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GENERAL PROJECTION SYSTEMS AND RELAXED
COCOERCIVE NONLINEAR VARIATIONAL INEQUALITIES
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Abstract

We explore the solvability of a general system of nonlinear relaxed cocoercive variational
inequality (SNVI) problems based on a new projection system for the direct product of two
nonempty closed and convex subsets of real Hilbert spaces.
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1. Introduction

Projection-type systems are frequently used in convergence analysis for solutions of
variational inequality problems arising in several fields, for instance, in complemen-
tarity theory, convex quadratic programming, optimization and control theory, and
variational problems. Projection methods (sometimes referred to as Galerkin meth-
ods) are also applied in different contexts, especially to inner approximation schemes
for A-proper nonlinear equations [9] where solutions are approximated as strong limits
of solutions of corresponding simpler systems of finite-dimensional equations. Re-
cently, Chang etal. [1] considered the application of the general two-step model [7] for
projection methods to the approximation solvability of nonlinear strongly monotone
inequality problems in Hilbert spaces. They generalized the iterative algorithm used in
[6,7] along with some special iterative algorithms of interest. In this paper we explore,
based on a general system of projection-type methods, the approximation solvability
of a system of nonlinear relaxed cocoercive variational inequalities in Hilbert spaces.
The notion of relaxed cocoercivity generalizes the notion of monotonicity as well as
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of strong monotonicity. The obtained results extend and improve the results in [1],
[5], [6] and [7]. For more details, we refer the reader to [1-9].

Let H\ and H2 be two real Hilbert spaces with inner product (•, •) and norm || • ||.
Let S : K\ x K2 -+ H\ and T : K\ x K2 -*• H2 be any mappings on Kx x K2,
where Kx and K2 are nonempty closed convex subsets of H\ and H2, respectively.
We consider a system of nonlinear variational inequality (SNVI) problems: find an
element (x*, y*) e Ki x K2 such that

{pS(x*,y*),x-x*)>0 Vx 6 KX and (1.1)

{nT(x*,y*),y-y*)>0 Vy e K2, (1.2)

where p, r) > 0.
The SNVI (1.1)-(1.2) problem is equivalent to the projection formulae

x* = PK [x* - pS(x*, y*)] for p > 0 and

where PK is the projection of H\ onto K\ and QK is the projection of H2 onto K2.
We note that the SNVI (1.1)-(1.2) problem extends the NVI problem: determine

an element x* e K\ such that

(S(JC*), * - J O > 0, Vx e Ki.

Also, we note that the SNVI (1.1)-(1.2) problem is equivalent to a system of nonlinear
complementarities (SNCs): find (x*, y*) e Kx x K2 such that S{x*, y*) e K*,
T(x*,y*) € /q .and

(pS(x*,y*),x*)=0 f o r p > 0 , {r)T(x*, y*),y*)= 0 for r\ > 0,

where K* and K^, respectively, are polar cones to K\ and K2 defined by

K* = { / £ / / , : (/, x) > 0, Vx e Ki) and

K*2 = {geH2: (g, y) > 0, Vg e K2).

Now, we recall some auxiliary results and notions crucial to the problem at hand.

LEMMA 1.1. For an element z € H, we have x e K and {x — z, y — x) > 0,
Vy e K if and only if x = PK(Z).

LEMMA 1.2 ([2]). Let {ak}, [ftk] and {yk} be three nonnegative sequences such that

ak+l < (1 - r V + j8* + yk fork = 0,1,2,...,

where tk e [0, 1], E t l o ' * = oo, j8* = o(r*) and YZoYk < «». T/ze« a* -»• 0 fli
^ ->• oo .
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For H a Hilbert space, a mapping T : / / - > / / is called monotone if Vx, y e H,
{T(x) — T(y),x — y) > 0. The mapping T is (r)-strongly monotone if for each
x, y 6 H, we have

(T(x) - T(y),x - y) > r\\x - y\\2 for a constant r > 0.

