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CONSTRUCTING ISOGENIES BETWEEN ELLIPTIC CURVES OVER
FINITE FIELDS

STEVEN D. GALBRAITH

Abstract

Let Eq1 and E> be ordinary elliptic curves over a finite field,
such that #1(F,) = #E>(F,). Tate’s isogeny theorem states that
there is anisogeny frorfi; to E» which is defined ovelF,,. The goal
of this paper is to describe a probabilistic algorithm for constructing
such an isogeny.

The algorithm proposed in this paper has exponential complexity
in the worst case. Nevertheless, it is efficient in certain situations
(that is, when the class number of the endomorphism ring is small).
The significance of these results to elliptic curve cryptography is
discussed.

1. Introduction

This paper concerns some computational problems related to isogenies between elliy
curves over finite fields. The primary goal is to give an algorithmic solution to Tate’s
isogeny theoremd4], which states that two elliptic curvég andE; over a finite fieldF,
are isogenous ovél, if and only if they have the same numberlf-points.

Schoof [28] proposed a polynomial-time algorithm for counting the number of points
on an elliptic curve over a finite field. There has been a considerable amount of reseat
building on Schoof’s idea (for instance, by Atkib][ [2], Elkies [10], [11], Couveignesd],
Couveignes and Morain [9], Lercier [19], and Lercier and Mor&i@]]. This means that
there is an efficient solution to the problem of determining whether two elliptic curves ove
F, are isogenous; namely, compute the number of points on each curve and see if the tc
is the same.

For this paper, we concentrate on the case of ordinary elliptic curves that are defin
overF,. We make some comments about the case of supersingular curves and non-pri
finite fields later in this section. More specifically, we describe a probabilistic algorithm fo
solving the following problem.

Problem 1. Let E; and E» be ordinary elliptic curves ovelF, such that #,(F,) =
#E>(IF,). Construct an isogeny : E1 — E> which is defined oveF),.

For some applications one might want the isogenyf minimal possible degree. The
method discussed in this paper will not necessarily produce such an isogeny; howevel
will produce one of relatively smooth degree.

The main result of this paper is the following theorem (in all complexity estimates a uni
cost is assumed for all operationslip).
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Constructing isogenies between elliptic curves over finite fields

Theorem 1. Let E; and E, be ordinary elliptic curves oveF, such that#E;(F,) =
#E>(IF;,). Assuming the truth of the Riemann hypothesis for imaginary quadratic numbe
fields, then the probabilistic algorithm proposed in Sectdowill construct an isogeny

¢ 1 E1 — E> over the fieldF,. In the worst case, the algorithm requires expected time
0 (p3/2In p) and expected spaa@(p In p).

In certain special cases (for instance, when the endomorphism rings of the elliptic curv
have small class number) the algorithm runs in polynomial time. We make some commer
in Section8 about why we do not expect a polynomial-time solution to this problem in
general.

For some applications one is concerned with the group structure of elliptic curves ov
finite fields. As part of our investigation we also study the following two problems.

Problem 2. Let E1 andE> be ordinary elliptic curves ovét, such that; (F,) andE>(F))
have the same number of points. Construct a non-trivial group homomorphism between th
which may be evaluated in polynomial time.

Problem 3. Let E be an ordinary elliptic curve ovef,. Construct an isogenous elliptic
curve E" overF, such that the groug’(FF,,) is cyclic, and construct afi,-isogenyy :
E — E'.

Of course, for most elliptic curves ovEp, Problen? can be solved in various elementary
ways. However, we are particularly interested in the case whE(E # has a large prime
divisor and where the group homomorphism has small kernel and cokernel. We discL
Problem2 in Section7.

The methods used in this paper would generalise to the case of elliptic curves over nc
prime finite fieldsF,». Whenp is large then the algorithm is essentially unchanged. When
p is small it would be necessary to utilise the methods of Couveidgtjend Lercier 19]

(see [20] for a nice comparison) for computing isogenies.

Forthe case of supersingular curves an algorithm to solve Prdtkeimplicitin the work
of Mestre R1]. The main simplification in the supersingular case is that all isomorphisn
classes of elliptic curves in a given isogeny class can be obtained by composing isoger
of any fixed prime degree (e.g., the prime 2, since all supersingular curves mpdulo
have a rational 2-torsion point). Therefore, there is an algorithm to construct an isoge
between any two supersingular curves with the same number of points. Since the num
of supersingular elliptic curves in characteristids bounded by%l + 1 [32, Theorem
4.1(c)], one can show that the algorithm runs in timép In p) and requires spac@ (p).

For more details about computations with supersingular curves see [14] and [21].

The paper is organised as follows: In Sectibwe discuss the relevance of the results
to the study of elliptic curve cryptography. In Secti®dwe describe some of the necessary
background results (more background information is giveAppendix A). The proof of
Theoreml is split across several sections. Sectiotescribes the algorithm and explains
why it terminates. Sectiorisand6 are concerned with an analysis of the complexity of the
algorithm.

2. Application to cryptography

Elliptic curves over finite fields are being studied intensively with an eye to their use il
cryptography. Given an elliptic curvg/IF, and a pointP = (x, y) € E(F,), the elliptic
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curve discrete logarithm problem is the following: given a p@int (x’, y') lying in the
subgroup generated b, find an integei such that) = A P.

The elliptic curve discrete logarithm problem is known to be easy to solve in certail
cases, specifically when the subgroup generate#t Imas smooth order or when there is
a mapping fromE into a small-degree extension of the base figJd'such a mapping can
arise from the Weil or Tate pairing82], [12], or from takingp-adic logarithms 30], [27],

[33], [26]).

For the rest of this section we will assume that all elliptic curves in question do not belon
to one of these special cases. For these remaining elliptic curves, the only known methc
for solving the elliptic curve discrete logarithm problem involve reducing to prime ordel
subgroups (the Silver/Pohlig-Hellman reduction) and then applying generic group metho
such as the baby-step-giant-step method (8pe&hd Pollard’s Rho and Lambda methods
[25]. The complexity of these methods depends only on the size of the largest prime fact
(say L) of the number of points on the elliptic curve. This gives the naive impression tha
the difficulty of the elliptic curve discrete logarithm problem depends only on the ptime

The experts in elliptic curve cryptography do not expect that the difficulty of the elliptic
curve discrete logarithm problem does depend only on the ptineeven on only the pair
of primesL andp. One of the aims of the present work is to give a more thorough analysi
of this issue. Indeed, we study the following question.

Question 1. Let E1 andE> be two elliptic curves ovelF,. Suppose that the largest prime
divisor of #E; (FF,,) is the same primé for both curves. Is there a method to reduce the
discrete logarithm problem ofi (IF,,) to the discrete logarithm problem dip(IF,)?

