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THE CHARACTER OF CERTAIN CLOSED SETS 

MARY ANNE SWARDSON 

Let X be a topological space and let A c X. The character of A in X is 
the minimal cardinal of a base for the neighborhoods of A in X. Previous 
studies have shown that the character of certain subsets of X (or of X2) is 
related to compactness conditions on X. For example, in [12], Ginsburg 
proved that if the diagonal 

kx( = {(x,x):x G X}) 

of a space X has countable character in X2, then X is metrizable and the 
set of nonisolated points of X is compact. In [2], Aull showed that if every 
closed subset of X has countable character, then the set of nonisolated 
points of X is countably compact. In [18], we noted that if every closed 
subset of X has countable character, then MA + 1 CH (Martin's axiom 
with the negation of the continuum hypothesis) implies that X is 
paracompact. 

In this paper we study the character of closed discrete sets, of zero-sets, 
and of nowhere dense zero-sets of X, and introduce associated cardinal 
functions. Much of this work comes from the author's Ph.D. thesis at Ohio 
University (done under the direction of R. L. Blair to whom the author is 
greatly indebted). The paper has two purposes: The first is to develop 
some of the results necessary for [19], in which we give topological 
characterizations of 2a = a+ for every infinite cardinal a (see Section 5 
below), and the second is to present results, of interest in themselves, 
relating the character of these special sets to other properties of the space. 
For example, we show that if X is normal, first countable, and has no 
isolated points, then X is pseudocompact if and only if every zero-set of X 
has countable character (4.5), and that, under suitable cardinality 
restrictions, if X is hereditarily normal and extremally disconnected and if 
every nowhere dense zero-set has countable character, then X is discrete 
(6.6). We also show that in the theorem from [2] cited above we need only 
assume that every closed discrete subset of X has countable character 
(2.19). 

In addition, we consider particular neighborhood bases for zero-sets. 
We show, for example, that a Tychonoff space X is countably compact 
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CLOSED SETS 39 

(resp. pseudocompact) if and only if for a l l / e C(X), {f~x\ — -, -):n 
\ n n J 

G N} is a base for the neighborhoods (resp. for the cozero-set 
neighborhoods) of Z(f) in X, and we show that if Z is a zero-set of a space 
X, then c l ^ Z is a zero-set of jSXif and only if Z has a countable cozero-set 
base for its cozero-set neighborhoods. 

Section 1 contains definitions and notation while Section 2 is concerned 
with methods of calculating the character of certain sets. Sections 3-6 
contain theorems about the relation between certain properties of a space 
and the character of special sets. 

1. Definitions and preliminaries. In Sections 1-3 we assume that all 
topological spaces are regular and T\ and in Sections 4-6 we assume that 
all spaces are Tychonoff. We denote the set of real numbers by R, the set 
of positive real numbers by R + , and the set of natural numbers by N. If X 
is a space, we denote the set of all isolated points of X by I(X). 

Let I b e a space and let A c X. We set 

C(X) = {f:X —> R:/ is continuous} 

and 

C*(X) = { / e C(X):f is bounded}. 

For / G C{X\ the zero-set Z(f) of / is {x <= X:f(x) = 0}. The 
complement in X of a zero-set of X is a cozero-set of X. We say that A is 
C-embedded (resp. C*-embedded) in Xiî for a l l / e C(v4) (resp. for a l l / e 
C*04) ), there exists g <= C(X) such that g\A = f. A is z-embedded in X if 
every zero-set of A is of the form Z D A for some zero-set Z of X. F o r / e 
C(X), we set 

A collection ^ is a base for the neighborhoods (resp. a /xxse /? r r/ze 
cozero-set neighborhoods) of 4̂ in Xif each 5 G J i s a neighborhood of A 
in X and if whenever U is a neighborhood (resp. cozero-set neighborhood) 
of A in X, then there exists B <= ^ such that B <z U. The character of 4̂ in 
X (denoted by xC<4, X) ) is co • min{ \â8\:<%is a base for the neighborhoods 
of A in X) and the pseudocharacter of 4̂ in X (denoted by \p(A, X) ) is <o • 
min{ | ^ | : ^ i s a collection of open subsets of X withal = n ^ } . (We write 
X(*, X) or ,//(*, X) instead of x ( {*}, X) or i//( {*}, X).) 
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The character of X (denoted by x(X) ) is sup{x(*, X):x e X} and the 
pseudocharacter of X (denoted by \p(X)) is sup{i^(x, X)\x e X}. The 
closed (resp. closed discrete, resp. zero-set, resp. nowhere dense zero-set) 
character of X (denoted by XcW (resp. Xcd(̂ 0> r e sP- Xz(̂ 0> r e sP- Xnz(*) ) ) 
is sup{xG4, X):A is a closed subset (resp. closed discrete subset, resp. 
zero-set, resp. nowhere dense zero-set) of X). The closed pseudocharacter 
of X (denoted by \pc(X) ) is sup {̂ (̂ 4, X):A is a closed subset of X). 

