). The technique works by picking a partial order
approximating a “generic set” that can be added to a “ground model” of set theory
while preserving the axioms of ZFC. We understand the general theory of forcing
fairly well when working in ZFC. For example, if we chose a partial order which is
countably distributive, then the generic extension of the universe will not have any
new countable sequences of ground model elements. This property implies, among
other things, that no new real numbers are added, and that ω1, the least uncountable
cardinal, is the same between the ground model and its generic extension. On the
other hand, we know that distributivity assumptions are not enough to prove that
stationary subsets of ω1 remain stationary.1

Although the basic machinery of forcing does not rely on the Axiom of Choice, its
general theory makes heavy use of it. This means that working over general models
of Zermelo–Fraenkel ()ZF, where the Axiom of Choice is not necessarily assumed,
is significantly harder: our intuition was honed in ZFC for many decades, and we
still do not have a complete picture of what could go wrong, or how do our standard
definitions behave in general models of ZF. With the recent advents of very large
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Sequential and distributive forcings without choice 869

cardinal axioms,2 e.g., Reinhardt and Berkeley cardinals whose existence refutes the
Axiom of Choice, it is very important to better understand the theory of forcing in
ZF.

In this paper, we separate two properties which are equivalent in ZFC, namely,
distributivity and adding new sequences of ground model objects, which we term
“sequential.” Our main result is that this equivalence is not provable from ZF, or
even ZF augmented by the Principle of Dependent Choice (DC) and its generalized
versions. Moreover, we show that forcing with a distributive partial order must
preserve the Axiom of Choice for countable families of sets (ACω), but can violate
DC, whereas a sequential partial order may even violate ACω itself. We also provide
a necessary and sufficient condition for a sequential partial order to preserve DC,
termed here “quasiproperness.”

Finally, we provide a partial answer to the question of whether or not the equiv-
alence between the two properties is itself equivalent to the Axiom of Choice. We
prove that in the Gitik model, where all the limit ordinals have countable cofinality,
the equivalence between the two properties holds, whereas the Axiom of Choice
fails quite badly. The one drawback is that the Gitik model requires assuming the
consistency of suitable large cardinal axioms, which leaves the question of whether
or not the equivalence can hold in the absence of the Axiom of Choice without these
additional assumptions wide open.

In this paper, we begin by covering the basics of symmetric extensions, our main
technical tool for constructions models of ZF. In Section 3, we study the basic
properties of distributive and sequential forcings. Section 4 is dedicated for two minor
results in the study of preservation of choice principles under generic extensions, we
define a property akin to properness and show that it is equivalent to the preservation
of DC, at least for sequential forcings. Section 5 is dedicated for our main theorem.
Finally, Section 6 concludes the paper with several open questions that arise from this
work.

2 Preliminaries

Throughout this paper, we work in ZF, unless specified otherwise. Our treatment
of forcing will be standard. If P is a notion of forcing, then P is a preordered set
with a maximum element denoted by 1P, or with the subscript omitted when clear
from context. We write q ≤ p to mean that q is a stronger condition than p, or that it
extends p. Two conditions are compatible if they have a common extension. We will
also follow Goldstern’s alphabet convention, so p is never a stronger condition than q,
etc.

When given a collection ofP-names, {ẋ i ∣ i ∈ I}, we will denote by {ẋ i ∣ i ∈ I}● the
canonical name this class generates: {⟨1, ẋ i⟩ ∣ i ∈ I}. This notation extends naturally
to ordered pairs and functions whose domain is in the ground model. We will also
say that ẏ appears in ẋ if there is some p ∈ P such that ⟨p, ẏ⟩ ∈ ẋ.

2These are axioms that go beyond ZFC, the most famous one is perhaps “there is an inaccessible
cardinal,” or equivalently “there is a Grothendieck universe.”
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Given a set X, we use ∣X∣ to denote its cardinal number. If X can be well-ordered,
then ∣X∣ is simply the least ordinal equipotent with X. Otherwise, we use the Scott
cardinal of X which is the set {Y ∈ Vα ∣ ∃ f ∶X → Y a bijection} with α taken as the
least ordinal for which the set is nonempty. Greek letters, when used as cardinals,
will always refer to well-ordered cardinals. We will denote by COrd the class of well-
orderable cardinals, that is the finite ordinals and the ℵ numbers.

We write ∣X∣ ≤ ∣Y ∣ to mean that there is an injection from X into Y, and we write
∣X∣ < ∣Y ∣ to mean that there is an injection, but there is no injection from Y into X.
Note that unlike in the case of ZFC, writing ∣X∣ ≰ ∣Y ∣ does not imply that ∣Y ∣ < ∣X∣.

We write ∣X∣ ≤∗ ∣Y ∣ to mean that there is a surjection from a subset of Y onto X.3
This relation is transitive, not necessarily antisymmetric (unlike ≤).

