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FULLY 3D FLUID OUTFLOW FROM A SPHERICAL SOURCE
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Abstract

We consider fully three-dimensional time-dependent outflow from a source into a
surrounding fluid of different density. The source is distributed over a sphere of
finite radius. The nonlinear problem is formulated using a spectral approach in which
two streamfunctions and the density are represented as a Fourier-type series with
time-dependent coefficients that must be calculated. Linearized theories are also
discussed and an approximate stability condition for early stages in the outflow is
derived. Nonlinear solutions are presented and different outflow shapes adopted by the
fluid interface are investigated.

2020 Mathematics subject classification: 76E17.
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1. Introduction

When a compact source of incompressible fluid is placed within a second incompress-
ible fluid, then at some appropriate distance away, the outflow often behaves as if the
source were simply a mathematical point singularity. Thus, if the source produces fluid
at some rate QS (volume per time), then at some distance r from the source, there will
be a radial outflow of (approximate) speed QS/(4πr2). However, if the fluid issued
from the source differs in density from the ambient fluid, then some type of interfacial
region will be formed between the two and will move outwards with some shape which
might not necessarily be a simple sphere.

Modelling the idealized problem of a point source embedded in a different ambient
fluid, in the presence of an interface between the fluids, is in a sense a fundamental
problem in free-surface hydrodynamics. Although it is simple to conceptualize and can
be modelled with a straightforward system of well-known equations, it is nevertheless
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highly nonlinear, due to the presence of the interface, so its solutions are difficult to
calculate and its behaviour may be unexpected. This outflow problem merits study in
its own right and is also related to a range of situations of scientific interest, particularly
in astrophysics and geophysics where there may also be a gravitational field directed
inwards towards the source. In that case, the situation is one in which a light fluid is
driven, by the source, out into a heavier ambient fluid, against the inward acceleration
of gravity. Thus, it constitutes a type of spherical Rayleigh–Taylor instability.

In the original problem of Rayleigh [23] and Taylor [25], two horizontal sheets
of inviscid fluid were pictured, separated by an infinitesimally thin flat interface.
A density jump was present at the interface, and the entire fluid system was subject
to the acceleration of gravity. A small perturbation to the interface is stable if the
lower fluid is the heavier of the two. However, if the upper fluid is the heavier, then
the system experiences the Rayleigh–Taylor (RT) instability and the small disturbance
grows rapidly. In the linearized theory of Rayleigh and Taylor, in which disturbances to
the interface are supposed to be small, the theory nevertheless predicts that the unstable
growth occurs exponentially rapidly; clearly, the linearized theory fails to be valid
within some finite time and nonlinear effects then dominate. An enormous volume
of literature now exists on this unstable flow, and the review article by Andrews and
Dalziel [3] identifies three stages of the development of RT unstable flow for density
ratios close to one. In the first stage, for early times, the growth is indeed exponential,
as predicted by the linearized theory discussed above. However, a second stage in
RT mixing exists, in which the amplitude of the disturbance saturates, and instead,
Fourier modes involving longer wavelengths are entrained. Andrews and Dalziel [3]
also identify a third stage in RT flows, in which the growing bubble tip becomes
self-similar. A very detailed review of Rayleigh–Taylor and related instabilities is given
by Zhou [28, 29]. Furthermore, the RT instability can occur over distances that differ
across hundreds of orders of magnitude, as indicated by Kelley et al. [16].

The RT instabilities can occur in geometries other than the original planar case
studied by Rayleigh [23] and Taylor [25]. In addition, fully three-dimensional RT
instabilities can also occur on a surface, and these are reviewed by Zhou [29].
A question of interest concerns the extent to which initial conditions affect the flow
properties at later times and the degree to which memory of initial perturbations
might be lost if, indeed, RT outflow is ultimately dominated by the formation of
self-similar structures. Zhou [29] presents a detailed discussion of this point, and
reviews the differing opinions and the extensive experimental and numerical findings
underpinning them. Forbes [9] considered a cylindrical RT instability, in which a line
source lying along the z-axis produced an outflow of less-dense fluid into a denser
ambient fluid, and investigated the growth of modal periodic disturbances around the
otherwise cylindrical interface. He found a strong dependence on initial conditions
and observed that a mode-n perturbation on the cylinder would ultimately lead to
the formation of n jets of light fluid around the cylinder, each of which formed an
overturning mushroom-shaped structure at its tip. Forbes [10] then considered the
analogous problem in spherical geometry, in which a point source of less-dense fluid
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was embedded in a heavier ambient fluid, and there he obtained a very different
outcome. He undertook a linearized stability analysis of small perturbations to the
spherical interface and obtained a stability equation that had been derived earlier
by Mikaelian [19]. He demonstrated that this stability equation, for many choices of
parameters, predicted that the first spherical mode had the highest growth rate and
was therefore the most unstable. Forbes [10] argued that the mode-coupling effects of
nonlinearity would eventually result in the first mode being excited, regardless of initial
conditions, so that the long-term disturbance would be dominated by the first spherical
mode, giving a one-sided jet emerging from the sphere. This was indeed observed in
many of Forbes’ numerical solutions of a viscous model based on the Boussinesq
equations. Later, Forbes and Brideson [12] and Forbes [11] investigated the extent to
which straining and rotation of the outer ambient fluid could alter these one-sided
morphologies. Nevertheless, one-sided outflows in astrophysical circumstances have
been predicted numerically (Lovelace et al. [18]) and observed experimentally by
Gómez et al. [14] and Bietenholz et al. [6] (who also found that the outflow region
behaved as a point source in their measurements).

This key difference between planar and spherical RT outflows is believed to be
of importance in geophysical and astrophysical applications. In an early model of
motion within the Earth’s core, Jeffreys and Bland [15] considered linearized equations
describing flow within a sphere of viscous self-gravitating fluid, heated at its centre.
They found that the lowest spherical mode n = 1 is indeed the most unstable, so that
asymmetrical features could develop within the Earth, and they saw this as a possible
explanation for the presence of continents at the Earth’s surface. Chandrasekhar [7]
developed this theme by studying flow of a (highly) viscous fluid within a sphere,
in which the fluid is incompressible and subject to radially directed acceleration.
He found that for a fluid of sufficiently high viscosity, maximum instability again
occurs at the first spherical mode n = 1. It is interesting that Chandrasekhar’s [7]
conclusion, concerning the n = 1 mode, is qualitatively similar to that obtained by
Forbes [10] whose linearized analysis ignored viscosity altogether. More recently,
Mondal and Korenaga [20] have presented an analysis of the full dispersion relation
for the linearized RT instability of a two-fluid Newtonian viscous fluid system in
spherical geometry, and Terrones and Heberling [26] contrast the behaviour of such
a spherical arrangement of fluids with that of the corresponding planar flow. They
also demonstrate that the first spherical mode n = 1 is often the most unstable, even
when the two fluids have extremely different viscosities and the inner “core” fluid is
allowed to be of arbitrarily large viscosity. A recent paper by Oren and Terrones [21]
has indicated that the presence of an outer boundary can affect the stability of the
system, as predicted by linearized theory, however, and for a finite-depth outer fluid,
the lowest mode n = 1 may no longer necessarily be the most unstable. These results
have obvious relevance to geophysical modelling of the Earth’s mantle and core.

Approximating the outflow region as a mathematical point source poses problems
for any numerical solution scheme, since this creates a singularity within the flow.
In the axisymmetric outflows studied by Forbes [10, 11] based on the use of a single
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streamfunction, this singularity was able to be incorporated directly into a numerical
spectral representation of the streamfunction and the fluid velocity components, and
the effects of the singularity at the source could be dealt with in a fairly straightforward
manner. In fully three-dimensional flow, however, a minimum of two streamfunctions
is required, as will be discussed in Section 3, and the effects of the singularity at
the point source turn out to be much more difficult to ameliorate. Consequently,
we consider a finite-sized source region, over which the fluid speeds remain finite,
but nevertheless produces a finite flux, as for the point source. This formulation
is discussed in Section 2 and an approximate stability criterion for a source of
finite radius is derived in Section 5. This paper therefore aims to contribute to the
discussion concerning the influence of initial conditions, by taking into account two
extra factors, namely, the effects of finite-sized source regions and the influence
of fully three-dimensional geometry upon the eventual outflow morphologies. This
is a computationally intensive aim, and we have made use of a high-performance
computer that can accommodate large-scale parallelization of our solution algorithm
on a graphics processor unit. Some results are displayed in Section 7. A discussion in
Section 8 concludes this paper.

