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CONSTRUCTING ISOGENIES BETWEEN ELLIPTIC CURVES OVER
FINITE FIELDS

STEVEN D. GALBRAITH

Abstract

Let E1 andE2 be ordinary elliptic curves over a finite fieldFp
such that #E1(Fp) = #E2(Fp). Tate’s isogeny theorem states that
there is an isogeny fromE1 toE2 which is defined overFp. The goal
of this paper is to describe a probabilistic algorithm for constructing
such an isogeny.

The algorithm proposed in this paper has exponential complexity
in the worst case. Nevertheless, it is efficient in certain situations
(that is, when the class number of the endomorphism ring is small).
The significance of these results to elliptic curve cryptography is
discussed.

1. Introduction

This paper concerns some computational problems related to isogenies between elliptic
curves over finite fields. The primary goal is to give an algorithmic solution to Tate’s
isogeny theorem [34], which states that two elliptic curvesE1 andE2 over a finite fieldFq
are isogenous overFq if and only if they have the same number ofFq -points.

Schoof [28] proposed a polynomial-time algorithm for counting the number of points
on an elliptic curve over a finite field. There has been a considerable amount of research
building on Schoof’s idea (for instance, by Atkin [1], [2], Elkies [10], [11], Couveignes [8],
Couveignes and Morain [9], Lercier [19], and Lercier and Morain [20]). This means that
there is an efficient solution to the problem of determining whether two elliptic curves over
Fq are isogenous; namely, compute the number of points on each curve and see if the total
is the same.

For this paper, we concentrate on the case of ordinary elliptic curves that are defined
overFp. We make some comments about the case of supersingular curves and non-prime
finite fields later in this section. More specifically, we describe a probabilistic algorithm for
solving the following problem.

Problem 1. Let E1 andE2 be ordinary elliptic curves overFp such that #E1(Fp) =
#E2(Fp). Construct an isogenyϕ : E1 → E2 which is defined overFp.

For some applications one might want the isogenyϕ of minimal possible degree. The
method discussed in this paper will not necessarily produce such an isogeny; however, it
will produce one of relatively smooth degree.

The main result of this paper is the following theorem (in all complexity estimates a unit
cost is assumed for all operations inFp).
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Constructing isogenies between elliptic curves over finite fields

Theorem 1. Let E1 and E2 be ordinary elliptic curves overFp such that#E1(Fp) =
#E2(Fp). Assuming the truth of the Riemann hypothesis for imaginary quadratic number
fields, then the probabilistic algorithm proposed in Section4 will construct an isogeny
ϕ : E1 → E2 over the fieldFp. In the worst case, the algorithm requires expected time
O(p3/2 lnp) and expected spaceO(p lnp).

In certain special cases (for instance, when the endomorphism rings of the elliptic curves
have small class number) the algorithm runs in polynomial time. We make some comments
in Section8 about why we do not expect a polynomial-time solution to this problem in
general.

For some applications one is concerned with the group structure of elliptic curves over
finite fields. As part of our investigation we also study the following two problems.

Problem 2. LetE1 andE2 be ordinary elliptic curves overFp such thatE1(Fp) andE2(Fp)
have the same number of points. Construct a non-trivial group homomorphism between them
which may be evaluated in polynomial time.

Problem 3. Let E be an ordinary elliptic curve overFp. Construct an isogenous elliptic
curveE′ over Fp such that the groupE′(Fp) is cyclic, and construct anFp-isogenyϕ :
E → E′.

Of course, for most elliptic curves overFp, Problem2can be solved in various elementary
ways. However, we are particularly interested in the case where #E(Fp) has a large prime
divisor and where the group homomorphism has small kernel and cokernel. We discuss
Problem2 in Section7.

The methods used in this paper would generalise to the case of elliptic curves over non-
prime finite fieldsFpm . Whenp is large then the algorithm is essentially unchanged. When
p is small it would be necessary to utilise the methods of Couveignes [8] and Lercier [19]
(see [20] for a nice comparison) for computing isogenies.

For the case of supersingular curves an algorithm to solve Problem1is implicit in the work
of Mestre [21]. The main simplification in the supersingular case is that all isomorphism
classes of elliptic curves in a given isogeny class can be obtained by composing isogenies
of any fixed prime degree (e.g., the prime 2, since all supersingular curves modulop

have a rational 2-torsion point). Therefore, there is an algorithm to construct an isogeny
between any two supersingular curves with the same number of points. Since the number
of supersingular elliptic curves in characteristicp is bounded byp+1

12 + 1 [32, Theorem
4.1(c)], one can show that the algorithm runs in timeO(p lnp) and requires spaceO(p).
For more details about computations with supersingular curves see [14] and [21].

The paper is organised as follows: In Section2 we discuss the relevance of the results
to the study of elliptic curve cryptography. In Section3 we describe some of the necessary
background results (more background information is given inAppendix A). The proof of
Theorem1 is split across several sections. Section4 describes the algorithm and explains
why it terminates. Sections5 and6 are concerned with an analysis of the complexity of the
algorithm.

2. Application to cryptography

Elliptic curves over finite fields are being studied intensively with an eye to their use in
cryptography. Given an elliptic curveE/Fq and a pointP = (x, y) ∈ E(Fq), the elliptic
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curve discrete logarithm problem is the following: given a pointQ = (x′, y′) lying in the
subgroup generated byP , find an integerλ such thatQ = λP .

The elliptic curve discrete logarithm problem is known to be easy to solve in certain
cases, specifically when the subgroup generated byP has smooth order or when there is
a mapping fromE into a small-degree extension of the base fieldFq (such a mapping can
arise from the Weil or Tate pairings [22], [12], or from takingp-adic logarithms [30], [27],
[33], [26]).

For the rest of this section we will assume that all elliptic curves in question do not belong
to one of these special cases. For these remaining elliptic curves, the only known methods
for solving the elliptic curve discrete logarithm problem involve reducing to prime order
subgroups (the Silver/Pohlig-Hellman reduction) and then applying generic group methods
such as the baby-step-giant-step method (see [7]) and Pollard’s Rho and Lambda methods
[25]. The complexity of these methods depends only on the size of the largest prime factor
(sayL) of the number of points on the elliptic curve. This gives the naive impression that
the difficulty of the elliptic curve discrete logarithm problem depends only on the primeL.

The experts in elliptic curve cryptography do not expect that the difficulty of the elliptic
curve discrete logarithm problem does depend only on the primeL, or even on only the pair
of primesL andp. One of the aims of the present work is to give a more thorough analysis
of this issue. Indeed, we study the following question.

Question 1. LetE1 andE2 be two elliptic curves overFp. Suppose that the largest prime
divisor of #Ei(Fp) is the same primeL for both curves. Is there a method to reduce the
discrete logarithm problem onE1(Fp) to the discrete logarithm problem onE2(Fp)?

It is perhaps not so obvious why this question is relevant for cryptography (since only
one elliptic curve is ever considered at a time). The issue arises when constructing elliptic
curves on which to base a cryptosystem; since there are many different ways to write down
elliptic curves, it is important to know whether some of these representations are ‘stronger’
or ‘weaker’ than others.