A subset A of X is regular closed m Xiî A = cl int ,4. If A is closed in X, 
the regular closed pseudocharacter of 4̂ in X (denoted by \pTC(A, X) ) is <o • 
min{ \°U\'M\% a collection of regular closed neighborhoods of A in X such 
that A = Pi^} . The regular closed pseudocharacter of X (denoted by 
^rc(X) ) is sup{i//r%4, X).A is a closed subset of X). 

2. Calculating the character of sets. The diagram in 2.1 represents 
inequalities holding among the cardinal functions defined in the previous 
section, with the arrows pointing to the smaller function. All are obvious 
with the possible exception of the topmost (a proof of which can be found 
in [12] ). Examples can be found in 2.22 and 2.26 to show that no arrows 
can be added to the diagram. 

2.1. PROPOSITION. Let X be a space. The following inequalities hold: 

X(A* X2) 

,Xc(X), 

V\X) XcdW 

M*) x(X) 

The next proposition shows that it is pointless to define the "nowhere 
dense closed character" of X. The routine proof is omitted, as are those of 
many of the simple propositions in this section. 

2.2. PROPOSITION. 

Xc(^0 = sup{x(^% X)\F is a closed nowhere dense subset of X). 

Xz(X) 
I 

1 
XnzW 
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2.3. PROPOSITION. If F is a finite subset of X, then 

X(F, X) = max{x(x, X):x e F). 

Hence, if X is countably compact, then Xcd(^0 = x(^0-

The following proposition is an easy consequence of 2.2 and 2.3. 

2.4. PROPOSITION. If\X - I(X) \ < co, then x c W = x W -

We turn next to a sequence of propositions which show that under 
certain circumstances we can use the pseudocharacter (or regular closed 
pseudocharacter) of a set to calculate its character. First we need some 
definitions. 

A space X is a Pa-space if the intersection of <a open subsets of X is 
open in X. (Thus a P^-space is a P-space.) Xis [a, K]-compact if every open 
cover ^ o f X with \<%\ g K has a subcover IP with |* ' | < a. 

We also need a couple of lemmas. 

2.5. LEMMA. Let F be a closed subset of the Pa-space X and let K = \prc(F, 
X). If K = a, then either K = co, or K = a and a is a regular cardinal. In 
either case there exists a decreasing sequence (Ug.£ < K) of open subsets of 
X such that 

F = n l < K Ut = n ^ < K c l f/f 

2.6. LEMMA. Let F be a closed subset of X and let K be a regular cardinal 
such that 

F = n^<K Uz = n^< Kcl £/f 

where (Uf£ < K) is a decreasing sequence of open subsets of X. Ij X is 
[K, K]-compact, then {Ufi- < K] is a base for the neighborhoods of F in X. 

Proof. Let F c U where U is an open subset of X. Then 

{U} U {X - cl Uçt < K} 

is an open cover of X of cardinality K and hence there exists I a K such 
that |/| < K and {[/} U {X - cl U^ <= / } covers X. Let y = sup /. Then 
y < K and £/y c U. 

2.7. COROLLARY. 7/*X is countably compact, then for allf e C(X), &jis a 
base for the neighborhoods of Z(f) in X and hence Xz(^0 = <°-

In Section 4 we prove the converse of 2.7 (see 4.4). The next result 
follows immediately from 2.5 and 2.6. 
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2.8. THEOREM. Let F be a closed subset of the Pa-space X and let K = 
\prc(F, X). If K ^ a and if X is [/c, K]-compact, then xCF, X) = K. 

If K and a are cardinals with a infinite, then 

ifi- = 2 {ic*:j8 < a). 

If °U is a collection of sets, then 

[#]<« = { j ^ c #:| j^| < a}. 

It is known that /c^+ = K<*, that | \°U\<CL\ ^ | ^ a n d that if K ^ <o, then rĉ  
= /c.(See[6, 1.22].) 

2.9. THEOREM. Le/ F be a closed subset of the Pa-space X and let K be a 
cardinal such that \prc(F, X) ^ K. If X is [cf (a), ^[-compact, then 

X(F, X) ë «s-. 

Proof. We may write i7 = ng< K cl t/g, where each L/g is an open 
neighborhood of F in X Let 

# = { £ / ^ < /c} 

and let 

^ = { n # - ; ^ " G [W]<a}. 

Each 5 e J i s open in Xand | ^ | ^ /ĉ . By a proof similar to that of 2.6, <% 
is a base for the neighborhoods of F in X 

2.10. COROLLARY. If X is a Lindelôf P-space, then X(F, X) ^ ;//(T, * ) w 

/or every closed subset F of X, and hence Xc(^0 = *W^0W-

2.11. COROLLARY. If F is a closed subset of a normal [co, i//(i% X) ]-
compact space X, then 

X(F, X) = HF, X). 

Hence if X is [co, \pc(X) ]-compact, then 

Xc(X) = MX). 

