
NATURAL PARTIAL ORDERS 

R. A. DEAN AND GORDON KELLER 

1. Introduction. Let n be an ordinal. A partial ordering P of the ordinals 
T = T(n) = {w: w < n] is called natural if x P y implies x < y. 

A natural partial ordering, hereafter abbreviated NPO, of T(n) is thus a 
coarsening of the natural total ordering of the ordinals. Every partial ordering 
of a finite set 5 is isomorphic to a natural partial ordering. This is a conse­
quence of the theorem of Szpielrajn (5) which states that every partial order­
ing of a set may be refined to a total ordering. In this paper we consider only 
natural partial orderings. In the first section we obtain theorems about the 
lattice of all NPO's of T(n). In the succeeding sections, for n < co we associate 
a subgroup of the upper triangular group TL{n) of n X n matrices. We obtain 
necessary and sufficient conditions for an NPO to be associated with a normal 
subgroup of TL(n); we show that these "normal" NPO's form a distributive 
sublattice and for finite n we count the order of this lattice. We show that 
this number, 

^ ' (» +1), 

is exactly the number of non-isomorphic partial orderings P of {0, . . . , n — 1} 
which do not have a sub-partially ordered set like either of those shown in 
Figure 1. 
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FIGURE 1. 

Since a relation P on T is a subset of T X T we shall use whichever of the 
notations (x, y) 6 P , x P y or (x, y) g P , x ~ Py seems most convenient. 
The collection of NPO's of T will be denoted by 9Î or by 31 (n) if it is important 
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to emphasize the ordinal n. I t is natural to order 31 itself by set inclusion: we 
write P C Q if x P y implies x Q y for all (x, y) in T X T. For any ordinal 
n we have the minimal ordering <j> = {(x, x): x < n) and the maximal order­
ing 12 = {(x, y): x < y < n}. Clearly <j> < P < 12 for every P . If x < y we 
define the NPO T(x,y) = {(r,s):r = s or (r, s) = (x, 3/)}, which is easily 
seen to be a minimal element over <£. In fact the following theorem is easily 
proved. 

THEOREM 1.1. For any ordinal n, the set 31 (n) of all natural partial order in gs 
of T(n) = {w: w < n\ is a complete, compactly generated* point lattice in 
which the set of compact elements is the set of points { T(x, y): 0 < x < y < n). 

We shall omit the proof of this theorem and the following standard useful 
result. 

LEMMA 1.1. If 9? is a subset of 31, then (x, y) Ç (J9Î if and only if there 
exists an integer r and a sequence x = U\ < . . . < uT = y such that for each 
if 1 < i < r, there exists Rt G 31 such that utRiUi+\. 

Figure 2 shows 31(3). 

0 l 2 

FIGURE 2. 

The next sequence of lemmas characterizes coverings in 3i(n) and shows 
that the lattice is lower semi-modular. 

LEMMA 1.2. Let P G 31. Let x < y and (x, y) & P. If Q = P \J T(x, y) 

and (u, v) 9e (x, y), then u Qvif, and only if,uPvoruPx and y P v. 

*For a definition of "compactly generated" see (2). 
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Proof. Clearly either of these two conditions is sufficient for u Q v. Let 
us suppose that u Q v by means of the sequence u = Ui Ri u2. . . Rr-i ur = v 
where Rt = P or T(x, y). First we may assume without loss of generality 
that ut ?£ ui+i. Now it follows that ut < ui+\ and so for at most one index i 
we can have Rf = T(x,y). Indeed if UiT(x, y)ui+1 and ut ^ ui+i, then 
ut = x; the condition ut < ui+\ guarantees that at most one term is x. If 
no Rt = T(x,y), then u P v. If Rt = T(x, y), then 

u = u\ P u^ ut = xT(x, y)y = ui+1 Pur = v 

and the necessity is proved. 
Clearly P = [j{T(x, y): x P y} but more generally if P Ç Ç , then 

<2 = P U {T(x,y): (x,y) G P - Q). 

LEMMA 1.3. If P and Q belong to 9t, then P is covered by Q if, and only if, 
P-Q= l(x,y)}. 

Proof. The sufficiency is clear since Q differs from P by exactly one ordered 
pair. Conversely, suppose that Q covers P and that (x, y) and (u, v) Ç Q — P. 
Clearly P C P W T(x, y) C Q. Thus P U T(x, y) = Q and so 

(u,v) £ P U r f o y ) . 

From Lemma 1.2, u P v or u P x and 3/ P y. By assumption, the former cannot 
hold; hence the latter condition does and u < x and y < v. Similarly we 
have x < u and y < x; thus (w, 3/) = (x, y). 

To establish lower semi-modularity we need a better characterization of a 
covering. 

LEMMA 1.4. If Q = P U r(x, 3/) ewers P iw -K, /Aera 3> w a P-maximal 
element among A (x) = {s: (x, 2) € P) ; dually, x is a P-minimal element among 
B(x) = {z: (z,y) $ P). 

Proof. Suppose there were a z such that x ~ Pz and yet y P z. Since we 
have (x, 2) Ç P U T(x, y), then P C P U T(x, z) Ç P U T(x, 3;). But since 
P U T(x, 3/) covers P , it must be that P U r(x, z) = P U r(x, 3/), or that 
(x, y) G P U T(x, 2). But from Lemma 1.2 this entails x P x and 2 ? ^ ; 
thus s = y. 

Lemma 1.4 gives us a way to find all the covers, if any exists, for an arbi­
trary P £ 9Î. We may proceed as follows. Let (u, v) (£ P and u < v. Choose 
a P-maximal element y from A(u,v) = {z: u ~ P z and v P z}. Having chosen 
y, choose a minimal element x from B(u, y) = {z: z P u and z ~ P y}. We 
can now show that P U T(x, y) covers P . We must show that y is a maximal 
element in A(x). In the contrary case, as in Figure 3, suppose that yPz 
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FIGURE 3. 

and x ~ P z. I t follows that u ~ P z for otherwise x P u implies x P z, a, 
contradiction. But u ~ P z and v P z implies that z Ç A(u,v), while y P z 
contradicts the choice of y. Similarly it follows that x is a P-minimal element 
in B(y). 