2. Boussinesq outflow model

We consider a finite-sized fluid source distributed over some sphere of radius RS. Its
total flux is QS (volume per time) and it also possesses a total mass MS. Outside that
source radius, the fluid is regarded as incompressible and is viscous, with dynamic
viscosity μ. We therefore postulate a background flow, produced by the distributed
source, of the form

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
qS =

QSr
4πr3 for r > RS

qS =
QSrr

4πR4
S

for r < RS.
(2.1)

Here, the source velocity vector is denoted qS. The vector r = xi + yj + zk is the usual
position vector of a point measured from the origin of a Cartesian coordinate system
(positioned at the centre of the source sphere) and r =

√
x2 + y2 + z2 is its length. Since

the divergence of the vector qS in (2.1) is positive within the source sphere r < RS,
then mass is being created in that region, as desired. This background velocity (2.1) is
directed purely radially, and is continuous at the edge surface r = RS. The mass density
of the fluid is denoted ρ(x, y, z, t) and is assumed to be constant at the same reference
value ρ1 inside the source sphere r < RS. By integrating the divergence divqS of the
source velocity in (2.1) over the source sphere, it is straightforward to show that the
mass outflow per time generated by this source is ρ1QS, as is to be expected. Finally,
we suppose that at the initial time t = 0, the inner fluid with density ρ1 occupies a
spherical region r < a which completely contains the distributed source r < RS so that,
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necessarily, RS < a. There is an interface at r = a and some outer ambient fluid with
density ρ2 beyond the interface in the domain r > a.

In the Boussinesq approximation, the two-fluid medium with its interface between
the fluids is modelled as a single fluid with a density that is a smoothly varying
continuous function. The interface is therefore replaced by a narrow zone in which
the density changes smoothly and rapidly from ρ1 in the inner fluid to ρ2 in the outer
layer. Furthermore, it is assumed that the density variation is only slight, so that the
total density function can be written as

ρ(x, y, z, t) = ρ1 + ρ(x, y, z, t),

in which the perturbation function ρ is small relative to the density ρ1 of the inner
fluid, which is now used as a reference quantity.

Dimensionless variables are now introduced. All lengths are scaled relative to the
radius a of the initial sphere of inner fluid. Rather than use the source flux QS in (2.1)
as a scaling quantity, we instead introduce some arbitrary flux Q0 (with the dimensions
of volume per time), since this then allows the source to be removed simply by setting
QS = 0 if desired. Speeds are nondimensionalized relative to the quantity Q0/a2 and
time is measured as a fraction of a3/Q0. The density ρ and pressure p are scaled using
ρ1 and ρ1Q2

0/a
4, respectively. It will be seen that the solution to this problem will be

governed by the six dimensionless constants:

f� =
QS

Q0
, D =

ρ2

ρ1
, rS =

RS

a
,

Re =
ρ1Q0

μa
, F2 =

Q2
0

GMa3 , σ =
Ka
Q0

.

(2.2)

Clearly, the first parameter f� is the source flux made dimensionless with respect to the
(arbitrary) flux Q0; in practice, this quantity would simply be one unless there is no
source, when it would become zero. The density ratio is D and the quantity rS gives
the nondimensional radius of the source sphere, and it is assumed that rS < 1 so that
the source is wholly contained within the inner fluid. The Reynolds number for this
viscous flow is Re and it varies inversely with the fluid viscosity μ. For the results to be
presented in this paper, the dynamic viscosity μ is taken to be constant throughout the
fluid domain so that both the source and the ambient fluids have the same viscosity.
We have also defined a Froude number F based on the gravitational constant G and the
massM of the distributed source, and finally, it is convenient to introduce a parameter
σ that measures the density diffusion rate K in a dimensionless manner.

In these dimensionless coordinates, it is convenient to represent the velocity vector
q as the sum

q = qS +Q, (2.3)
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in which the source velocity is obtained from (2.1) in the dimensionless form
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qS =
f�r

4πr3 for r > rS

qS =
f�rr

4πr4
S

for r < rS,
(2.4)

and the correction velocity Q is incompressible, so that

div Q = 0. (2.5)

It is convenient to represent the source velocity and the correction velocity vectors in
terms of their Cartesian components and accordingly,

qS = uSi + vSj + wSk,
Q = Ui + Vj +Wk.

In Boussinesq theory, the density perturbation function ρ satisfies the transport
equation

∂ρ

∂t
+ q · ∇ρ = σ∇2ρ, (2.6)

and the Navier–Stokes–Boussinesq equation that approximates the conservation of
linear momentum in this theory takes the form

∂q
∂t
+ (q · ∇)q + ∇p = (1 + ρ)GS +

1
Re
∇2q. (2.7)

In this expression, GS represents the gravitational force per mass due to the distributed
source (of dimensional mass M, as in (2.2)). To simplify matters, we have approxi-
mated this gravitational acceleration with the form

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
GS = −

1
F2

r
r3 for r > RS

GS = −
1

F2

rr

r4
S

for r < RS,
(2.8)

mimicking to some extent the form (2.4) assumed for the outflow velocity vector
produced by the source.

We now follow Forbes and Brideson [13] and Walters and Forbes [27], and satisfy
the requirement (2.5) identically, using two streamfunctions Ψ(x, y, z, t) and χ(x, y, z, t)
and expressing the correction velocity vector as Q = curl A with vector potential
A = Ψi + χj. Thus, the three correction velocity components can be written as

U = −∂χ
∂z

, V =
∂Ψ

∂z
, W =

∂χ

∂x
− ∂Ψ
∂y

. (2.9)
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The pressure p is now removed from further consideration by taking the vector curl of
the momentum equation (2.7). We define the vorticity vector ζ = curl q, and making
use of (2.4) shows that

ζ = curl q = curl Q ≡ ζXi + ζY j + ζZk. (2.10)

Now the curl operator applied to the Navier–Stokes–Boussinesq equation (2.7) gives
rise to the Boussinesq vorticity equation

∂ζ

∂t
+ (div q)ζ + (q · ∇)ζ − (ζ · ∇)q = ∇ρ ×GS +

1
Re
∇2ζ. (2.11)

Although this vorticity equation (2.11) has three components, it turns out that only two
of these are independent; if the first component is differentiated with respect to x and
the second with respect to y and these are added, the result is the z-derivative of the
third component. This requires a significant amount of algebra to accomplish, but it is
nevertheless true because of the vector identity

div ζ = div curl Q = 0.

Thus the vorticity equation (2.11) reduces to a system of two partial differential
equations essentially for the two streamfunctionsΨ and χ. The transport equation (2.6)
then represents a third equation to be solved for the density perturbation function ρ.

3. Numerical solution technique

The numerical solution of a nonlinear system of fluid-mechanical equations in three
space and one time variable is a demanding, computer-intensive task, and can only
succeed if the numerical algorithm is both efficient and parallelizable. Originally,
we intended to use spherical polar coordinates as in Forbes [10], but the coordinate
singularity at the origin, in these coordinates, quickly renders the numerical algorithm
too inefficient in three-dimensional space. Accordingly, we have instead elected
to use three-dimensional Cartesian coordinates and base our numerical approach
around a spectral representation of the fluid variables in this simpler geometry.
A Cartesian-based technique has also been used by Lin et al. [17] to model the motion
of the core and mantle of planets, although their method is based around the use of
a finite-difference package. In addition, they consider two-dimensional geometry only
and neglect the inertial terms in the equations of motion, thus effectively solving a
linearized approximate model.

Therefore, to solve our system of three nonlinear partial differential equations, we
first impose a cubical Cartesian “computational box” over the domain −L < x < L,
−L < y < L, −L < z < L centred at the origin. Since the inner fluid initially lies in a
sphere of dimensionless radius 1 and the distributed source is contained within that
sphere, we require rS < 1 < L. The two streamfunctions in (2.9) are now represented
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spectrally as

χ(x, y, z, t) =
M∑

m=1

N∑
n=1

P∑
p=1

Amnp(t) cos(αm(x + L)) cos(αn(y + L))

× sin(αp(z + L)),

Ψ(x, y, z, t) =
M∑

m=1

N∑
n=1

P∑
p=1

Bmnp(t) sin(αm(x + L)) sin(αn(y + L))

× sin(αp(z + L)),

(3.1)

with

αm =
mπ
2L

, αn =
nπ
2L

, αp =
pπ
2L

. (3.2)

To aid computational efficiency, the numbers of Fourier modes in each variable are
taken to be equal, M = N = P, so that only the one vector α needs to be calculated, to
accommodate all the terms in (3.2) required to evaluate the series (3.1). An appropriate
spectral representation for the density perturbation function ρ can be difficult to find
since it must be completely general. After some experimentation, it was decided to
choose

ρ(x, y, z, t) =
M∑

m=0

N∑
n=0

P∑
p=0

Cmnp(t) cos(αm(x + L)) cos(αn(y + L))

× cos(αp(z + L)).