This implies that ||7*(JC) - T(y)\\ > r\\x - y\\, that is, T is (r)-expansive, and
when r = 1, it is expansive. The mapping T is called (,s)-Lipschitz continuous (or
Lipschitzian) if there exists a constant s > 0 such that ||T(^) - T(y)\\ < s\\x — y\\,
VJ:, y e H. The mapping T is called (/u)-cocoercive if for each x, y e H, we have

(T(x)- T(y),x -y) > n\\T{x) - T(y)\\2 for a constant \x, > 0.

Clearly, every (/x)-cocoercive mapping T is (l//x)-Lipschitz continuous. We note
that T is called relaxed (y)-cocoercive if there exists a constant y > 0 such that

<7"(JC) - T(y),x- y) > (-y)\\T(x) - T(y)\\2, Wx, y € H.

We say that T is (r)-strongly pseudomonotone if there exists a constant r > 0 such that

(T(y),x-y)>0 =• (T(x),x - y) > r \\x - yf , Vx,yeH,

and that T is relaxed (y, r)-cocoercive if there exist constants y, r > 0 such that

(r( jc) - T(y), x-y)> ( - y ) \\T(x) - T(y)f + r \\x - y \ \ 2 .

This implies

(T(x) - T(y), x-y)> ( - y ) \\T(x) - T(y)\\2,

that is, T is relaxed (y)-cocoercive.
We define T to be relaxed (y, r)-pseudococoercive if there exist positive constants y

and r such that Vx, y e H

(T(y),x-y)>0 =»

2. General projection methods

In this section, we discuss the approximation-solvability of the SNVI (1.1)-(1.2)
problem based on the following algorithms.

ALGORITHM 1. For an arbitrarily chosen initial point (A0, y°) e ^ x K2, compute

the sequences {A-*} and {/} such that

JC*+I = (1 - a* - bk) xk + akPK [xk - pS {xk, / ) ] + bkuk and

yk+\ _ (] _ a * _ pkj yk + akQK j y _ ^j ^ t ) y*jj + pkvkf
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where p, r) > 0 are constants, and {uk} and {vk}, respectively, are bounded sequences
in K, and K2. The sequences {a*}, [bk], {ak} and {pk} are in [0, 1] with (k > 0)

ALGORITHM 2. For an arbitrarily chosen initial point (x°, y°) e K\ x K2, compute
the sequences {xk} and {yk} such that

xk+l = (1 - ak - bk) xk + akPK [xk - pS (xk, / ) ] + bkuk and

/ + • = (i _f l* _ / / ) / +a
kQK [ / - r,T{xk, yk)] + bkvk,

where p, r) > 0 are constants, and [uk] and [vk], respectively, are bounded sequences
in K\ and K2. The sequences [ak] and {bk} are in [0, 1] with (k > 0)

0<ak + bk < 1.

ALGORITHM 3. For an arbitrarily chosen initial point (*°, y°) e ^ x K2, compute
the sequences {xk} and {yk} such that

JC*+I = (1 - ak) xk + akPK [xk - pS (xk, / ) ] and

where p, r\ > 0 are constants. The sequence {ak} C [0, 1] for k > 0.

Next, we consider, based on Algorithm 2, the approximation solvability of the SNVI
(1.1)-(1.2) problem involving strongly monotone and Lipschitz continuous mappings
in Hilbert space settings.

THEOREM 2.1. Let H\ and H2 be two real Hilbert spaces and K\ and K2, respec-

tively, be nonempty closed convex subsets of H\ and H2. Let S : K\ x K2 -*• H\ be

relaxed (y, r)-cocoercive and (fj,)-Lipschitz continuous in the first variable and let S

be (v)-Lipschitz continuous in the second variable. Let T : K\X K2^- H2be relaxed

(A., s)-cocoercive and (fi)-Lipschitz continuous in the second variable and let T be

(r)-Lipschitz continuous in the first variable. Let \\ • ||* denote the norm on Hx x H2

defined by

IK*. :y)ll* = (11*11+ IMI) V O C ^ G / / , xH2.
In addition, let

+ r)T = y/l - 2pr + Ipyp? + p2n2 + rjx < 1,

a + pv = V1 - 2r)r + 2x)\p + tffi1 + pv < 1,

let (x*, >•*) e K, x K2 form a solution to the SNVI (1.1)-(1.2) problem, and let
sequences {xk} and {/} be generated by Algorithm 2.

https://doi.org/10.1017/S1446181100012785 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012785


[5] Relaxed cocoercive variational inequalities 209

Furthermore, let

(i) 0 < ak + bk < 1,

00 Eto a" = °° and EZo bk < °°> and

(iii) 0 < p < 2r/fM2and0 < JJ < 2s /fi2.

