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Abstract

We explore the solvability of a general system of nonlinear relaxed cocoercive variational
inequality (SNVI) problems based on a new projection system for the direct product of two
nonempty closed and convex subsets of real Hilbert spaces.
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1. Introduction

Projection-type systemns are frequently used in convergence analysis for solutions of
variational inequality problems arising in several fields, for instance, in complemen-
tarity theory, convex quadratic programming, optimization and control theory, and
variational problems. Projection methods (sometimes referred to as Galerkin meth-
ods) are also applied in different contexts, especially to inner approximation schemes
for A-proper nonlinear equations [9] where solutions are approximated as strong limits
of solutions of corresponding simpler systems of finite-dimensional equations. Re-
cently, Chang et al. [1] considered the application of the general two-step model [7] for
projection methods to the approximation solvability of nonlinear strongly monotone
inequality problems in Hilbert spaces. They generalized the iterative algorithm used in
[6, 7] along with some special iterative algorithms of interest. In this paper we explore,
based on a general system of projection-type methods, the approximation solvability
of a system of nonlinear relaxed cocoercive variational inequalities in Hilbert spaces.
The notion of relaxed cocoercivity generalizes the notion of monotonicity as well as
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of strong monotonicity. The obtained results extend and improve the results in [1],
[51, [6] and [7]. For more details, we refer the reader to [1-9].

Let H, and H, be two real Hilbert spaces with inner product (-, -) and norm || - ||.
LetS: Ky x K, > Hand T : K, x K, — H, be any mappings on K; x K,
where K, and K, are nonempty closed convex subsets of H, and H,, respectively.
We consider a system of nonlinear variational inequality (SNVI) problems: find an
element (x*, y*) € K; x K; such that

(pS(x*, y*),x —x*)>0 Vxe K, and (1.1)
Ty, y—=y') =20 VyeK,, (1.2)

where p, n > 0.
The SNVI (1.1)—(1.2) problem is equivalent to the projection formulae

x* = Pg[x*— pS(x*,y*)] forp >0 and
y'=Qky* —nTkx*, y")] forn>0,

where Py is the projection of H; onto K, and Q¢ is the projection of H, onto K.
We note that the SNVI (1.1)—(1.2) problem extends the NVI problem: determine
an element x* € K such that

(SG*, x—x* >0, VxeKk,.

Also, we note that the SNVI (1.1)—(1.2) problem is equivalent to a system of nonlinear
complementarities (SNCs): find (x*, y*) € K; x K, such that S(x*, y*) € K,
T(x*,y*) € K;,and

(pS&x*, y"),x*) =0 forp>0, T y),y)=0 forn>0,
where K| and K, respectively, are polar cones to K, and K, defined by

Ki=|{feH (fx)>0, Vxek;} and
K;={geH:{(g,y)>0, VgeKk)

Now, we recall some auxiliary results and notions crucial to the problem at hand.

LEMMA 1.1. For an element z € H, we have x € K and (x —z,y —x) > 0,
Yy € K ifand only if x = P (2).

LEMMA 1.2 ([2]). Let {*}, {8*} and {y*} be three nonnegative sequences such that
<~ + B Y fork=0,1,2,...,

where t* € [0, 1], 302, 1% = 00, B = o(t*) and Y 52, ¥* < 0. Then a* — 0 as
k — 0.
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For H a Hilbert space, a mapping T : H — H is called monotone if Vx, y € H,
(T(x) — T(y),x —y) = 0. The mapping T is (r)-strongly monotone if for each
X,y € H, we have

(T(x) = T(y),x —y) >r|lx —y||* foraconstantr > 0.

This implies that |T(x) — T(y)|l = rlix — y||, that is, T is (r)-expansive, and
when r = 1, it is expansive. The mapping 7T is called (s)-Lipschitz continuous (or
Lipschitzian) if there exists a constant s > O such that ||[T(x) — T(y)|| < s{lx — yl,
Vx,y € H. The mapping T is called (u)-cocoercive if for each x, y € H, we have

(Tx)—-TW),x—y) = ulITx) - T(y)|)* foraconstant u > O.

Clearly, every (u)-cocoercive mapping T is (1/u)-Lipschitz continuous. We note
that 7 is called relaxed (y)-cocoercive if there exists a constant y > 0 such that

(TE) =T, x =y 2 ENITE -TWI?  Vx,yeH.
We say that T is (r)-strongly pseudomonotone if there exists a constant r > 0 such that
(T, x—y) >0 = (TE,x—y =rlx—yl*, Vx,yeH,
and that T is relaxed (y, r)-cocoercive if there exist constants y, r > 0 such that

(Tx) =T, x—y) = (=) ITE) =T +rllx = yl*.
This implies

(Tx)—=TW),x—y) > (=) ITE) —TOI,

that is, T is relaxed (y)-cocoercive.
We define T to be relaxed (y, r)-pseudococoercive if there exist positive constants y

and r suchthatVx,y € H

(T),x=y)=0 = (Tx),x—y > =YITE —-TWI*+rlx - yl*
2. General projection methods

In this section, we discuss the approximation-solvability of the SNVI (1.1)-(1.2)
problem based on the following algorithms.