For infinite ordinals, P need have no covering element. Indeed, for 
P(co + 1) = {0, 1, 2, . . . , co}, if P is as shown in Figure 4, then Q Z) P implies 
that P — Q has the form {(0, m): m > m0}. 

r 
FIGURE 4. 

THEOREM 1.2. TTze lattice 9Î 0/ natural partial orderings is lower semi-modular 
in the sense that if Q is covered by P \J Q, then P covers P C\ Q. 

Proof.LetP U Q = Q U r («,*). We shall show that P - P H Q= {(«, w)}. 
We may suppose that P ÇÊ Q and so P - Ç H P is not empty. Now suppose 
that (r, s) G P - (P H (?). Thus (r, 5 ) ^ ; however, (r, 5) £ P C Q U r(w, »). 
Thus r Qu and z; <2 s. Now u ~ Q s (otherwise r Q s) and dually r ~ Qv. Thus 
5 Ç i (w) and r £ B(v), but by Lemma 1.4, v is a Q-maximal element in A (u) 
and « is a Q-minimal element in -B(ZJ). From z; Q 5 and r Qu we conclude that 
(r, 5) = O, v). Thus P - P H Q = {(w, ?)}. 
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The lattice 3l(n) is not complemented and the next result is a necessary 
condition for an element of 31 (n) to possess a complement. If n < w, this 
condition is also sufficient. Necessary and sufficient conditions in the general 
case are not known. 

LEMMA 1.5. A necessary condition for an NPO, P , to have a complement in 
3l(n) is 

(*) For all x, y such that x P y, either y = x + 1 or there exists (u, v) 7e (x, y) 
with x < u < v < y and u P v. 

Proof. Suppose that Q is a complement for P and that x P y and y F^ X + 1. 
If there is a w such that x < w < y and xPw or w P y, then (*) holds. In 
the contrary case, suppose that for all w such that x < w < yy then x ~ Pw 
and w ~ Py. However, since x (P \J Q)w, it follows that either x Q w or 
there exists u and v such that x < u P v and (*) holds. Similarly from 
w (P yj Q) y, either wQy or the condition (*) is satisfied. However, 
if x Q w and w Qy, then x Q y and hence (x, y) Ç P P\ Q ^ 0, a contra­
diction. Thus (*) is necessary. 

THEOREM 1.3. If n < co, there exists a complement for P in 31 (n) if and only 
if (*) holds. 

Proof of the sufficiency of (*). Let P = {(x, y): x — y or (x < y and for 
all w, x < w < y implies w ^ P(ze; + 1))}. We claim that P is an NPO. 
Clearly it is reflexive and antisymmetric. To prove transitivity we suppose 
that x P y and y P z. Suppose that x < y and that there exists w such that 
x < w < z and w P (w + 1). By assumption y P z, and thus w < y, a con­
tradiction of x P y. Thus P is a partial ordering. 

To prove that P P\ P = # we note that since w < œ, if x P yf then ;y is 
finite and a finite number of applications of (*) implies that there exists w 
such that x < w < y and wP(w+l). Thus x~Py. We prove that 
P \J P = tiby showing by induction on y — x that if x < y, then x (PKJQ) y. 
H y — x = 1, then either x P y or x P y by definition. In general, if x ^ Py, 
either w ~ P(w + 1) for all w such that x < w < y, in which case x P y, 
or there exist w such that w P (w + 1). But then, by induction, x (P \J P) w 
and (w + 1) (P U P) y; hence x {P \J P) y. 

We remark that P = U{ r(^> « + ! ) : « ~ p ( ^ + l) î a n d t h u s if <2 is 
any complement for P , it follows that Q 3 P . Condition (*) is not sufficient 
if co < w as the example of Figure 5 shows. 

2. The upper triangular group. For this and subsequent sections we 
require that n < co. I t will be convenient to let T C {1, 2, . . .} and P(w) = {1, 
2, . . . , n). With each NPO, P , of T we associate a group GP of non-singular 
n X n, upper triangular matrices with entries in GF(2). Actually the field 
plays no role in our considerations; we could have used an arbitrary field, but 
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œ + 1 

02n-l 

FIGURE 5. 

by choosing GF(2), all our entries are either 0 or 1 and certain of our calcu­
lations are easier. The group of all non-singular upper triangular matrices 
we shall denote by TL(n). In this section we show that the mapping P —> GP 

is a lattice isomorphism of SSi{n) into TL(n). 

Definition. Let P £ ^fl(n). Let GP = {M = (w^): mu = 1, and if i ~ Pj 
then mtj = 0}. In particular, note that GP C TL(n). 

Clearly every matrix in GP has 1 on the main diagonal and the identity 
matrix I Ç GP for all P. Only the entries which must be 0 have been specified 
by P. 

THEOREM 2.1. For all natural partial orderings, P, GP, is a group. 

Proof. Let A 
Thus 

(dij) and B = (bjk) belong to GP. Let AB = C = (cik). 

Cik — 2^/ aij Ujk — Z ^ aij °jk. 
l<j i<j<k 

If i ~ P k, then clearly for each j either i ~ P j or j ~ P k; thus cik = 0 and 
hence C G GP. If n is finite, closure of course suffices to establish that GP is 
a group. If w = oj, then we must also show that if A £ GP, then A-1 £ GP. 
Let A = (aij) and A'1 = (bjk); we do know that A'1 £ TL(n). We shall 
show, by induction on (k — i), that if i ~ Pk, then bik = 0. For (k — i) = 0 
the result is vacuously true. Suppose then that i ~ P k while if 5 — r < (k — i) 
and r ~ P s, then brs = 0. From / = AA~X we have 

0 = dik = J2 aijb 
i<j<k 

jk> 

When i < j the term ai:jbjk is zero for if a^ = bjk = 1, then iPj and by 
induction j P k ; hence i P k, a contradiction. Thus 0 = 

^ii 0 ik — 0 ik-

I t is easy to see that G^ is the identity group and that if P = T(x, y), then 
GP, which we denote by G(x,y), is a group of order 2 whose non-identity 
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element is I + E(x, 3/), where E(x, 3/) is the n X n matrix whose only non­
zero entry is in row x and column y. For our next result we need the familiar 
fact that E(x, y)E(u, v) = byu £(x, v). 