Lenstra [17] has studied a similar problem for finite fieldsFpn . The result is that there
is a polynomial-time algorithm to convert between any two different bases forFpn as a
vector space overFp. This is an important result as it means that all representations used for
finite fields in cryptosystems based on discrete logarithms are equally secure (or insecure).
The problems considered in this paper seem to be harder than the problem of constructing
isomorphisms between finite fields, and we do not expect a polynomial-time solution to the
question stated above.

The statement of Question1 first appears to be more general than the rest of this paper.
However, for the elliptic curves used in cryptography it is desirable that the largest prime
divisorL of the order of the groupEi(Fp) be of size close top, and so certainlyL > 4

√
p.

It follows from the Hasse bound that there is only one possible value for #Ei(Fp) and so
the two elliptic curves are isogenous. An isogeny between the curves provides a method for
reducing the discrete logarithm problem on one to the other.

Although the algorithm given in this paper is exponential, in most cases (specifically,
when the conductors of the endomorphism rings of the elliptic curves in question are not
divisible by a large prime) it is more efficient than the known general-purpose algorithms for
computing discrete logarithms. Therefore our results give some support to the idea that, in
general, the discrete logarithm problem is equally difficult for all elliptic curves over a finite
field Fp which have the same number of points. The main exception to this conclusion is
when we have two elliptic curvesE1 andE2 overFp such that End(E1) ⊂ End(E2)and such
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that the index is divisible by a large prime. In this case it is not clear what the relationship
is between the difficulty of the discrete logarithm problems on these elliptic curves.

We should emphasise the following point: this paper does not imply that elliptic curves
that have complex multiplication of low class number are either weaker or stronger than
random curves.

3. Background

Let E be an elliptic curve over the fieldFp with p > 5. Since it is easy to compute
isomorphisms (see the Appendix, SubsectionA.2) we will assume thatE is written in the
short Weierstrass form

E : y2 = x3 + Ax + B.

We denote byπ theFrobenius endomorphism

π : (x, y) 7→ (xp, yp)

onE which satisfies

π2 − tπ + p = 0

in End(E) wheret = p + 1 − #E(Fp).
An elliptic curveE overFp is supersingularif the multiplication byp map has trivial

kernel. The curve isordinary if the kernel isnon-trivial. For elliptic curves overFp we
know thatE is supersingular if and only ift = 0.

If an isogenyϕ is defined overFp then its kernelC is also defined overFp (that is, if
(x0, y0) ∈ C and if σ ∈ Gal(Fp/Fp) then(σ (x0), σ (y0)) ∈ C). Since we are assuming
that all elliptic curves are given by a short Weierstrass equation it follows that(x0, y0) ∈ C
if and only if (x0,−y0) ∈ C, from which it follows that the kernelC of the isogeny is
determined by the polynomialψ(x) = ∏

(x0,±y0)∈C(x − x0) ∈ Fp[x]. A separable isogeny
of degreed is called ad-isogeny and its kernel has sized.

Every isogenyϕ : E1 → E2 overFp can be described as a rational map of the following
form

ϕ(x, y) =
(
ϕ1(x, y)

ψ(x)2
,
ϕ2(x, y)

ψ(x)3

)
, (1)

whereϕ1 andϕ2 are polynomials overFp in the variablesx andy of the original curveE,
andψ(x) determines the kernel of the isogeny as described above. In this paper, when we
say ‘construct an isogeny’, we mean explicitly computing the polynomialsψ(x), ϕ1(x, y)

andϕ2(x, y).
Vélu [35] showed howψ determines the isogeny, and gave formulae to obtain the poly-

nomialsϕ1 andϕ2 in equation (1). Elkies [10] developed methods to calculateψ(x), given
only thej -invariants of the curvesE1 andE2. Thej -invariants of isogenous elliptic curves
may be found from the modular polynomials (equations forX0(N)) as is well-known in
the theory of counting points. Some details of these methods are given inAppendix A.

Suppose thatE is an ordinary elliptic curve overFp with p + 1 − t points, and let
d = t2 − 4p < 0. Then End(E) is some order in the fieldK = Q(

√
d) and indeed

Z[π ] = Z[(d + √
d)/2] ⊆ End(E) ⊆ OK whereOK is the ring of integers ofK. The

conductorc = [OK : Z[π ]] is precisely the largest integer such thatd/c2 ≡ 0 or 1
(mod 4). The discriminant ofK is thereforeD = d/c2. There are a finite number of
possibilities for End(E), namely, all the ringsO = Z + c′OK wherec′ is a divisor ofc.
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The primes dividing the conductorc of Z[π ] will require special attention. This is due
to the following fact.

Proposition 1. Let ϕ : E1 → E2 be an isogeny such thatEnd(E1) ⊆ End(E2) (respec-
tively, End(E2) ⊆ End(E1)). Supposel is a prime which divides the index[End(E2) :
End(E1)] (respectively,[End(E1) : End(E2)]). Then the degree ofϕ is divisible byl.

Proof. See [14, Proposition 21].

Indeed, by taking a sequence ofl-isogenies (for those primesl dividing the conductor of
End(E)) it is possible to find an elliptic curveE′ isogenous toE such that End(E′) = OK
(the maximal order). These ideas are central to Kohel’s algorithm [14] for finding the exact
endomorphism ring of a given ordinary elliptic curveE/Fp. Some of the details of this
algorithm are given inAppendix Aand in the description of our method. We will use the
following notation from [14]. Letl be a prime number and suppose thatϕ : E1 → E2 is an
isogeny of degreel. Then one of the three following cases holds.

1. End(E1) ' End(E2) in which case the isogenyϕ is said to be ‘horizontal’ atl.

2. End(E1) contains End(E2) with indexl, in which case the isogenyϕ is said to be an
isogeny ‘down’ atl.

3. End(E1) is contained in End(E2) with indexl, in which case the isogenyϕ is said to
be an isogeny ‘up’ atl.

If l - [OK : End(E)] then it is not possible to go up, and so we say thatE is ‘on the surface
at l’. Similarly, if If l - [End(E) : Z[π ]] then it is not possible to go down, and we say that
E is ‘on the floor atl’.