Then the sequence [(xk, yk)} converges to (x*, y*).

PROOF. Since (x*, y*) e K:xK2 forms a solution to the SNVI (1.1)—(1.2) problem,
it follows that

*,y*)] and / = QK [ / - r,T(x*, / ) ] .

Applying Algorithm 2, we have

= || (1 - ak - bk)xk + akPK [xk - pS(xk, / ) ] + bkuk

- ( 1 - ak - bk)x* - akPK [x* - pS(x*, / ) ] - bkx*\\

<(l-ak -bk)\\xk -x*\\

+ ak fl PK [xk - pS(xk, /)] - PK [x* - pS{x\ f)] || + Af 6*

< (1 — a*) ||JC* — JC* ||

+ ak \\xk -x*-p [S(xk, yk) - S(x\ yk) + S(x\ yk) - S(x\ y')] \\ + Mbk

<(\-ak) \\xk -x*\\+ ak \\xk -x*-p [S(xk, yk) - S(x*, / ) ] |

+ akp\\[S(x\yk)-S(x*,y*)]\\ + Mbk,

where M = max{sup \\uk — JC*||, sup \\vk — y*\\] < oo.
Since S is relaxed (y, r)-cocoercive and (/x)-Lipschitz continuous in the first vari-

able, and S is (v)-Lipschitz continuous in the second variable, we have in light of
part (i) of Theorem 2.1 that

\\xk-x*-p[S(xk,yk)-S(x\yk)]\\2

= \\x - * 1 2 - 2p{S(xk, / ) - S(x*, A xk - x*)

+ pi\\S(xk,yk)-S(x\yk)\\2

= \\x - x*f - 2p (S(xk, yk) - S(x*, / ) , xk - x*)

+ (p2 + 2py)\\S(xk,yk)-S(x*,yk)\\2

< \\xk - x*\f - 2pr \\xk - x*\\2 + (p2 + 2pY)y} \xk - x*\\2

= [l -2pr + p V + 2pYfM
2]\\xk -xf .

As a result, letting 9 = ^ 1 - 2pr + 2py/x2 + p1^1 we have

|**+l - * * | | < ( 1 - a*)|jt* - **|| + ak0\\xk -x*j+ akpv\yk - y*\\ + Mbk. (2.1)
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Similarly, letting a = Jl - 2r\r + 2r)XP2 + r)2$2 we have

| | /+i -y*\\< (1 -ak)\\yk - / | +aka\\yk - y*\\ +akr1x\\xk - x*\\ + Mbk. (2.2)

It follows from (2.1) and (2.2) that

l̂ +i-jc* 1 + 1/+»_/!

< (l-a*) | | jc*-je*| |+a*0| | ;c*-je*| |+aV| |**-*1 +Mbk

+ (1 - ak) \\yk -y*\\+ aka \\yk - y*\\ + akpv \yk - / | | + Mbk

= [1 - (1 - S)ak] (\\xk -x*\\ + \\yk - y*\\) + 2Mb",

where 8 = max{0 + rjr, a + pv) and Hx x H2 is a Banach space under the norm || • ||*.
If we set

«* = ||JC*-JC*|| + | | / - / | | , t" = (l-8)ak, pk = 2Mbk

for k = 0 ,1 ,2 , . . . , in Lemma 1.2, and apply (i) and (ii), we conclude that
||jc*-jt*|| + | | / - / | | -* OasJIc -*• oo. Hence ||JC^1 - * 1 + | | / + 1 - / | | -»• 0.

Consequently, the sequence {(xk, yk)} converges strongly to (x*, y*), a solution to
the SNVI (1.1 HI.2) problem. This completes the proof. •

Note that the proof of the following theorem follows rather directly without using
Lemma 1.2.