(3.3)

From (2.9) and (3.1), the three correction velocity components now become

U(x, y, z, t) = −
M∑

m=1

N∑
n=1

P∑
p=1

αpAmnp(t) cos(αm(x + L)) cos(αn(y + L))

× cos(αp(z + L)),

V(x, y, z, t) =
M∑

m=1

N∑
n=1

P∑
p=1

αpBmnp(t) sin(αm(x + L)) sin(αn(y + L))

× cos(αp(z + L))

(3.4)

and

W(x, y, z, t) = −
M∑

m=1

N∑
n=1

P∑
p=1

[αmAmnp(t) + αnBmnp(t)] sin(αm(x + L))

× cos(αn(y + L)) sin(αp(z + L)). (3.5)
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The three components of the vorticity vector in (2.10) can also be obtained by
straightforward differentiation. This gives

ζX(x, y, z, t) =
M∑

m=1

N∑
n=1

P∑
p=1

ZX
mnp(t) sin(αm(x + L)) sin(αn(y + L)) sin(αp(z + L)),

ζY (x, y, z, t) =
M∑

m=1

N∑
n=1

P∑
p=1

ZY
mnp(t) cos(αm(x + L)) cos(αn(y + L)) sin(αp(z + L)),

ζZ(x, y, z, t) =
M∑

m=1

N∑
n=1

P∑
p=1

ZZ
mnp(t) cos(αm(x + L)) sin(αn(y + L)) cos(αp(z + L)), (3.6)

in which we have defined the auxiliary Fourier coefficients

ZX
mnp(t) = αmαnAmnp(t) + (α2

n + α
2
p)Bmnp(t),

ZY
mnp(t) = αmαnBmnp(t) + (α2

m + α
2
p)Amnp(t),

ZZ
mnp(t) = αp(αmBmnp(t) − αnAmnp(t)).

(3.7)

The components of the fluid velocity vector are obtained from (2.3) by adding the
contributions (uS, vS, wS) from the distributed source to the correction components
calculated in (3.4) and (3.5).

The first two components of the vorticity equation (2.11) are now subjected to
Fourier analysis. From the computational viewpoint, it is convenient to write these
in the forms

∂ζX

∂t
= NX +

1
Re

(
∂2ζX

∂x2 +
∂2ζX

∂y2 +
∂2ζX

∂z2

)
,

∂ζY

∂t
= NY +

1
Re

(
∂2ζY

∂x2 +
∂2ζY

∂y2 +
∂2ζY

∂z2

)
,

(3.8)

in which the nonlinear convective terms have been collected in the two auxiliary
functions

NX ≡ −(div q)ζX +

(
ζX ∂u
∂x
− u
∂ζX

∂x

)

+

(
ζY ∂u
∂y
− v
∂ζX

∂y

)
+

(
ζZ ∂u
∂z
− w
∂ζX

∂z

)
+ ΓX ,

NY ≡ −(div q)ζY +

(
ζX ∂v
∂x
− u
∂ζY

∂x

)

+

(
ζY ∂v
∂y
− v
∂ζY

∂y

)
+

(
ζZ ∂v
∂z
− w
∂ζY

∂z

)
+ ΓY .

(3.9)
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The third component of the vorticity equation (2.11) is linearly dependent on the
first two components in (3.8) and so adds no new information. In these expressions,
the quantity div q is calculated from (2.4) and (2.5). It becomes

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
div q = 0 for r > rS

div q =
f�
πr4

S

√
x2 + y2 + z2 for r < rS.

We have also defined the vector

ΓXi + ΓY j + ΓZk = ∇ρ ×GS

with the gravitational acceleration GS defined in (2.8). The first component of this
vector is ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ΓX = − 1
F2

z(∂ρ/∂y) − y(∂ρ/∂z)
[x2 + y2 + z2]3/2 for r > rS,

ΓX = − 1
F2r4

S

[z(∂ρ/∂y) − y(∂ρ/∂z)]
√

x2 + y2 + z2 for r < rS,

and the other two components are obtained similarly. The first equation in the system
(3.8) is multiplied by the basis function

sin(αk(x + L)) sin(α�(y + L)) sin(αq(z + L)),

and integrated over the “computational cube” −L < x, y, z < L. This results in the
system of differential equations

dZX
k�q(t)

dt
= − 1

Re
Δ2

k�qZX
k�q(t)

+
1
L3

∫ L

−L

∫ L

−L

∫ L

−L
NX sin(αk(x + L)) sin(α�(y + L)) sin(αq(z + L)) dx dy dz,

k = 1, . . . , M, � = 1, . . . , N, q = 1, . . . , P. (3.10)

Similarly, the second of the equations in the system (3.8) is multiplied by the basis
function

cos(αk(x + L)) cos(α�(y + L)) sin(αq(z + L)),

and integrated to give

dZY
k�q(t)

dt
= − 1

Re
Δ2

k�qZY
k�q(t)

+
1
L3

∫ L

−L

∫ L

−L

∫ L

−L
NY cos(αk(x + L)) cos(α�(y + L)) sin(αq(z + L)) dx dy dz,

k = 1, . . . , M, � = 1, . . . , N, q = 1, . . . , P. (3.11)
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In these equations, the Fourier coefficients ZX
k�q(t) and ZY

k�q(t) for the vorticity vector
are those defined in (3.7), and it is also convenient to define constants

Δ2
k�q = α

2
k + α

2
� + α

2
q. (3.12)

Systems of differential equations for the original Fourier coefficients Ak�q(t) and Bk�q(t)
are recovered from the differential equations in (3.10), (3.11) by differentiating and
rearranging the first two equations in (3.7). This yields

dAk�q(t)
dt

=
1

α2
qΔ

2
k�q

[
(α2
� + α

2
q)

dZY
k�q(t)

dt
− αkα�

dZX
k�q(t)

dt

]
,

dBk�q(t)
dt

=
1

α2
qΔ

2
k�q

[
(α2

k + α
2
q)

dZX
k�q(t)

dt
− αkα�

dZY
k�q(t)

dt

]
.

(3.13)

It remains now to undertake a similar Fourier analysis of the transport equation
(2.6). It is first multiplied by the basis function

cos(αk(x + L)) cos(α�(y + L)) cos(αq(z + L))

with k = 0, 1, . . . , M, � = 0, 1, . . . , N and q = 0, 1, . . . , P, and integrated over the
“computational cube,” as previously. After some algebra we obtain

dCk�q(t)
dt

= −σΔ2
k�qCk�q(t)

− 1
L3[1 + δk,0][1 + δ�,0][1 + δq,0]

∫ L

−L

∫ L

−L

∫ L

−L
NR cos(αk(x + L))

× cos(α�(y + L)) cos(αq(z + L)) dx dy dz,
k = 0, 1, . . . , M, � = 0, 1, . . . , N, q = 0, 1, . . . , P. (3.14)

In this expression, the convective nonlinear terms in (3.3) have been combined into the
single function

NR = u
∂ρ

∂x
+ v
∂ρ

∂y
+ w
∂ρ

∂z
, (3.15)

following the notation used in (3.9). The constants Δ2
k�q are those defined previously in

(3.12). In addition, the quantity δ0,k is the usual Kronecker delta symbol and takes the
value 1 if k = 0, but zero otherwise.

The expressions (3.13) and (3.14) represent a coupled system of 3MNP ordinary
differential equations for the three sets of Fourier coefficients Amnp(t), Bmnp(t), Cmnp(t).
These can now be integrated forward in time from some suitable initial state. Once
these coefficients have been determined, all the solution variables can be reconstructed
from their spectral representations (3.1)–(3.7). However, since the source has been
distributed over the sphere r < rS, it is required to make the perturbation density ρ
zero in that region. Therefore, at every new time step in the numerical integration
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process, the function ρ(x, y, z; t) is first created from coefficients Cmnp(t) and its Fourier
representation (3.3), and then replaced with the new perturbation density function⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ∗(x, y, z; t) = ρ(x, y, z; t) for r > rS

ρ∗(x, y, z; t) = 0 for r < rS.
(3.16)

New Fourier coefficients

C∗mnp(t) =
1

L3[1 + δm,0][1 + δn,0][1 + δp,0]

∫ L

−L

∫ L

−L

∫ L

−L
ρ∗(x, y, z; t)

× cos(αm(x + L)) cos(αn(y + L)) cos(αp(z + L)) dx dy dz (3.17)

are obtained from Fourier analysis of the new perturbation density function (3.16). The
previous density coefficients Cmnp(t) are now replaced with these new ones C∗mnp(t) and
the time-integration of the system of differential equations continues. In practice, we
sometimes apply a technique such as Lanczos smoothing to these Fourier coefficients;
this is equivalent to replacing the discontinuous function (3.16) with a function that
varies rapidly but continuously across the region of possible discontinuity.

Initial conditions for this computation usually consist of assuming that the starting
velocity is simply the background produced by the distributed source, and this
is achieved simply by setting Amnp(0) = 0, Bmnp(0) = 0. The initial “shape” of the
interfacial region is usually imposed by creating some density perturbation function⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρ(x, y, z, 0) = D − 1 for r > R0

ρ(x, y, z, 0) = 0 for r < R0,
(3.18)

and Fourier-analysing it, exactly as in (3.17), to obtain initial coefficients Cmnp(0). The
function R0 can be chosen to give the desired starting profile and we have often used

R0(φ, θ) = εPm
n (cos φ) cos(mθ) (3.19)

in spherical polar coordinates with elevation angle φ = arctan(
√

x2 + y2/z) and
azimuthal angle θ = arctan(y/x). The function Pm

n is the associated Legendre function
of the first kind, with integer indices m and n (Abramowitz and Stegun [1, page 332]).