For each possible endomorphism ringO, the theory of complex multiplication (see [15]
or [31]), combined with Deuring’s theory (see [15]) about lifting endomorphisms from
characteristicp to characteristic zero, shows that the number of isomorphism classes of
elliptic curves overFp which have endomorphism ring isomorphic toO is equal tohO (the
number of elements of the group Pic(O) of classes of projectiveO-modules). Furthermore,
the action of isogenies is the same as composition of ideal classes. Indeed, elliptic curves
overFp can be lifted to elliptic curves overC with the same endomorphism ringO, and can
thus be interpreted asC/a wherea is an projectiveO-module. Given some other projective
O-moduleb one has the isogeny

C/a −→ C/ab−1

with kernelab−1/a ' O/b. These facts will be useful in our analysis of the algorithm.
Over C the correspondence between the isomorphism classes of elliptic curves with

endomorphism ring equal toO, and the ideal classes in the group Pic(O) is canonical.
However, the reduction of these curves fromC to Fp depends on a choice of (totally
split) prime℘ | p in the ring class field. If we fix such a prime℘ then one can talk
about the ideal class associated with an isomorphism class of elliptic curves overFp with
endomorphism ring equal toO. If it were possible to efficiently compute this correspondence
between Pic(O) and a set ofj -invariants inFp, then the problems discussed in this paper
would be easy to solve. However, the only method known to the author for computing this
correspondence would be to compute approximations to allj (a) ∈ C (asa runs over the
classes in Pic(O)), to construct the class polynomial and therefore the ring class fieldHO ,
to find a prime℘ abovep, and then to reduce these values modulo℘. This approach would
be more arduous than the methods used in this paper.
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Quadratic imaginary fields are well-understood and the structure and size of the class
group may be computed in subexponential time using binary quadratic forms (see [7]). The
class group ofK is generated by the primesp which split or ramify inK. Bach [4] has
proved that, assuming the Riemann hypothesis for the zeta function ofK, the class group
is generated by the prime ideals of norm less than 6(ln|D|)2.

Class numbers of orders are closely related to the class numberhK of the maximal order
by the following formula (see [15, Theorem 8.7] or [31, Exercise 4.12]). SupposeO is an
order of conductorc in OK . Let O∗

K andO∗ be the units (that is, multiplicative subgroup
of invertible elements). Define(K

p
) to be−1, 0, or+1 depending on whether the primep

is inert, ramified or split inK respectively. Then the relation between the class numbers is

hO = hKc[O∗
K : O∗]

∏
p|c

(
1 − (K

p
)p−1

)
. (2)

In particular we see that the class number grows as the conductor grows.
For the purposes of this paper the following result (Exercise 5.27 of [7]) will be useful.

Proposition 2. LetK be an imaginary quadratic field of discriminantD. Then

hK 6 1

π

√|D| ln |D| . (3)

We now mention the relationship between the endomorphism ring and the group struc-
ture. Suppose that End(E) = O is an order containingZ[π ]. Letm be the indexm = [O :
Z[π ]] (which is the conductor ofZ[π ] divided by the conductor ofO). Then there is some
integera such thatO = Z[(π − a)/m]. Lenstra [18] has shown that the group structure of
E(Fp) is isomorphic toO/(π − 1) and thus, as a group,E(Fp) ∼= Z/lZ × Z/nZ where
l = gcd(a − 1, m) andl | n. The following result is therefore immediate.

Lemma 1. If E/Fp is an ordinary elliptic curve such thatEnd(E) = Z[π ] thenE(Fp) is
a cyclic group.

This lemma provides a method for solving Problem3of the introduction; given an elliptic
curveE/Fp such that the groupE(Fp) is not cyclic, we can use the methods of Kohel’s
thesis [14] to construct an isogenous elliptic curveE′/Fp such that End(E′) = Z[π ]. It
then follows thatE′(Fp) is a cyclic group.

4. The method

In this section we present a method to explicitly construct an isogeny between two elliptic
curvesE1 andE2 which have the same number of points.

From Tate’s isogeny theorem [34] we know that there is an isogenyϕ : E1 → E2 over
Fp. In practice it will be more efficient to consider a chain

E1 ' E′
0

ϕ1−→ E′
1

ϕ2−→ E′
2

ϕ3−→ · · · ϕn−→ E′
n ' E2

of isogenies such that eachϕk has prime degreelk.
For the input to the method, assume that we have short Weierstrass equations forE1 and

E2 and that we know the tracet of Frobenius. It is necessary to computed = t2 − 4p and
to calculate the conductor ofZ[π ] in OK whereK = Q(

√
d). The conductor ofZ[π ] is the

largest positive integerc such thatD := d/c2 ≡ 0, 1 (mod 4) and so this stage involves
factoring the integerd. Factoring can be performed in subexponential time, and we will not
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include this cost in our analysis. Note, however, that this means we have already lost any
chance of achieving polynomial time!

We must decide upon a setL of primes; this is the set of all primesl for which we will
need to takel-isogenies (note that we will also need all primesl | c in order to apply Kohel’s
algorithm). We takeL := {primesl : (D

l
) ∈ {0, 1} andl < 6(ln |D|)2} (whereD is the

discriminant of the maximal order). Assuming the generalised Riemann hypothesis, the
primes in this setL generate the ideal class group of the fieldK, and so they are sufficient
for the task.

Here is an outline of the method:

Stage 0 Compute modular polynomials8l(x, y) ∈ Fp[x, y] for each primel dividing c
and eachl ∈ L.

Stage 1 For each curveEi , use Kohel’s algorithm [14] to find a chain of isogenies from
Ei to an elliptic curveE′

i whose endomorphism ring is the maximal order. Setj1 and
j2 to be thej -invariants of these new curvesE′

1 andE′
2.

Stage 2 Starting fromj1 andj2, construct trees, whose vertices are labelled asj -invariants
and whose edges (labelled byl) correspond to isogenies of prime degreel.

Stage 3 Once the two trees become connected, find the path connectingj1 to j2. Add this
chain of l-isogenies to those already found in Stage 1 and use the theory of Elkies
and Vélu to construct the explicit polynomial form of eachl-isogeny.

We now give further details about the stages.Stage 0involves standard methods; see
[11] for details. Of course, rather than computing all the equations in advance, one would
just compute and store them as they are required.
Stage 1.We know that End(Ei) is an order inOK with conductor dividingc. Note that, due
to equation (2), it is more likely that End(E1) and End(E2) have conductor close toc.

LetE be eachEi in turn. For each primel dividing the conductorc of Z[π ] write lb for
the exact power ofl in c.

We use the following method (due to Kohel [14]) to determine the exact power ofl
dividing End(E). Consider the roots of8l(j (E), y) (mod p). If there is only one root
then we know from Propositions 22 and 23 of Kohel [14] (or see Theorem4of Appendix A)
thatE is on the floor atl and therefore that the conductor of End(E) is divisible by exactly
lb. In the other case, it follows that8l(j (E), y) splits completely modulop. If b = 1 then
we know thatl does not divide the conductor of End(E). If b > 1 then it is not yet possible
to distinguish the possibilities. However, if we now lety0 run over the roots of8l(j (E), y)
then we can determine ify0 is thej -invariant of an isogeny on the floor by considering the
roots of8(y0, y) (mod p). If y0 is on the floor this polynomial will have only one root.
If 8(y0, y) (mod p) has more than one root, then we repeat the process using the roots
y. If it always takes at leastb′ steps down fromj (E) before hitting the floor then it follows
that the power ofl dividing the conductor of End(E) is b − b′.

