
Bull. Aust. Math. Soc. 99 (2019), 284–292
doi:10.1017/S0004972718001077

AMENABLE SEMIGROUPS OF NONLINEAR OPERATORS
IN UNIFORMLY CONVEX BANACH SPACES

KHADIME SALAME

(Received 29 June 2018; accepted 2 September 2018; first published online 28 November 2018)

Abstract

In 1965, Browder proved the existence of a common fixed point for commuting families of nonexpansive
mappings acting on nonempty bounded closed convex subsets of uniformly convex Banach spaces. The
purpose of this paper is to extend this result to left amenable semigroups of nonexpansive mappings.
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1. Preliminaries and notation

Let K be a nonempty bounded closed convex subset of a uniformly convex Banach
space E. Given a sequence (x j) j of elements of K, we assign the nonnegative numbers

r((x j) j; x) := lim sup
j
‖x j − x‖ for all x ∈ K,

and
r((x j) j; K) := inf

x∈K
r((x j) j; x).

The real number r((x j) j; K) is called the asymptotic radius of (x j) j with respect to K.
The asymptotic centre,A((x j) j; K), of (x j) j in K is defined by

A((x j) j; K) := {x ∈ K : r((x j) j; x) = r((x j) j; K)}.

It possesses the following properties: A((x j) j; K) is nonvoid, weakly compact and
convex. These properties follow from the weak compactness of K (as a bounded closed
convex subset of a reflexive Banach space), together with the fact that

A((x j) j; K) =

∞⋂
p=1

{
x ∈ K : r((x j) j; x) ≤ r((x j) j; K) +

1
p

}
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is an intersection of a decreasing sequence of nonempty weakly closed convex subsets
of K. Convexity follows from that of the mapping x 7→ r((x j) j; x) from K → [0,∞).
For more details, the interested reader may see [1, 8, 12] or [13].

Let S be a semigroup. Let `∞(S ) denote the Banach algebra of all bounded real-
valued functions on S equipped with the sup norm topology which is induced by
‖ f ‖ = sups∈S | f (s)| for f ∈ `∞(S ). To each member s ∈ S , let `s : `∞(S )→ `∞(S ) be
the left translation operator associated to s and defined by `s f (t) = f (st) for all t ∈ S
and f ∈ `∞(S ). The image `s f is called the left translate of f by s. An element m of
the topological dual `∞(S )∗ of `∞(S ) is called a mean if it has the properties

m( f ) ≥ 0 whenever f ≥ 0, and m(e) = 1.

The symbol e stands for the constant 1 function on S . One can show that this definition
is equivalent to saying that

‖m‖ = 1 = m(e).

A mean m is said to be left invariant if

m(`s f ) = m( f ) for all s ∈ S and for all f ∈ `∞(S ).

The semigroup S is called left amenable if there is a left invariant mean on `∞(S ).
Examples of such semigroups include finite groups, commutative semigroups and
compact groups. However, a semigroup need not be left amenable; for example, the
free group on two generators is not left amenable. For amenability of semigroups,
the interested reader can consult [3] and [5]. Given s ∈ S , let δs : `∞(S )→ R denote
the point measure at s (that is, the evaluation mapping at s), and let M(S ) denote the
collection of all means on `∞(S ). It is known that M(S ) is a nonempty weak∗ compact
convex subset of `∞(S )∗, and it has the property (see [3])

M(S ) = co τw∗ ({δs : s ∈ S }),

that is, M(S ) is exactly given by the weak∗ closed convex hull of all evaluation
mappings of elements of S . We recall that members of the convex hull of point
measures are usually called finite means.

An action of a semigroup S on K is a mapping σ : S × K → K subject to the
condition

σ(s, σ(t, x)) = σ(st, x) for all s, t ∈ S and x ∈ K.

In order to avoid cumbersome notation, for each s ∈ S the mapping σ(s, .) : K → K
will be abbreviated throughout this paper by the symbol σs. A subset X of K is called
S -invariant if σs(X) ⊂ X for all s ∈ S . An element x ∈ K is said to be a common fixed
point for S if σs(x) = x for all s ∈ S or, equivalently, if {x} is S -invariant. The action
σ is termed nonexpansive if for all s ∈ S the mapping σs has the property

‖σs(x) − σs(y)‖ ≤ ‖x − y‖ for all x, y ∈ K.
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2. Main results

In this section, we shall prove our main results. From now on, we let τ‖.‖ and τw
denote, respectively, the norm topology and the weak topology of a given Banach
space.

Theorem 2.1. Let S be a countable semigroup. If S is left amenable, then it possesses
the following fixed point property.

(∗) Whenever σ : S × K → K is a nonexpansive action of S on a nonempty bounded
closed convex subset K of a uniformly convex Banach space E, then there is in
K a common fixed point for S .