It is perhaps not so obvious why this question is relevant for cryptography (since onl
one elliptic curve is ever considered at a time). The issue arises when constructing ellip
curves on which to base a cryptosystem; since there are many different ways to write do
elliptic curves, it is important to know whether some of these representations are ‘stronge
or ‘weaker’ than others.

Lenstra [17] has studied a similar problem for finite fielt)s. The result is that there
is a polynomial-time algorithm to convert between any two different baseg jolas a
vector space ovéf,. This is an important result as it means that all representations used f
finite fields in cryptosystems based on discrete logarithms are equally secure (or insecul
The problems considered in this paper seem to be harder than the problem of construct
isomorphisms between finite fields, and we do not expect a polynomial-time solution to t
question stated above.

The statement of Questidnfirst appears to be more general than the rest of this papel
However, for the elliptic curves used in cryptography it is desirable that the largest prim
divisor L of the order of the grougg; (F,,) be of size close tp, and so certainly. > 4,/p.

It follows from the Hasse bound that there is only one possible valueEpf#) and so
the two elliptic curves are isogenous. An isogeny between the curves provides a method
reducing the discrete logarithm problem on one to the other.

Although the algorithm given in this paper is exponential, in most cases (specificall)
when the conductors of the endomorphism rings of the elliptic curves in question are n
divisible by a large prime) itis more efficient than the known general-purpose algorithms fc
computing discrete logarithms. Therefore our results give some support to the idea that,
general, the discrete logarithm problem is equally difficult for all elliptic curves over a finite
field F, which have the same number of points. The main exception to this conclusion
when we have two elliptic curves;, andE» overlF, such that EngE1) C End(E>) and such
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that the index is divisible by a large prime. In this case it is not clear what the relationshi
is between the difficulty of the discrete logarithm problems on these elliptic curves.

We should emphasise the following point: this paper does not imply that elliptic curve
that have complex multiplication of low class number are either weaker or stronger the
random curves.

3. Background

Let E be an elliptic curve over the field, with p > 5. Since it is easy to compute
isomorphisms (see the Appendix, SubsectioR) we will assume thak is written in the
short Weierstrass form

E:y2=x3+Ax+B.
We denote byr the Frobenius endomorphism
m(x,y) e (P yP)
on E which satisfies
nl— i+ p=0

in End(E) wheret = p + 1 —#E(F)).

An elliptic curve E overF,, is supersingulaif the multiplication by p map has trivial
kernel. The curve igrdinary if the kernel isnon-trivial. For elliptic curves oveF, we
know thatFE is supersingular if and only if = 0.

If an isogenyy is defined oveif, then its kernelC is also defined oveF, (that is, if
(x0,y0) € Candifo € GaI(Fp/IF,,) then (o (xp), o (yp)) € C). Since we are assuming
that all elliptic curves are given by a short Weierstrass equation it follows.thatg) € C
if and only if (xo, —yo) € C, from which it follows that the kerneC of the isogeny is
determined by the polynomigi(x) = n(xo,iy())ec(x —xo) € F,[x]. A separable isogeny
of degreed is called ad-isogeny and its kernel has side

Everyisogeny : E; — E;overlF, can be described as a rational map of the following
form

p1(x, y) <P2(x,y))
, V) = , , 1
v ( @2 PP M)

whereg; andg; are polynomials oveF,, in the variables: andy of the original curver,
andvy (x) determines the kernel of the isogeny as described above. In this paper, when
say ‘construct an isogeny’, we mean explicitly computing the polynomgigls, ¢1(x, y)
andgz(x, y).

Vélu [35] showed how)r determines the isogeny, and gave formulae to obtain the poly-
nomialsg; andg; in equation (1). Elkies [10] developed methods to calculate), given
only the j-invariants of the curveg; andE». The j-invariants of isogenous elliptic curves
may be found from the modular polynomials (equationsX@tN)) as is well-known in
the theory of counting points. Some details of these methods are giverpisndix A.

Suppose thaf is an ordinary elliptic curve ovelF, with p + 1 — ¢ points, and let
d = 1> —4p < 0. Then EndE) is some order in the fielk = Q(+/d) and indeed
Ziw] = Z[(d + ﬁ)/Z] C End(E) € Ok whereOg is the ring of integers oK. The
conductorc = [Ok : Z[r]] is precisely the largest integer such th&? = Oor 1
(mod 4. The discriminant ofK is thereforeD = d/c2. There are a finite number of
possibilities for EndE), namely, all the ring® = Z + ¢’Ok wherec’ is a divisor ofc.
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The primes dividing the conducterof Z[x] will require special attention. This is due
to the following fact.

Proposition 1. Lety : E1 — E2 be an isogeny such th&nd(E1) € End(E>) (respec-
tively, End(E2) € End(E1)). Supposé€ is a prime which divides the inddEnd(E>) :
End(E1)] (respectively[End(E1) : End(E2)]). Then the degree ¢f is divisible byi.

Proof. See [14, Proposition 21]. O

Indeed, by taking a sequencelétogenies (for those priméslividing the conductor of
End(E)) itis possible to find an elliptic curvg’ isogenous t& such that EndE’) = Ok
(the maximal order). These ideas are central to Kohel’s algoriftfpr finding the exact
endomorphism ring of a given ordinary elliptic cun&IF,. Some of the details of this
algorithm are given irAppendix Aand in the description of our method. We will use the
following notation from [L4]. Let/ be a prime number and suppose thatE; — Ezisan
isogeny of degreé Then one of the three following cases holds.

1. EndE1) >~ End(E>) in which case the isogenyis said to be ‘horizontal’ at

2. End E1) contains EndE>) with index!/, in which case the isogenyis said to be an
isogeny ‘down’ at.
3. End Ey) is contained in En@E2) with index!, in which case the isogenyis said to
be an isogeny ‘up’ at
If 1 { [0k : End(E)] then itis not possible to go up, and so we say & ‘on the surface
atl’. Similarly, if If I+ [End(E) : Z[x]] then it is not possible to go down, and we say that
E is ‘on the floor at’’.
For each possible endomorphism riéigthe theory of complex multiplication (se&q]
or [31]), combined with Deuring’s theory (se&f]) about lifting endomorphisms from
characteristicp to characteristic zero, shows that the number of isomorphism classes «
elliptic curves oveif,, which have endomorphism ring isomorphiodds equal to o (the
number of elements of the group RiY) of classes of projectivé-modules). Furthermore,
the action of isogenies is the same as composition of ideal classes. Indeed, elliptic cun
overlF, can be lifted to elliptic curves ovél with the same endomorphism rigy and can
thus be interpreted &5/a wherea is an projectiva9-module. Given some other projective
©-moduleb one has the isogeny