ALGORITHM 1. For an arbitrarily chosen initial point (x°, y°) € K, x K,, compute
the sequences {x*} and {y*} such that

= (1= = ) x* + @ Py [xF = pS (x*, y*)] + b*%* and
P = (1—at — B) y* + ot Qg [yk — 0T (x*, yk)] + B,
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where p, n > 0 are constants, and {u*} and {v*}, respectively, are bounded sequences
in K| and K,. The sequences {a*}, {b*}, {a*} and {B*} are in [0, 1] with (k > 0)

O<d*+b-<1, O0<a*+p8<1.

ALGORITHM 2. For an arbitrarily chosen initial point (x°, y°) € K| x K, compute
the sequences {x*} and {y*} such that

xt = (1 —ak - b") x4 ak Py [x" - pS (x", y")] + bfu*  and
yk+l — (1 —ak— bk) yk +akQK [yk T (xk’ yk)] + brok,

where p, n > 0 are constants, and {#*} and {v*}, respectively, are bounded sequences
in K, and K,. The sequences {a*} and {b*} are in [0, 1] with (k > 0)

O0<d*+b <.

ALGORITHM 3. For an arbitrarily chosen initial point (x°, y°) € K| x K,, compute
the sequences {x*} and {y*} such that

X = (1 —a') x* + a* Py [x* = pS (&%, y")] and
Yy = (1= db) Y+ d* 0k Y —nT (x5 ¥4)],
where p, n > 0 are constants. The sequence {a*} c [0, 1] for k > 0.

Next, we consider, based on Algorithm 2, the approximation solvability of the SNVI
(1.1)=(1.2) problem involving strongly monotone and Lipschitz continuous mappings
in Hilbert space settings.

THEOREM 2.1. Let H, and H, be two real Hilbert spaces and K, and K,, respec-
tively, be nonempty closed convex subsets of Hy and H,. Let S : K, x K, »> H, be
relaxed (y, r)-cocoercive and (1)-Lipschitz continuous in the first variable and let S
be (v)-Lipschitz continuous in the second variable. Let T : K, x K, = H, be relaxed
(X, 5)-cocoercive and (B)-Lipschitz continuous in the second variable and let T be
(t)-Lipschitz continuous in the first variable. Let || - ||* denote the norm on H, x H,
defined by

oo M = (lxll + Ii¥ll) VY(x,y) € Hy x H,.
In addition, let

0 +nt =+1-20r +20yu?+p2u+nr < 1,
o+ pv=y1=2nr +20AB2 + n2B2 + pv < 1,

let (x*,y*) € K, x K, form a solution to the SNVI (1.1)~(1.2) problem, and let
sequences {x*} and {y*} be generated by Algorithm 2.

https://doi.org/10.1017/51446181100012785 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100012785

(5] Relaxed cocoercive variational inequalities 209

Furthermore, let

(i) 0<a*+bk<1],
(i) Ypopat=o00andy ;o b* < o0, and
(iii)) 0<p <2r/utand0 <n < 2s/8%

Then the sequence {(x*, y*)} converges to (x*, y*).

PROOF. Since (x*, y*) € K, x K, forms a solution to the SNVI (1.1)~(1.2) problem,
it follows that

x" = Pg[x* = pSx*, y"N] and  y* = Qx[y* —nT(G" yM)].
Applying Algorithm 2, we have
s+ - x°
= (1 = a* = )x* + a* Py [x* — pS(x*, y4)] + brut
—(1 —a* = b*)x* —a* Py [x* — pS(x*, y*)] — b"x*“
<-d =]t —x|
+a* || Py [x* = pS(xt, y9)] = Py [x* = pS(x*, yN1| + Mb*
< -ah et - x|
+a* xt = x* = p[SGH, ¥ = SG7, YN + S ¥ = 6,y | + Myt
< (=" |x* = x| +a* |2t = x* = p[SGH, ¥ = S, ¥
+a'o || [S@, ¥ = S, yh]| + Mok,

where M = max{sup |[u* — x*||, sup ||v* — y*||} < oo.
Since S is relaxed (y, r)-cocoercive and (1)-Lipschitz continuous in the first vari-
able, and § is (v)-Lipschitz continuous in the second variable, we have in light of

part (i) of Theorem 2.1 that
|t = x* = o [S(*, ¥ = S, y9]|°
= flx = x> = 20 (S, yF) — S, yh), ¥F - )
+ 02| S, ¥4 = St |
= [lx — x*I* = 20 (S5, ) — S(x*, ¥, x* — x*)
+ (0% +20¥) | S&E, ¥ = S, Y9
< [ = [ =200 [ = [ 4 0 2o [
=[1=2pr + p’u* + 20y p*] |x* - x"||2.