2.12. COROLLARY. ([2, Theorem 5]). If X is perfectly normal and 
count ably compact, then Xc(^0 = w-

2.13. COROLLARY. ( [1, Chap. II, Theorem 4]). If F is closed in the 
compact space X, then \p(F, X) = x(̂ % X). 
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Before stating the next theorem, from which Corollaries 2.12 and 2.13 
also follow, we need two definitions. If X is a Tychonoff space, then 

PaX = {p e PX: for every JF c p, with | ^ ' | < a , n , f ^ 0}, 

and a Tychonoff space X is a-pseudocompact if /3a + X = jiX [13]. 
Equivalently, X is a a-pseudocompact if every cozero-set cover of X of 
cardinality ^ a has a finite subcover (this is an easy dual of [13, 2.2] ). 

2.14. THEOREM. If X is normal and a-pseudocompact and if F is a closed 
subset of X with i//(F, X) ^ a, then X(F, X) = ^(F, X). 

Proof Let F = n^< K f/̂ , where each U% is open in X and K < a. For all 
| < K, F has a zero-set neighborhood Z^ c [/̂ . Let Si be the set of all finite 
intersections of members of {Z^:£ < /c}. Then \S8\ ^ /c, each 5 e J is a 
neighborhood of F, and F = C\ Si. Since X is normal and a-
pseudocompact, S8 is a base for the neighborhoods of F in X 

2.15. Remarks, (a) The inequality in 2.10 can be strict: The ordinal 
space co is a Lindelôf F-space, and for all F c co, 

co = KF, X) = x(^, X) * « F , Xr = 2". 

Equality can also hold: Let X be the set of ordinals 2W + 1 with basic 
neighborhoods of 2W of the form X — B where B is a countable subset of 
2W and with all other points isolated. Then X is a Lindelôf P-space and 

2W = iK2w, * ) = x(2w, X) ^ i//(2C0, X)w = 2<°. 

(b) In contrast to 2.7, pseudocompact spaces need not have countable 
zero-set character (see 2.26 (b) ), but zero-sets in a pseudocompact space 
do have countable bases for their cozero-set neighborhoods (see 4.2). 

We turn next to a discussion of the function xcd- A pairwise disjoint 
collection of open subsets of X is called a cellular family in X. A subset A 
of X is cellularly embedded in X if every cellular family in A is the 
restriction to A of a cellular family in X. 

2.16. PROPOSITION. If D is a discrete subset of a Pa-space X and if\D\ ^ 
a, then D is cellularly embedded in X. 

We will use the following known result several times. A proof can be 
found in [18, 2.1]. 

2.17. PROPOSITION. If D C X — I(X) is discrete and cellularly embedded 
in X, then X ( A X) > \D\. 
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2.18. THEOREM. If X is a Pa-space and if a is a regular cardinal, then 
Xcd(^0 = a if and only ifx(X) = a and every closed discrete subset of X — 
I{X) has cardinality <a. 

Proof Assume first that XcdW = «• By 2.1, x W = «• Let D be a 
closed discrete subset of X — I(X) with \D\ = a. Since Xis a Pa-space, D 
is cellularly embedded in X by 2.16 and hence, by 2.17, x(A X) > a, 
contradicting the assumption. 

Conversely, assume that x(^Q = a a n d that every closed discrete subset 
of X — I(X) has cardinality <a. Let D be a closed discrete subset of X. 
We may write 

D - I(X) = {xtf < X} 

where X < a. For each £ < À, let {^y:y < x(^0 } be an open 
neighborhood base for x^ and for each £ < X and each y < x(X), let 

<% = n 5 < y B^. 

Since Xis a Pa-space, each G^y is open in X and hence {G^'.y < x(^0 } is 

a decreasing neighborhood base for x% in X For each y < x(^0> le t 

Hy = (U^<AG^y) U (Z) n / ( * ) ) . 

It is easy to see that {Hy:y < x(^0 } is a base for the neighborhoods of D 
in X and hence Xcd(̂ Q = X(̂ Q = a-

2.19. COROLLARY. XcdW = <° if and only ifxW = <° and X — I(X) is 
count ably compact. 

A space X is tf\-compact if every closed discrete subset of X is 
countable. 

2.20. COROLLARY. If X is a P-space, then Xcd(^0 = Wi if and only ifx(X) 
^ co\ and X — I(X) is #\-compact. 

2.21. COROLLARY. If Xcd(X) = w and \I(X) \ < co, then Xz(̂ Q = <*>• 

Proof The result follows from 2.7 and 2.19. 

The following examples are devoted to showing that no arrows can be 
added to the diagram of 2.1. 

2.22. Examples, (a) There exists a space X such that 

VC(X) • xAX) • XcdW < xdX). 
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Let Y = (co, + 1) X ((oj + 1) and let X = Y - { (cob co,) }. X is 
countably compact and hence Xz(̂ Q = <° by 2.7. By 2.3, 

XcdW = X W = «i. 