C/a —> C/ab™t

with kernelab=1/a ~ ©/b. These facts will be useful in our analysis of the algorithm.
Over C the correspondence between the isomorphism classes of elliptic curves wi
endomorphism ring equal t@, and the ideal classes in the group (@ig is canonical.
However, the reduction of these curves frd@nto F, depends on a choice of (totally
split) prime g | p in the ring class field. If we fix such a primg then one can talk
about the ideal class associated with an isomorphism class of elliptic curveB, owéth
endomorphismring equal 9. If it were possible to efficiently compute this correspondence
between Pic(® and a set ofj-invariants inl,,, then the problems discussed in this paper
would be easy to solve. However, the only method known to the author for computing th
correspondence would be to compute approximations tp(a)l € C (asa runs over the
classes in Pi@)), to construct the class polynomial and therefore the ring classHgld
to find a primep abovep, and then to reduce these values moduld his approach would
be more arduous than the methods used in this paper.
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Quadratic imaginary fields are well-understood and the structure and size of the cla
group may be computed in subexponential time using binary quadratic form3s&ehe
class group oK is generated by the primgswhich split or ramify inK. Bach @] has
proved that, assuming the Riemann hypothesis for the zeta functi&n thie class group
is generated by the prime ideals of norm less than @22

Class numbers of orders are closely related to the class numbsfrthe maximal order
by the following formula (seels, Theorem 8.7] ord1, Exercise 4.12]). Suppoggis an
order of conductor in 0. Let O and@* be the units (that is, multiplicative subgroup
of invertible elements). Defln(e’i) to be—1, 0, or+1 depending on whether the prinpe
is inert, ramified or split ik respectlvely Then the relation between the class numbers i

ho = hxel0f : 01| (1 - (g)p—l) . @)
rle
In particular we see that the class number grows as the conductor grows.
For the purposes of this paper the following result (Exercise 5.27 of [7]) will be useful

Proposition 2. Let K be an imaginary quadratic field of discriminaft. Then

1
hg < ;\/|D|In|D|. )

We now mention the relationship between the endomorphism ring and the group stru
ture. Suppose that EQH) = @ is an order containing[x]. Letm be the indexn = [O :
Z[7]] (which is the conductor df[] divided by the conductor a). Then there is some
integera such thaty = Z[(w — a)/m]. Lenstra L8] has shown that the group structure of
E(F,) is isomorphic to@/(m — 1) and thus, as a grou(F,) = Z/IZ x Z/nZ where
| =gcd(a — 1, m) and! | n. The following result is therefore immediate.

Lemma 1. If E/F, is an ordinary elliptic curve such th&nd(E) = Z[x ] thenE(F),) is
a cyclic group.

This lemma provides a method for solving Probl@of the introduction; given an elliptic
curve E/F,, such that the groug (F,) is not cyclic, we can use the methods of Kohel's
thesis [14] to construct an isogenous elliptic cudgF, such that EngE’) = Z[x]. It
then follows thatt’(IF,) is a cyclic group.

4. The method

In this section we present a method to explicitly construct an isogeny between two ellipt
curvesk; and E2 which have the same number of points.

From Tate's isogeny theorer84] we know that there is an isogeqy: E1 — E» over
F,. In practice it will be more efficient to consider a chain

D~ Ep

E1~E, 2 E] 5 B, & .
of isogenies such that eagh has prime degrek.

For the input to the method, assume that we have short Weierstrass equatibnarior
E> and that we know the trageof Frobenius. It is necessary to compute= 2 — 4p and
to calculate the conductor @fx ] in Ox whereK = Q(+/d). The conductor of[r] is the
largest positive integer such thatD := d/c2 = 0,1 (mod 4 and so this stage involves
factoring the integed. Factoring can be performed in subexponential time, and we will not
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include this cost in our analysis. Note, however, that this means we have already lost &
chance of achieving polynomial time!

We must decide upon a sétof primes; this is the set of all primégor which we will
need to také-isogenies (note that we will also need all primiés in order to apply Kohel's
algorithm). We taket := {primes! : (£) € {0, 1}and! < 6(In|D|)?} (whereD is the
discriminant of the maximal order). Assuming the generalised Riemann hypothesis,
primes in this sett generate the ideal class group of the figldand so they are sufficient
for the task.

Here is an outline of the method:

Stage 0 Compute modular polynomial®, (x, y) € F,[x, y] for each primd dividing ¢
and eachi € L.

Stage 1 For each curves;, use Kohel's algorithm [14] to find a chain of isogenies from
E; to an elliptic curveE, whose endomorphism ring is the maximal order. geind
Jj2 to be thej-invariants of these new curvég andEy,.

Stage 2 Starting fromj; and j2, construct trees, whose vertices are labellegtawariants
and whose edges (labelled Bycorrespond to isogenies of prime degtee

Stage 3 Once the two trees become connected, find the path connggting,. Add this
chain ofl-isogenies to those already found in Stage 1 and use the theory of ElKkie
and Veélu to construct the explicit polynomial form of edeisogeny.

We now give further details about the stag8tage Oinvolves standard methods; see
[11] for details. Of course, rather than computing all the equations in advance, one wou
just compute and store them as they are required.

Stage 1 We know that EndE;) is an order i@ with conductor dividing:. Note that, due
to equation (2), it is more likely that Exél1) and EndE2) have conductor close to

Let E be eachE; in turn. For each primédividing the conductoe of Z[x | write [? for
the exact power afin c.

We use the following method (due to Kohédl4])) to determine the exact power bf
dividing End E). Consider the roots ob;(j(E), y) (mod p). If there is only one root
then we know from Propositions 22 and 23 of Kohet] (or see Theoremof Appendix A)
thatE is on the floor at and therefore that the conductor of Efg is divisible by exactly
1. In the other case, it follows that; (j (E), y) splits completely modulg. If b = 1 then
we know that does not divide the conductor of E¢id). If » > 1 then itis not yet possible
to distinguish the possibilities. However, if we now lgtrun over the roots ob; (j (E), y)
then we can determine jf is the j-invariant of an isogeny on the floor by considering the
roots of®(yg, y) (mod p). If yg is on the floor this polynomial will have only one root.
If ®(yo,y) (mod p) has more than one root, then we repeat the process using the roc
y. Ifit always takes at leagt steps down frony (E) before hitting the floor then it follows
that the power of dividing the conductor of En@dz) isb — b'.