The axiom ACX states that given any family of nonempty set indexed by X admits
a choice function, we omit X to mean ∀X ACX . For an infinite cardinal κ, the axiom
DCκ states that every κ-closed tree4 has a maximal element or a chain of order type κ.
We write DC<κ to mean (∀λ < κ)DCλ . In the case of DCω , we simply write DC.

2.1 Symmetric extensions

Forcing is an extremely versatile technique when it comes to independence proofs. It
has one drawback: a generic extension of a model of ZFC is a model of ZFC.5 But we
can extend the technique of forcing. By imitating the Fraenkel–Mostowski–Specker
technique for permutation models,6 we can identify a class of names which defines
an intermediate model, between the ground model and its generic extension, where
the Axiom of Choice may fail.

Let P be a fixed forcing notion. If π is an automorphism of P, then π extends to
P-names by recursion:

πẋ = {⟨πp, πẏ⟩ ∣ ⟨p, ẏ⟩ ∈ ẋ}.

Seeing how the forcing relation is defined from the order, the following lemma is not
surprising. For a proof of this lemma, see Lemma 14.37 in [5].

Lemma (The Symmetry Lemma) Let P be a forcing, π an automorphism of P, p ∈ P,
and ẋ some P-name. Then,

p ⊩ φ(ẋ) ⇐⇒ πp ⊩ φ(πẋ).

Let G be a group, we say that F is a filter of subgroups if it is a nonempty collection
of subgroups of G which is closed under supergroups and finite intersections. We say
that F is normal if whenever H ∈ G and π ∈ G, then πHπ−1 ∈ F as well.

3We have no need for the case <∗ here, but to dispel any ambiguity, ∣X∣ <∗ ∣Y ∣ means that there is a
surjection from Y onto X, but no surjection from X onto Y, which is stronger than saying ∣X∣ ≤∗ ∣Y ∣ and
∣X∣ ≠ ∣Y ∣.

4Recall that a tree is κ-closed if for all α < κ, every chain of order type α has an upper bound.
5You could say that this is not a bug, but a feature, and you would not be wrong. But it is a problem

when we want to prove independence results related to the Axiom of Choice.
6In the context of ZFA, that is ZF with atoms.
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We say that ⟨P, G, F⟩ is a symmetric system if P is a forcing notion, G is a group
of automorphisms of P, and F is a normal filter of subgroups of on G. Given such
symmetric system, a P-name, ẋ, is F -symmetric if symG(ẋ) = {π ∈ G ∣ πẋ = ẋ} ∈ F.
We say that ẋ is hereditarily F-symmetric, if this notion holds for every P-name
hereditarily appearing in ẋ. We denote by HSF the class of hereditarily F-symmetric
names.

Theorem Let ⟨P, G, F⟩ be a symmetric system, let G ⊆ P be a V-generic filter, and
let M denote the class HSG

F = {ẋG ∣ ẋ ∈ HSF}. Then M is a transitive model of ZF
satisfying V ⊆ M ⊆ V[G].

We say that M as in the theorem above, whose proof appears as Lemma 15.51 in [5],
is a symmetric extension of V. The symmetric extensions of V were studied recently
by Usuba in [12, 13]. It is tempting to think that every intermediate model of ZF is a
symmetric extension, but this is not true, as was shown in [7].

Since we will only have a single symmetric extension of concern at each step,
even if we will force over it, we will omit the subscripts from the notation from here
on out.

Finally, we have a forcing relation for symmetric extensions, ⊩HS defined by
relativising the ⊩ relation to the class HS. This relation has the same properties and
behavior as the standard ⊩ relation. Moreover, if π ∈ G, then the Symmetry Lemma
holds also for ⊩HS.

We conclude this introduction with a general example.

Example 2.1 Let κ and λ be regular cardinals such that λ ≥ κ and suppose that
κ<κ = κ. Let P be the forcing Add(κ, λ), whose conditions are partial functions
p∶ λ × κ→ 2 such that ∣p∣ < κ, the projection of p onto its λ component is called the
support of p and is denoted by supp p. We let G be the group of permutations of λ, and
π ∈ G acts on P by letting

πp(πα, β) = p(α, β).

Finally, let the filter of subgroups be generated by {fix(E) ∣ E ∈ [λ]<λ}, where
fix(E) = {π ∈ G ∣ π ↾ E = id}.

We denote by ȧα , for α < λ, the name of the αth generic subset:

{⟨p, β̌⟩ ∣ p(α, β) = 1}.

We will denote by Ȧ the name {ȧα ∣ α < λ}●. Let G be a V-generic filter and let M
be the corresponding symmetric extension, we will omit the dots to indicate the
interpretation of the names in M. We will show that the following hold in M:
(1) Every well-orderable subset of A has size < λ.
(2) DC<λ + ¬AC.

