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Abstract It is proved that the Bloch norm of an arbitrary C1-function defined on the unit ball Bn ⊂ R
n

is equal to

sup
x,y∈Bn, x�=y

(1 − |x|2)1/2(1 − |y|2)1/2 |f(x) − f(y)|
|x − y|

.
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Let Bn denote the unit ball in R
n, where n � 2. For a complex-valued function f ∈

C1(Bn), let ‖f‖B denote the Bloch norm of f ,

‖f‖B = sup
x∈Bn

(1 − |x|2)|df(x)|,

where |df(x)| denotes the norm of the derivative df(x) treated as a linear operator from
R

n to C = R
2. If f is real-valued, then |df(x)| = |∇f(x)|, where ∇f denotes the gradient

of f :

∇f(x) =
(

∂f

∂x1
, . . . ,

∂f

∂xn

)
, x = (x1, . . . , xn).

If f is holomorphic in the unit disc D = B2, then |df(x)| = |f ′(x)|, where f ′ denotes
the ordinary derivative. Our starting point here is the following theorem of Holland and
Walsh [1].

Theorem 1. For a function f holomorphic in D, we have

‖f‖B � sup
x,y∈D, x �=y

(1 − |x|2)1/2(1 − |y|2)1/2 |f(x) − f(y)|
|x − y| . (1)

Here we write A � B to denote that A/B lies between two positive constants. In (1),
the C − 1 and C2 are independent of f . Recently, Ren and Kähler extended (1) to the
case of harmonic [3] and hyperbolically harmonic [2] functions on Bn. In this note we
show that (1) holds for an arbitrary C1-function f on Bn and, moreover, that ‘�’ can be
replaced by ‘=’.
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Theorem 2. For an arbitrary function f ∈ C1(Bn), n � 2, we have

‖f‖B = sup
x,y∈Bn, x �=y

(1 − |x|2)1/2(1 − |y|2)1/2 |f(x) − f(y)|
|x − y| . (2)

Proof. Denote the quantity on the right-hand side of (2) by ‖f‖1. Assuming that
‖f‖1 � 1 we have

|f(x) − f(y)|
|x − y| � 1

(1 − |x|2)1/2(1 − |y|2)1/2 , x, y ∈ Bn. (3)

Now we use the formula

|df(x)| = lim sup
y→x

|f(x) − f(y)|
|x − y|

to conclude that
|df(x)| � (1 − |x|2)−1, x ∈ Bn, (4)

i.e. that ‖f‖B � 1.
In the other direction, assume that ‖f‖B � 1. We want to prove that this implies (3).

In proving this we can suppose, after a suitable rotation, that x and y lie in R
2 =

{(x1, x2, 0, . . . , 0) : x1, x2 ∈ R}. Now let g be the restriction of f to R
2 = C. Then,

by (4),
|dg(x)| � (1 − |x|2)−1, x ∈ D, (5)

whence, by integration,

|g(x) − g(0)| � 1
2 log

1 + |x|
1 − |x| , x ∈ D. (6)

Now we use the simple inequality

1
2 log

1 + t

1 − t
� t(1 − t2)−1/2, 0 � t < 1, (7)

to deduce from (6) that

|g(x) − g(0)| � |x|(1 − |x|2)−1/2. (8)

Finally, let

ϕa(x) =
a − x

1 − āx
, a, x ∈ D (complex notation).

We know that ϕa is a conformal automorphism of the unit disc, that ϕa(ϕa(x)) = x, and
that

1 − |ϕa(x)|2 = (1 − |x|2)|ϕ′
a(x)| =

(1 − |x|2)(1 − |a|2)
|1 − āx|2 .

https://doi.org/10.1017/S0013091506001076 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506001076


On the Holland–Walsh characterization 441

This and (5) imply that

|d(g ◦ ϕa)(x)| = |(dg)(ϕa(x))| |ϕ′
a(x)|

� (1 − |ϕa(x)|2)−1|ϕ′
a(x)|

= (1 − |x|2)−1.

Thus g ◦ ϕa satisfies (5) so we can apply (8) to g ◦ ϕa to get

|g(ϕa(x)) − g(ϕa(0))| � |x|(1 − |x|2)−1/2.

Hence
|f(y) − f(a)| = |g(y) − g(a)|

� |ϕa(y)|(1 − |ϕa(y)|2)−1/2

= |a − y|(1 − |a|2)−1/2(1 − |y|2)−1/2,

i.e. ‖f‖1 � 1, which was to be proved. �

Remark 3. Inequality (7) is a direct consequence of the formulae

1
2 log

1 + t

1 − t
= t +

∞∑
n=1

1
2n + 1

t2n+1

and

t(1 − t2)−1/2 = t +
∞∑

n=1

(2n − 1)!!
(2n)!!

t2n+1.

Remark 4. The above proof shows that Theorem 2 remains valid if we assume that f

is a C1-function from the unit ball of a Hilbert space and with values in a Banach space.
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