For a fully three-dimensional computation such as this, it is generally a nontrivial
task to visualize a function such as the density perturbation ρ(x, y, z; t) at some time t,
since the function still depends on three spatial variables. Our approach is to draw a
surface at the mid-range value ρ = (D − 1)/2 and to regard this as the approximate
location of the (diffuse) interface. This is done using linear interpolation. On a grid of
mesh points (xa, yb, zc) used to evaluate the expressions and to carry out the numerical
quadratures in expressions such as (3.10), (3.11), (3.14), we fix the values of yb and zc

and consider the one-dimensional function

ρdraw(x) = ρ(x, yb, zc; t) − (D − 1)/2.
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The aim is to locate the point x∗ at which ρdraw(x∗) = 0. This is done by considering
the product

ρdraw(xa+1)ρdraw(xa)

at neighbouring mesh points. If this is negative, then the perturbation density ρ takes
its mid-range value between the two points at the approximate location

x∗ =
xaρdraw(xa+1) − xa+1ρdraw(xa)
ρdraw(xa+1) − ρdraw(xa)

. (3.20)

A marker is then drawn at the point (x∗, yb, zc), and this test is continued until every
neighbouring pair of points in the lattice has been considered. We repeat this process
in the other two variables y and z, to ensure that the full surface is represented.

4. Stability analysis for a point source

In this section, we re-cast the inviscid equations in spherical polar coordinates and
then carry out a linearized stability analysis of an interface which is now allowed to
become an infinitesimally thin surface, across which the density perturbation jumps
discontinuously from its inner value ρ = 0 to the value ρ = D − 1 outside. For purely
axi-symmetric outflow, this has been undertaken in part by Forbes [10, 11] who found
the rather remarkable result that, at least for infinite Froude number 1/F = 0, the
Fourier–Legendre mode of lowest nonspherical order n = 1 is always unstable, with
the largest growth rate; consequently, any initial shape of the interface can be expected
to evolve into a one-sided jet through either one of the two poles of a sphere centred at
the origin. Forbes’ numerical results evidently bore out that prediction in the fully
nonlinear case too. The purpose of this section is to determine what effect fully
three-dimensional geometry has on that prediction.

In the inviscid approximation 1/Re = 0, the term involving ∇2q disappears from the
Navier–Stokes equation (2.7). The source region 0 < r < rS is allowed to shrink to a
point source on the origin that nevertheless still produces the same outflow flux f� as
previously. The flow becomes irrotational everywhere in the fluid outside the singular
point source, r > 0, and so

q1 = ∇Φ1, q2 = ∇Φ2, (4.1)

in which q1 is the velocity vector inside the interface r < R(φ, θ, t), and the scalar
function Φ1(r, φ, θ, t) is its velocity potential. Close to the point source at the origin,
the flow becomes singular with

q1 →
f�r

4πr3 as r → 0. (4.2)

The velocity outside the interface r > R(φ, θ, t) is q2 and it has velocity potential Φ2 as
indicated in (4.1).
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On the interface r = R(φ, θ, t), each fluid obeys its own kinematic boundary
condition

uj =
∂R
∂t
+

wj

R
∂R
∂φ
+

vj

R sin φ
∂R
∂θ

on r = R, j = 1, 2. (4.3)

Here, the velocity components are denoted (u, w, v) in the radial r-direction, the
declination angle φ and the azimuthal θ-direction, respectively. The dynamic condition
across the interface is that the pressures either side must be equal there. Since pressures
in each fluid can be evaluated from the irrotational form of the Bernoulli equation, it
follows that the dynamical condition is

D
∂Φ2

∂t
− ∂Φ1

∂t
+

1
2

D‖q2‖2 −
1
2
‖q1‖2 −

(D − 1)
F2

1
R
=

(D − 1)f 2
�

32π2R4
0(t)
− (D − 1)

F2R0(t)
on r = R,

(4.4)

where the spherical radius function

R0(t) =
[
1 +

3f�t
4π

]1/3
(4.5)

is the radius of a purely spherical bubble of inner fluid that started with unit radius and
grew with time under the effect of the outflow flux f�.

Since the two fluids inside and outside the interface are both assumed to be
incompressible, then Laplace’s equation ∇2Φj = 0 holds for each velocity potential
j = 1, 2 in (4.1), over its domain of validity. It follows therefore that the inviscid model
has an exact solution for spherical outflow from a point source at the origin, with purely
radial velocity components

u1 = u2 =
f�

4πr2 ,

and interface location r = R0(t) obtained from (4.5). We now seek to linearize about
this base spherical outflow, postulating perturbations to it of the forms

Φ1(r, φ, θ, t) = −f�/(4πr) + εΦL
1(r, φ, θ, t) + O(ε2),

Φ2(r, φ, θ, t) = −f�/(4πr) + εΦL
2(r, φ, θ, t) + O(ε2),

R(φ, θ, t) = R0(t) + εRL(φ, θ, t) + O(ε2).

(4.6)

The dimensionless constant ε is a small parameter related to the magnitude of the
initial perturbation made to the base spherical outflow.

As a result of this linearization process (4.6), the linearized potentials ΦL
1 and

ΦL
2 still satisfy Laplace’s equation, but now in the linearized domains r < R0(t) and

r > R0(t), respectively. In spherical polar coordinates, we therefore seek solutions

ΦL
1(r, φ, θ, t) = PL

1(t)rnPm
n (cos φ) cos(mθ), r < R0(t),

ΦL
2(r, φ, θ, t) = PL

2(t)r−(n+1)Pm
n (cos φ) cos(mθ), r > R0(t),

(4.7)
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in which the two functions PL
1(t) and PL

2(t) must be determined. The perturbation RL to
the interface location in (4.6) is sought in a similar form

RL(φ, θ, t) = AL(t)Pm
n (cos φ) cos(mθ), (4.8)

where the amplitude function AL(t) must likewise be found from the boundary
conditions on the interface.

Under the linearization process (4.6), the two kinematic boundary conditions (4.3)
become

UL
1 = UL

2 =
f�
2π

RL

R3
0(t)
+
∂RL

∂t
on r = R0(t). (4.9)

In this expression, the two functions UL
1 = ∂Φ

L
1/∂r and UL

2 = ∂Φ
L
2/∂r are the linearized

perturbations to the radial component of the fluid velocity vector. The dynamic
condition (4.4) likewise linearizes to give

D
∂ΦL

2

∂t
−
∂ΦL

1

∂t
+

f�
4πR2

0(t)
[DUL

2 − UL
1 ] − (D − 1)

f 2
�

8π2R5
0(t)

RL

+
(D − 1)

F2

RL

R2
0(t)
= 0 on r = R0(t). (4.10)

The two linearized kinematic conditions (4.9) at once permit the unknown functions
PL

1(t) and PL
2(t) in the expressions (4.7) to be eliminated in favour of the amplitude

function AL(t) in (4.8). We obtain

nRn−1
0 (t)PL

1(t) =
f�
2π

AL(t)
R3

0(t)
+

dAL(t)
dt

,

−(n + 1)R−n−2
0 (t)PL

2(t) =
f�
2π

AL(t)
R3

0(t)
+

dAL(t)
dt

.

These expressions are now incorporated into the linearized dynamic condition (4.10).
After some algebra,

(Dn + n + 1)
[
R3

0(t)
d2AL(t)

dt2 +
3f�
4π

dAL(t)
dt

]

+

{
2
( f�
4π

)2
R−3

0 (t)[Dn(n − 1) − (n + 1)(n + 2)] − (D − 1)
F2 n(n + 1)

}
AL(t) = 0.

(4.11)

This is a difficult ordinary differential equation of second order for the amplitude
function AL(t) that describes the growth or decay of the linearized perturbation (4.8)
to the basic spherical outflow.

Although it is linear, the differential equation (4.11) has coefficients that are
functions of time, and this makes it difficult to treat. This is addressed by making
the spherical radius function R0(t) the independent variable, in place of time t. Using
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the chain rule of calculus and the definition (4.5) then converts (4.11) to the more
manageable form

R2
0

d2AL

dR2
0

+ R0
dAL

dR0
+ (an − bnR3

0)AL = 0, (4.12)

in which the two additional constants have been defined to be

an =
2[Dn(n − 1) − (n + 1)(n + 2)]

(Dn + n + 1)
,

bn =
(D − 1)

F2

(4π
f�

)2 n(n + 1)
(Dn + n + 1)

.
(4.13)

Several cases of interest now present themselves based on this equation.

4.1. No gravitation If gravitational effects are entirely absent, then the flow is
no longer a genuine RT outflow; instead, convergence effects due to the spherical
geometry are dominant. This is known as the Bell–Plesset effect and is a feature of
situations in which the resting interface between the fluids possesses finite curvature.
A critical analysis of Bell–Plesset flows is given by Epstein [8]. In the present inviscid
analysis, in which the two fluids are separated by an interface of infinitesimal thickness,
vorticity deposition at the interface occurs as time progresses (see Peng et al. [22]), so
that the interface becomes a vortex sheet in the fluid.