First, we observe that πȧα = ȧπα , and since all the names appearing in ȧα are
canonical ground model names, fix({α}) witnesses that ȧα ∈ HS. Consequently,
πȦ = Ȧ for all π ∈ G. Therefore, each aα and A itself are all in M.
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Suppose that Ḃ ∈ HS and p ⊩HS "Ḃ ⊆ Ȧ and can be well-ordered.” Let E ⊆ λ be such
that fix(E) ⊆ sym( ḟ ), where p ⊩HS " ḟ ∶ Ḃ → η̌ is an injective function,” and we may
also assume that supp p ⊆ E. Note that fix(E) ⊆ sym(Ḃ) as well.

Let α < λ be such that α ∉ E, and let q ≤ p be a condition such that q ⊩HS ȧα ∈ Ḃ
and without loss of generality, we also assume that for some δ < η, q ⊩HS ḟ (ȧα) = δ̌.

Since supp q is of size < κ, we can find β ∉ supp q ∪ E and consider π to be the
automorphism defined by the 2-cycle (α β). By the choice of α, we immediately have
that π ∈ fix(E) and therefore πp = p, πḂ = Ḃ, π ḟ = ḟ . Applying these, along with the
Symmetry Lemma, we get that πq ⊩HS ḟ (ȧα) = δ̌. But πq is compatible with q, as we
only moved one coordinate to a previously empty one. This means that r = q ∪ πq is
a condition which forces both “ ḟ is injective” and ḟ (ȧα) = ḟ (ȧβ). This is of course
impossible. This means that there is no such q, and therefore if α ∉ E, p ⊩HS ȧα ∉ Ḃ.
Since E ∈ [λ]<λ , and since λ was not collapsed in V[G], the conclusion holds.

This immediately shows that ¬AC holds as well. To get DC<λ , we appeal to [8],
where the folklore results about preservation of DC principles are formalized. Specif-
ically, if P is λ-closed or has λ-c.c., which in this case follows from the assumption
κ<κ = κ, and F is λ-complete, then DC<λ holds in the symmetric extension.

In the case λ = κ, we refer to this model as the κ-Cohen model, and if κ = ω
we omit it altogether. The Cohen model is one of the most important models of
ZF + ¬AC. It satisfies the Boolean Prime Ideal theorem, and has many interesting
properties. For a complete exposition, see Chapter 5 in [6].

3 Distributive and sequential forcings

Definition 3.1 A forcing notion P is ≤∣X∣ -distributive if whenever ⟨Dx ∣ x ∈ X⟩ is a
family of dense open sets, ⋂x∈X Dx is a dense open set.7 If X can be well-ordered, we
will use the standard notation ofκ-distributive to mean “for all λ < κ,≤λ-distributive,”
and we will use σ-distributive to mean ℵ1-distributive.

To make the definition smoother, we consider the intersection as bounded by
P, namely ⋂x∈X Dx = {p ∈ P ∣ ∀x ∈ X , p ∈ Dx}. This has the benefit that for X = ∅,
⋂x∈X Dx = P.

Proposition 3.2 If P is ≤∣X∣-distributive and ∣Y ∣ ≤∗ ∣X∣, then P is also ≤∣Y ∣-
distributive.

Proof Let f ∶X → Y be a surjective function (for Y = ∅ the conclusion is vacuously
true), if ⟨Dy ∣ y ∈ Y⟩ is a family of dense open sets, let Ex = D f (x), then ⟨Ex ∣ x ∈ X⟩ is
a family of dense open sets indexed by X and therefore its intersection is dense. Easily,
⋂y∈Y Dy = ⋂x∈X Ex , and so ⋂y∈Y Dy is dense. ∎

Definition 3.3 Let D be a class (possibly proper) of cardinals. We define the
following properties:

7The intersection is always open, in the case of forcing, so we really only care about its density.
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(1) D is ∗ -closed if whenever ∣X∣ ∈D and ∣Y ∣ ≤∗ ∣X∣, then ∣Y ∣ ∈D.8
(2) D is union-regular if it is directed and whenever ∣X∣ ∈D and ⟨Ax ∣ x ∈ X⟩ is a

sequence of sets such that ∣Ax ∣ ∈D for all x ∈ X, then there is some ∣A∣ ∈D such
that for all x, ∣Ax ∣ ≤ ∣A∣.

Theorem 3.4 Let P be a forcing, and let D be the class of cardinals such that ∣X∣ ∈D
if and only if P is ≤∣X∣-distributive. Then, ω ⊆D and D is ∗-closed and union-regular.