Since Y is normal, 

^rc(y) = MY) ^ m = «, 
and hence ^ ( X ) i U|. Then 

< W ) • Xz(X) • Xcd(^) = «i, 

but if F = [0, Co,) X {to,}, then 

to, < x(F, X) fk Xc(X). 

(b) Let X be the Michael line (that is, the reals with all irrational points 
isolated and with all rational points having their usual neighborhoods). 
x(X) = co, but since N is both a nowhere dense zero-set and a closed 
discrete set of nonisolated points of X, 

min{ X n z W, XcdW } ^ X(N, X) > co 

by 2.17. The rationals are a closed set but not a Gg, and therefore we 
have 

co = x(X) < min {Xnz(X), XcdW, MX) }• 

(c) Let X = co U {/?} where/? G /JCO — co. X is countable and normal 
and hence ^rc(X) = co. Since {p} is a nowhere dense zero-set and since X 
is not first countable at /?, 

^C(X) < min{xW, XnzW }• 

(d) Let X = coj. By 2.7, Xz(^0 = <° a n d by 2.3, Xcd(^) = w- Since the set 
of limit ordinals is not a Gg, 

XcdW • Xz(X) < « X ) . 

Next let X = coj + 1. In this case 

Xz(X) = co < ^(X). 

(e) We use ideas from the tangent disk space and from the Arens-Fort 
space (see [17, p. 54 and p. 100] ) to construct a space X such that 

MX) < min W\X\ x W , XnzW }• 

Let X = L U P where L = R + and where P consists of all points of the 
first quadrant of the plane with rational coordinates. Let the points of P 
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be isolated while basic neighborhoods of x G L are constructed as 
follows: Let {Ak\k G co} be a partition of co into pairwise disjoint infinite 
sets. For x G L, pick (qxn:n E w), a sequence of positive rationals, such 
that in the usual topology on R, qxn —> x. Let 

Bnx = {qXj'J = n) U {x} 

and let basic neighborhoods of x be of the form Bxn — A where for some J 
c co with |/| < co, 

A = Ujej^qxm,^y.m e Aj} U u^j Fjt 

and where F]• c j ( gxm, — ) :m ^ Aj\ and |P)| < co (that is, 4̂ includes 

all but finitely many of the points of \ ( qxm, — ) \m G A} \ for all but 

finitely many j G co). As in the Arens-Fort space, X is not first countable 
at i e L. For each x G L, {X} is a nowhere dense zero-set of X ( let / (x) 

= 0>/ \ ( fe, / ) = ~> a n d / ( > ; ) = 1 if J £ ^ I * ) - Since P is dense and 

countable and L is closed discrete and uncountable, X is not normal, and 
hence co < \prc(X) ( [2, Corollary 4] ). Every open set is an Fa, and hence 

co = UX) < min{f (X) , X(X\ XnzW }• 

(f) Finally, we give an example of a space X for which 

« = XcdW < XnzW = 2". 

The same example shows that the hypothesis on isolated points cannot be 
omitted from 2.21. Let X = Y U P where Y = [0, 1] X {0} and P = [0, 1] 
X R + . For all y G [0, 1], let Ay = { (y, x):x G R + } and let the 
collection 

{X n Bx/n( (y, 0> ) - Ay'.n G N} 

(where Pi/„( (y, 0) ) is the usual l//z-ball around (y, 0) in R2) be a local 
base at (y, 0). Let points of P be isolated. Since X — I(X) = Y is compact 
and x(^0 = <°> Xcd(^) = co by 2.19. 7 is a nowhere dense zero-set of X (Y 
is clearly a G$ in the paracompact space X). We show that x(Y, X) = 2W. 
Let { Ufj; < K} be a base for the neighborhoods of Y in X and assume that 
K < 2<°. For all y G [0, 1], there exists £v < re such that Uçv <^ X - Ay. 
There is £ < K such that £ = £y for uncountably many y G [0, 1]. Then 
{y:èy = £} is discrete in [0, 1], a contradiction. 
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We give in 2.26 (a) an example of a space X for which Xnz(^0 < Xz(^0-
(Thus there is no analogue of 2.2 for Xz(̂ Q-) First, however, we need the 
following definitions and preliminary results: A space X is an almost-
P-space if every nonempty zero-set of X has nonempty interior. Clearly if 
X is an almost-P-space, then Xnz(̂ Q = <°-

2.23. PROPOSITION. If W is a z-embedded union of zero-sets of an 
almost-P-space X, then W is an almost-P-space. 

2.24. COROLLARY. If W is a cozero-set of an almost-P-space, then W is an 
almost-P-space. 

2.25. PROPOSITION. If {Za:a G / } is a family of zero-sets of a space X 
and if there exists a discrete family {Ua:a e / } of cozero-sets of X such that 
Za c Uafor all a e I, then Ua(El Za is a zero-set of X. 