When there is no gravity, then 1/F2 = 0. In that case, bn = 0 in (4.13) and the
differential equation (4.12) becomes simply

R2
0

d2AL

dR2
0

+ R0
dAL

dR0
+ anAL = 0.

This is an Euler–Cauchy equation and its general solution takes the form

AL(R0) = C1R
√−an

0 + C2R−
√−an

0 , (4.14)

in which C1 and C2 are arbitrary constants and an is as defined in (4.13).
Whenever

D >
(n + 1)(n + 2)

n(n − 1)
,

then an > 0 and (4.14) can be written in the equivalent real form

AL(R0) = D1 cos(
√

an log R0) + D2 sin(
√

an log R0)

with D1 and D2 arbitrary real constants. In this case, the solution for the amplitude
function AL is clearly bounded so that the spherical outflow is stable.

However, when

D <
(n + 1)(n + 2)

n(n − 1)
(4.15)
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with positive outflow f� > 0, then an < 0 and R0 is a monotonically increasing function
of time t. In this case, the solution (4.14) shows that the (m, n) solution mode in
(4.8) will be unstable for all azimuthal modes m and perturbations to the spherical
outflow will grow as t increases. The condition (4.15) for instability was also obtained
by Forbes [10]. He observed, in particular, that the instability criterion (4.15) would
always be satisfied by the first mode n = 1, so that these solutions are always unstable
regardless of the density ratio D. Forbes [10] concluded, therefore, that the first mode
n = 1 would always come to dominate the outflow morphology, so that eventually,
one-sided outflows would be observed.

4.2. The n = 1 modes In the special case of the first modes n = 1 (for which the
two possibilities m = 0 and m = 1 exist), the two constants in (4.13) become

a1 = −α2
1 with α1 =

√
12

D + 2
,

b1 =
(D − 1)

F2

(4π
f�

)2 2
(D + 2)

.

(4.16)

We make the change of independent variable ξ = R3/2
0 in the differential equation (4.12)

and obtain

ξ2
d2AL

dξ2
+ ξ

dAL

dξ
−
(4
9
α2

1 +
4
9

b1ξ
2
)
AL = 0.

This is a modified Bessel equation and it has the general solution

AL(R0) = C1Iν
( 2

3

√
b1R3

0
)
+ C2Kν

( 2
3

√
b1R3

0
)
, (4.17)

in which Iν and Kν are modified Bessel functions of the first and second kinds,
respectively, of order

ν =
2
3
α1 =

4
√

3(D + 2)
.

The two constants C1 and C2 are again arbitrary, and α1 and b1 are as defined in (4.16).
For D > 1, the constant b1 in (4.16) is positive, and so the amplitude AL in (4.17)

increases exponentially with R0. Using the definition (4.5) and the asymptotic form for
Iν in Abramowitz and Stegun [1, page 377] shows that

AL(t) ∼ t−1/4 exp(γ1
√

t) with γ1 =
2
3

√
3f�
4π

b1 as t → ∞.

Thus the first Legendre mode n = 1 grows exponentially for any D > 1 and Forbes [10]
found numerically that this n = 1 mode ultimately dominated the outflow shape in the
axi-symmetric case m = 0.

4.3. Higher modes n > 1 In the general case n > 1, similar analysis to that in
Section 4.2 shows that the general solution for the amplitude of the nth linearized
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mode can be written as

AL(R0) = C1Iν
( 2

3

√
bnR3

0
)
+ C2Kν

( 2
3

√
bnR3

0
)
, (4.18)

which is of the same form as (4.17), except that now

ν = 2
3

√
−an

with an defined in (4.13), and this becomes imaginary for sufficiently large n.
Furthermore, if the inner fluid is more dense, 0 < D < 1, then

√
bn becomes imaginary

and the modified Bessel functions Iν, Kν in the solution (4.18) may be replaced with
ordinary Bessel functions Jν, Yν of a real argument. Thus higher modes are stable for
D < 1.

5. Stability analysis for a finite source

In the previous section, an inviscid stability analysis was carried out, under the
assumption that the source could be regarded as a mathematical point singularity.
However, as the focus of this present article is on distributed sources, it is appropriate
here to investigate the effect of source radius rS on stability.

We proceed as in Section 4, again considering two inviscid fluids separated by a
sharp interface r = R(φ, θ, t). There are again two velocity potentials Φ1 and Φ2 each
satisfying Laplace’s equation in their respective fluid domains, and the fluid velocities
q1 and q2 are calculated from their gradients, as in (4.1). Each fluid obeys a kinematic
boundary condition (4.3) on its interface and a dynamic condition of the form (4.4)
holds also on the interface. However, since a source of finite radius rS is now of interest,
the singular boundary condition (4.2) for a point source at the origin is replaced with
the finite constraint

q1 =
f�

4πr2
S

er on r = rS, (5.1)

in which er is the spherical unit vector directed radially outward from the origin.
In view of the choice (5.1) of boundary condition at the finite spherical source,

the same base spherical outflow used in Section 4 applies here also, with spherical
radius function (4.5) as previously. Accordingly, the same linearization procedure
(4.6) is undertaken, and leads to the same linearized kinematic and dynamic boundary
conditions (4.9), (4.10) to be applied on the moving sphere r = R0(t). However, because
of the source boundary condition (5.1) here, the new form for the inner velocity
potential ΦL

1, replacing (4.7), is

ΦL
1(r, φ, θ, t) = PL

1(t)
[
rn +

nr2n+1
S

(n + 1)rn+1

]
Pm

n (cos φ) cos(mθ), r < R0(t).

The outer potential ΦL
2 and the linearized interface perturbation RL retain the same

forms as in (4.7) and (4.8).
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After some considerable algebra, a new differential equation for the amplitude
function AL(t) in the linearized perturbation RL in (4.8) may be derived to replace
(4.11). This equation has the form

R0(t)
[
Dn +

L0(t)
nD0(t)

]d2AL(t)
dt2 +

f�
4πR2

0(t)

[
3D + n + 1 − N0(t)L0(t)

nD2
0(t)

]dAL(t)
dt

+

[ f 2
�

8π2R5
0(t)

{
D(n − 1) − M0(t)L0(t)

nD2
0(t)

}
− (D − 1)

F2

(n + 1)

R2
0(t)

]
AL(t) = 0,

in which it is convenient to define the four intermediate functions

L0(t) = (n + 1)R2n+1
0 (t) + nr2n+1

S ,

M0(t) = (n + 2)R2n+1
0 (t) + (n − 1)r2n+1

S ,

N0(t) = (n − 3)R2n+1
0 (t) + (n + 4)r2n+1

S ,

D0(t) = R2n+1
0 (t) − r2n+1

S .

This is a linear second-order differential equation that determines the stability of the
outflow and it reduces to (4.11) in the limit rS → 0. However, it is extremely difficult to
analyse in closed form and even the changes of variable considered in Section 4 appear
to offer no assistance.

To make progress, we have therefore considered an approximate “quasi-stationary”
type of analysis, in which it is assumed that the spherical base radius R0(t) in (4.5) is
approximately constant. A possible justification for this assumption might come from
the fact that R0 behaves as t1/3 for large t, and so might be considered to operate on a
longer time scale than that over which any instability might develop. To simplify the
analysis as much as possible, we have considered the early stages of the flow and made
the (crude) approximation R0 ≈ 1. This then yields the approximate stability equation

An
d2AL(t)

dt2 + Bn
dAL(t)

dt
+ CnAL(t) = 0, (5.2)

where we have defined the three additional constants

An = [1 − r2n+1
S ][(Dn + n + 1) − (D − 1)nr2n+1

S ],

Bn =
f�
4π

[3(Dn + n + 1) − 2(3Dn + 2n2 + 2n + 2)r2n+1
S + 3(D − 1)nr4n+2

S ],

Cn = −
(D − 1)

F2 n(n + 1)[1 − r2n+1
S ]2 +

f 2
�

8π2 {Dn(n − 1)[1 − r2n+1
S ]2

− [(n + 2) + (n − 1)r2n+1
S ][(n + 1) + nr2n+1

S ]}.

(5.3)

Since the approximate equation (5.2) involves only the constant coefficients defined in
(5.3), it has simple exponential solutions behaving like exp(λt) in which the exponent λ
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FIGURE 1. Stability curves for the first five spherical modes n = 1, . . . , 5. The constant −Cn obtained from
(5.3) is plotted against the source radius rS for (a) zero-gravity source with D = 6 and (b) density ratio
D = 1.05 and Froude number F = 1.

satisfies a quadratic equation. Furthermore, because rS < 1, it follows thatAn is always
positive and so the growth-rate constant λ can be guaranteed to be positive if −Cn > 0.