Once we have determined the power ofl dividing the conductor of End(E) we must
also determine the uniquel-isogenies up to a curve on the surface atl. We then know the
intermediatej -invariants in the chain ofl isogenies up to the elliptic curveE′ such thatl
does not divide the conductor of End(E′). We now letE = E′ and continue the process for
the remainder of the primesl | c.

At the completion of Stage 1 we have the chains of isogenies

E1 −→ E1,1 −→ · · · −→ E1,n = E′
1 and E2 −→ E2,1 −→ · · · −→ E2,m = E′

2 (4)
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where End(E′
1) and End(E′

2) are both the maximal orderOK . Putj1 = j (E′
1) andj2 =

j (E′
2). We now want to linkj1 andj2 by a chain of isogenies.

Stage 2.We grow two trees ofl-isogenies, one starting fromj1 and the other fromj2.
Initially, begin with the two trivial graphs, each with a single vertex (labelled, respectively,
j1 andj2) and no edges. Repeat the following steps: For each tree in turn choose a random
l ∈ L and, foreveryvertexj in the tree, compute the roots of8l(j, y) (mod p). For each
of these rootsy (apart from whenl | c, in which case one must only use the roots which
correspond to elliptic curves which lie on the surface), if there is not already a vertex in
either of the two trees corresponding toy, then add a new vertexy and add a labelled edge
betweenj andy (with labelling l). This process should be repeated until there is an edge
added which connects the two trees together. This concludes Stage 2. Note that this process
could be made more efficient by keeping track of which ideal classes have already been
utilised (since it is possible to compute efficiently in the class group), and thus choosing
l ∈ L to maximise the number of new classes found.

Since the vertices in our trees do not have bounded degree, and since it is necessary
to detect if aj -invariant already appears in the tree, some kind of easily searched list of
vertices would be an appropriate data structure (rather than the usual binary tree structure).
Stage 3.One must traverse the tree to find the chain of isogenies between the elliptic curves
with j -invariantsj1 andj2. These are then combined with the chains (4) of l-isogenies
found in Stage 1. For eachl-isogeny in the chain we use the formulae of Elkies and Vélu
to give explicit values for the polynomialsψ, ϕ1 andϕ2 of (1). It is advised to store these
isogenies individually, rather than combining them into huge polynomials.

Finally, the image curve will probably be given in terms of an equation different from
that ofE2, so it is necessary to construct an isomorphism toE2 (see the Appendix,A.2).

It is clear that, assuming the Riemann hypothesis for the quadratic imaginary fieldK,
this algorithm does terminate, having produced an isogeny fromE1 toE2.

Note that it is possible to construct an isogeny fromE2 toE1 by working along the chain
backwards.

5. The depth of the tree of isogenies

The goal of Stage 2 is to produce two ‘very bushy’ trees of small-degree isogenies,
starting from each of the two givenj -invariants. In this section we will estimate the depth
(maximum distance from the root to the leaves) of these trees, as it determines the length
of the resulting chain of isogenies.

The two initialj -invariants correspond (non-canonically) with a pair of idealsa1 anda2
in the ideal class group of the maximal orderOK . The process in Stage 2 takes a sequence
of small primesli which split (or ramify) inOK as(l) = ll′. In the following we writel−1

instead ofl′, sincel′ is a representative of the ideal class corresponding to the inverse of
l. The two trees themselves contain thej -invariants of the elliptic curves corresponding to
ideal classes represented by the ideals

a1

n∏
i=1

l
a2i−1
2i−1 and a2

n∏
i=1

l
a2i
2i

with all ai ∈ {−1,0,+1}. It is clear that, if non-ramified prime ideals are chosen, the size of
the trees grows initially like 3n. However, asn grows there will be an increased probability
of non-trivial relations between the ideals, and therefore there will be fewer new classes
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arising. Note that when ramified primes are chosen then the number of ideal classes is
expected to double, and if primes are repeated then the number of classes grows by a factor
which is between 1 and 2.

The condition that the trees share a common vertex is equivalent to the condition that,
for some choice of theai ∈ {−1,0,+1}, we have

a1a
−1
2 ∼

2n∏
i=1

l
ai
i .

The complexity analysis depends on the following heuristic assumption. We say that two
probabilitiesP1 andP2 are ‘close’ if 1

2P1 6 P2 6 2P1.

Assumption 1. Let n be a positive integer and letL be a sequencel1, l2, . . . , ln ∈ L.
Consider the setS of all ideal classes represented by ideals of the form

∏n
i=1 l

ai
i over all

choices forai ∈ {−1,0,+1}. Then, for a large proportion of sequencesL, the setS has the
following property: for a random classa in the class group ofK, the probability that there
are idealss1, s2 ∈ S such thats1a ∼ s2 is close to the probability in the case where the set
S was chosen (of the same size) uniformly at random from the ideal class group ofK.

The reason the assumption does not apply to all sequencesL is that there are some
sequences (such as a sequence ofl which generates a proper subgroup of the ideal class
group) for which the statement is not true.

The setL has been defined so that (assuming the Generalised Riemann Hypothesis)
the setS will eventually contain a representative of every ideal class ofK. The heuristic
assumption above is essentially a claim about the ‘uniform’ way in which the ideal classes
are generated.

Of course, the setS is easily distinguished from a set chosen uniformly, as it has the
strong property thata ∈ S ⇔ a−1 ∈ S. Nevertheless, we claim that this fact does not
significantly affect the probabilities we are considering.

The assumption seems plausible due to the fact that the prime ideals lying above distinct
rational primes do not have any obvious dependence on each other. At the end of this section
we give an example that supports the assumption.

Lemma 2. Subject to the heuristic assumption1, Stage 2 is expected to terminate after
O(ln hK) iterations.

Proof. We consider the two trees separately. At iterationn of the algorithm suppose that
we have found representativesa1, . . . , aN of N distinct ideal classes. Choose a splitting
prime l (that is,(l) = ll−1) which is distinct from the primes already chosen. Consider the
3N idealsai lε whereε = 0,±1.

Some of these ideals may be equivalent, but this can only arise fromai l
ε1 ∼ aj lε2 where

ε1 6= ε2 andi 6= j . Without loss of generality we may assume that the pair(ε1, ε2) is equal
to one of(0,−1), (0,+1), (−1,+1). In each case there areN(N − 1) possible values for
i 6= j and, under assumption1, we expect that approximatelyN(N − 1)/hK of these pairs
of ideals will be equivalent.

Therefore, we expect the number of distinct ideal classes obtained at the end of the
nth iteration to be approximately 3N − 3N(N − 1)/hK = (3 − 3(N − 1)/hK)N . When
N 6

√
hK it follows that the size of the tree increases by a factor which is close to 3. If a

ramified prime is chosen then a similar argument shows that the size of the tree increases
by a factor close to 2. Repeated primes can also be handled by this argument, though they
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are unlikely to arise within Stage 2 as the algorithm specifies that the primesl be chosen
uniformly at random. In conclusion, we expect the tree to have size

√
πhK/2 afterO(ln hK)

iterations.
We now have two trees of size

√
πhK/2 which, subject to our heuristic Assumption1,

behave like two sets of randomly chosen ideal classes. By the ‘birthday paradox’ we expect
the trees to share a common vertex. In other words, the two trees are joined by an edge, and
Stage 2 of the algorithm is complete.