Once we have determined the powerl afividing the conductor of End) we must
also determine the uniqudasogenies up to a curve on the surfacé. /e then know the
intermediatej -invariants in the chain afisogenies up to the elliptic curvE’ such that
does not divide the conductor of Effd). We now letE = E’ and continue the process for
the remainder of the priméq c.

At the completion of Stage 1 we have the chains of isogenies

E1—>E1,1—>'--—>E1’n:E:/L and E2—>E271—>--~%E2,m=E/2 (4)
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where EndE;) and EndEY%) are both the maximal ordeéd . Putj; = j(E}) andjz =
Jj(E5). We now want to linkj; and j> by a chain of isogenies.
Stage 2.We grow two trees of-isogenies, one starting frormy and the other fronys.
Initially, begin with the two trivial graphs, each with a single vertex (labelled, respectively
J1 andj») and no edges. Repeat the following steps: For each tree in turn choose a rand
[ € £ and, foreveryvertex; in the tree, compute the roots®f(j, y) (mod p). For each
of these rooty (apart from wheri | ¢, in which case one must only use the roots which
correspond to elliptic curves which lie on the surface), if there is not already a vertex i
either of the two trees correspondingytathen add a new vertexand add a labelled edge
between; andy (with labelling!). This process should be repeated until there is an edge
added which connects the two trees together. This concludes Stage 2. Note that this proc
could be made more efficient by keeping track of which ideal classes have already be
utilised (since it is possible to compute efficiently in the class group), and thus choosir
[ € £ to maximise the number of new classes found.

Since the vertices in our trees do not have bounded degree, and since it is necess
to detect if aj-invariant already appears in the tree, some kind of easily searched list c
vertices would be an appropriate data structure (rather than the usual binary tree structu
Stage 3.0ne must traverse the tree to find the chain of isogenies between the elliptic curv
with j-invariantsj; and jo. These are then combined with the chain¥ ¢f /-isogenies
found in Stage 1. For eagkisogeny in the chain we use the formulae of Elkies and Vélu
to give explicit values for the polynomialg, ¢1 andgo of (1). It is advised to store these
isogenies individually, rather than combining them into huge polynomials.

Finally, the image curve will probably be given in terms of an equation different from
that of E2, so it is necessary to construct an isomorphisriidsee the AppendiX.2).

It is clear that, assuming the Riemann hypothesis for the quadratic imaginarkfield
this algorithm does terminate, having produced an isogeny fioto E>.

Note that it is possible to construct an isogeny frBpto E; by working along the chain
backwards.

5. The depth of the tree of isogenies

The goal of Stage 2 is to produce two ‘very bushy’ trees of small-degree isogenie
starting from each of the two givejtinvariants. In this section we will estimate the depth
(maximum distance from the root to the leaves) of these trees, as it determines the len
of the resulting chain of isogenies.

The two initial j-invariants correspond (non-canonically) with a pair of idealanda
in the ideal class group of the maximal ordgg . The process in Stage 2 takes a sequence
of small primed; which split (or ramify) in@k as(/) = Il'. In the following we write[~1
instead ofl’, sincel’ is a representative of the ideal class corresponding to the inverse c
[. The two trees themselves contain th@wvariants of the elliptic curves corresponding to
ideal classes represented by the ideals

n n
ag l_[ [3121:11 and az 1_[ [;l?i
i=1 i=1

withalla; € {—1,0, +1}. Itis clear that, if non-ramified prime ideals are chosen, the size of
the trees grows initially like’3 However, as grows there will be an increased probability
of non-trivial relations between the ideals, and therefore there will be fewer new class
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arising. Note that when ramified primes are chosen then the number of ideal classes
expected to double, and if primes are repeated then the number of classes grows by a fa
which is between 1 and 2.

The condition that the trees share a common vertex is equivalent to the condition th:
for some choice of the; € {—1,0, +1}, we have

2n
aayt ~ 1.
i=1

The complexity analysis depends on the following heuristic assumption. We say that tv
probabilitiesPy and P, are ‘close’ if 3 P, < P, < 2Py

Assumption 1. Let n be a positive integer and It be a sequench, Iz, ...,Il, € L.
Consider the sef of all ideal classes represented by ideals of the fpffn, I/ over all
choices fow; € {—1,0, +1}. Then, for a large proportion of sequendgghe setS has the
following property: for a random classin the class group ok, the probability that there
are idealsi1, 52 € S such thati1a ~ s> is close to the probability in the case where the set
S was chosen (of the same size) uniformly at random from the ideal class gréup of

The reason the assumption does not apply to all sequdndgghat there are some
sequences (such as a sequenckewliich generates a proper subgroup of the ideal class
group) for which the statement is not true.

The setL has been defined so that (assuming the Generalised Riemann Hypothes
the setS will eventually contain a representative of every ideal clas& ofThe heuristic
assumption above is essentially a claim about the ‘uniform’ way in which the ideal classe
are generated.

Of course, the sef is easily distinguished from a set chosen uniformly, as it has the
strong property that € S < a~1 € S. Nevertheless, we claim that this fact does not
significantly affect the probabilities we are considering.

The assumption seems plausible due to the fact that the prime ideals lying above distil
rational primes do not have any obvious dependence on each other. At the end of this sec
we give an example that supports the assumption.

Lemma 2. Subject to the heuristic assumpti@n Stage 2 is expected to terminate after
O(In hg) iterations.

Proof. We consider the two trees separately. At iteratioof the algorithm suppose that
we have found representatives ..., ay of N distinct ideal classes. Choose a splitting
prime! (that is,(/) = [("1) which is distinct from the primes already chosen. Consider the
3N idealsq; [€ wheree = 0, £1.

Some of these ideals may be equivalent, but this can only arised6h~ a;(2 where
€1 # ex andi # j. Without loss of generality we may assume that the @aire,) is equal
to one of(0, —1), (0, +1), (—1,+1). In each case there aM(N — 1) possible values for
i # j and, under assumptidn we expect that approximately(N — 1)/ hg of these pairs
of ideals will be equivalent.

Therefore, we expect the number of distinct ideal classes obtained at the end of t
nth iteration to be approximately8— 3N(N — 1)/ hg = (3— 3(N — 1)/ hg)N. When
N < I it follows that the size of the tree increases by a factor which is close to 3. If ¢
ramified prime is chosen then a similar argument shows that the size of the tree increa
by a factor close to 2. Repeated primes can also be handled by this argument, though t
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are unlikely to arise within Stage 2 as the algorithm specifies that the ptibbeghosen
uniformly at random. In conclusion, we expect the tree to havegizey /2 afterO(In hg)
iterations.