2.26. Examples, (a) To obtain a space X such that Xnz(^0 < Xz(̂ 0> ^et ^ 
= j6R+ — R + , and let Xb& a proper cozero-set of Y. By [10, 3.1], Y is an 
almost-P-space, and hence so is X by 2.24. Clearly then, Xnz(^0 = C0-

By [11, 6.10], Y is connected and hence X is not compact. Since X is a 
Lindelof Fa-set in the normal space 7, X is not pseudocompact and 
therefore there exists an infinite discrete family [Un:n e <O} of nonempty 
cozero-sets of X, and for all n e <o, there exists a nonempty zero-set Zn of 
y, and hence of X, such that Zn c [/„. Then Z = U„G6J Z„ is a zero-set of 
X by 2.25. 

We show next that x(Z, X) > co. Suppose {G,7:« G to} is any countable 
collection of open sets in X containing Z. Since each Zn is closed and each 
Un n Gn is open in the connected space Y, 

Z„ £t/„ n G„. 

Pick j„ G (£/„ n G„) - Zn. Then u n e w (£/„ n Gn - {yn}) is a 
neighborhood of Z that contains no Gn. 

(b) The next example shows that a pseudocompact space can have 
uncountable (nowhere dense) zero-set character (cf. 2.7 and 4.2). In [8, 
17. 1 (c) ], van Douwen proves that if 

O(R) = {p G 0R - R:/? « CI^R ^ 

for all closed discrete subsets 4̂ of R} 

https://doi.org/10.4153/CJM-1984-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-004-1


48 MARY ANNE SWARDSON 

and if Y = R U 0(R), then Y is pseudocompact. The set N is a zero-set of 
R and R is z-embedded in Y, and hence there exists a nowhere dense 
zero-set Z of Y such that N = Z n R. We show that x(Z, y) > <o. Let 
{G>z:« G N} be any countable collection of open subsets of Y containing 
Z. For each n G N, pick 

J7» (c ,n(»- | ,» + j ) ) - N . 

For each j^ e Z — R, 

J € CI^R { J V « ^ N} 

and hence y has a neighborhood Uv in y such that 

Uy H {>;„:« G N} = 0. 

Then 

UyEZ-R £/, U U ^ N (G* H (/I - - , « + - J - {yn} ) 

contains Z but contains no member of {Gn\n e N}. 

3. Collectionwise normality and paracompactness. In this section we 
show that if the regular closed pseudocharacter and the closed discrete 
character of a space X are both countable, then X is collectionwise normal 
(cf. 3.2) and that an isocompact space with countable closed discrete 
character is paracompact. We also show that the statement "every perfect 
space with countable closed discrete character is normal" is independent 
of ZFC. 

Aull has proved the following theorems: 

3.1. THEOREM ( [2, Corollary 4] ). ^TC(X) = <o if and only if X is perfectly 
normal. 

3.2. THEOREM ( [2, Theorem 8] ). Ifxc(X) = ">, then X is collectionwise 
normal 

We will show that we can weaken the hypothesis of 3.2. 

3.3. THEOREM. If \prc(X) = XcdW = w> tnen X is collectionwise 
normal. 

Proof Let {Ff£ < /c} be a discrete collection of closed subsets of X. 
Let 
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J = {£ < K:F{: - I(X) ¥= 0}. 

By 2.19, |/| < co. Since Xis normal by 3.1, there exists a pairwise disjoint 

collection { Ufi; <E J} of open subsets of X such that F^ c U% for all £ e / . 

For £ G J, let 

and for all £ £ / , let J^ = 7^. Then {^:£ < K} is a pairwise disjoint 
collection of open sets with F% c V% for all £ < K. 

The hypothesis of 3.3 cannot be reduced to $C(X) = Xcd(^0 = 0)- I n 

fact, the statement "If \pc(X) = Xcd(^0 = w, then X is normal" is 
independent of ZFC. To prove this, we first show the following (which 
appears with a stronger hypothesis in [18, 3.1] ). 

3.4. THEOREM [MA + 1 CH]. If xpc(X) = X c d W = «, then X is 
paracompact. 

Proof. In [22, Corollary 3], Weiss proves that, under MA + 1 CH, a 
countably compact perfect space is compact. Then X is the union of a 
compact set and a set of isolated points and is therefore paracompact. 

We next give an example of a nonnormal space X for which 

MX) = XcdW = «• 

The example, due to Wage [21], is based on Ostaszewski's space 
constructed in [15] under the set-theoretic hypothesis 

3.5. THEOREM [ ]. There exists a nonnormal space X such that 

UX) = XcdW = co. 

Proof. The space X constructed in [21] is perfect, countably compact, 
first countable and nonnormal. By 2.19, Xcd(^0 = <*>• 

A space X is isocompact if every closed countably compact subspace of 
X is compact. For example, real compact spaces [11, 5H.2], spaces with 
various weak covering properties (e.g. weakly <50-refinable spaces [3] ), and 
spaces with a Gg-diagonal [5] are all isocompact. 