THEOREM 2.2. Let n be a finite ordinal. Let P be a natural partial ordering 
of T(n). The group GP is generated by {I + E(x, y): x P y} x ^ y} ; indeed GP 

is the subgroup union of the subgroups {G(x,y): x P y,x 9^ y\. 

Proof. Since it is evident that if x ^ y and x P y, then I + E(x, y) Ç GP, 
we have only to prove that GP C (J{G(x, y): x P y, x 9^ y}. Now it is clear 
that if M = (mu) Ç GP, then M = I + Y,E(u, v), the sum ranging over 
precisely those pairs (u, v) such that u ^ v and muv ^ 0. First of all, note 
that if ntij ?* 0, then i Pj, and so / + E{i,j) belongs to the set the theorem 
alleges to be a generating set for GP. We shall show that if M £ GPl then 
M ^ [j{Gix, y): x P y, x 9^ y} by an induction on the number X of non-zero 
entries in M. Note that X is the sum of n and the number of terms in J^Eiu, v). 
If X = n, then M = I and the result holds. In general we may write 

M = I + E (u9v) = I + Z E(u, v) + Eir, s), 

where (r, s) is chosen so that r is a minimal value occurring among the first 
coordinates of the pairs occurring in the sum. (Equivalently, r is a minimal 
row index occurring among all non-zero entries in M lying off the main dia­
gonal.) Now we compute 

(l + £ E(u,v))(I + E(r,s)) = 

/ + E E(u,v)+E(r,s)+ £ SvrE(u,s). 

However, in the last sum, 8vr = 0 for all v since r < u < v by the choice 
of r. Thus 

M=(l+ Z £(«.») ) ( / + £(r,*)). 

By the induction hypothesis the first factor belongs to (J {G(x, y): x P y, x^y] 
as does the second; hence M does as well. Thus the theorem holds. 

THEOREM 2.3. The mapping P —> GP is a lattice isomorphism from 31 in) into 
a sublattice of the lattice of all subgroups of TLin). Indeed GPf]Q = GPC\ Ga 
and GP\}Q = GP\J GQ. 

Proof. First note that P Ç Q if and only if GP Ç1 GQ. This is an immediate 
corollary of the preceding theorem and from this remark we learn that the 
mapping P —> GP is one-to-one. The equality GPf]Q = GP C\ GQ is easily seen 
to hold, primarily because both P C\ Q and GP P\ GQ are set intersections. 
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Because the mapping is order-preserving, to complete the proof we need only 
show that GpvQ Q GP\J GQ. From the preceding theorem it will suffice to 
show that a (P U Q) b and a 9* b implies that 1 + E(a,b) <E GP W GQ. We 
begin by computing the commutator: 

C(x,y;u,v) = [ ( / + E(x,y)), (I + E(u, r))] = [ ( / + E(x,y))(I + E(u, r))]* 

= (I + E(x,y) +E(u,v) + ôyuE(x,v))* 

= I + E(x, y) + E(u, v) + ôyu E(x, v) + E(x, y) 

+ 0 + 5,, E(u, y) + 0 + E(u, v) + byu E(x, v) + 0 + 0 

+ ôyuE(x,v) + 0 + 0 + 0 

!

I if y 7^ u and v 9^ x, 

I + E(u,y) if v = x and u 9^ y, 
I + E(x,v) if v y^ x and u = y. 

Now we shall show that if a = U\ < u2 < . . . < ur = b is a sequence 
such that UiRiUi+i where Rt = P or Q, then 7 + £(a , b) G GP U GQ. We 
proceed by induction on r. If r = 1, then I + £(a , 6) 6 GP or GQ. If r = 2, 
then I + E(a,b) = C(wi, ^2; w2, w3) G GP U GQ. Thus, in any event we have 
that I + £(wi, W3) € G?W GQ. By induction 7 + £(^ 3 , wr) £ GP\J GQ and 
thus GP W GQ contains C(wi, u$\ w3, wr) = I + E(a, b). 

Definition. Let P and Ç be natural partial orderings of T(n). P and Q are 
called isomorphic (P = Q) if there is a permutation w of T(n) such that i P j 
if and only if w(i) Qir(j). We say that P is unique ii P ~ Q implies that 
P = Q. P and Q are called dual provided i P j if and only if 

( » + 1 - j ) Q ( n + 1 -i). 
We note that r (x , y) and r(w, r) are always isomorphic while $ and 12 

are unique. In Figure 2, NPO's 4̂ and 7> are unique and mutually dual. 

THEOREM 2.4. If P and Q are isomorphic, then GP and GQ are isomorphic, 
indeed GQ = I I - 1 GP II if II is the permutation matrix corresponding to the 
permutation IT which takes P into Q. 

Proof. We need only verify that in general if II is the permutation matrix 
II = (ffij)> where Ttj = 1 if and only if ir(i) = j , then 

I I - lEO, y)U = E(T(X), r(y)). 

THEOREM 2.5. If P and Q are dual, then the groups GP and GQ are isomorphic. 

Proof. I t is easy to verify that the map 

I + Y,E(x,y) —> I + E(n + 1 — y, n + 1 —x) 

is an anti-isomorphism of GP onto GQ and so the mapping 

I + T,E(x,y) -> [I + ZE(n + 1 - y, n + 1 - x)]"1 

is the desired group isomorphism. 
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3. Normal natural partial orders. In this section we determine neces­
sary and sufficient conditions on P such that GP is normal in TL(n); more­
over, Theorem 3.7 shows that if P has no restriction to a subset yielding either 
of the four-element abstract partially ordered sets of Figure 1, then there 
exists Q = P such that GQ is normal in TL(n). The sublattice of normal 
NPO's is shown to be distributive. 