We now have two trees of sizgrh g /2 which, subject to our heuristic Assumptitn
behave like two sets of randomly chosen ideal classes. By the ‘birthday paradox’ we expe
the trees to share a common vertex. In other words, the two trees are joined by an edge,
Stage 2 of the algorithm is complete. O

We give a toy example to illustrate the situation.

Consider the discriminard = —399992579 (which would arise from an elliptic curve
modulop = 10°+37 having = 87). The class numberis= 11920, and so+/A | = 109.
Consider the sequence 1997,59,41,89,53,43,89 of splitting primes and construct
trees as in Stage 2. The resulting trees of depth 4 have cardinality 81, and there are a totz
5056 ideal classes represented as a product of a class from one tree and a class from an
(in other words, 42% of the ideal classes appear). Taking the further two primes 107 and
yields trees of depth 5 with 242 and 243 vertices respectively (this illustrates that the si
of the trees really does grow lik& 3vhile the size is less thafhg). The total number of
ideal classes represented as products is 11553, which is 97% of the class group.

6. Complexity analysis

It remains to give an analysis of the complexity of the method. We assume a unit co
for all operations in the field,.

The analysis given in this section uses the results of the previous section, which depe
on a heuristic assumption (Assumptibn These results lead to the precise bounds given in
equations (5) and (6) below. Actually, the worst-case complexity stated in Thelocam
be obtained without relying on the heuristic Assumptioof Section5 (by running Stage
2 for O (h) iterations).

Leth = hg be the class number of the maximal order. Note that2pyhe class number
of the maximal order is usually much smaller than the class numbers of non-maximal orde
Nevertheless, in the worst case, formula (3) showsitigO (p1/21n p). There are efficient
(subexponential) methods to compute the class number, so we may assume that we ki
the exact value fak. Letc be the conductor d£[r . We ignore the cost of factoring — 4p
to find the conductor. In the worst casés O (p1/2), though in practice it will usually be
divisible by only very small primes.

Rather than give our complexity estimate in termg@flone, we will express it in terms
of h andc also. The reason for this is that we want to emphasise which parts of the meth
depend on which parameters. We will now consider the various stages in turn.

Stage 0.Firstly, we must obtain the equatiods (X, Y) for all the split/ramified primes

I less than our bound 6(I|)2 < 6(In4p)2. By the prime number theorem there are
O((In p)2/(In(In p)?)) such primes. We also nedg (X, Y) for those primes dividing the
conductore. The first set takes timé ((In p)8/InIn p) and space ((In p)8/InIn p) (in
terms oflF, operations). The primes dividingcontributeO (c®) time andO (¢?) space.

We now must deal with the core of the method. The principal task is calculating the roo
of the degreé polynomial®;(j (E), Y) (mod p). Finding roots of a degrdepolynomial
modulop may be performed in probabilistic polynomial tingg/2In p) operations i,

(see [7, Section 1.6]).

https://doi.org/10.1112/51461157000000097 Published online by Cdrabfidge University Press


https://doi.org/10.1112/S1461157000000097

Constructing isogenies between elliptic curves over finite fields

Stage 1.For each primé dividing ¢ we must find the roots ob;(j, y). If 14| ¢ then we
will, at worst, need to take (14~1) (which is O(c)) different values ofj before we know
we have reached the surfacelatn other words, we have to perfor@(c3(In p)) field
operations. The length of the chain of isogenies fromihto elliptic curves on the surface
will be O(Inc¢).

Stage 2.We must generate the two trees usifigogenies. We expect that both trees need
to be of size approximatel® (+v/). By Lemmaz2 this should require (In &) iterations of
Stage 2.

For each priméwe must find the root®; (7, y) =0 (mod p) for every vertex in the
tree. The tree has siz@(+/h) and finding each root take3(/2In p) = O((In p)®) time.
Furthermore, once each ropts found we need to search through both trees to see if it has
already appeared, and this requires tio@n h) if the trees are represented in a suitable
way.

Hence Stage 2 requirad(In 2v/A((In p)® + (Ink))) time. The trees requir® (v/h)
storage space and the chain of isogenies itself has lengtiv:).

Stage 3.Finding the chain ofj-invariants which connects the roots of the trees takes time
O (v/h) and the length of the chain @8 (In &). Once we combine with the chains found in
Step 1 the total chain will have length(In 2 + In ¢).

For eachi-isogeny in the chain we then compute the isogeny using the methods of Elkie
and Vélu. The primeke .£ require timeO ((In p)®) for computing the isogeny. The primes
1| ¢ require timeO (c3).

Therefore, Stage 3 requir€s(v/2 + Ini(In p)® + (In¢)c3) time ando(In i (In p)* +
(In¢)c?) space.

Putting it all together, the algorithm takes expected time

o((n p)8/Inin p+c2+c3(n p)+InhvR((In p)°+ (N h))+Vh+Inhdn p)®+(nc)c®)
(5)

and requires expected space
o(np)®/Ininp +c?+Inc+vh+Inkhdn p)* + (nc)c?). (6)

In the worst case, sinaecould beO (p'/?) and, by 8),  could beO (p*/?In p), the
terms involvinge dominate and so the expected running timaig®/(In p)) and the
method require® (p(In p)) space.

We emphasise that the algorithm performs much more efficiently in most cases. F
instance, in most examples the conductor will®én p)-smooth, in which case all the
terms featuring: become polynomial-time, and the algorithm has expected running time
O (p**(In p)13/3),

In addition to this, in the case when the maximal order has small class humbér (say
of size a power ofln p)) then the algorithm becomes polynomial-time. In particular, those
elliptic curves generated by the CM method (see [3], [23] and [16]) have this property.

In cryptography it is usually suggested that elliptic curves be chosen at random so tt
the endomorphism rings do not have small class number. Actually, the elliptic curves us
in cryptography seem to have slightly smaller class number than expected 3$ee [

7. Polynomial-time group homomorphism

We now address Problegn Given two elliptic curvesr; and E> we wish to construct a
non-trivial isogeny between them which may be evaluated in polynomial time.
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The method proposed for constructing a chain of isogenies between two given ellipt
curves requires exponential time; however the chain of isogenies has polynomial-siz
length. Furthermore, if is O (In p)-smooth then all isogenies in the chain can be computed
in polynomial time.

Thus, for those elliptic curves whose endomorphism ring has smooth conductor, v
have produced a solution to Problémonce the exponential ‘pre-computation’ has been
performed, the group homomorphism requires polynomial storage space and can be cc
puted in polynomial time. This is an improvement over the ‘naive’ exponential solution tc
Problem?2 (that is, taking discrete logarithms) since that method would require storing a
exponentially sized lookup table.