We give a toy example to illustrate the situation.

Consider the discriminantD = −399992579 (which would arise from an elliptic curve
modulop = 108+37 havingt = 87). The class number ish = 11920, and sob√hc = 109.
Consider the sequence 199, 137,59,41,89,53,43,89 of splitting primes and construct
trees as in Stage 2. The resulting trees of depth 4 have cardinality 81, and there are a total of
5056 ideal classes represented as a product of a class from one tree and a class from another
(in other words, 42% of the ideal classes appear). Taking the further two primes 107 and 71
yields trees of depth 5 with 242 and 243 vertices respectively (this illustrates that the size
of the trees really does grow like 3n while the size is less that

√
hK ). The total number of

ideal classes represented as products is 11553, which is 97% of the class group.

6. Complexity analysis

It remains to give an analysis of the complexity of the method. We assume a unit cost
for all operations in the fieldFp.

The analysis given in this section uses the results of the previous section, which depend
on a heuristic assumption (Assumption1). These results lead to the precise bounds given in
equations (5) and (6) below. Actually, the worst-case complexity stated in Theorem1 can
be obtained without relying on the heuristic Assumption1 of Section5 (by running Stage
2 forO(h) iterations).

Leth = hK be the class number of the maximal order. Note that, by (2) the class number
of the maximal order is usually much smaller than the class numbers of non-maximal orders.
Nevertheless, in the worst case, formula (3) shows thath isO(p1/2 lnp). There are efficient
(subexponential) methods to compute the class number, so we may assume that we know
the exact value forh. Letc be the conductor ofZ[π ]. We ignore the cost of factoringt2−4p
to find the conductor. In the worst casec isO(p1/2), though in practice it will usually be
divisible by only very small primes.

Rather than give our complexity estimate in terms ofp alone, we will express it in terms
of h andc also. The reason for this is that we want to emphasise which parts of the method
depend on which parameters. We will now consider the various stages in turn.
Stage 0.Firstly, we must obtain the equations8l(X, Y ) for all the split/ramified primes
l less than our bound 6(ln|D|)2 < 6(ln 4p)2. By the prime number theorem there are
O((lnp)2/(ln(lnp)2)) such primes. We also need8l(X, Y ) for those primes dividing the
conductorc. The first set takes timeO((lnp)8/ ln lnp) and spaceO((lnp)6/ ln lnp) (in
terms ofFp operations). The primes dividingc contributeO(c3) time andO(c2) space.

We now must deal with the core of the method. The principal task is calculating the roots
of the degreel polynomial8l(j (E), Y ) (mod p). Finding roots of a degreel polynomial
modulop may be performed in probabilistic polynomial timeO(l2 lnp) operations inFp
(see [7, Section 1.6]).
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Stage 1.For each primel dividing c we must find the roots of8l(j, y). If la‖ c then we
will, at worst, need to takeO(la−1) (which isO(c)) different values ofj before we know
we have reached the surface atl. In other words, we have to performO(c3(lnp)) field
operations. The length of the chain of isogenies from theEi to elliptic curves on the surface
will be O(ln c).
Stage 2.We must generate the two trees usingl-isogenies. We expect that both trees need
to be of size approximatelyO(

√
h). By Lemma2 this should requireO(ln h) iterations of

Stage 2.
For each primel we must find the roots8l(j, y) ≡ 0 (mod p) for every vertexj in the

tree. The tree has sizeO(
√
h) and finding each root takesO(l2 lnp) = O((lnp)5) time.

Furthermore, once each rooty is found we need to search through both trees to see if it has
already appeared, and this requires timeO(ln h) if the trees are represented in a suitable
way.

Hence Stage 2 requiresO(ln h
√
h((lnp)5 + (ln h))) time. The trees requireO(

√
h)

storage space and the chain of isogenies itself has lengthO(ln h).
Stage 3.Finding the chain ofj -invariants which connects the roots of the trees takes time
O(

√
h) and the length of the chain isO(ln h). Once we combine with the chains found in

Step 1 the total chain will have lengthO(ln h+ ln c).
For eachl-isogeny in the chain we then compute the isogeny using the methods of Elkies

and Vélu. The primesl ∈ L require timeO((lnp)6) for computing the isogeny. The primes
l | c require timeO(c3).

Therefore, Stage 3 requiresO(
√
h + ln h(lnp)6 + (ln c)c3) time andO(ln h(lnp)4 +

(ln c)c2) space.
Putting it all together, the algorithm takes expected time

O((lnp)8/ ln lnp+c3+c3(lnp)+ ln h
√
h((lnp)5+(ln h))+√

h+ ln h(lnp)6+(ln c)c3)

(5)
and requires expected space

O((lnp)6/ ln lnp + c2 + ln c + √
h+ ln h(lnp)4 + (ln c)c2). (6)

In the worst case, sincec could beO(p1/2) and, by (3), h could beO(p1/2 lnp), the
terms involvingc dominate and so the expected running time isO(p3/2(lnp)) and the
method requiresO(p(lnp)) space.

We emphasise that the algorithm performs much more efficiently in most cases. For
instance, in most examples the conductor will beO(lnp)-smooth, in which case all the
terms featuringc become polynomial-time, and the algorithm has expected running time
O(p1/4(lnp)13/2).

In addition to this, in the case when the maximal order has small class number (sayh

of size a power of(lnp)) then the algorithm becomes polynomial-time. In particular, those
elliptic curves generated by the CM method (see [3], [23] and [16]) have this property.

In cryptography it is usually suggested that elliptic curves be chosen at random so that
the endomorphism rings do not have small class number. Actually, the elliptic curves used
in cryptography seem to have slightly smaller class number than expected (see [13]).

7. Polynomial-time group homomorphism

We now address Problem2. Given two elliptic curvesE1 andE2 we wish to construct a
non-trivial isogeny between them which may be evaluated in polynomial time.
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The method proposed for constructing a chain of isogenies between two given elliptic
curves requires exponential time; however the chain of isogenies has polynomial-sized
length. Furthermore, ifc isO(lnp)-smooth then all isogenies in the chain can be computed
in polynomial time.

Thus, for those elliptic curves whose endomorphism ring has smooth conductor, we
have produced a solution to Problem2: once the exponential ‘pre-computation’ has been
performed, the group homomorphism requires polynomial storage space and can be com-
puted in polynomial time. This is an improvement over the ‘naive’ exponential solution to
Problem2 (that is, taking discrete logarithms) since that method would require storing an
exponentially sized lookup table.

8. When the conductor is not smooth

The formula (2) shows that a random curve usually has conductor close to the full index
[OK : Z[π ]]. The conductorc is essentially the square part oft2 − 4p and so we expect it
to be quite smooth in general. However, if the conductor is divisible by a large prime then
our method is impractical.