Definition. A natural partial ordering P of T(n) is called normal if GP is a 
normal subgroup of TL(n). 

THEOREM 3.1. A natural partial ordering P is normal if and only if the fol­
lowing two conditions hold: 

(1) If iP k, i 7e k, and r < i, then r P k. 
(2) If k P i, i 7* k, and s > i, then k P s. 

(This theorem asserts that P is normal if and only if it has no configurations 
like those in Figure 6.) 

9 k O i Os (s > i) 

Ô i O r ( r < i ) Ok 

FIGURE 6. 

Proof of Theorem 3.1. GP is normal in TL(n) if and only if for all pairs 
(i, k) such that i 9e k and i P k, and for all pairs (r, s) such that r < s, it is 
the case that (7 + E(r, s))(I + E(i, k))(I + E(r, s)) e GP. 

A direct calculation shows this product to be equal to 

I + E(i, k) if r 7+ k and 5 ^ i, 

I + E(i,k) + E(r,k) iî s = i} 

I + E(i,k) + E(i,s) if k = r. 

(The case r = k and s = i cannot arise.) Thus GP is normal if and only if 
i P k and r < i implies r P k and i P k and k < s implies i P s. In Figure 2, 
the normal partial orders are <£, T(l, 3), A, B, and £1. 

Our next theorem characterizes normal NPO's as those that commute with 
all other natural partial orderings in a product of relations. If P and Q are 
relations on a set J, their product PQ is the set of pairs {(x, y) : there exists 
a z such that xPz and zQy}. I t is well known (1) that if an algebra has 
permuting congruence relations, then the lattice of permuting congruence 
relations is modular. 

THEOREM 3.2. A natural partial ordering P is normal if and only if PQ — QP 
for all natural partial orderings Q. 
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Proof. Let us suppose that PQ = QP for all Q £ 31 (n). Suppose i P k and 
r < i. Let Q = T(r,i). Thus r Q i and iP k. Since PQ = QP, there is an x 
such that r P x and x Q k. But # Q & implies x = k; hence r P k. Dually we 
verify that i P k and k < s implies i P s. Conversely, suppose that P is nor­
mal. If i P k and k Q s, then i < k < s and so i P s from Theorem 3.1. Hence 
i Q i and iP s, and thus PQ < QP. Similarly, if r Q i and i P k, then r P k 
so that r P k and k Q k; thus QP < PQ. I t is a well-known result (and easily 
proved) that if relations P and Ç o n a set T permute, then P VJ Q = PQ = QP. 

THEOREM 3.3. If either P or Q is a normal natural partial ordering then 
x (P VJ Q) y if and only if x P y or xQy. 

Proof. If P is normal, Theorem 3.2 yields P \J Q = PQ. Hence, if x (PKJQ) y, 
we may suppose that x P z and z Qy for some z. If z = x, then xQy while 
if z 9^ x, then, since z < y. Theorem 3.1 implies that x P y. 

COROLLARY. The normal natural partial orders form a distributive sublattice 
©(») of3l(n). 

Proof. From the lattice isomorphism P —» GP and the fact that the join 
and meet of normal subgroups is normal follows the fact that the normal 
partial orders form a sublattice. The lattice is distributive because we have 
shown that, as relations, the meet and join of normal partial orders are set 
meet and set join. 

Our next theorem establishes the fact that if P is unique, then P is a nor­
mal NPO. 

THEOREM 3.4. Let P G 31 (n). If there is a triple (i, k;j) in P such that 
j < i 9^ k, i P k, and j ~ P k, then there is Q Ç 31 (n) such that P ~ Q and 
Q^P. 

Proof. For a fixed k let C(k) = {(s, r): r P k, s < r and 5 ~ P k}. By 
hypothesis, C(k) is non-empty. Let (u, v) be chosen in C(k) such that (v — u) 
is minimal. Let Q be the partial ordering obtained by interchanging u and v 
as indicated in Figure 7. Specifically 

!

{x, y} Pi {u, v) = 4> and xPy. 
x = v and u P y or y = v and x P u. 
x = u and v P y or y = u and x P v. 

(Note that u ~ P v so that u ~ Qv and v ~ P u.) We claim that Q is a natural 

Q k 

O v O u (u<v) 

O k 

Ou o v (u<y) 
F I G U R E 7. 
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partial ordering and so Q = P since the permutation w = (u, v) provides 
the isomorphism. First we show that x Q y implies x < y. Since u < v, the 
questionable cases are x = v or y = u. Consider first the case v Q y. Thus 
u P y and so u < y. Iî y P k, then u P k, contrary to the choice of y. Thus 
y ^ Pk. If y < v, then (y, v) £ C(k), but then since u < y, we should have 
v — y < v — uy contrary to the choice of (u, v). Similarly, suppose that x Q u, 
that is, x P v. Thus x < v and if u < x, then (u, x) Ç C(k) while 

x — u < v — u, 

contrary to the choice of (u, v). 
Now it is easy to see that Q is a partial ordering and since u ~ Pk while 

u Q k, it is clear that P 9e Q. 

COROLLARY. If P is unique, then P is normal. 

Proof. This, together with Theorem 3.1, is essentially the contrapositive 
statement of the theorem or its dual. 

Hereafter we shall suppose that n is always finite. Our notation is 

T= T{n) = { l f . . . , n } . 

Definition. Let P be a partial ordering of a set S. The depth of x G S, denoted 
Dp(x) or more briefly D(x), is denned by 

D(x) = maxfr: there is a chain x = Xi P x2 P . . . P xr such that xt ^ x*+i}. 

LEMMA 3.1. If y P x and y 9e x, then D(y) > D(x). If D(y) = r and 
y = yxP y2P . . . P yr is a chain such that yt ^ yt+i, then D{yt) = r — i + 1. 