For the first mode n = 1, we observe that

−C1 =
2(D − 1)

F2 [1 − r3
S]2 +

3f 2
�

8π2 [2 + r3
S]

and since this is positive, this approximate analysis therefore predicts that the first
mode is always unstable for any permissible source radius rS.

Two different stability situations are illustrated in Figure 1, according to this simple
quasi-stationary analysis. In Figure 1(a), we display stability curves for parameter
values that reflect the situation discussed by Forbes [10], in which there is essentially
no gravity (1/F2 = 10−10) and the density ratio D = 6 is large. The quantity −Cn given
in (5.3) is plotted against source radius rS and the results in Figure 1(a) concur with
the more precise analysis in Section 4.1. In particular, the instability criterion (4.15)
indicates that while the n = 1 mode is always unstable, the second Fourier mode n = 2
changes from unstable to stable as the density ratio D passes through the value D = 6.
This can be seen in Figure 1(a), where −C2 ≈ 0 for the second mode n = 2 at smaller
source radii rS < 0.6 (although for larger values of rS, this mode too evidently becomes
unstable). For smaller source radii, all the higher modes n ≥ 3 have −C2 < 0 and so are
expected to be stable. Therefore, the analysis of this section suggests that a one-sided
jet would be formed for this case D = 6 when the source radius rS is sufficiently small,
as found by Forbes [10].

An interesting feature is present in Figure 1(a) in a relatively narrow band of values
of source radius rS near one. Although the first mode n = 1 is the only unstable one
for smaller radius rS, the higher modes become dominant in the approximate interval
0.9 < rS < 1. As a result, at rS = 1, the growth rate increases with the mode order n.
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Therefore, at low source radius rS, the eventual outflow shape is predicted to be a
one-sided configuration, but for rS ≈ 1, the outflow morphology would be expected
to reflect the initial interface shape. Although the results in Figure 1 correspond to
purely inviscid outflows, a somewhat similar phenomenon was observed by Terrones
and Heberling [26] in the viscosity-dominated case. They found that a similar stability
exchange occurs as a parameter corresponding to a type of Reynolds number was made
to increase, so that the outflow would be dominated by progressively higher Fourier
modes as this occurred.

Figure 1(b) shows stability curves for Froude number F = 1 and density ratio
D = 1.05. In this case, all the spherical Fourier modes are predicted to be unstable
and the degree of instability increases with the mode number n. This is true regardless
of the source radius rS and for this case, the shape of the outflow as time develops
would most likely reflect the original interface shape at t = 0.

6. Complex distributed source

So far, we have considered only simple spherical outflow, either as a singularity
(2.1), similar to the previous studies of Forbes [10, 11], or as a source (5.1) of finite
radius rS. However, a distributed source over the finite region r < rS provides an
opportunity to consider more complex outflow patterns and these are addressed briefly
here.

In addition to the mass-producing radial outflow (2.1), we have also introduced
higher spherical modes into the source behaviour to study their effect on outflow
morphologies. In spherical polar coordinates (r, φ, θ), the fluid velocity vector qS

generated by the source can be expressed as

qS = usph
S er + wsph

S eφ + vsph
S eθ,

in which the unit vector er = r/r points radially outward, as in (2.1). The remaining two
unit vectors eφ and eθ point in the direction of the positive declination angle φ down
from the z-axis and positively in the azimuthal θ-direction, respectively. The simple
radial outflow (2.4) is now generalized to become

usph
S =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f�
4πr2 − εn

(n + 1)
rn+2 P�n(cos φ) cos(�θ) for r > RS

f�r2

4πr4
S

− εn
(n + 1)r2

rn+4
S

P�n(cos φ) cos(�θ) for r < RS

(6.1)

in the radial direction,

wsph
S =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− εn

rn+2 (P�n)′(cos φ) sin φ cos(�θ) for r > RS

−εnr2

rn+4
S

(P�n)′(cos φ) sin φ cos(�θ) for r < RS
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in the direction of the declination angle φ, and

vsph
S =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−εn

�

rn+2 sin φ
P�n(cos φ) sin(�θ) for r > RS

−εn
�r2

rn+4
S sin φ

P�n(cos φ) sin(�θ) for r < RS

(6.2)

azimuthally. The Cartesian velocity components (uS, vS, wS) generated by this complex
source (6.1)–(6.2) are then found from

uS = usph
S sin φ cos θ + wsph

S cos φ cos θ − vsph
S sin θ,

vS = usph
S sin φ sin θ + wsph

S cos φ sin θ + vsph
S cos θ,

wS = usph
S cos φ − wsph

S sin φ.

(6.3)

The divergence of the velocity field can be calculated directly from its polar form
(6.1)–(6.2) using Batchelor [5, page 601]. We obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

divqS = 0 for r > rS

divqS =
f�r
πr4

S

− εn
(n + 1)(n + 4)r

rn+4
S

P�n(cos φ) cos(�θ) for r < rS.
(6.4)

The divergence is zero outside the source region, r > rS, as required, since no mass is
generated there. Furthermore, when divqS in (6.4) is integrated over the source volume
r < rS, the total flux of the source is calculated to be f� as required. Thus the extra
higher-order terms in the complex source produce no net additional flux.

In the results to be discussed in Section 7, we will focus on the bi-polar case
n = 2. Indeed, this seems likely to be of the most interest in astrophysical applications,
due to the additional presence of a magnetic field. In the purely axi-symmetric
case P0

2(cos φ) = (1/2)(3 cos2 φ − 1), the three equations in (6.3), combined with the
spherical forms (6.1)–(6.2), show that the appropriate Cartesian velocity components
in this case are ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

uS =
x
r

[ f�
4πr2 −

3ε2

2r4

(
5

z2

r2 − 1
)]

for r > rS

uS =
x
r

[ f�r2

4πr4
S

− 3ε2

2r6
S

(5z2 − r2)
]

for r < rS,
(6.5)

for the component along the x-axis. The y-component of the source velocity is the
same, except that the variable x is replaced with y. The component on the z-axis is⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wS =
z
r

[ f�
4πr2 −

3ε2

2r4

(
5

z2

r2 − 3
)]

for r > rS

wS =
z
r

[ f�r2

4πr4
S

− 3ε2

2r6
S

(5z2 − 3r2)
]

for r < rS.
(6.6)
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By contrast, the most severely nonaxi-symmetric bi-polar outflow is obtained with
P2

2(cos φ) = 3 sin2 φ. For this case, the Cartesian velocity component directed along
the x-axis is

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

uS =
x
r

[ f�
4πr2 +

6ε2

r4 + 15ε2
(y2 − x2)

r6

]
for r > rS

uS =
x
r

[ f�r2

4πr4
S

+ 6ε2
r2

r6
S

+ 15ε2
(y2 − x2)

r6
S

]
for r < rS.

(6.7)

The y-directed velocity component is similar, except that the x/r term to the left of
the large parentheses is replaced by y/r. In addition, the sign of the second term is
changed from positive to negative. The z-component of the source velocity takes the
slightly simpler form

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wS =
z
r

[ f�
4πr2 + 15ε2

(y2 − x2)
r6

]
for r > rS

wS =
z
r

[ f�r2

4πr4
S

+ 15ε2
(y2 − x2)

r6
S

]
for r < rS.

(6.8)

For completeness, we also give the divergence
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

divqS = 0 for r > rS

divqS =
f�r
πr4

S

+ 54ε2
r
r6

S

(y2 − x2)
r2 for r < rS,

(6.9)

since this quantity is needed in the nonlinear terms in (3.9).
It is not possible to carry out a full stability analysis for this more complex flow, as

was possible in Section 4 for pure radial source flow, because the unperturbed interface
in the inviscid case is no longer the simple spherical shape (4.5). However, if the
amplitude εn is regarded as a small parameter, then it is again possible to linearize
about the purely radial source flow with its spherical interface, precisely as was done
in (4.6). The inviscid potentials are then sought in the forms

ΦL
1(r, φ, θ, t) =

[
PL

1(t)rn +
1

rn+1

]
Pm

n (cos φ) cos(mθ), r < R0(t),

ΦL
2(r, φ, θ, t) = PL

2(t)r−(n+1)Pm
n (cos φ) cos(mθ), r > R0(t),

generalizing the previous expression (4.7), and the nonspherical perturbation to the
interface is

RL(φ, θ, t) = AL(t)Pm
n (cos φ) cos(mθ),
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exactly as in (4.8). The analysis proceeds as in Section 4 and after some algebra, the
equation for the linearized interface amplitude function AL(t), replacing (4.12), is

R2
0

d2AL

dR2
0

+ R0
dAL

dR0
+ (an − bnR3

0)AL = cnR1−n
0 .

The two constants an and bn are as defined in (4.13) and the additional constant on the
right-hand side is

cn =

(4π
f�

) (n + 1)2(2n + 1)
Dn + n + 1

.