If the conductors of both End(E1) and End(E2) are divisible by the large prime then it
is advisable not to perform Stage 1 of the method. Stage 2 may be equally well performed
in a non-maximal order. The drawback is that the class numberh will be increased by the
large prime. Note that one can detect whether End(E) is maximal by using the methods of
this paper to find more thanhK isogenous elliptic curvesE′ such that End(E′) = End(E).

If one of the conductors of End(E1) and End(E2) is divisible by the large prime and
the other is not then, due to Proposition1, there is no shortcut available. This fact, together
with the fact that determining the conductor requires finding the square factors of the
discriminant, leads us to the opinion that Problems1,2 and3 cannot have polynomial-time
solutions in the general case.

9. Onwards

One may ask whether the methods of this paper are the only way to proceed. Suppose there
is a translation of discrete logarithm problems on elliptic curves, given as a ‘geometrically
defined’ map. Must this necessarily be an isogeny of curves?

For instance, as David Kohel has pointed out, an isogeny is defined as a map of one-
dimensional group schemes

E1
ϕ−→ E2

over the fieldFp (so thatϕ : E1(Fpn) → E2(Fpn) for all n). For our problem it would be
sufficient to have a homomorphism of zero-dimensional constant group schemesE1[L, π−
1] → E2[L, π − 1].

It is not known to the author whether there is any way to find such objects computation-
ally without taking isogenies between the one-dimensional group schemes they arise from.
This would be an interesting question for further study.
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Appendix A. Background material

A.1. Elliptic curves
In this paper we assume that all elliptic curvesE overFp are given in Weierstrass form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

wherea1, a2, a3, a4, a6 ∈ Fp. If E is written as a more general plane affine or projective
curve then there are well-known methods (see [6, Chapter 8], and [32, Section III.1]) to
construct an isomorphism fromE to the Weierstrass form above. We will not consider
the case whenE is written as a highly singular curve or as a subvariety of some higher-
dimensional affine or projective space.

Indeed, since we are assumingp > 5 it is possible to reduce to the short Weierstrass
equation by substitutingy − a1/2x − a3/2 for y and then substitutingx − (a2

1/4 + a2)/3
for x.

Therefore, we will always assume that elliptic curves are given as short Weierstrass
models

E : y2 = x3 + Ax + B

with A,B ∈ Fp.
We deal first with the case of isomorphic curves.

A.2. Isomorphisms
LetE1 : y2 = x3 + A1x + B1 andE2 : (y′)2 = (x′)3 + A2x

′ + B2 overFp be elliptic
curves with the same number of points. Thej -invariantsj1 = j (E1) andj2 = j (E2) may
be easily computed from the formulaj (Ei) = 6912A3

i /(4A
3
i + 27B2

i ).
If two elliptic curves have the samej -invariant then [32, Propositions III.1.4(b) and

III.3.1(b)] they are isomorphic overFp. Indeed, sinceE1 andE2 are in short Weierstrass
form, the isomorphism must be of the formψ : (x, y) 7→ (u2x, u3y) whereu satisfies at
least one of the following identities:

u2 = (B2A1/B1A2) if B1A2 6= 0;
u4 = A2/A1 if A1 6= 0;
u6 = B2/B1 if B1 6= 0.

(7)

Note that these roots, if they exist inFp, may be easily computed (using the standard
probabilistic algorithm for calculating roots modulop as described in [7, Section 1.6]).

In the case when #E1(Fp) = #E2(Fp) and the elliptic curves are not supersingular, it
can be shown by an elementary argument that the isomorphism is actually defined overFp
(in other words,u ∈ Fp). Hence, the following result holds.

Proposition 3. LetE1 andE2 be elliptic curves overFp such that#E1(Fp) = #E2(Fp).
If E1 andE2 are isomorphic as elliptic curves (that is,j (E1) = j (E2)) then there is a
(probabilistic) polynomial time algorithm to find the isomorphism fromE1(Fp) toE2(Fp).

If long Weierstrass models are being used (for instance, if one is working in characteristic
2) then isomorphisms are equally easy to handle.

A.3. Isogenies
For the background on isogenies we refer to [32, Section III.4]. We denote byπ the

Frobenius isogeny

π : (x, y) 7→ (xp, yp)
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on an elliptic curveE/Fp. This isogeny satisfies the relation

π2 − tπ + p = 0

where the number of points on the elliptic curve is given by #E(Fp) = p + 1 − t .
An isogenyϕ : E1 → E2 overFp may be expressed as a rational map

ϕ(x, y) =
(
ϕ1(x, y)/ψ(x, y)

2, ϕ2(x, y)/ψ(x, y)
3
)
,

whereϕ1, ϕ2 andψ are polynomials overFp in the variablesx andy of the original curve
E. Another way to say this is that the polynomials must satisfy the relation

ϕ2
2 = ϕ3

1 + A2ϕ1ψ
4 + B2ψ

6.

The points(x, y) ∈ E(Fp) which are roots of the polynomialψ(x, y) are the points in the
kernel of the isogeny.

We gather a few important facts about isogenies.

Proposition 4. LetE1 be an elliptic curve over the finite fieldFp.

1. Any isogenyϕ : E1 → E2 factors as

E1
πm−→ E

(pm)

1
ϕ′

−→ E2

whereπm is themth power Frobenius map (wherepm is the inseparable degree of
the isogenyϕ) and whereϕ′ is a separable isogeny.

2. The degree of a separable isogenyϕ : E1 → E2 is equal to the number of points in
the subgroupker(ϕ).

3. Given a finite subgroupC of E1 there is a unique elliptic curveE2 and a unique
separable isogenyϕ : E1 → E2 such thatker(ϕ) = C. If C andE1 are defined over
Fp then so areϕ andE2.

Proof. See [32, II.2.12, III.4.10 and III.4.12].

Property 1 of the Proposition means that, for the purposes of this paper, we may restrict
attention to separable isogenies. A separable isogeny of degreed will often be called a
d-isogeny.

A.4. Endomorphism rings of elliptic curves
The endomorphism ringEnd(E) of an elliptic curveE is the set of all isogeniesϕ :

E → E which are defined overFp. This is a ring where addition is inherited from addition
onE and where multiplication is composition of isogenies.

The fundamental result (see [32, Theorem V.3.1]) is that, for elliptic curves over finite
fields, End(E) is either an order in an imaginary quadratic field, or an order in a quaternion
algebra. The latter case occurs if and only ifE is a supersingular elliptic curve. In the
non-supersingular (usually called ‘ordinary’) case, the endomorphisms are all defined over
the base fieldFp.

An imaginary quadratic fieldis K = Q(
√
d) whered is a negative integer which is

assumed to have no square factors. Thediscriminantof the fieldK is eitherD = 4d if
d 6≡ 1 (mod 4) orD = d if d ≡ 1 (mod 4). An order in K is a subring ofK (which
contains 1). Themaximal orderin K is the ringOK = Z[(D + √

D)/2]. Every order inK
is of the formO = Z + cOK = Z[c(D + √

D)/2]. The integerc = [OK : O] is called the
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conductorof the orderO. The discriminant of the orderO is c2D which shows that orders
in quadratic imaginary fields are uniquely determined by their discriminant.