Definition. Let P be a natural partial ordering of T(n). An element x is 
said to be of class 1 if y P x whenever D(y) > D(x). The elements of class 1 
will be denoted CI, or CP 1 if it is important to denote the partial ordering. 

An interesting result which we shall not prove since we make no use of it 
is that P is unique if and only if every element is of class 1. The following 
result is immediate. 

LEMMA 3.2. Let P be a natural partial ordering of T{n). x G Cl if and only 
if y P x for all y such that D{y) = D{x) + 1. 

Now we can easily prove a lemma which turns out to be extremely useful. 

LEMMA 3.3. Let P be a natural partial ordering of T(n). Let 

H(r) = {x: D{x) = r}. 

If for some integer r for which H(r) ^ 0 but H(r) P\ CI = 0, then P contains 
four elements, r, s} u, v, such that r P s, u P v, r ~ Pv, and u ~ Ps. 

Proof. If m denotes the maximum depth of an element in T(n), then every 
element of depth m is of class 1, since the condition of the definition is vacuous. 
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Let r < m, and for each element x in H(r + 1), let 

U{x) = {y: xPy and D(y) = r). 

Of course U(x) is non-empty. Now select x0 G H(r + 1 ) such that 

\U(x0)\ < \U(x)\ for all x G H(r + 1). 

Let y0 G U(x0). We shall show that y0 G Cl or the alleged configuration appears 
in P . Suppose that x G H(r + 1) and x ~ Py0. Consider U(x). If there is a 
y G U(x) such that y (? U(x0), then for x0, y0, x, y we have x0 P y$, x P y, x0 

~ P y and x ~ P y0. If this configuration is assumed not to occur, then it 
must be that U(x) C U(x0); however since \U(x0)\ < \U(x)\, it follows that 
U(x) = U(x0) and sox G H(r + 1 ) must imply x P 3>0- Thus D (x) = D (y0) + 1 
implies x P y0 and so 3̂0 G Cl by the previous lemma. 

LEMMA 3.4. If P is a normal NPO, then for all r, if H(r) ^ 0, then 

H(r) r\ CI 9* 0. 

Proof. Let i ï ( r ) H Cl = 0, while H(r) ^ 0. From the lemma we have 
that P has a configuration r P 5, u P v, r P v, and u P s. Since P is normal, 
we must have r > w, and conversely ^ > r; hence r = w, a contradiction. 

LEMMA 3.5. LeJ P be a normal NPO. If D{x) = -D(y), x G Cl, awd 3/ g Cl, 
//zew x > y. Moreover, if D(z) > D(w), then z < w. 

Proof. Since y $ Cl, then there must exist z such that D(z) > D(y) and 
z ~ P y. Since x G Cl, we have z P x, and now since P is normal, it must 
be that y < x. To prove the second assertion note first that if w G Cl, then 
zPw and so z < w. Thus we may assume that w $ CI. From Lemma 3.4 
there is an x G Cl such that D(x) = D (w). Thus z P x and if w < z, then 
from normality it follows that w P x; hence D(w) > Dix), a contradiction. 

THEOREM 3.5. Let P be a normal NPO. Let r be an integer such that H(r) 9^ 0. 
Then there exist integers, a < b < c, such that x G H(r) P\ Cl if and only if 
b < x < c while x G H(r) — CI if and only if a < x < b. 

Proof. From Lemma 3.4, H(r) P\ CI ^ 0 and so let c = maxjx: x G H(r) 
r\ CI}, b = min{x: x G H(r) Pi CI}, and a = min{x: x G -ff"M}. Clearly 
D(x) = r implies a < r < c and Lemma 3.5 shows that if x G ^(V) — CI, 
then x < b. Conversely, suppose first that b < x < c. If D(x) > r, then 
xPfr since 6 G Cl and thus x < b; hence r > D(x). If D(x) < r = D(b), 
then c < x, by Lemma 3.5. Hence D(x) = r and again from Lemma 3.5, 
since b G Cl, it follows that x G Cl also. Secondly suppose that a < x < b. 
If £>(x) > r = Dip), then x < a; if D(x) < r = D(b), then 6 < r; hence 
Z)(x) = r. However, Lemma 3.5 and the choice of b show that x g Cl; thus 
x G -ff(r) - Cl. 
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COROLLARY. Let P be a normal NPO. If w is a permutation such that 
(1) 7T fixes every element not in H(l) r\ CI, 
(2) 7T fixes H(l) H CI, 

then iPj if and only if ir(i) P ir(j). 

Proof. Suppose that i ^ j and iPj. Since i (? H(l) P\ CI, w(i) — i. If 
j & H(l) r\ CI, there is nothing to prove. If j € H(l) Pi CI, then 
IT (J) G # ( 1 ) ^ CI and so i P T(J). The converse follows in a similar manner. 

THEOREM 3.6. If P and Q are normal NPO's, then P = Q implies that 
P = Q. 

Proof. Let IT be the permutation of T(n) such that iPj if and only if 
TC(Ï) Q^U)- Clearly we must have D(i) = D(w(i)) and i £ CP 1 if and only 
if w(i) 6 CQ 1. By Theorem 3.5 the maximal elements in CP 1 and in CQ 1 
satisfy b < x < n for some integer & which must be the same for P and Q. Thus 
7T can only permute these elements. Now if b = 1, the proof is complete. If Kb, 
then consider the restriction of P and Q to T(b — 1). Let us denote these 
restrictions by P and Q, respectively. I t is easy to verify that P and Q are 
normal NPO's of T(b — 1); moreover the restriction x of w to {1, . . . , & — 1} 
is a permutation which shows that P = Q. By induction, P = Q and hence 
P = Q since the addition of {&, . . .} to Tib — 1) is the addition of class 
one elements with respect to both P and Q. 

COROLLARY. NO two normal natural partial orderings are isomorphic. 