This is just an inhomogeneous version of the previous amplitude equation (4.12), which
is to be expected since it has been necessary to treat the nonspherical contributions to
the flow as small perturbations to the pure spherical outflow, exactly as in Section 4,
and so the same stability conditions are obtained here also.

7. Results

The spectral technique described in Section 3, and the modified form of it in
Section 6, has been coded in a parallelized form of the FORTRAN programming
language and run on a purpose-built high-performance computer using graphics-card
based architecture. Specifically, the computations were performed using 64-bit floats
on an Nvidia GP100 graphics card using Nvidia’s NVFortran compiler, on Ubuntu
18.04. The classic fourth-order Runge–Kutta method was used to march the solution
forward in time (Atkinson [4, page 371]). At regular intervals, points on the “interface”
were identified by (3.20) and saved to file. These points were then plotted using MAT-
LAB’s “pcshow” function. Since these numerical results are based on the Boussinesq
approximation, we have taken the density ratio to be D = 1.05 consistent with that
theory. The inverse Reynolds number 1/Re and the density diffusion parameter σ
have both been given values in the interval 10−4 to 10−3 to control small-wavelength
instabilities in the numerical results and the overall outflow morphologies are not
affected by these choices.

7.1. Spherical distributed source We begin this presentation of results by investi-
gating perturbations to the spherical distributed source in Sections 2 and 3. Figure 2
shows the interfacial zone in which the initial velocity profile (3.4) had been perturbed
at the first Fourier–Legendre mode n = 1. The disturbance was axisymmetric, with
m = 0, and had initial amplitude ε = 0.025. The density ratio is D = 1.05, with Froude
number F = 1, inverse Reynolds number 1/Re = 4 × 10−3 and diffusion constant taken
to be σ = 10−4. The radius of the distributed source is rS = 0.6 and its total integrated
flux is f� = 1. The outflow is displayed at the four different (dimensionless) times t = 4,
8, 12 and 16, and these solutions were obtained using M = N = P = 24 Fourier modes
in each of the three physical coordinates, giving a total of 13, 824 modes overall and
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FIGURE 2. Outflow from a spherical distributed source ( f� = 1), perturbed at the first axisymmetric
Legendre mode n = 1, m = 0 with amplitude ε = 0.025. The interface is shown (left to right) at the four
times t = 4, 8, 12, 16.

FIGURE 3. Evolution of a disturbed spherical distributed region, with no source present (f� = 0),
perturbed at the first axisymmetric Legendre mode n = 1, m = 0 with amplitude ε = 0.1. The interface
is shown (left to right) at the four times t = 10, 20, 30, 40.

120 grid points in each coordinate variable. The size of the computational region is
described by the parameter L = 3.

The initial n = 1 mode disturbance has maintained its original shape, to a large
extent, as time progresses, although nonlinear effects have clearly become more
important at later times. Thus, by time t = 16 in the last frame on the right of
Figure 2, the portion of the outflow at the top of the diagram, for z > 0, has formed
an overturning mushroom-shaped cap. In addition, a weaker secondary outflow has
formed at the bottom of the diagram, for z < 0, and this also begins to form a small
overturning region.

In contrast to Figure 2, we show in Figure 3 a solution with no outflow from
the source region, f� = 0. The source radius in this instance is rS = 0.4 and there
is a weaker gravity field for which 1/F2 = 0.4. To obtain these images at sufficient
accuracy over this time interval, the number of Fourier modes was increased to
M = N = P = 64, with 320 grid points in each coordinate, and L = 3 as the compu-
tational boundary.
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FIGURE 4. Outflow from a spherical distributed source (f� = 1), with initial velocity perturbed at the
second axisymmetric Legendre mode n = 2, m = 0 with amplitude ε = 0.025. The interface is shown
(left to right) at the four times t = 4, 8, 12, 16.

Since there is no outflow, a source is not present in the results displayed in Figure 3,
and so this sequence of diagrams represents the evolution, under a central gravity
field, of a bubble with velocity perturbed at the first mode with amplitude ε = 0.1.
In the first diagram for t = 10 at the left of this figure, the interfacial zone is almost
spherical, but at the later times shown, an overturning cap develops and moves outward
up the positive z-axis, while continuing to overturn. This is qualitatively similar to the
interface shape in Figure 2, except that there is no flow down the negative z-axis,
since a source is not present. A remnant of the initial spherical ball centred at the
origin persists at these later times, even as the cap moves further away. From the
computational viewpoint, it is infeasible to continue to much later times, but it is
likely that the spherical cap will eventually detach from the portion remaining near
the origin, similar to the “lazy plume” results obtained by Allwright et al. [2].

The source is reintroduced at the origin in Figure 4, so that f� = 1 and the choice
of parameters is the same as in Figure 2. However, the initial condition in this case
has been altered to be an axisymmetric velocity perturbation at the second spherical
mode, with n = 2 and m = 0 and initial amplitude ε = 0.025. In this case, the outflow
is dominated by its initial bipolar velocity distribution, which develops and becomes
more pronounced as time progresses. By the last time t = 16 shown, both outflow jets
have overturned to form axisymmetric mushroom-shaped plumes.

Figure 5 again shows an outflow in which there is no source present, f� = 0, so
that the morphology that develops is entirely due to the initial disturbance, which
in this case is a perturbation at the second axisymmetric mode n = 2, m = 0. The
other parameters in the solution are identical to those used in Figure 3. As time
progresses, the initially spherical interface forms bipolar jets that move in opposite
directions along the z-axis, eventually forming overhanging plumes. As with Figure 3,
the situation depicted in Figure 5 is analogous to the “lazy plume” computed by
Allwright et al. [2], and it is possible that the two caps may eventually detach from
the portion that remains near the origin and move separately in opposite directions on
the z-axis.
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FIGURE 5. Evolution of a disturbed spherical distributed region, with no source present (f� = 0),
perturbed at the second axisymmetric Legendre mode n = 2, m = 0 with amplitude ε = 0.1. The interface
is shown (left to right) at the four times t = 10, 20, 30, 40.

FIGURE 6. Outflow from a spherical distributed source (f� = 1), perturbed at the third axisymmetric
Legendre mode n = 3, m = 0 with amplitude ε = 0.025. The interface is shown (left to right) at the four
times t = 4, 8, 12, 16.

An axisymmetric perturbation at the third Fourier mode n = 3, with initial ampli-
tude ε = 0.025, is explored in Figure 6, with nett outflow f� = 1 from the source region
r < rS = 0.6. This result was obtained using the same parameter values as in Figures 2
and 4. In this case where n = 3, m = 0, the initial disturbance involves a small flow on
the positive z-axis and the negative z-axis as well as a circular outflow on the xy-plane.
As time progresses, each of these features is maintained in the evolving interface shape,
as is evident in Figure 6. The circular waistband around the xy-plane continues to
expand outwards, and there are jets formed up both the positive and negative z-axes.
Nevertheless, it is interesting to observe that there is a strong asymmetry in these
two jets, with a smaller one on the negative z-axis but a much larger jet up the positive
z-axis, that also overturns to form a mushroom-shaped structure. Although the solution
was started just with a perturbation to the third mode n = 3, nonlinearity is responsible
for coupling of all the Fourier–Legendre modes and this evidently allows the n = 1
mode to grow rapidly with time t, thus contributing to the strong asymmetry about the
xy-plane.
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FIGURE 7. Outflow from the complex distributed source ( f� = 1) described by (6.5), (6.6) for the second
axisymmetric Legendre mode n = 2, m = 0, with negative amplitude ε2 = −0.06. The interface is shown
(left to right) at the four times t = 2, 4, 6, 8.

7.2. Outflow from a complex source region We now consider the complex source
in Section 6. For these solutions, we choose not to perturb the initial flow field and so
ε = 0. Rather, the interface shape that evolves with the passage of time will be driven
by the additional higher-order terms in (6.1)–(6.2) with their forcing amplitude εn, and
with particular focus on the bipolar modes in (6.5)–(6.9) with forcing amplitudes ε2.
For the results to follow, we have chosen Reynolds number Re = 4 × 10−3, diffusion
constant σ = 10−4 and Froude number F = 1. The density ratio is D = 1.05 and the
outflow flux is f� = 1. In each of these solutions, we have used M = N = P = 64 Fourier
modes, a total of 262, 144 modes overall, with 320 mesh points over each of the three
coordinate variables. The computational window was defined by the constant L = 2.5
in each case.

Figure 7 shows the evolution of the interface obtained with the complex source in
(6.5), (6.6) with forcing at the axisymmetric (n, m) = (2, 0) mode. In this case, the
parameter ε2 is negative, with value ε2 = −0.06, and solutions are shown at the four
times t = 2, 4, 6, 8. The initial interface shape is spherical, but as time progresses, it
develops the dumbbell-like shape shown with two lobes centred along the z-axis. These
continue to grow, since there is nett outflow f� = 1 from the source region r < rS = 0.6,
and the two lobes move further apart. We have not been able to follow the development
of this solution for times much greater than approximately t = 8, which is the last
image of the interface on the right of this figure, primarily due to the accumulation
of round-off errors in the enormous volume of computer arithmetic undertaken by
this code, as has been observed in other fluid-mechanical contexts by Walters and
Forbes [27]. These errors are responsible for the small fluctuations on and about the
central xy-plane that may be visible in the last image for t = 8 on the right-hand side
of Figure 7.