Proof The fact that ω ⊆D is trivial. The fact that it is ∗-closed follows from
Proposition 3.2. Finally, suppose that ∣X∣ ∈D and for each x ∈ X, Ax is some set such
that ∣Ax ∣ ∈D, without loss of generality assume that Ax are disjoint, since the disjoint
union maps onto the union in the obvious way and D is ∗-closed.

Let A = ⋃x∈X Ax and suppose that ⟨Da ∣ a ∈ A⟩ is a family of dense open subsets
of P. For each x ∈ X, consider ⟨Da ∣ a ∈ Ax⟩, then due to the fact that ∣Ax ∣ ∈D, we can
replace ⟨Da ∣ a ∈ Ax⟩ by its intersection, Ex . This means that ⋂a∈A Da is the same as
⋂x∈X Ex , but since ∣X∣ ∈D as well, the intersection is dense as wanted. ∎

We will refer to D in the theorem as the distributivity spectrum of P and denote it
by DP.

Corollary 3.5 Suppose that cf(α) = ω for any limit ordinal α. If P is σ-distributive,
then COrd ⊆DP. Moreover, suppose that every set in V is generated by iterating
countable unions starting with the class [V]≤ω , then any σ-distributive forcing is trivial.9

The conditions above seem fantastic, especially the latter, but they are indeed
consistent with ZF,10 as shown by Gitik in [4, Theorem 6.3].

Definition 3.6 We say that a forcing P is ≤∣X∣ -sequential if whenever G ⊆ P is V-
generic and f ∈ V[G] is a function f ∶X → V , then f ∈ V . The same caveats regarding
well-ordered X will apply here as they do for distributivity.

Proposition 3.7 Suppose that P is ≤∣X∣-distributive, then it is ≤∣X∣-sequential.

Proof Suppose that ḟ is a P-name such that 1 ⊩ ḟ ∶ X̌ → V̌α , for some α, defin-
ing Dx = {p ∈ P ∣ ∃y(p ⊩ ḟ (x̌) = y̌}, we have that Dx is a dense open set. By dis-
tributivity, D = ⋂x∈X Dx is dense, and if p ∈ D, we define fp(x) = y if and only if
p ⊩ ḟ (x̌) = y̌. Since p ∈ Dx for all x ∈ X, this function is well-defined, and easily
p ⊩ ḟ = f̌p . ∎

It is a standard exercise that assuming ZFC, ≤∣X∣-sequential also implies ≤∣X∣-
distributive. The proof, however, relies on the fact that every dense open set contains
a maximal antichain (which makes the generic filter act as a choice function). As we
will see in Section 5, this reliance on the Axiom of Choice is crucial.

8One must resist the knee-jerk reaction to use the term “projective” here as that word is used too often.
9Note that if P is ≤∣P∣-distributive, then it must be trivial.
10Assuming the consistency of suitable large cardinal axioms.
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Nevertheless, defining the sequentiality spectrum of a forcing P, denoted by SP, in
an analogous manner to the distributivity spectrum, the proofs of Theorem 3.4 and
Corollary 3.5 work also for the sequentiality spectrum.

Corollary 3.8 It is consistent with ZF + ¬AC that for every X, every ≤∣X∣-sequential
forcing is ≤∣X∣-distributive.

Proof First, we will show that in Gitik’s model every σ-sequential forcing is trivial.
Define a rank function in the following way: [V]≤ω are the sets of rank 0, the successor
steps are countable union of sets from previous ranks, and the limit steps are unions
of previous ranks. As we remarked, in Gitik’s model, every set has a rank in that sense.

By induction on this rank, if A is a least ranked set which has a fresh subset,
B, in a generic extension, let {An ∣ n < ω} be a countable sequence of sets of lower
rank whose union is A, then either {An ∩ B ∣ n < ω} is a fresh sequence, or B ∩ An is
fresh for some n < ω. Since A is minimally ranked, the latter is impossible, and so the
generic extension must not be σ-sequential.

Next, since every infinite set is a countable union of sets of smaller cardinality,
every infinite set can be mapped onto ω. So, by ∗-closure of SP, if X is infinite and P

is ≤∣X∣-sequential, then P is σ-sequential, and thus trivial. ∎

4 Some minor positive results about distributive forcings

Theorem 4.1 Suppose that ACX holds, if P is ≤∣X∣-distributive, then ACX is preserved.

Proof Suppose that Ḟ is a P-name and 1 ⊩ "Ḟ is a function with domain
X̌ and Ḟ(x̌) ≠ ∅̌ for all x ∈ X.” For each x ∈ X, let Dx be the dense open set
{p ∈ P ∣ ∃ ẏ(p ⊩ ẏ ∈ Ḟ(x̌))}. Suppose that p ∈ ⋂x∈X Dx , then for all x ∈ X the class
{ ẏ ∈ VP ∣ p ⊩ ẏ ∈ Ḟ(x̌)} is nonempty. Using Scott’s trick, we may assume that each of
these is a set. Applying ACX in V, there is a function f such that for all x ∈ X, f (x) = ẏ
and p ⊩ ẏ ∈ Ḟ(x̌). This lets us define an obvious name for a choice function below p.