3.6. PROPOSITION. If X is isocompact and if Xcd(̂ Q = w> then X is 
paracompact. 

Proof. By 2.19, X — I(X) is a closed countably compact subspace of X 
and is therefore compact. Then, as in the proof of 3.4, X is 
paracompact. 
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3.7. COROLLARY. If X is a Moore space and if Xcd(X) = w > tnen X *s 

metrizable. 

4. Countably compact and pseudocompact spaces. For the remainder of 
this paper we assume that all spaces are Tychonoff. F o r / G C*(X) we 
denote byf@ the continuous extension o f / t o fiX. We denote /3X — X by 
X*. 

Although pseudocompact spaces need not have countable zero-set 
character (see 2.26 (b) ), zero-sets in a pseudocompact space do have a 
countable base for their cozero-set neighborhoods (4.2). 

4.1. PROPOSITION. Let X be a space and letf e C*(X). Then c l ^ Z ( / ) = 
Z(fP) if and only if&fis a base for the cozero-set neighborhoods of Z(f) in 
X. 

Proof If c l ^ Z ( / ) = Z(f\ then by 2.7, Sip is a base for the 
neighborhoods of c l ^ Z ( / ) in fiX. Let Z ( / ) c P where P is a cozero-set 
of X. Since Z ( / ) is completely separated from X — P, there exists B e <%f$ 
such that 

clfix Z(f) ^ B a fix- c\pX(X- P). 

Then 5 n l G ^ a n d Z ( / ) c 5 n X c P. 
Conversely, suppose there exists /? G Z(f^) — c l ^ Z ( / ) . Let Z be a 

zero-set neighborhood of/? in fiX which misses Z ( / ) . Then Z ( / ) c X — Z 
but for all 5 G J/ , 5 n Z ^ 0. 

4.2. THEOREM. A space X is pseudocompact if and only if for all f e 
C(X), &j is a base for the cozero-set neighborhoods of Z(f) in X. 

Proof Let X be pseudocompact and l e t / e C(X). By 4.1, it suffices to 
show that 

<% Z(f) = Z(f). 

Suppose, on the contrary, that 

p e Z(f) - c l ^ Z ( / ) . 

Let Z be a zero-set neighborhood oîp in fiX such that Z n Z ( / ) = 0. We 
may pick, recursively, for all n e N, X„ and (/„ such that £/w is an open set 
in X, p <£ c\pX Um and 

xn G i/„ c cl i/„ c ( W - - , - ) n z n *) - u7<A7 cl ur 
\ n n / J J 
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Then {Un:n e N} is an infinite locally finite collection of open subsets of 
X, contradicting the assumption that X is pseudocompact. 

Conversely, assume that Xis not pseudocompact and let D = {xn\n <E 
N} be a copy of N that is C-embedded in X [11, 1.21]. Define/:/) -> R by 
f(x2n) = \ln a nd/(*2j?-i) = 0> a n d l e t ^ = {x2,2:ft e N}. There exists g 
e C*(X) such that g|D = / . Since A n Z(g) = 0 and since ^ is 
C-embedded in D and hence in X, A and Z(g) are completely separated in 
X. Therefore there exists a zero-set Z of X with ,4 c Z and Z n Z(g) = 0. 
Then Z(g) c ^ - Z but for all « G N, 

g - M - - , - ) D Z ^Û 
\ n n J 

and thus â?g is not a base for the cozero-set neighborhoods of Z(g) in 
X 

4.3. COROLLARY. V4 space X is pseudocompact if and only if for all f e 
C(X), 

c\px Z(f) = Z(f). 

The preceding corollary is no doubt reasonably well known. (That c l ^ 
Z(f) = Z(fP) in pseudocompact spaces is a consequence of [11, 8.8 (b) ], 
but no proof of the converse in the literature is known to the author.) 

Our next result is a characterization of countably compact spaces 
analogous to that of 4.2 for pseudocompact spaces. 

4.4. THEOREM. A space X is countably compact if and only if for all f e 
C(X), <%f is a base for the neighborhoods of Z(f) in X. 

Proof Assume that for a l l / <= C(X), <%fis a base for the neighborhoods 
of Z(f) in X. By 4.2, X is pseudocompact. Suppose now that X is not 
countably compact and let A = {xn\n e N} be an infinite closed discrete 
subset of X. Since X is completely regular, by 2.16 there exists a pairwise 
disjoint collection {Pn\n e N} of cozero-sets of X with xn e Pn for all n 
G N. Let 

z = nnŒN(X - p n ) . 

There exis ts / <= C*(Ar) such that Z = Z ( / ) . We show next that 

clpxA n el/,* Z ( / ) * 0. 

Suppose, on the contrary, that A c P and Z ( / ) c P ' where P and P' are 
disjoint cozero-sets of X. Then {P n Pw:« e N} is an infinite discrete 
family of open sets of X, contradicting that X is pseudocompact. 
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Hence there exists p e c l ^ A n c\px Z(f) a n d therefore for all n e. 
N, 

r'( - - . - ) n^#0. 