The same situation is depicted in Figure 8 as for the previous diagram in Figure 7,
except that the amplitude parameter is now positive, so that ε2 = 0.06. The numerical
computations in this case are more difficult to perform accurately than for the
corresponding situation in Figure 7 with ε2 negative, and so the four results presented
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FIGURE 8. Outflow from the complex distributed source ( f� = 1) described by (6.5), (6.6) for the second
axisymmetric Legendre mode n = 2, m = 0, with positive amplitude ε2 = 0.06. The interface is shown
(left to right) at the four times t = 1.2, 2.4, 3.6, 4.8.

are for dimensionless times t = 1.2, 2.4, 3.6, 4.8. For the last two times t = 3.6 and
4.8 shown in Figure 8, small numerically generated oscillations are produced in the
density perturbation function ρ near the z-axis and outside the source radius rS, where
the expression (3.3) is most sensitive to errors in the Fourier coefficients Cmnp(t). These
are responsible for the small perturbations visible in the last two times shown, but do
not affect the interface shapes shown. The outflow morphology in this case is very
different from that in Figure 7, since now the interfacial region forms a flatter torus-like
object, pulling in slightly near the z-axis and lying parallel to the xy-plane.

It seems at first surprising that a simple change in the sign of the amplitude
parameter ε2 could lead to such a large qualitative difference in the shape of the
interface between Figures 7 and 8. An explanation can be obtained, however, by
considering the radial velocity component usph

S of the source in spherical polar
coordinates, given in (6.1). For axisymmetric bipolar outflow, n = 2 and � = 0, this
becomes

usph
S =

r2

4πr4
S

[
f� − ε2

3π
r2

S

(1 + 3 cos(2φ))
]

inside the source region r < rS. When ε2 is negative, and for the parameter values used
here, this velocity component is positive on the z-axis where either φ = 0 or φ = π, and
negative on the xy-plane where φ = π/2. Thus, in Figure 7, the fluid flows outwards up
and down the z-axis and inwards along the centre-plane z = 0, giving rise precisely to
the two axisymmetric lobes encountered in that sequence of diagrams. However, for
the positive value ε = 0.06 used to generate Figure 8, the radial velocity component
usph

S is negative on the z-axis and positive on the centre-plane z = 0. The fluid flows
inwardly along the z-axis and outwardly near the xy-plane, in an axisymmetric pattern,
thus creating the flat platelet-shaped interfaces seen in Figure 8, with the pinched-in
portions near the z-axis.

The outflow shown in Figure 9 corresponds to a source forced at the (2, 2) spherical
mode with negative amplitude parameter ε2 = −0.06 in the source-flow velocity
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FIGURE 9. Outflow from the complex distributed source ( f� = 1) described by (6.7), (6.8) for the second
Legendre mode n = 2, m = 2, with negative amplitude ε2 = −0.06. The interface is shown (left to right)
at the four times t = 2, 4, 6, 8.

components (6.7) and (6.8). Solutions are shown at the four times t = 2, 4, 6, 8 and it
is evident that the interface shape evolves from an initial sphere to a structure with two
lobes along the x-axis. In this solution, minor numerical inaccuracies in the Fourier
coefficients Cmnp(t), due to the enormous volume of computer arithmetic involved in
this solution, again give rise to localized errors in the evaluation of the series (3.3) for
the density perturbation function, in this instance near the y-axis, and these are picked
up by our plotting procedure (3.20) and appear in Figure 9 as disturbances near that
axis. Although irritating, they have no effect on the accuracy of the interface shape
on the two lobes, however. Unlike the axisymmetric outflows considered in Figures 7
and 8, changing the sign of the amplitude parameter in Figure 9 does not cause major
changes to the outflow morphology on this case; rather, the shapes depicted in Figure 9
are merely rotated by 90 degrees about the z-axis.

8. Conclusion

When a source of fluid is introduced into an ambient fluid of different density,
an interfacial zone forms between the fluids; as time progresses, the interfacial zone
is driven outwards and can form complex shapes. This paper is concerned with
understanding the conditions that affect these outflow morphologies. In pursuit of
this aim, we have developed a novel approach to the description of the source region,
representing it as a sphere of finite radius rS within which a background velocity is
prescribed such that the divergence div q of the velocity field is nonzero and creates
mass within that region only. Furthermore, the integral of the divergence over the
spherical source region gives the required volume flux f�. We use the bi-streamfunction
approach of Forbes and Brideson [13] and Walters and Forbes [27] in a Boussinesq
model of the fluids to formulate an efficient spectral method that solves for the
density and the fluid velocity vector; nevertheless, in unsteady three-dimensional
flow, this method still requires enormous computational resources, and we use a
high-performance computer with high-level parallelizing capabilities based around the
use of graphics-processing units.
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Various linearized stability analyses have been investigated in this paper for two
ideal inviscid fluids separated by an infinitessimally thin interface. In particular, we
have attempted in Section 5 to estimate the effect that a source of finite radius rS might
have on the eventual shape of the outflow region, although we were only able to do
this for early times. In addition, the boundary condition (5.1), crucial in this analysis,
is nevertheless not the same as that implicit to the full numerical scheme in Section 3,
and so results such as those in Figures 1 are at best only a guide to the likely behaviour
of the full system. There is clearly considerable scope for future developments in this
analysis.

Numerical solutions have been presented here using our spectral algorithm that can
accommodate fully three-dimensional time-dependent outflow from the distributed
source. A major aim of this present work has been to determine to what extent the
outflow, from the source of finite radius rS, retains its memory of initial conditions
or whether it ultimately achieves some different long-term configuration. In particular,
Forbes [10] had argued that many flows from a spherical point source should eventually
produce an interface with a one-sided jet, in which the first spherical model n = 1
ultimately dominates, although Forbes [11] and Forbes and Brideson [12] later showed
how flow conditions in the surrounding heavier fluid could alter that conclusion. The
effect of the ambient medium upon outflow conditions has been considered both
theoretically and experimentally in an astrophysical situation in a recent article by
Schulreich and Breitschwerdt [24].

The results presented here suggest that the relationship between the outflow shape
and the initial configuration are possibly somewhat more nuanced than Forbes [10]
indicated. When a small perturbation is made at the first spherical mode, a strongly
one-sided outflow does indeed develop, as indicated in Figure 2. After some time
has elapsed, the single outflow jet also overturns and forms a rotationally symmetric
mushroom shape. In some other instances, a one-sided outflow does also evidently
become dominant, such as for the mode-3 example illustrated in Figure 6, in which an
asymmetric shape evolves, with a strong outflow at the top of the diagram and a far
weaker one at the bottom. However, in some other instances illustrated in Section 7,
the situation is much less clear, with apparently symmetric bipolar lobes forming up
and down the z-axis, as in Figure 7, or along some other axis, as illustrated in Figure 9.

The question still remains, however, to what extent an apparently symmetric outflow
(illustrated in Figure 7, for example) might nevertheless eventually collapse onto a
one-sided configuration if its initial condition were not simply a pure mode-2 pertur-
bation. Given the enormous computing resources needed to generate these results,
this question cannot be answered comprehensively here, but we have attempted to
address this in Figure 10. Here, a gravity-free solution has been computed (1/F2 = 0)
with the slightly smaller value rS = 0.22, where the approximate stability analysis of
Section 5 would suggest that only the n = 1 mode would in fact be unstable, as in
Figure 1. In Figure 10, the initial condition consisted of a velocity perturbation at the
second Fourier-Legendre mode n = 2 with amplitude ε = 0.025, with an additional
much weaker disturbance at the first mode n = 1 having amplitude ε = 0.0025. The
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FIGURE 10. Outflow with infinite Froude number (1/F2 = 0), perturbed primarily at the second
axisymmetric Legendre mode n = 2, m = 0, but with a small additional contribution at the first mode.
The interface is shown (left to right) at the four times t = 2.5, 5, 7.5, 10.

results in Figure 10 develop very differently from those in Figure 7; for example, now,
although the second mode is clearly dominant at the first time t = 2.5 presented in
Figure 10, at the next time t = 5 shown, a significant asymmetry has developed with a
stronger outflow at the top of the diagram than at the bottom. At the third time t = 7.5
indicated, the outflow morphology is evidently now dominated by the first mode and
this pattern continues in the final time t = 10 presented. In addition, the outflow jets
have not yet developed overturning structures at their tips, so that they appear more
similar to the outflows reported by Forbes [10]. Thus, while the Forbes suggestion
that one-sided jets eventually dominate may be true for complex, multi-mode initial
conditions, it is not yet clear whether this is always the case or if so, how long it might
take for the one-sided jet to become apparent. There is clearly more to be understood
on this intriguing question.
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