Since ⋂x∈X Dx is dense, 1 ⊩ ∃ f∀x ∈ X̌( f (x) ∈ Ḟ(x)) as wanted. ∎

Proposition 4.2 If P is ≤∣X∣-sequential and ⊩P ACX , then ACX holds in V.

If we concentrate on the case where X = ω, this shows that a σ-distributive must
preserve ACω . From the work of the first author with Asperó in [1] we know that
a proper forcing, and in particular a σ-closed forcing,11 must preserve DC, so the
natural question now is: does σ-distributive suffice for the proof?

There are reasons to expect a positive answer. For example, assuming AC holds, if
⟨P, G, F⟩ is a symmetric system where P is σ-distributive and F is σ-complete, then
DC holds in the symmetric extension (see, for example, [2, 9]). As the main theorem
of this paper shows, however, this is not the case in ZF. One is left asking, is there a
property between σ-distributive and proper which preserves DC?

11Recall that P is σ-closed if every countable sequence of decreasing conditions has a lower bound.
The statement “Every σ-closed forcing is σ-distributive” is equivalent to DC (see [8]).
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Definition 4.3 We say that a forcing P is quasiproper if for every p ∈ P and P-name
Ẋ there is a countable elementary submodel, M, of some large enough H(κ) such that
p,P, Ẋ ∈ M and there is some q ≤ p such that q is an M-generic condition. Namely,
every dense open set D ∈ M is predense below q.

Note that the model M depends very much on the choice of p and Ẋ. So
quasiproperness is still far from properness. We follow [1] and define H(κ) to be
{x ∣ κ ≰∗ ∣ tcl({x})∣}, but we can just as well work with Vα for a large enough limit
ordinal α for all intents and purposes.

Theorem 4.4 (ZF +DC) LetP be a forcing notion. If P is quasiproper, then it preserves
DC. If P is σ-sequential and preserves DC, then P is quasiproper.

Proof The core of the first part of the theorem is the same proof as Theorem 4.6
from [1], suppose that Ṫ is a name for a tree without maximal nodes, then for every p
there is some suitable model, M and an M-generic q ≤ p. Note that if q is M-generic,
then q ⊩ "Ṫ ∩ M is a countable subtree of Ṫ without maximal nodes,” and so q forces
that Ṫ must have a branch. But the above just means that the set of conditions q which
are M-generic for some suitable M is dense, which guarantees that Ṫ is forced to have
a branch, and therefore DC is preserved.

For the second part, suppose that P is σ-sequential and that DC is preserved. Fix
any p, Ẋ in V, fix a large enough κ and consider the set M of countable elementary
submodels of H(κ) which contain p,P and Ẋ. Working in V[G], where G is V-
generic with p ∈ G, we define a relation on M: M ⊏ N if and only if:
(1) N is an elementary extension of M.
(2) G ∩ N ∩ D ≠ ∅ for every dense open D ∈ M.

We first show that if M ∈M, then there is some N ∈M such that M ⊏ N . Let M be
such model, then we can enumerate all the dense open sets in M as {Dn ∣ n < ω} and
using DC there is a sequence of conditions pn ∈ G ∩ Dn for all n < ω. The sequence
⟨pn ∣ n < ω⟩ lies in the ground model, since P is σ-sequential. DC implies that there
is an elementary submodel in M generated by adding {pn ∣ n < ω} to M.

Employing DC in V[G], we have a sequence of models ⟨Mn ∣ n < ω⟩ such that
Mn ⊏ Mn+1 for all n. This sequence is again in V, and its union M = ⋃Mn , is a
countable elementary submodel of H(κ). In V[G], we have that for every dense
open D ∈ M, D ∩ M ∩G ≠ ∅: if D ∈ M, then D ∈ Mn for some n, and therefore in
Mn+1 there is a condition in D ∩G ∩ Mn+1. Therefore there is some q ≤ p which is
M-generic as wanted. ∎

5 Main results

Theorem 5.1 Let κ be any infinite cardinal. It is consistent with ZF +DC<κ that:
(1) There is a κ-distributive forcing which violates DC.
(2) There is a κ-sequential forcing which violates ACω .

Proof Let κ be an uncountable regular cardinal and consider the κ-Cohen model,
as described in Example 2.1. The case of κ = ω is vacuously true since ACω already
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fails in the Cohen model. Denote by M the symmetric extension, and by ⟨P, G, F⟩
the symmetric system. As usual, we will omit the dots from names to denote their
interpretation in M.