As aresult, letting 8 = /1 — 2pr + 2py u? + p*u? we have
e — e £ (1~ )t =+ a0t — ]+ atpul -]+ b, @D
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Similarly, letting & = /1 — 2nr + 2nAB% + n?B?* we have
|4 =yl < (1= a )y =y + o |y* = y*| + abnr | - x* ] + Mt 22)
It follows from (2.1) and (2.2) that

k+1 xt

+ ||yk+l _ y* ”

< (1 - a") ||x" —x*" + d*o ||x" — x*" +a*pt ||x" — x| + Mb*
+ (1= a*) |y = | +dbo |¥* = y*| + apv |y =y + Mb*

=[1- 1 =8a*](|x* — x| + |y = y*|)) + 2m0*,

[+

where § = max{0 +nt, o + pv} and H, x H, is a Banach space under the norm || - ||*.
If we set

, th=(—=208)a", pF=2Mb

ak=||xk_x¢ +"yk_y*

for k = 0,1,2,..., in Lemma 1.2, and apply (i) and (ii), we conclude that

lx* = x*|| + ||y* — y*|| = O as k — oo. Hence [|x**' — x*|| + [|y**' — y*|| = 0.
Consequently, the sequence {(x*, y*)} converges strongly to (x*, y*), a solution to

the SNVI (1.1)—(1.2) problem. This completes the proof. O

Note that the proof of the following theorem follows rather directly without using
Lemma 1.2.

THEOREM 2.2. Let H, and H, be two real Hilbert spaces and let K, and K,,
respectively, be nonempty closed convex subsets of H, and H,. Let S : Ky x Ky — H,
be relaxed (y, r)-cocoercive and (w)-Lipschitz continuous in the first variable and
let S be (v)-Lipschitz continuous in the second variable. Let T : K|, x K, — H,
be relaxed (X, s)-cocoercive and (B8)-Lipschitz continuous in the second variable and
let T be (t)-Lipschitz continuous in the first variable. Let || - ||* denote the norm on
H, x H, defined by

10, I = (lxll + Iyl Vix, y) € Hi x Hy.

In addition, let

0 +nt =1 =2pr +2pyu? + p2u? +nt < 1,
o+ pv=+1=2nr +20A82+ n2B% + pv < 1,

let (x*, y*) € K| x K, form a solution to the SNVI (1.1)=(1.2) problem, and let
sequences (x*} and {y*} be generated by Algorithm 3. Furthermore, let

(i) 0<d* <1,
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(i) Y popa* =00 and
(i) 0<p<2r/utand0 < n < 2s/B%

Then the sequence {(x*, y*)} converges strongly to (x*, y*).

PROOF. Since (x*, y*) € K, x K, forms a solution to the SNVI (1.1)—(1.2) problem,
it follows that
x*=Pg[x*—pS(x*, y)] and y*= Qk[y' —nT(x*, yH)l.
Applying Algorithm 3, we have
k+1 — ”(1 — a5t +a* Py [xk — pS(xt, yk)]
—(1 = ahx* —a* Px [x* — pS(x*, yM]|
< (- |t - x|
+a" | Py [x* — pS(x*, Y9 = Px [x* = pSGx*, y91|
< -a") | =2
+at x = x*—p [SG*, ¥ = Sx*, ) + S(x*, y*) — S(x*, y*)]”
S (1—a") |x* —x*|| +d* &% —x* = p [SG*, y) = Stx*, yH]|
+a'po |[SG*, ¥ — S&*, yM]||-
Since S is relaxed (y, r)-cocoercive and (w)-Lipschitz continuous in the first variable,
and S is (v)-Lipschitz continuous in the second variable, we have

Jx* = x* = o [SG*, y%) = S, 9]
= llx — x*I1> = 20 (S(x¥, y*) = S(x*, ¥¥), x* — x*)
+ 0 |S6, ) - St 9|
= |lx — x"[1 = 2p (S(x*, y*) — S(x*, ¥*), x* — x*)
+ 0P| SGH, ¥ — S, )
< = x'[F = 2pr ot = 27 4 g ot =
+2py [[S&*, ¥ = S@x*, yH)

St et - 20pa | -
2

[

< [ = - 20r [t -

=[1=2pr + p*u? + 2pyp?] | x* = x

Setting § = /1 — 2pr + 2py u? + p2u? it follows that
e = £ (= e -+ a0 it — | et b -] @3

Similarly, setting o = /1 — 2nr + 2nAB% + n*B? we have

*

sU=d) |y =y | +do |y =y +atnr | -x]. @4

”yk+1 -y
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It follows from (2.3) and (2.4) that

"xk-i-l _ xt" + ||yk+l _ y-u ||
< (1= |t = x| +a*6 | = x*| + a*ne |2* - x*|
+ (1 =ay |y =y | +ato |y =y | +aov |y - ¥
=[1 - = a)(|=* = x| + |y = »*])

)x

k
<[l -a=aa (| = x|+ "=y
j=0

where § = max{6 + nt, o + pv} and H, x H, is a Banach space under the norm || - ||*.
Since & < 1and Y .2, a* is divergent, it follows that

k
. _ _ j - )
klﬂj_]j[o[l (1-8)a’l]=0 ask— oo
Therefore

||xk+l _ x*” + ||yk+l _ y* " - O,

and consequently the sequence {(x*, y*)} converges strongly to (x*, y*), a solution to
the SNVI (1.1)—(1.2) problem. This concludes the proof. O
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