Our next theorem gives necessary and sufficient conditions for P to be normal 
based on the sub-partially ordered sets that can be obtained from P by 
restriction. We begin by noting that if P is normal, then P cannot have con­
figurations like those of Figure 1. We shall now show that the absence of these 
configurations in P implies that there is an isomorphic NPO, Q, such that Q 
is normal. 

The next lemma is an obvious "renumbering" principle which we list for 
easy reference. 

LEMMA 3.6. Let P be an NPO. Let i,j be such that 

{x: x P i, x 9^ i\ = {x: x P j , x ?* j} and {y: i P y,i 9e y} = {y: j P y,j 9e y}; 

then P is left invariant under the transposition ir = (i,j). 

Note that if i and j are maximal elements, then the second of these con­
ditions is vacuous. 

THEOREM 3.7. Let P be an NPO of T(n). There is an NPO, Q, of T(n) such 
that P = Q and Q is normal if and only if, for all sets of four distinct elements 
r, s, t, u 

(1) r P s P t implies u P t or r P u 
and 

(2) r P s and t P u implies r P u or tPs. 
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Proof. If P = Q and P satisfies conditions (1) and (2), then so does Q. 
However, if Q is normal, then, as we have remarked, the conditions are 
necessary. 

Our proof is by induction on n and for fixed n on the number of triples 
(i, k;j) such that i P k, i ^ k and either j < i and j ~ P k or j > k and 
i ~ P j . For brevity we call such triples "bad" P-triples. Of course, if there 
are no bad P-triples, then P is normal. 

Our first reduction is to show that we may assume n G Cl. In any event 
it follows from condition (2) and Lemma 3.3 that there are depth one elements 
of class 1; let x be one such. If n $ CI, let T be the transposition (x, n) and 
let R be the partial order defined by u R v if and only if ir~l(u) P ir~l{v). I t 
is easily verified that R is a partial ordering. There are two interesting cases in 
the argument to show that R is natural: u — n or n = x. If n Rv, then 
xP ir~l(v) and as D(x) = 1, then -w~l(v) = x, and hence v = n. If u R x, 
then ir~l(u) P n and as x G CI it follows that either D{ir~l(u)) = 1 or 
7T_1(^) P x. In the former case we must have ir~l{u) = n, or u = x, while 
in the latter TT~1(U) < x, and hence ir~l(u) = u < x. I t now follows that 
n G CR 1, for if D (y) > 1, then y P x and y = w(y) Rn. Hereafter we shall 
assume that n d CP\. 

Our second reduction is to assume that P, the restriction of P to T(n — 1), 
is normal. Since conditions (1) and (2) hold for P , they hold a fortiori for P , 
and hence by induction there is a normal NPO, (5, isomorphic to P . We now 
wish to adjoin n to T(n — 1) and extend Ç to Ç so that Q = P ; the restric­
tion of this Q to T{n — 1) is clearly Q. To do this, let -K be the permutation 
mapping P onto Ç. Now define 

!

r Q s if 5 9e n or 
7r_1(r) P n if r ^ n and s = n 
r = s = n. 

We omit the verification that <2 is an NPO and that if ir is extended to a per­
mutation of T(n) by defining w(n) = n, then Q = P via x. Finally, n 6 CQ 1 
since in general x Ç CP 1 if and only if w(x) Ç CQ 1 and in this case ir(n) = n. 
Thus we assume hereafter that n G CP 1 and that the restriction P of P to 
P(ft — 1) is a normal NPO. 

Now suppose that P has a bad triple. Since P is normal, the bad triple 
must involve n and since n Ç CI it must be of the form i P n, i ^ n, j < i, 
and j ~ Pn. We shall show that we can permute i and j to obtain an NPO, 
Q, with fewer bad triples. Our result will then follow by induction. 

First, it must be that D(J) = 1; otherwise j P n since n G Cl. Second, it 
must be that D(i) = 2, and even more, that i is maximal in P , for otherwise 
P would have a bad triple. Third, if x P i, then xPj by condition (1). Con­
versely, if xPj, then xPi, for otherwise (x,j;i) is a bad triple (i > j) in 
P . Thus {x: x P i , x ^ i | = {x: xPj, x j*j}. Now in P , since 

£>(*") = DPU) = 1, 
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the conditions of Lemma 3.6 are satisfied so that the permutation w = (i,j) 
of T(n — 1) leaves P invariant. Now regard x as a permutation on T{n) and 
let Q be defined by u Q v if and only if Tr~l{u) P TT" 1 ^) . Q is an NPO, Q ^ P , 
Q = P , and <2 is normal, and we claim that Q has fewer bad triples than P . 
We show that there is a 1-1 mapping of the bad triples of Q into and not 
onto the bad triples of P . Since Q = P, any bad triple of <2 must include n. 
Suppose that (x, n;y) is a bad Q-triple. If neither x nor y is i or j , (x, n; y) 
is a bad P-triple. Suppose (j, ?z; ;y) is a bad Q-triple because y < j and j ~ Qn\ 
then y ^ i. Now {i, n\y) is a bad P-triple since y < j < i. Suppose that 
(x, n\ j) is a bad Q-triple because j < x and 7 ^ (M. Now x ^ i as 7 ^ Pn; 
hence (x, n\ i) is a bad P-triple, if i < x. If i > x, we argue that (x, n;j) is 
a bad P-triple. Suppose that (x,n;i) with i < x is a bad Q-triple; then 
(x, n;j) is a bad P-triple. Note that here i < x so that the triple (x, n; j) 
with i > x of the previous case is a different triple from this one. Thus to 
each bad Q-txiple there corresponds a bad P-triple, different bad Q-triples 
corresponding to different bad P-triples. In addition the Q-triple (j,n;i) 
corresponding to the old bad P-triple (i, n ; j) is not bad ! Thus Q has at least 
one less bad triple than P and the proof is complete. 

4. The order of T)(n). In this section we shall show that if n is finite, 
the number of elements in T)(n) is 

(2;) /<»+»• 
In view of Theorems 3.6 and 3.7, this number is the number of abstract non-
isomorphic partially ordered sets which do not contain copies of either con­
figurations in Figure 1 as sub-partially ordered sets. 