As explained in the above example, M ⊧ DC<κ. We will describe two partial orders
in this model which will witness the two failures. The first partial order will add
a tree structure on A which will witness the failure of DC, the second will add an
amorphous partition.12 In both cases, the idea is to consider the natural symmetric
system which adds these objects “directly” and factor it into these two steps: first, a
symmetric extension adding a set of subsets of κ, then add the structure that would
naturally be added by the “direct” symmetric extension.

Working in M , let Q0 be the partial order given by all the well-orderable and well-
founded trees on A,13 ordered by t1 ≤ t0 if and only if t0 is downward closed in t1.
We claim that first of all, Q0 is κ-distributive, and secondly if H ⊆ Q0 is M-generic,
H defines a tree on A which is of height ω, without maximal nodes, and without
branches, witnessing that DC fails in M[H].

First, we note that if t ∈ Q0, then t has a canonical P-name in HS. Since we are not
adding any sets of size < κ to V, therefore there is some T ∈ V which is a well-founded
tree on a bounded subset of κ, and ṫ = {⟨ȧα , ȧβ⟩

● ∣ ⟨α, β⟩ ∈ T}● is a P-name for t. We
will use T and ṫ to correspond between this tree and the condition in Q0, and because
of this canonicity, there is no confusion when we treat them interchangeably where
appropriate.

Let γ < κ, and let ⟨Dα ∣ α < γ⟩ ∈ M be a sequence of dense open subsets ofQ0. This
sequence has a name in HS, and since F is κ-complete, we can simply choose names
Ḋα for each α < γ and consider ⟨Ḋα ∣ α < γ⟩● as our canonical name.

Let p be a fixed condition in P which forces that each Ḋα is a dense open set, and
let ṫ be a canonical name for a condition. Fix E such that supp p, sym(ṫ), and for all
α, sym(Ḋα) all contain fix(E). We may even assume, without loss of generality that
dom T = E, else we can simply extend ṫ as necessary.

Let p′ ≤ p be a condition such that for each α < γ, there is some canonical ṫα such
that p′ ⊩ ṫα ∈ Ḋα and ṫ ⊆ ṫα .14 Let E′ be a large enough set such that fix(E′) ⊆ sym(ṫα)
for all α < γ, and E ∪ supp p′ ⊆ E′. Such E′ exists since κ is regular and γ < κ.

For each α < γ, pick πα ∶κ→ κ to be a permutation such that πα ∈ fix(E), and
letting πα"(E′ ∖ E) = Eα ,” we have that {Eα ∣ α < γ} are all pairwise disjoint. These
exist since ∣E′∣ < κ. Observe the following:
(1) q = ⋃α<γ πα p′ is a condition, since dom πα p′ ∩ dom πβ p′ = E.
(2) πα p′ ⊩ πα ṫα ∈ Ḋα and ṫ ⊆ πṫα .
(3) If ξ ∈ dom πα Tα ∩ dom πβ Tβ for any α ≠ β, then ξ ∈ E.
It follows from the three conditions that setting ṡ = ⋃α<γ πα ṫα is a condition. If it
were not a tree then any pair witnessing this must be already in ṫ itself, by the third
condition, which is impossible. Similarly, if ṡ is not well-founded, then by the third
condition it means some ṫα was not well-founded.

12An infinite set is amorphous if all of its subsets are finite or co-finite; ACω implies there are no
amorphous sets.

13For well-orderable trees well-foundedness is equivalent to the inexistence of infinite branches.
14This is the same as requiring that p′ ⊩ ṫα ≤Q0 ṫ as both are canonical names.
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But this means that q ⊩ ṡ ∈ Ḋα for all α. So given any p and ṫ, we can extend p to q
and find ṡ such that q ⊩ ṫ ⊆ ṡ ∈ Ḋα for all α, and therefore the intersection of the Dα
is dense.

Next, it is easy to see that if H ⊆ Q0 is M-generic, then T = ⋃H defines a tree
structure on A. Standard density arguments show that this tree has height ω and no
maximal elements. Finally, since Q0 is σ-distributive, it adds no new ω-sequence. So
it is enough to show that if {an ∣ n < ω} ⊆ A is in M, then it is not a branch in T. But
this is again a simple density argument, given any condition t, pick any point in t,
and whatever ans are not already mentioned in t, add as immediate successors of the
chosen point. Therefore, by density argument no ground model set is a branch, and
so T is indeed without branches and serves as a counterexample to DC.15

Indeed, this is the essence of the standard proof that AC<κ does not imply DC: first
force with Add(κ,κ<ω), take the automorphism group of the tree κ<ω and generate
the supports by fixing well-founded trees of rank < κ. See Theorem 8.12 in [6] for a
similar construction in the context of permutation models.

For the second partial order, let Q1 be the partial order given by finite partitions of
well-orderable subsets of A. Namely, a condition is a finite set, e, consisting of pairwise
disjoint well-orderable subsets of A.