A.5. More on endomorphisms and isogenies
We will need a deeper understanding of isogenies. The theory of complex multiplication

will be our main tool.
The theory of complex multiplication is most easily stated in the context of elliptic curves

over the complex numbers. Elliptic curves overC are isomorphic to complex toriC/〈1, τ〉
whereτ ∈ C has strictly positive imaginary part.

SupposeE has complex multiplication. In this case, End(E) = {α ∈ C : α, ατ ∈ 〈1, τ〉}
and soα = a + bτ ∈ End(E). The conditionατ ∈ 〈1, τ〉 implies thatτ satisfies some
equationAτ2 + Bτ + C = 0 (that is,τ lies in a quadratic imaginary fieldK). We may
chooseA,B,C to be integers such that(A,B,C) = 1 (that is, there is no prime dividing all
three). The fieldK is equal toQ(

√
B2 − 4AC) and End(E) is an order inK. The following

lemma is extremely useful.

Lemma 3. (See[15, Theorem 8.1].) LetE = C/〈1, τ〉 be an elliptic curve whereτ satisfies
Aτ2 + Bτ + C with A,B,C ∈ Z and (A,B,C) = 1. ThenEnd(E) is the order with
discriminantB2 − 4AC.

Furthermore, writingO = End(E), the lattice〈1, τ〉 is a projectiveO-module, and two
elliptic curvesC/〈1, τ〉 andC/〈1, τ ′〉 are isomorphic if and only if theseO-modules are in
the same class in the group Pic(O) (which is the group of projectiveO-modules modulo the
principalO-modules). Hence, we may represent the isomorphism classes of elliptic curves
overC with End(E) = O by the elliptic curvesC/awherea runs over the classes in Pic(O).
These elliptic curves are defined over thering class fieldHO . It follows that the number of
isomorphism classes of elliptic curvesE having End(E) = O is equal to the class number
hO of the orderO (that is, the number of elements of the group Pic(O)).

Let b be anO-ideal. Then the identity map fromC to itself induces the map

C/a→ C/ab−1

which has kernelab−1/a ' O/b. This is an isogeny of degreeNK/Q(b), and all isogenies
arise in this way.

We require the theorems of Deuring on reduction/lifting of the endomorphism ring (a
good reference is [15, Theorem 13.12 and Theorem 13.14]). It is necessary to assume that the
conductor of End(E) is coprime top. This condition is automatic for elliptic curves modulo
p. When generalising to the case of small characteristic fields we would use techniques due
to Couveignes [8] and Lercier [19], [20] to find an isogeny to an elliptic curve with no
power ofp dividing the conductor of its endomorphism ring. We state the theorems in the
form which we will need, and refer to [15] for the details.

Theorem 2. (Deuring) LetĒ/Fp be an elliptic curve with a non-trivial endomorphism̄ϕ.
Then there is an elliptic curveE over a number fieldL, an endomorphismϕ of E, and a
prime℘ ofL abovep such thatE andϕ reduce toĒ andϕ̄ modulo℘.

Theorem 3. (Deuring) LetE be an elliptic curve over a number fieldL such thatEnd(E)
is an orderO in a quadratic imaginary fieldK. Let p be a rational prime such thatE
has good reduction atp and such thatp is coprime to the conductor of the orderO. Let
℘ be a prime ofQ abovep. Write Ē for the reduction ofE modulo℘. The curveĒ is
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supersingular if and only if the primep is inert or ramified in the quadratic extensionK/Q.
If the primep splits inK then the modulo℘ reduction mapE → Ē induces an isomorphism
End(E) ∼= End(Ē).

The upshot of these theorems is that elliptic curves and their endomorphism rings lift
from Fp to number fields (in fact, to the ring class field), and that they reduce well modulo
p too. We may therefore apply the complex multiplication theory of elliptic curves overC
to the situation of elliptic curves modulop.

In the application we consider two isogenous elliptic curvesE1 andE2 overFp such that
End(E1) and End(E2) are orders lying betweenOK andZ[π ]. Therefore, their conductors
both divide the conductorc = [OK : Z[π ]]. It will be necessary to construct isogenies
between curves whose endomorphism rings have different conductor, so we study some of
these issues here.

As mentioned in the main body of the paper (Proposition1), the only way for the conduc-
tor to change by a primel is if one takes an isogeny whose degree is a multiple ofl. Indeed,
by taking a sequence ofl-isogenies (for those primesl dividing the conductor of End(E)) it
is possible to find an elliptic curveE′ such that End(E′) = OK (the maximal order). These
ideas are central to Kohel’s method (see [14]) for finding the exact endomorphism ring of
a given ordinary elliptic curveE/Fp.

We can be even more complete in our analysis of isogenies. The following theorem
(which is essentially Propositions 22 and 23 of [14]) tells us everything we need. We use the
language of Kohel, so anl-isogeny ‘down’ is an isogenyϕ : E1 → E2 of degreel such that
[End(E1) : End(E2)] = l whilst anl-isogeny ‘up’ is one with[End(E2) : End(E1)] = l.
In the case where the endomorphism rings are preserved we call the isogeny ‘horizontal’.
We say that an elliptic curveE is ‘on the surface atl’ if l - [OK : End(E)]. We say thatE
is ‘on the floor atl’ if l - [End(E) : Z[π ]]. We might also say thatE is ‘of level n at l’ if
ln‖ [O : End(E)].
Theorem 4. [14] LetE be an elliptic curve overFp having endomorphism ringO where
Z[π ] ⊆ O ⊆ OK . Let l be a prime number. The following list classifies the possibilities for
thel-isogenies defined overFp.

• If l - [OK : O] then the number ofl-isogenies to elliptic curves with endomorphism
ring equal toO is 1 + (

D
l

)
.

• If l | [OK : O] then there is onel-isogeny up to an elliptic curve.

• If l - [O : Z[π ]] then there are nol-isogenies down.

• If l | [O : Z[π ]] andl | [OK : O] then the number ofl-isogenies down isl.

• If l | [O : Z[π ]] andl - [OK : O] then the number ofl-isogenies down isl − (
D
l

)
.

Note. In each case, when there are several different isogenies to elliptic curves of the same
level then some of the image elliptic curves may actually be isomorphic. This behaviour
can be explained (see [14]) but it will not significantly affect our discussion.

Proof. The Deuring lifting theorems allow us to lift the elliptic curveE from Fp to C in
such a way that the endomorphism ring is preserved. Suppose thatE = C/〈1, τ〉 where
τ satisfiesAτ2 + Bτ + C (where(A,B,C) = 1). So disc(O) = D = B2 − 4AC. Then
there arel + 1 possibilities for the kernel of anl-isogeny, and they arel0 = 〈1

l
, τ 〉 and

lk = 〈1, (τ + k)/ l〉 wherek = 1, . . . , l. The image curves in these cases are

E0 = E/l0 ' C/〈1, lτ〉
133https://doi.org/10.1112/S1461157000000097 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000097


Constructing isogenies between elliptic curves over finite fields

and

Ek = E/lk ' C/〈l, k + τ 〉.
Our goal is to determine End(Ek). We will do this using Lemma3.