Our first count is obtained by showing a 1-1 correspondence between the 
NPO's of Tin) and the set of lattice paths counted by Feller (3). Let Wfl(n) 
be the set of non-negative, integer-valued step functions, / , defined on [0, n] 
such that 

(1) 0 <f(x) < x, 
(2) f(x) = / ( [*] ) , 
(3) jf(0) = 0 and fin) = n, 
(4) / is monotone non-decreasing. 

The graph of / can be thought of as a polygonal path from (0, 0) to in, n) 
with jumps at points with integer coordinates, always lying below the line 
y — x. Through the transformation (i, j) —» (i + j , j — i) the path corre­
sponds to what is called a lattice path {si, s2, . . . , S2n} from the origin through 
the points (a, sa) to the point (2w, 0) such that all sa > 0 and sa+i — sa = ± 1 . 
The number of these paths has been determined (3, p. 72) to be 

H/C» + D. 
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We shall now show that the relation C defined by / C g if and only if 
fix) < gix) makes Win) into a lattice and that there is a lattice isomorphism 
from Win) onto £)(»). 

Definition. L e t / 6 2Jl(w). Let P / be defined as follows: 
(i) xPfX for all x Ç P(w). 
(ii) H x 7* y, then xPfy if and only if x — 1 < / ( j — 1). 

LEMMA 4.1. For all f, Pf is a normal partial ordering of T(n). 

Proof. First note that if x Pfy and x ^ y, then x — 1 < / (y — 1) < y — 1 
implies that x < y and thus Pf is a natural relation. P / is then easily seen 
to be reflexive and antisymmetric. Suppose xPfy and yPfx. We exclude 
trivial cases by supposing that x 9e y and y 9e z. Then 

x-Kf(y-l)< (y-1) < / ( z - l ) ; 

hence x Pf z. Thus Pf is a natural partial ordering. 
To show that Pf is normal we verify the two conditions of Theorem 3.1. 

First, suppose that i P k and r < i. Thus r — 1 < i — 1 < /(fe — 1); hence 
r P k. Second, if k P i and 5 > i, then fis — 1) > / ( i — 1) > k — 1; hence 
kPs. 

LEMMA 4.2. Le£ P be a normal natural partial ordering. Let f be the function 
defined by: fix) = 0 if 0 < x < 1, fin) — n, and for 1 < x < n; 

fix) = / ( M ) = max}}/: y = 0 or 3/ P (x + 1) awd y 9e- x + 1}. 

Thenfe Win) a ^ P , = P. 

Proof. I t is clear t h a t / has integer values, that 0 < / (x) < x, tha t / (0 ) = 0 
and /(w) = w, and tha t / ( [x] ) = / ( x ) . We shall prove that Xi < x2 implies 
tha t / (x i ) < / ( x 2 ) . We may suppose tha t / (x i ) = yx 9^ 0. Thus 3/1 P (xi + 1) 
and since Xi + 1 < x2 + 1 it follows from the normality of P that y± P x 2 + l . 
Hence by definition yi < / ( x 2 ) . 

Now suppose xPfy and x 9e y. Then x — 1 < f(y — 1). The case 
f(y — 1) = 0 is thus impossible since x > 1. Thus f(y — 1) = max{z: zPy, 
z ?£ y\. Thus f(y — 1) P y and since x < f(y — 1) and P is normal, it follows 
that x P y. Thus Pf ÇZ P . Conversely, suppose x P 3/ and x 9^ 3>. Then 
(x — 1) P y since P is normal and so x — 1 Kfiy — 1) = maxjs: zP y, 
z 7± y). Hence xPfy and so Pf = P . 

LEMMA 4.3. f ^ gin Win) if and only if Pf CI P^ w 31 (w). 

Proof. Suppose first t h a t / Ç g. If x P/3>, then x — 1 < f(y — 1) < g(;y —1) 
and so xPQy. Conversely, suppose PfÇ=.Pg and consider x. If g(x) < / ( x ) , 
then (g(x) + 1) P / (x + 1) and so (g(x) + 1) P , (x + 1), but this entails 
gix) < gix), a contradiction. Hence/(x) < gix). 
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COROLLARY. / = g if and only if Pf = P0. Moreover, given f 6 SDî(w), i f / i 
w /fee function constructed in Lemma 4.2 corresponding to the partial order Pf, 
then f = / i . 

Proof. The first part of the corollary is clear. Lemma 4.3 gives Pfl = P r 

and thus f\ = / . 

THEOREM 4.1. 93? (n) w a lattice under the partial ordering C . rfee mapping 
f^Pf is a lattice isomorphism of tyfl(n) onto &(n). 

Proof. I t is a standard result that $R(n) is a complete lattice in which the 
greatest lower bound of a set 9Î of functions in Tt(n) is the function g such 
that g(x) = mm{r(x)\ r Ç 9?} ; dually the least upper bound is the function 
h such that h(x) = max{r(x): r G 9Î}. From Lemma 4.2 the mapping is onto 
and from Lemma 4.3 it is a lattice isomorphism. 

The integer 

(2;)/<«+•> 
is the number of ways of inserting parentheses in a string of n + 1 symbols 
so as to interpret the string as an element in a binary (non-associative) 
system. This number is also the number of lattice paths and the connection 
between these two problems is through the Lukasiewicz parenthesis-free 
notation.* Thus, for example, ((a + b) + (c + d)) becomes -\—\~ab + cd. By 
replacing + by 1 and a, b, c by —1 and deleting the superfluous last symbol 
d, we obtain the sequence 1, 1, —1, —1, 1, —1. The '̂th partial sums of this 
series is the integer st of the associated path (si, s2, s3,

 sh s5, s&). The formula 

for the number of ways of parenthesizing ax + a2 + . . . + an+1 is developed 
in (4). 