8. When the conductor is not smooth

The formula (2) shows that a random curve usually has conductor close to the full inde
[0k : Z[r]]. The conductor is essentially the square partéf— 4p and so we expect it
to be quite smooth in general. However, if the conductor is divisible by a large prime the
our method is impractical.

If the conductors of both End&'1) and EndE>) are divisible by the large prime then it
is advisable not to perform Stage 1 of the method. Stage 2 may be equally well perform
in a non-maximal order. The drawback is that the class nuralvéll be increased by the
large prime. Note that one can detect whether@hds maximal by using the methods of
this paper to find more thark isogenous elliptic curveg’ such that Enge’) = End(E).

If one of the conductors of Erid'1) and EndE>) is divisible by the large prime and
the other is not then, due to Propositibrthere is no shortcut available. This fact, together
with the fact that determining the conductor requires finding the square factors of tf
discriminant, leads us to the opinion that Probleliyidand3 cannot have polynomial-time
solutions in the general case.

9. Onwards

One may ask whether the methods of this paper are the only way to proceed. Suppose tt
is a translation of discrete logarithm problems on elliptic curves, given as a ‘geometrical
defined’ map. Must this necessarily be an isogeny of curves?

For instance, as David Kohel has pointed out, an isogeny is defined as a map of ol
dimensional group schemes

E1i>E2

over the fieldF, (so thaty : E1(F,n) — E2(IF,») for all n). For our problem it would be
sufficient to have a homomorphism of zero-dimensional constant group sclirfiiesr —
11 - Eb[L,m —1].

Itis not known to the author whether there is any way to find such objects computatiol
ally without taking isogenies between the one-dimensional group schemes they arise frc
This would be an interesting question for further study.
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Appendix A. Background material

A.l. Elliptic curves
In this paper we assume that all elliptic cunéésverlF, are given in Weierstrass form

E:y2+a1xy+a3y:x3+a2x2+a4x+a5

whereay, az, az, a4, as € F),. If E is written as a more general plane affine or projective
curve then there are well-known methods (see [6, Chapter 8], and [32, Section IIl.1]) 1
construct an isomorphism frorA to the Weierstrass form above. We will not consider
the case whelk is written as a highly singular curve or as a subvariety of some higher-
dimensional affine or projective space.

Indeed, since we are assumipg> 5 it is possible to reduce to the short Weierstrass
equation by substituting — a3 /2x — as/2 for y and then substituting — (af/4 +a2)/3
for x.

Therefore, we will always assume that elliptic curves are given as short Weierstra
models

E:y2=x3+Ax+B

with A, B € IF),.
We deal first with the case of isomorphic curves.

A.2. Isomorphisms

Let E1: y2 = x3+ A1x + By andEz : ()% = (x')® + Aax’ + B overF), be elliptic
curves with the same number of points. Th@éwvariantsj; = j(E1) andjz = j(E2) may
be easily computed from the formufaE;) = 691243/(4A% + 27B?).

If two elliptic curves have the samginvariant then B2, Propositions 111.1.4(b) and
111.3.1(b)] they are isomorphic ovéF,,. Indeed, sincé; and E; are in short Weierstrass
form, the isomorphism must be of the forn: (x, y) — («?x, u3y) whereu satisfies at
least one of the following identities:

u? = (B2A1/B1Az) if  BiAz #0;
ut = Az/A; if A1 #0; (7)
u = By/B; if By #0.

Note that these roots, if they exist Ify,, may be easily computed (using the standard
probabilistic algorithm for calculating roots modyoas described in [7, Section 1.6]).

In the case when#4(F,) = #E>(F),) and the elliptic curves are not supersingular, it
can be shown by an elementary argument that the isomorphism is actually definég over
(in other wordsu € IF,,). Hence, the following result holds.

Proposition 3. Let E1 and E> be elliptic curves oveF, such that#Eq(F,) = #E2(IF).
If E1 and E» are isomorphic as elliptic curves (that ig(E1) = j(E2)) then there is a
(probabilistic) polynomial time algorithm to find the isomorphism frBa([F,) to Ex>(F),).

If long Weierstrass models are being used (for instance, if one is working in characterist
2) then isomorphisms are equally easy to handle.

A.3. lIsogenies
For the background on isogenies we refer3@,[Section 111.4]. We denote by the
Frobenius isogeny

Ti(x,y) = (xP,yP)
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on an elliptic curveE /F,. This isogeny satisfies the relation

m2—itn+p=0
where the number of points on the elliptic curve is given B(#,) = p +1 — 1.
Anisogenyyp : E1 — E; overlF, may be expressed as a rational map

0. ) = (a6r /WG )% pale )/ (x)%).

wheregs, ¢o andyr are polynomials ovelF, in the variables: andy of the original curve
E. Another way to say this is that the polynomials must satisfy the relation

03 = @f’ + Axp1yt + BayrS.

The points(x, y) € E(Fp) which are roots of the polynomigi(x, y) are the points in the
kernel of the isogeny.
We gather a few important facts about isogenies.

Proposition 4. Let E1 be an elliptic curve over the finite field,.
1. Anyisogeny : E; — Eo factors as

Eq ,-[_m) Eipm) i) E>
wheren™ is themth power Frobenius map (whepg” is the inseparable degree of
the isogeny) and wherey’ is a separable isogeny.

2. The degree of a separable isogeny E1 — E>2 is equal to the number of points in
the subgrougker(y).

3. Given a finite subgroue of E4 there is a unique elliptic curvé> and a unique
separable isogeny : E1 — E» such thaker(¢) = C. If C and E; are defined over
IF,, then so arep and E>.

Proof. See [32, 11.2.12, 111.4.10 and 111.4.12]. O

Property 1 of the Proposition means that, for the purposes of this paper, we may restt
attention to separable isogenies. A separable isogeny of dégnee often be called a
d-isogeny.

A.4. Endomorphism rings of elliptic curves

The endomorphism rindEnd(E) of an elliptic curveE is the set of all isogenieg :

E — E which are defined oveF,. This is a ring where addition is inherited from addition
on E and where multiplication is composition of isogenies.

The fundamental result (se8Z, Theorem V.3.1]) is that, for elliptic curves over finite
fields, End E) is either an order in an imaginary quadratic field, or an order in a quaterniol
algebra. The latter case occurs if and onlyifis a supersingular elliptic curve. In the
non-supersingular (usually called ‘ordinary’) case, the endomorphisms are all defined o\
the base field,.