Firstly we considerE0. The numberα = lτ satisfiesAα2 + lBα + l2C = 0. If
(A, lB, l2C) = 1 then End(E0) has discriminantl2D, and sol0 is an l-isogeny down.
On the other hand, if(A, lB, l2C) 6= 1 then it follows thatl | A (so putA′ = A/l). If l - B
thenα is actually a root ofA′α2 + Bα + lC = 0, from which we see that End(E0) = O
(that is, the isogeny is horizontal). Ifl | B (so writeB ′ = B/l) and l | [OK : O] then,
sinceD = B2 − 4AC, it follows thatl2 | A (so putA′ = A/l2). This means thatα satisfies
A′α2 + B ′α + C = 0 (which has discriminantD/l2), and hence we have anl-isogeny up.

Now consider the elliptic curvesEk for k = 1,2, . . . , l. The numberα = (k+ τ)/ l is a
root of

l2Aα2 + l(B − 2Ak)α + (Ak2 − Bk + C) = 0.

In the case(l2A, l(B − 2Ak), (Ak2 −Bk+C)) = 1 we see that End(Ek) has discriminant
l2D, and we have an isogeny down.

The condition(l2A, l(B−2Ak), (Ak2−Bk+C)) = 1 fails if and only ifl | (Ak2−Bk+
C). Note that there are several possibilities for the solubility of the equationAk2−Bk+C ≡
0 (mod l).

If l | A and l | B then there is no solution. In this casel | D. In the case where
l | [OK : O] we have already found a singlel-isogeny up. Ifl does not divide this index
the it follows thatl ramifies inK, and we have already found a single isogeny to an elliptic
curve with endomorphism ring equal toO.

If l | A but l - B then we had already found anl-isogeny previously. In this case there is
also the valuek = C/B which will give a horizontall-isogeny. Thus, in this case, we have
two horizontal isogenies, and the primel splits inK.

If l - A then the equation is a true quadratic. There is a repeated root if and only if
l | B2 − 4AC (which again corresponds to the ramified case handled above), and so there
is only one horizontal solution. Otherwise there are two distinct solutions (equivalently, the
prime l splits inK) and we obtain two horizontall-isogenies. The final case is whenl is
inert inK. In this case there will be no solutions to the quadratic (that is, all values fork

will give an l-isogeny down, and so we get a total ofl isogenies down).
Finally, we must contemplate the Deuring reduction step. We reduce the elliptic curves

Ek from C to some finite fieldFpm . These elliptic curves will actually be defined over
Fp if and only if their endomorphism ring containsZ[π ]. This completes the proof of the
classification.

A.6. Modular curves
The modular curvesX0(N) are a geometric tool which is of great value when studying

isogenies. The standard equation8N(x, y) ∈ Z[x, y] forX0(N) as a plane algebraic curve
is given by the relation

8N(j (τ), j (Nτ)) = 0 (8)

between the classical modular functionsj (τ ) andj (Nτ) onX0(N).
The most important fact for the current application is that, ifE is a given elliptic curve,

then the elliptic curvesE′ which areN -isogenous toE are precisely those curves (up to
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isomorphism) whosej -invariant is a root of

8N(j (E), y) = 0.

The equation (8) is the classical equation forX0(N)and it is the most useful for theoretical
purposes. For practical computation, its degree and coefficients are much too large. There
are many other ways to get modular equations which are just as useful but which have
smaller degree and smaller integer coefficients. See the paper of Elkies [11] for information
about this.

For this article we will stick to using (8). We will need a crude complexity estimate
for calculating (8). Elkies [11, Section 3] notes that8l(X, Y ) requiresO(l3) arithmetic
operations inZ to compute. If we work overFp then we requireO(l3) arithmetic operations
in Fp andO(l2) elements ofFp to store the resulting equation.

A.7. Vélu’s formulae
The following explicit formulae come directly from Vélu’s paper [35]. We have simplified

them a little (to the case where the characteristic ofK is not 2 or 3, and where we use a
simpler Weierstrass model) and we reproduce them for the convenience of the reader.

LetE : y2 = x3 + a2x
2 + a4x+ a6 be an elliptic curve over a fieldK (soa1 = a3 = 0).

Suppose there is a cyclic subgroupC of ordern given by a polynomialψ(x), by which we
mean

C = {∞} ∪
{(
α, β = ±

√
α3 + a2α2 + a4α + a6

) ∈ E(K) : ψ(α) = 0
}
.

We list the roots ofψ(x) in two sets: the setF2 will be thoseα ∈ K such thatψ(α) = 0
andα3 + a2α

2 + a4α + a6 = 0 (that is, we have the 2-torsion point(α, 0)), and the setR
will be the set consisting of the rest of the roots ofψ(x). Hence #C = 1+ #F2 + 2#R and
deg(ψ)= #F2 + #R.

For eachα ∈ F2∪R, let (α, β) be one of the (one or two) corresponding points onE(K)

and define

gxα = 3α2 + 2a2α + a4;
gyα = −2β;
tα = gxα if α ∈ F2, or 2gxα if α ∈ R;
uα = (gyα)

2.

The isogeny with kernelC is given by

X = x +
∑

α∈F2∪R

(
tα/(x − α)+ uα/(x − α)2

)
,

Y = y −
∑

α∈F2∪R

(
uα2y/(x − α)3 + tα(y − β)/(x − α)2 − gxαg

y
α/(x − α)2

)
.

Let t = ∑
α∈F2∪R tα andw = ∑

α∈F2∪R(uα + αtα). Then the image of the isogeny is
the curve

Y 2 = X3 + a2X
2 + (a4 − 5t)X+ (a6 − 4a2t − 7w).

Evaluating Vélu’s formulae for an isogeny of degreeN takesO(N) time and space.
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A.8. Work of Elkies
Vélu’s formulae make the isogeny described in Proposition4(3) explicit. Given the kernel

of the isogeny (in terms ofψ(x)) Vélu’s formulae provide us with equations for the image
elliptic curve and the polynomialsϕ1(x, y), ϕ2(x, y) of equation (1).

We need a method to calculate the polynomialψ(x) associated with anN -isogeny
between two elliptic curves given only theirj -invariants. Such a method has been developed
by Elkies in the context of algorithms for counting points on elliptic curves over finite fields.

The basic idea is to use relations (which are found by working overC) between certain
classical modular forms and functions. From using only the twoj -values one may obtain
all the data necessary to construct the polynomialψ(x). There are several references for
these formulae (e.g., [10], [2], [29], [24], [5]).

Finding the equationψ(x) for anN -isogeny using these methods takesO(N3) field
operations and spaceO(N2) field elements (though the final result only requires space
O(N)).
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