I t is interesting to note that Feller's count of the number of paths ($ i , . . . , s2n) 
and Hall's count of the number of ways of inserting parentheses in &i, . . . , an+i 
coincide since each shows that this number, / n + i , satisfies the recursion 
fn+i = fofn + / i / » - i + • • • +/w/o. Our second development of the count of 
S)(») proceeds along somewhat different lines and is of interest in itself. 

We begin with the observation that since 35 (w) is a finite distributive lat­
tice, every element of J) has a unique expression as an irredundant meet of 
meet irreducibles. Moreover, in a distributive lattice a meet of meet irredu-
cibles is irredundant if and only if no two irreducibles in the set are com­
parable. We shall characterize the meet irreducibles of S) and count the 
number of subsets of this set in which no two elements are comparable. 

*We are indebted to Professors Marshall Hall, Jr., and Donald Knuth for these remarks. 
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LEMMA 4.4. A normal NPO, P , is a meet irreducible in T)(n) if and only 
if P = 12 or there exists a pair (r, s), r < s, such that P = (J{ T(u, v): u < r 
or s < v}. 

Proof of sufficiency. Let (r, s) be given. Define P by the formula of the 
lemma. We omit the proof that P is a normal NPO. It is easy to see that 
u P v if and only if u = v or u < r or 5 < v. A typical P is shown in Figure 8. 

?• 

4-
FIGURE 8. 

Suppose that P C R in 33 and (a, b) £ R — P. Thus r < a < 6 < s. Since 
P is normal, it follows (Theorem 3.1) that r Rb and thus, for the same 
reason, that even r R s. Now if P is meet reducible, say, P = P i C\ . . . C\ Rk 

with P ^ Ru then r Rt s and hence r P s, a, contradiction. 

Proof of necessity. Let P F^ 12 be meet irreducible. Choose r and 5 such 
that r ~ P s and (s — r) is maximal. Let P = (J { T (u, v) : u < r or s < b\. We 
claim that P = P. To show that P C P suppose that a P b. If a < r or 
s < b, then a P b. However, i f r < a < f r < s i t follows from normality that 
r P & and this in turn implies that r P s; a contradiction. Hence a P 6 implies 
either a < r or s < b and so P ÇI P . 

Our proof that P 2 P is in three stages. First, from the choice of the pair 
(r, s) we have that u < r and x > 5 imply u P x; similarly s < v and ^ < r 
imply y P s. Second, we claim that Q = PKJ T(r,s) ( = P KJ{(r, s)} by 
Theorem 3.3) is itself normal. We prove this by verifying the criteria of 
Theorem 3.1. Since P is normal, we need only check a triple (r, s; t) ; however, 
our first remark shows that x > s implies r P t, and dually. In particular, 
note that Q covers P in yt(n) from Lemma 1.3; a fortiori Q covers P in 33. 
Thus since P is meet irreducible, Q is the unique element of 33 covering P . 
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Third, we claim that for all u, if u < r, then u P y for all y > u. This, and 
its dual which we omit, proves that P 3 P. If our assertion is not true, choose 
u minimal such that u < r and there exists a y such that u ~ P y. For this u 
choose w = maxjx: # ^ P x ) . Now we claim that R = P W T(u, iv) is 
normal. Indeed, from Theorem 3.1, arguing as before, if R is not normal, it 
follows that either there exists s with s < u and s ~ P w (a contradiction of 
the choice of u) or there exists t with w < t such that u ~ P t (a contradiction 
of the choice of w). But manifestly, Q ^ R, a contradiction of the meet irredu-
cibility of P. 

In view of this lemma the following notation is sensible. 

Notation. If P is a meet irreducible in 35 and P = (J{ T(u, v): u < r or 
s < v} we write P = [r, 5] = Pr>s. The set of intervals 

$ 0 ) = S = {[a, 6]: 1 < a < b < n\ 

is then isomorphic to the set of meet irreducibles of S)(«). 
The ordering of 3) induces a partial ordering of $ : [r, 5] < [u, v] if and 

only if Pr,s C PW)t>. Clearly [r, 5] < [w, v] if and only if r < w < i; < s; thus 
this ordering is dual to subset inclusion of the intervals on the real line. 

From our previous remarks it now remains only to count the number of 
subsets of $ in which no two intervals are comparable. To this end we define 
a function K(r, s) for all pairs (r, s), r < s. If r < s, let K(r, s) be the number 
of subsets E ÇI $ such that 

(1) E Ç {[u, v]: u < r, w < t;, and » < 5}, 
(2) no two intervals in E are comparable. 

If r = s, let # 0 , 5) = K(s - 1, 5), and K(l, 1) = 0. 
I t is clear that K(l, s) = s — 1 if 1 < s and that the number of elements 

in 2) is 1 + K(n, n) since we have not yet counted the meet irreducible 0. 

THEOREM 4.2. If r < s, then K(r, s) satisfies the recursion relation 

K(r, s) = K(r, s - 1) + K(r - 1, s) + 1 

which is satisfied by 

Proof, We observe that 
r - l 

X(r,j) =K(r,s- l)+r+Y,K(hs- 1). 

The first term counts all sets E in which every index is at most n — 1. The 
second term counts all singleton sets E of the form E = {[i, s]}. The third 
sum counts all sets E which are not singletons and in which an interval 
[i + 1, s] occurs. Note that since E cannot contain two comparable intervals, 
only one interval of the form [i + 1, s] can occur. Also if [i + 1, s] G E and 
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[h, j] Ç E, then j < 5 — 1 and h < i and so E — {[i + 1, 5]} is counted in 
K(i, s — 1). From this equation the recursion of the theorem follows by a 
direct calculation. Similarly, it is a simple matter to verify that 

1 , l+(s-r) 
•*" 1 + (r + s) ( 1 + ; + r ) 

satisfies both the recursion and the initial conditions K(l, 1) = 0 and 
K(l,s) = 5 - 1 . 

C O R O L L A R Y . 

1 + K(n, n) = l+K(n- 1, n) = (j^ J / n = (2*) / (» + 1). 
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