An imaginary quadratic fields K = Q(+/d) whered is a negative integer which is
assumed to have no square factors. dlseriminantof the field K is eitherD = 44 if
d#1 (moddhorD=difd=1 (mod 4. An orderin K is a subring ofK (which
contains 1). Thenaximal ordeiin X is the ring®x = Z[(D + ~/D)/2]. Every order ink
is of the form© = Z + cOx = Z[c(D + +/D)/2]. The integer = [0k : O] s called the
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conductorof the order®. The discriminant of the orde? is ¢2D which shows that orders
in quadratic imaginary fields are uniquely determined by their discriminant.

A.5. More on endomorphisms and isogenies

We will need a deeper understanding of isogenies. The theory of complex multiplicatic
will be our main tool.

The theory of complex multiplication is most easily stated in the context of elliptic curve:
over the complex numbers. Elliptic curves o¢&are isomorphic to complex to@i/(1, )
wheret € C has strictly positive imaginary part.

Suppose: has complex multiplication. Inthis case, Hii) = {@ € C : o, at € (1, )}
and sox = a + bt € End(E). The conditionet € (1, 7) implies thatr satisfies some
equationAt? + Bt + C = 0 (that is,t lies in a quadratic imaginary fiel). We may
choosed, B, C to beintegers suchthéd, B, C) = 1 (thatis, there is no prime dividing all
three). The fiel is equal taQ(«~/B2 — 4AC) and EndE) is an order ink . The following
lemma is extremely useful.

Lemma 3. (Sed15, Theorem 8.1) LetE = C/(1, t) be an elliptic curve where satisfies
At? + Bt + C with A, B,C € Z and (A, B,C) = 1. ThenEnd(E) is the order with
discriminantB? — 4AC.

Furthermore, writing9 = End(E), the lattice(1, t) is a projective-module, and two
elliptic curvesC/(1, =) andC/(1, 7’) are isomorphic if and only if thes@-modules are in
the same class in the group Ry (which is the group of projectiv@-modules modulo the
principal @-modules). Hence, we may represent the isomorphism classes of elliptic curve
overCwith End(E) = O by the elliptic curve&£/a wherea runs over the classes in Picy©®
These elliptic curves are defined over tivg class fieldHp . It follows that the number of
isomorphism classes of elliptic curvé&shaving EndE) = @ is equal to the class number
he of the order® (that is, the number of elements of the group Pig(©®

Let b be an®-ideal. Then the identity map frof to itself induces the map

C/a — C/ab~t

which has kernettb=1/a ~ @ /b. This is an isogeny of degre¥y (b), and all isogenies
arise in this way.

We require the theorems of Deuring on reduction/lifting of the endomorphism ring (
good referenceis[15, Theorem 13.12 and Theorem 13.14]). Itis necessary to assume tha
conductor of EndFE) is coprime top. This condition is automatic for elliptic curves modulo
p. When generalising to the case of small characteristic fields we would use techniques c
to Couveignes{] and Lercier 9], [20] to find an isogeny to an elliptic curve with no
power of p dividing the conductor of its endomorphism ring. We state the theorems in th
form which we will need, and refer to [15] for the details.

Theorem 2. (Deuring) LetE/]Fp be an elliptic curve with a non-trivial endomorphigm
Then there is an elliptic curv& over a number field., an endomorphisrp of £, and a
prime p of L abovep such thatt and ¢ reduce toE and¢ modulog.

Theorem 3. (Deuring) LetE be an elliptic curve over a number fieldsuch thatEnd(E)
is an order@© in a quadratic imaginary fieldk. Let p be a rational prime such thak
has good reduction gb and such thap is coprime to the conductor of the ordér. Let
& be a prime ofQ abovep. Write E for the reduction off modulog. The curveE is
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supersingular if and only if the primgis inert or ramified in the quadratic extensigfy Q.
If the primep splits inK then the modulg reduction magZ — E induces anisomorphism
End(E) = End(E).

The upshot of these theorems is that elliptic curves and their endomorphism rings |
fromIF, to number fields (in fact, to the ring class field), and that they reduce well modulc
p too. We may therefore apply the complex multiplication theory of elliptic curves@ver
to the situation of elliptic curves modujo.

In the application we consider two isogenous elliptic cuigandE; overF, such that
End(E1) and EndE>) are orders lying betweefix andZ[r]. Therefore, their conductors
both divide the conductar = [Ok : Z[x]]. It will be necessary to construct isogenies
between curves whose endomorphism rings have different conductor, so we study some
these issues here.

As mentioned in the main body of the paper (Propositiprthe only way for the conduc-
tor to change by a primiis if one takes an isogeny whose degree is a multiplelofieed,
by taking a sequence biisogenies (for those primeslividing the conductor of En@)) it
is possible to find an elliptic curve’ such that EndE’) = O (the maximal order). These
ideas are central to Kohel's method (see [14]) for finding the exact endomorphism ring
a given ordinary elliptic curvé /IF,,.

We can be even more complete in our analysis of isogenies. The following theore
(which is essentially Propositions 22 and 23bf]) tells us everything we need. We use the
language of Kohel, so drisogeny ‘down’ is an isogeny : E1 — E> of degred such that
[End(E1) : End(E2)] = [ whilst anl-isogeny ‘up’ is one witHEnd(E>») : End(E1)] = .

In the case where the endomorphism rings are preserved we call the isogeny ‘horizont:
We say that an elliptic curve is ‘on the surface at if I 1 [0k : End(E)]. We say thatt

is ‘on the floor at’ if / 1 [End(E) : Z[x]]. We might also say thak is ‘of level n at!’ if

"] [© : EnAE)].

Theorem 4. [14] Let E be an elliptic curve oveF, having endomorphism rin@ where
Zlr] € @ C Ok. Letl be a prime number. The following list classifies the possibilities for
thel-isogenies defined oveé,.

* If 1 1 [Ok : O] then the number dfisogenies to elliptic curves with endomorphism
ring equal to® is 1+ (2).

e If I | [0k : O] then there is onéisogeny up to an elliptic curve.

e If 1{[0O : Z[x]] then there are né-isogenies down.

e If1 ][0 :Z[rx]] andl | [Ok : @] then the number gfisogenies down i&

e If 1| [0 : Z[x]] andl t [Ok : @] then the number dfisogenies down iE— (%)

Note. In each case, when there are several different isogenies to elliptic curves of the sa
level then some of the image elliptic curves may actually be isomorphic. This behaviol
can be explained (see [14]) but it will not significantly affect our discussion.