Then Z ( / ) c X — A but X — A contains no member of J/; contradicting 
the assumption. The converse is given by 2.7. 

We note that if X is normal, then any base for the cozero-set 
neighborhoods of a zero-set Z is a base for the neighborhoods of Z. A 
consequence of 4.2 and 4.4, then, is the well-known fact that a 
pseudocompact normal space is countably compact. 

The next result gives sufficient conditions for the converse of 2.7. 

4.5. PROPOSITION. If X is normal, \p(X) = co, and I(X) = 0, then X is 
pseudocompact if and only if Xz(X) = Cû-

Proof Suppose Xis not pseudocompact. Let {Un:n e CO} be an infinite 
discrete collection of nonempty open subsets of X. Pick xn G Un and let Z 
= {xn:n G co}. Since \p(X) = co, Z is a closed Gg and thus a zero-set of X, 
but x(Z, X) > co by 2.17. 

5. Zero-sets and a+-closed sets in /iX. There are at least two questions 
concerning the relation between zero-sets of X and zero-sets of fiX: (1) 
When is c l ^ Z a zero-set in fiX if Z is a zero-set of XI (2) When does c l ^ 
Z(f) = Z(fl) for fe C*(X)? 

Answers to these two questions have been given by several authors: We 
gave an answer to (2) in 4.1, Rudd in [16] has given several conditions 
equivalent to c l ^ Z ( / ) = Z(f&), and in [20, Lemma 5], Terada has shown 
that if X is realcompact, then cl^x Z ( / ) is a zero-set of fiX if and only 
if 

X (Z( / ) , X) = co. 

( [20] is concerned with the question of when fiX is Oz for an Oz-space X 
(see Section 6 for the definition of an Oz-space). Neighborhood bases for 
regular closed subsets of X play a role in [20]. For example, if one 
defines 

Xrc(^0 = suP{x04> X)\ A is a regular closed subset of X}, 

then [20, Corollary 1] can be phrased as follows: For a normal space X, fiX 
is Oz if and only if Xrc(^0 = <*>•) 
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We are interested here in a question which is more general than (1): If a 
subset P of X is the intersection of <a zero-sets of X, is c\pX P the 
intersection of <a zero-sets of 13X1 We need the following definitions: We 
say that a subset S of a space X is well-embedded in X if S is completely 
separated in Xfrom every disjoint zero-set of X [14, 6.1]. For example, it is 
known that every zero-set, every C-embedded subset, and every pseudo-
compact subset of X is well-embedded in X. 

Let a be an infinite cardinal. A subset A of X is a-open in X if A is the 
union of <a cozero-sets of X, and A is a-closed if X — A is a-open. (Thus 
an coj-open set is a cozero-set, and an coj-closed set is a zero-set.) A subset 
A of Xis a Ga-set in XïîA is the intersection of <a open sets in X. (Hence 
a Geo,-set in X is a Gg-set in X) 

The results below will be applied in [19]. 
Our first lemma generalizes the well-known fact that every closed Gg-set 

in a normal space is a zero-set. The simple proof is omitted. 

5.1. LEMMA. Every closed Ga-set in a normal space X is a-closed in X. 

5.2. THEOREM. If F is a well-embedded subset of a space X, then the 
following are equivalent: 

(a) c\px F is a + -closed in fiX. 
(b) F has a cozero-set base of cardinality ^a for its cozero-set 

neighborhoods. 

Proof (a) =̂> (b). If c l ^ F is a+ -closed in fiX, then 

iKcl^ F, PX) S a 

and hence, by 2.13, 

Xidpx F, 0X) S a. 

Since /?Xis normal, cl^x Phas a cozero-set neighborhood base {Qf£ < a} 
in /3X. We will show that {Q^ n X:£ < a} satisfies (b). Let F c P, where 
P is a cozero-set of X Since P is well-embedded in X, there exists £ < a 
such that 

d / j ^ c Ô£ c £ X - c V ( X - P). 

Clearly then, P c g | n X c P. 
(b) => (a). Let {P^:£ < «} be a cozero-set base for the cozero-set 

neighborhoods of P in X By 5.1, it suffices to show that 

dfix F = nç<a(pX - c\px (X - P$ ). 

Since P is well-embedded in X, 
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dpxFt ni<a(px- clpx(X-Pd). 

Now suppose p £ clpx F. Let Z be a zero-set neighborhood of p in ftX 
which misses F. There exists £ < a such that 

F c />£ c X - Z, 

and hence p <£ c\pX P%- Then 

p £ n { < 0 ( j 8 * - c l ^ ( ^ - Pj)). 

5.3. COROLLARY. If F is a closed subset of the normal space X, then the 
following are equivalent: 

(a) c l ^ F is a^ -closed in fiX. 
(b) X(i% X) ^ a. 

5.4. COROLLARY. If F is a closed subset of the normal space X, then c\pX F 
is a zero-set of {IX if and only if ' x(F, ^0 = °>. 