We will denote⋃ e as dom e, and given a ∈ A, we will write e(a) to denote the cell
containing a, which may be empty if a ∉ dom e. Given some A′ ⊆ A, we will also write
e ↾ A′ = {C ∩ A′ ∣ C ∈ e}.

We define the order by e2 ≤Q1 e1 if and only if e2 ↾ dom e1 = e1. In other words, e2
can extend the cells of e1 or adds new ones, but it not merge any distinct cells.

We need to show that Q1 is κ-sequential and that if H ⊆ Q1 is M-generic, then⋃H
is an amorphous partition of A. This will show that M[H] ⊧ ¬ACω , as wanted. Note
that Q1 is not even σ-distributive by considering Dn = {e ∈ Q1 ∣ n ≤ ∣e∣}.

Note if e ∈ Q1, then there is finite partition E of some bounded subset ofκ such that
ė = {{ȧα ∣ α ∈ C}● ∣ C ∈ E}● is a name for e. We will adopt a similar convention to
the previous case, that E is the finite partition defining ė and vice versa. Furthermore,
when it will be clear from context, we may also conflate E and ė to simplify the text,
so if S ⊆ κ, the meaning of ė ↾ S is clear: it is the condition corresponding to E ↾ S.

One important consequence of the existence of these canonical names is that Q1,
as an ordered set, has a canonical name that is stable under all the automorphisms
in G. This means that we can apply π ∈ G to statements of the form p ⊩HS

P ė ⊩Q1 φ
without having to worry that π will somehow change the meaning of ⊩Q1 .

Suppose that ḟ ∈ M is a Q1-name for a new γ-sequence of elements of M, for some
γ < κ. We may assume, without loss of generality, that every name appearing in ḟ is
of the form ⟨α̌, x̌⟩● for some x ∈ M. Let [ ḟ ] ∈ HS be a P-name for ḟ , for example,
one such that every name that appears in it has the form ⟨ė , ⟨α̌, ẋ⟩●⟩●, where ė is
some canonical name for a condition in Q1 and ẋ is a name in HS for the canonical
Q1-name, x̌, in M.

Let S ∈ [κ]<κ such that fix(S) ⊆ sym([ ḟ ]). Let p ∈ P be any condition such that
p ⊩HS

P ė ⊩Q1 [ ḟ ](α̌) = ẋ for some ė and α < γ.

15By Theorem 4.1, AC<κ is preserved in M[H].

https://doi.org/10.4153/S0008439522000753 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000753


878 A. Karagila and J. Schilhan

Claim 5.2 p ⊩HS
P ė ↾ S ⊩Q1 [ ḟ ](α̌) = ẋ.

Proof (Claim) Suppose that ė′ is a name for a condition extending ė ↾ S. We can
find π ∈ fix(S) such that πp is compatible with p and πė is compatible with both ė and
ė′ by mapping dom ė/S and supp p/S “far enough” from dom ė′ and supp p. Then we
have that

πp ⊩HS
P πė ⊩Q1 [ ḟ ](α̌) = πẋ .

Since πp and p are compatible, we can set q = p ∪ πp and get that

q ⊩HS
P ė ⊩Q1 [ ḟ ](α̌) = ẋ ∧ πė ⊩Q1 [ ḟ ](α̌) = πẋ .

But since ė and πė are compatible, it must be that q ⊩HS
P ẋ = πẋ, and since πė is

compatible with ė′, it must be that ė′, if it decides the value of ḟ (α̌) at all, decides
the same value. ∎

It follows that in M a condition whose domain includes S must have decided all
the values of ḟ , and therefore it is a Q1-name for a sequence already in M.

Finally, we need to prove that the generic partition is amorphous. Suppose that
this is not the case and let Ḃ be a Q1-name in M for an infinite co-infinite set of
equivalence classes, and as before denote by [Ḃ] a P-name in HS for Ḃ. Let S ∈ [κ]<κ
such that fix(S) ⊆ sym([Ḃ]), and let p and ė be such that supp p = dom E = S and
p ⊩HS

P ė ⊩Q1 [Ḃ] is infinite and co-infinite.
Pick some α, β ∉ S, and extend p and ė to p′ and ė′ such that:

(1) p′ ⊩HS
P ė′ ⊩Q1 ė′(ȧα) ∈ [Ḃ] and ė′(ȧβ) ∉ [Ḃ].

(2) α and β are added to new cells in E′, as opposed to cells that already exist in E.
(3) The cardinality of the cells of α and β in E′ is equal.
(4) p′ ↾ E′(α) and p′ ↾ E′(β) have the same type, in other words, they can be

switched by some π ∈ G.
This can be done by first finding extensions so that (1)–(3) are satisfied, then in V ,

we just add more elements to the cells of α and β to ensure that we can find p′ as in
the (4).