THEOREM 2.2. Let //, and H2 be two real Hilbert spaces and let Kx and K2,
respectively, be nonempty closed convex subsets of H\ and H2- Let S : K^ x K2 —>• H\
be relaxed (y, r)-cocoercive and {ix)-Lipschitz continuous in the first variable and
let S be (v)-Lipschitz continuous in the second variable. Let T : K\ x K2 —• H2

be relaxed (A, s)-cocoercive and (fi)-Lipschitz continuous in the second variable and
let T be (r)-Lipschitz continuous in the first variable. Let || • ||* denote the norm on
H\ x H2 defined by

IK*, :y)ir = (11*11+ IMI) w(x, y) e //, x H2.

In addition, let

2pyix2

a + pv = / I - 2r)r + 2r)\$l + r\2$2 + pv < 1,

let (x*,y*) e A'I x K2 form a solution to the SNVI (1.1)-(1.2) problem, and let
sequences (xk) and [yk] be generated by Algorithm 3. Furthermore, let

(i) 0 < ak < 1,
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00 HT=o ak = oo and
(iii) 0 < p < 2r//z2 and 0 < r) < 2s IP2.

Then the sequence {(xk, yk)} converges strongly to (x*, y*).

PROOF. Since (x*, y*) e K\xK2 forms a solution to the SNVI (1.1)-(1.2) problem,
it follows that

x* = PK [x* - pS(x*, / ) ] and y* = QK [y* - r,T(x*, / ) ] .

Applying Algorithm 3, we have

|JC*+1 - x* fl = I (1 - ak)xk + akPK [xk - pS(xk, / ) ]

-(l-ak)x*-akPK[x*-pS(x*,y*)]\\

<(\-ak)\\xk-x*\\

+ ak \PK [xk - pS(xk, / ) ] - PK [x* - pS(x*, y*)]\\

<(l-ak)\\xk-x*\\

+ a
k \\x

k - x* - p [S(x
k, /) - S(x\ / ) + S(x*, yk) - S{x\ /

< (1 - fl*) ||x* - x*I + a* ||JC* -x*-p [S(xk, yk) - Six*, yk)]\\

Since S is relaxed (y, r)-cocoercive and (/x)-Lipschitz continuous in the first variable,
and S is (v)-Lipschitz continuous in the second variable, we have

fljr*-JC*-p[S(;c*,/)-$(*•,/)] ||2

= ||JC - JC*||2 - 2p (S(xk, yk) - S(x\ / ) , ** - x*)

+ p>\\S(xk,y
k)-S(x\yk)\\2

= ||JC - * 1 2 - 2p (S(xk, / ) - S(x*, / ) , xk - x*)

+ p>\\S(xk,yk)-S(x\yk)\\2

2py\\S(xk,yk)-S(x*,yk) \\2

< \\xk -x*\\2 - 2pr |JC* _jc*||2 + p V \xk-x*f + 2pyn2 \xk - x*f

Setting 6 = ̂ /l - 2pr + 2pyn2 + p2/x2 it follows that

+l - J t i < (1 - ak) \xk -x*\+ ake \xk -x*\+ akpv \\yk -y*\\. (2 .3)

Similarly, setting a = •/1 - 2r\r + 2r)\fi2 + r)2fi2 we have

| | /+i _ / | < (1 -ak) \\yk -y*\ +aka \\yk - y*\\ +akr}x \xk - x*\\ . (2.4)
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It follows from (2.3) and (2.4) that

||**+» _ JC'I + II/+<_•,,• I

< (1 - fl*) I** - JC*|| + ak6 \xk -x*\+ akr)x \xk - x*\\

+ (i _ ak) \\yk - / | + aka \yk -y*\\+ ak pv \yk - / |

where 8 = max{0 + rjr, a + pv) and H\ x H2 is a Banach space under the norm
Since S < 1 and J2T=o a* *s divergent, it follows that

k

limY]\l-(l-8)aJ]=0 as k -> oo.
7=0

Therefore

and consequently the sequence {{xk, yk)} converges strongly to (x*, y*), a solution to
the SNVI (1.1)-(1.2) problem. This concludes the proof. D
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