6. Extremally disconnected spaces. A space X is extremally disconnected 
if every open subset of X is C*-embedded in X [11, 1H.6], and X is an 
F-space if every cozero-set of Xis C*-embedded in X [ l l , 14.25]. Clearly if 
Xis extremally disconnected, then Xis an F-space. It is known [11, 6M.1 
and 14.25] that Xis extremally disconnected (resp. an F-space) if and only 
if fiX is extremally disconnected (resp. an F-space). 

In this concluding section we will show that an extremally disconnected 
hereditarily normal space X is close to being discrete. The additional 
hypotheses needed are a mild cardinality restriction and the requirement 
that XnzW = «-

We need the following results: 

6.1. THEOREM ( [7, 9.3] ). If X is locally compact and nonpseudocompact, 
then X* is not extremally disconnected. 

6.2. PROPOSITION. If X is an F-space and if Z is a nonempty nowhere 
dense zero-set of ftX, then Z is not extremally disconnected. 

Proof If Z is a nonempty nowhere dense zero-set of fiX, then fiX — Z is 
a nonpseudocompact locally compact subset of fiX = fi(flX — Z). Hence 
by 6.1, Z = (fiX — Z)* is not extremally disconnected. 

6.3. PROPOSITION. If X is a normal F-space, and if Z is a nonempty 
nowhere dense zero-set of X with x(Z, X) = co, then Z is not extremally 
disconnected. 
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Proof. By 5.4, c\px Z is a nonempty nowhere dense zero-set of fiX and 
therefore c l ^ Z = /?Z is not extremally disconnected by 6.2. Hence Z is 
not extremally disconnected. 

6.4. PROPOSITION. If X is normal and hereditarily extremally disconnected 
and if Xnz(^0 = <°> then X is an almost-?-space. 

Proof. If X is not an almost-P-space, then there exists a nonempty 
nowhere dense zero-set Z of X. Since x(Z, X) = co, Z is not extremally 
disconnected by 6.3, contradicting that X is hereditarily extremally 
disconnected. 

A space X is Oz if every open subset of X is z-embedded in X. Clearly 
every extremally disconnected space is Oz. X is cellularly Ulam-
nonmeasurable if every cellular family in X has Ulam-nonmeasurable 
cardinality. In [4, 5.12], Blair has proved that every Oz almost-P-space of 
Ulam-nonmeasurable cardinality is discrete. The proof in [4] is actually of 
the following stronger result: 

6.5. THEOREM ( [4, 5.12] ). If X is a cellularly Ulam-nonmeasurable Oz 
almost-P-space, then X is discrete. 

6.6. THEOREM. If X is a cellularly Ulam-nonmeasurable extremally 
disconnected hereditarily normal space with Xnz(^0 = W> then X is 
discrete. 

Proof. By [9, 6.2 G(c) ], Xis hereditarily extremally disconnected and by 
6.4, X is an almost-P-space. The result then follows from 6.5. 

6.7. Examples. We give examples to show that none of the hypotheses of 
6.6 can be omitted. (None of the spaces described below is discrete.) 

(a) In view of 2.7, the ordinal space co\ satisfies all of the hypotheses of 
6.6 except that co\ is not extremally disconnected. 

(b) ficô satisfies all of the hypotheses of 6.6 except that it is not 
hereditarily normal. 

(c) The space X of 2.22 (c) satisfies all of the hypotheses of 6.6 except 
that {p} is a nowhere dense zero-set of X with x(p, ^0 > w. Note also 
that since X is perfect, the hypothesis Xnz(^0 = <*> cannot be omitted, even 
if X is perfectly normal. 

(d) Let X = D(fi) U {/?} where D([i) is the discrete topology on /x, the 
first Ulam-measurable cardinal, and where p G VD(II) — D(p). X is an 
extremally disconnected hereditarily normal [4, 4.8] P-space and hence 
Xz(^0 = o)- Thus the hypothesis that X is cellularly Ulam-nonmeasurable 
cannot be omitted. 
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6.8. Remark. Note that (d) is an example of a space which is extremally 
disconnected and hereditarily normal but not perfectly normal. The 
referee of this paper has asked if there exists such a space of 
nonmeasurable cardinality. This question is related to one asked by Blair 
in [4, 4.2(a) ]. He defines a space X to be weakly perfectly normal if every 
subset of X is z-embedded in X and asks if there is a weakly perfectly 
normal space of nonmeasurable cardinality which is not perfectly normal. 
By [4, 4.11], if a space is extremally disconnected and hereditarily normal, 
then it is weakly perfectly normal, and hence an affirmative answer to the 
referee's question would answer Blair's question. In [4, 4.4], Blair observes 
that an affirmative answer to his question is implied by the existence of a 
weakly perfectly normal space of nonmeasurable cardinality which is not 
realcompact. While O does imply the existence of such a space ( [4, 4.10] ), 
the question, without extra set-theoretical assumptions, remains open. 
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