Proof. The Deuring lifting theorems allow us to lift the elliptic curé&from F, to C in
such a way that the endomorphism ring is preserved. Supposé& teatC/(1, t) where
7 satisfiesAt2 4+ Bt + C (where(A, B, C) = 1). So disc(@ = D = B2 — 4AC. Then
there ard + 1 possibilities for the kernel of ahisogeny, and they arg = (71, 7) and
lk = (1, (t +k)/1) wherek = 1, ..., . The image curves in these cases are

Eo=E/lp~C/(1,It)
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and
Ey =E/ =C/{, k+1).

Our goal is to determine Endy). We will do this using Lemma&.

Firstly we considerEg. The numbery = It satisfiesAe? + [Ba + [2C = 0. If
(A,IB,I2C) = 1 then EndEo) has discriminant?D, and solg is anl-isogeny down.
On the other hand, ifA, /B, I°C) # 1then it follows thaf | A (so putA’ = A/I).If [ { B
thena is actually a root ofA’a? + Ba + [C = 0, from which we see that Eiifig) = ©
(that is, the isogeny is haorizontal). f| B (so write B’ = B/I) and!l | [Ok : O] then,
sinceD = B2 —4AC, it follows that/2 | A (so putA’ = A/[2). This means that satisfies
A'a® + B'a 4+ C = 0 (which has discriminanb/?), and hence we have assogeny up.

Now consider the elliptic curves; fork = 1,2, ...,1. The numbew = (k+ 1)/l isa
root of

1°Aa? + 1(B — 2Ak)a + (Ak?> — Bk + C) = 0.

In the casél?A, (B — 2Ak), (Ak? — Bk + C)) = 1 we see that End;) has discriminant
12D, and we have an isogeny down.

The condition(/2A, (B —2Ak), (Ak?— Bk+C)) = 1failsifand onlyifl | (Ak?— Bk+
C). Note that there are several possibilities for the solubility of the equattér- Bk+C =
0 (mod)).

If I | Aand/ | B then there is no solution. In this casg D. In the case where
[ | [0k : 0] we have already found a singlésogeny up. Iff does not divide this index
the it follows that/ ramifies inK, and we have already found a single isogeny to an elliptic
curve with endomorphism ring equal .

If 1| Abut/{ B then we had already found &isogeny previously. In this case there is
also the valué = C/B which will give a horizontal-isogeny. Thus, in this case, we have
two horizontal isogenies, and the prirhsplits inK .

If I + A then the equation is a true quadratic. There is a repeated root if and only
[ | B> — 4AC (which again corresponds to the ramified case handled above), and so the
is only one horizontal solution. Otherwise there are two distinct solutions (equivalently, th
prime! splits in K) and we obtain two horizontd@tisogenies. The final case is whéis
inert in K. In this case there will be no solutions to the quadratic (that is, all valués for
will give ani-isogeny down, and so we get a totall agogenies down).

Finally, we must contemplate the Deuring reduction step. We reduce the elliptic curve
Ei from C to some finite fieldf',». These elliptic curves will actually be defined over
I, if and only if their endomorphism ring contai#gr]. This completes the proof of the
classification. O

A.6. Modular curves

The modular curveXo(N) are a geometric tool which is of great value when studying
isogenies. The standard equatibp (x, y) € Z[x, y] for Xo(N) as a plane algebraic curve
is given by the relation

Py(j(1), j(NT)) =0 8

between the classical modular functigi@) andj (Nt) on Xo(N).
The most important fact for the current application is thaf; i a given elliptic curve,
then the elliptic curves’” which areN-isogenous taE are precisely those curves (up to
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isomorphism) whosg-invariant is a root of
PN (j(E), y)=0.

The equation (8) is the classical equationX@(N) and itis the most useful for theoretical
purposes. For practical computation, its degree and coefficients are much too large. Th
are many other ways to get modular equations which are just as useful but which ha
smaller degree and smaller integer coefficients. See the paper of Hlk]dsi{information
about this.

For this article we will stick to usingg). We will need a crude complexity estimate
for calculating 8). Elkies [L1, Section 3] notes thab; (X, Y) requiresO (/%) arithmetic
operations irZ to compute. If we work ovef, then we require (13) arithmetic operations
inkF, and O (/%) elements off, to store the resulting equation.

A.7. Vélu's formulae
The following explicit formulae come directly from Vélu's pap8b|]. We have simplified
them a little (to the case where the characteristi&o not 2 or 3, and where we use a
simpler Weierstrass model) and we reproduce them for the convenience of the reader.
Let E : y2 = x3 4 asx? + asx + ag be an elliptic curve over a fielf (soa; = a3z = 0).
Suppose there is a cyclic subgrotmf ordern given by a polynomiai/ (x), by which we
mean

C = (oo} U {(a, B = +vo3+ aza? + aza + ag) € E(K) : ¥ (a) = 0} .

We list the roots ofyr (x) in two sets: the sef, will be thosex € K such thaty (o) = 0
anda® + axa® + ase + ag = 0O (that is, we have the 2-torsion poifat, 0)), and the seR
will be the set consisting of the rest of the roots/aix). Hence # = 1+ #F> + 2#R and
deg(y)= #F» + #R.
Foreachy € F>UR, let(a, B) be one of the (one or two) corresponding pointsaaiK )
and define
gy = 302 + 2apa + au;
8o = —2P;
ty =g, 1fa € Fa, or2g, if & € R;
Uy = (gZ)Z-
The isogeny with kernel is given by
X=x4 Y (/6 —a)+ue/(x—@?),

aeFRUR

Y=y— Y (e2y/( =)’ + 1y = B)/(x =) = giglh/(x —@)?).
aeFPUR

Letr =3, cpurte @Ndw = 3, g (Ua + aty). Then the image of the isogeny is
the curve

Y2 = X3+ apX? + (ag — 5t)X + (ag — dast — Tw).
Evaluating Vélu's formulae for an isogeny of degrgédakesO (N) time and space.
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A.8. Work of Elkies

Vélu's formulae make the isogeny described in Propos#i@ explicit. Given the kernel
of the isogeny (in terms af (x)) Vélu’s formulae provide us with equations for the image
elliptic curve and the polynomialg; (x, y), ¢2(x, y) of equation (1).

We need a method to calculate the polynomidl) associated with amwv-isogeny
between two elliptic curves given only thghinvariants. Such a method has been developed
by Elkies in the context of algorithms for counting points on elliptic curves over finite fields

The basic idea is to use relations (which are found by working Gydretween certain
classical modular forms and functions. From using only the fwalues one may obtain
all the data necessary to construct the polynongiat). There are several references for
these formulae (e.qg., [10], [2], [29], [24], [5]).

Finding the equationy (x) for an N-isogeny using these methods tak@sN?) field
operations and spaa@(N?) field elements (though the final result only requires space
O(N)).
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