Note that switching the two cells, of α and β, in E′ can be done, if at all, without
moving any point in S. Picking such automorphism, π, we get that πp′ = p′ and
πė′ = ė′, and by π ∈ fix(S) we also get that π[Ḃ] = [Ḃ]. This is an outright contra-
diction, since applied to (1) the roles of ȧα and ȧβ are switched. ∎

We point out that the proof that Q2 adds an amorphous set is based on the proof
of Theorem 4.5 in [11], where Monro uses a similar argument over the Cohen model,
i.e., the case where κ = ω, to add an amorphous set.

Corollary 5.3 ZF +DC<κ cannot prove that a σ-sequential forcing is σ-distributive
for any uncountable κ.
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6 Open problems

We saw that ZF cannot prove that a σ-sequential forcing is σ-distributive; but we also
saw that assuming the consistency of suitable large cardinal axioms, the equivalence
of σ-sequential to σ-distributive does not imply the Axiom of Choice either. Indeed,
we can replace that σ by any ≤∣X∣.

Question 6.1 What is the consistency strength of ZF + ¬AC+“σ-sequential forcing
is σ-distributive”? Is it any different to ∀X(≤∣X∣-sequential → ≤∣X∣-distributive)?

In [10] the first author proved with Philipp Schlicht that if A is an infinite set such
that [A]<ω is Dedekind-finite,16 then the forcing Add(A, 1) given by finite partial
functions p∶A → 2, which is clearly not σ-distributive,17 satisfies that every antichain
is finite, and equivalently “every forcing statement is decided by a finite set.”18 These
are conditions (2) and (4) in Theorem 6.1 in the paper.

Claim 6.2 Suppose that A is an infinite set such that [A]<ω is Dedekind-finite, then
Add(A, 1) is σ-sequential.

Proof Let ḟ be a name such that 1 ⊩ ḟ ∶ ω̌ → V̌α for some α.
Consider for each x ∈ Vα the sets Mx

n of maximal conditions p ∈ Add(A, 1) which
force ḟ ↾ ň = x̌. This set is finite, so the set X = ⋃{dom p ∣ p ∈ Mx

n} is a finite set. For
each x, consider now the finite antichain Ax ,

{p ∈ Add(A, 1) ∣ dom p = X ∧ p ⊩ ḟ ↾ ň = x̌}.

For any possible x , where Mx
n is not empty to begin with, Ax is a uniformly defined

antichain, and moreover, if x ≠ y, then Ax ∪ Ay is an antichain. Therefore, Fn , defined
as ⋃{Ax ∣ Mx

n ≠ ∅}, is an antichain as well, and therefore finite.
Finally, consider now the sequence of finite sets given by ⋃{dom p ∣ p ∈ Fn}. Note

that this sequence is increasing, since a condition in Fn+1 must extend some condition
in Fn . It follows that the sequence is eventually constant, with some value A′ and
therefore if A′ ⊆ dom p, then p must decide ḟ ↾ ň for all n < ω, which is to say that
p forces that ḟ is in the ground model. ∎

Easily the proof above extends to any κ, so COrd ⊆ SAdd(A,1), the sequentiality
spectrum of Add(A, 1). This extends Theorem 6.1 in [10], in which a list of properties
of Add(A, 1) which are all equivalent to [A]<ω being Dedekind-finite are given.
Specifically, conditions (8) and (9) which state that no reals and no sets of ordinals
are added.

Question 6.3 Suppose that every σ-sequential forcing is σ-distributive. The above
claim show that [A]<ω is Dedekind-infinite for any infinite set. Can we say more?

16Namely, there is no countable set of finite subsets of A.
17Consider the sequence defined by Dn = {p ∈ Add(A, 1) ∣ n < ∣dom p∣}.
18If φ(ẋ) is a formula, then {p ∈ Add(A, 1) ∣ p is ⊆ -minimal and p ⊩ φ(ẋ)} is finite.
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We finish this paper with two slightly orthogonal questions about the Foreman
Maximality Principle (see [3]), which states that every nontrivial forcing adds a real
or collapses cardinals. The consistency of this principle with ZFC is still open, but
it is known to imply the consistency of large cardinals, as it implies that GCH fails
everywhere. We saw that in the Gitik model every nontrivial forcing must add a
countable sequence of ground model elements. But we can show that not every forcing
adds a real, e.g., by showing that some of the collapsing sequences that are removed
from the model by symmetric arguments are generic over it, and adding them back
will not add reals.

Question 6.4 Does the Foreman Maximality Principle hold in the Gitik model?

Question 6.5 What happens when we consider “collapse cardinals” in its general
sense, meaning we add a bijection between two sets that did not have a bijection
between them in the ground model. Does this modified principle hold in the Gitik
model? Can it hold in ZF without large cardinals?
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