Proof. By Zorn’s lemma, choose Ko as a minimal (for inclusions of sets) bounded
closed convex and S -invariant subset of K. A second application of Zorn’s lemma
shows the existence of a minimal nonempty weakly closed S -invariant set Xo ⊂ Ko.
Since S is a left amenable countable semigroup, from [10], there is a left invariant
mean m on `∞(S ) together with a sequence (m j) j of finite means converging to m with
respect to the weak∗ topology of `∞(S )∗. Put

m j :=
α j∑
i=1

t j
i δs j

i
with t j

i ≥ 0 and
∑

i

t j
i = 1.

Fix xo ∈ Xo and define a nonnegative nonzero linear functional

Ł : C(Xo)→ R
f 7→ m( fxo ),

where fxo is given by fxo (s) = f (σs(xo)) for all s ∈ S . An application of the Riesz
representation theorem to Ł yields the existence of a probability measure µ on the
Borel sets of Xo representing Ł in the sense that

Ł( f ) =

∫
Xo

f dµ for all f ∈ C(Xo).

It is easy to see that µ(Xo) = m(e) = 1. Therefore

{X ⊂ Xo : X is weakly closed and µ(X) = 1} 3 Xo

is a nonempty family. Consider

ω :=
⋂
{X ⊂ Xo : X is weakly closed and µ(X) = 1}.

From [10, Lemma 2.12] and its proof, the following facts are known.

µ(ω) = 1 and ω ⊂ σs(ω)
τw for all s ∈ S (2.1)

(the closure being taken with respect to the weak topology of E). Thus

∅ , ω ⊂ W :=
⋂
s∈S

σs(ω)
τw
.
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We claim that W is separable in the norm topology. To prove this, it is enough to
show that σs(ω)

τw is norm separable for all s ∈ S .

Step 1. We first show that ω ⊂ Σ, where the latter set is defined by

Σ :=
⋃
j∈N

{σs j
i
(xo) : i = 1, . . . , α j}

τw

.

From the definition of ω, it is easy to see that ω is characterised by

x ∈ ω if and only if µ(U) > 0 for all U ∈ U(x), (2.2)

where U(x) denotes the collection of all neighbourhoods of x in the relative weak
topology of Xo. Assume that x ∈ Xo and that x does not belong to Σ. Let U be a closed
neighbourhood of x such that U ∩ Σ = ∅. Such a neighbourhood exists because Xo is a
normal topological space (in the relative weak topology). Using Urysohn’s lemma, fix
f ∈ C(Xo) such that f ≥ 0, f ≡ 1 on U and f (Σ) = {0}. Then

µ(U) =

∫
U

f dµ ≤
∫

Xo

f dµ

= m( fxo ) = lim
j

m j( fxo ) = lim
j

α j∑
i=1

t j
i δs j

i
( fxo )

= lim
j

α j∑
i=1

t j
i f (σs j

i
(xo)) = 0,

which shows that µ(U) = 0 and by (2.2) it follows that x cannot be in ω. Consequently,
ω ⊂ Σ, showing that our assertion is true.

Step 2. We show that, for each s ∈ S fixed, σs(ω)
τw is separable with respect to the

norm topology. Fix s ∈ S . Since Σ is the closure in the weak topology of a countable
set, it is norm separable and so a fortiori ω ⊂ Σ. Let D ⊂ ω be a countable norm dense
subset. Consider the norm closed convex hull

M := co τ‖.‖(σs(ω)) ⊃ σs(ω)
τw

of σs(ω) and the countable subset

ConvQ(σs(D)) :=
{ n∑

i=1

λiσs(di) : λi ∈ Q, di ∈ D, n ∈ N
}

of all finite linear combinations of elements of σs(D) with rational coefficients. Given
x ∈M and a positive real number ε, let∥∥∥∥∥x −

n∑
j=1

t jσs(w j)
∥∥∥∥∥ ≤ ε
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for some w1, . . . ,wn ∈ ω with t j ≥ 0 and
∑

j t j = 1. Fix d1, . . . , dn in D such that
‖w j − d j‖ ≤ ε for j = 1, . . . , n and pick q1, . . . , qn in Q such that

∑n
j=1 |q j − t j| ≤ ε.

Then

ConvQ(σs(D)) 3 y :=
n∑

j=1

q jσs(d j)

and, moreover,

‖x − y‖ ≤
∥∥∥∥∥x −

n∑
j=1

t jσs(w j)
∥∥∥∥∥ +

∥∥∥∥∥ n∑
j=1

t j(σs(w j) − σs(d j))
∥∥∥∥∥ +

∥∥∥∥∥ n∑
j=1

(t j − q j)σs(d j)
∥∥∥∥∥

≤

∥∥∥∥∥x −
n∑

j=1

t jσs(w j)
∥∥∥∥∥ +

n∑
j=1

t j‖d j − w j‖ +

( n∑
j=1

|t j − q j|

)
· sup

x∈Xo

‖x‖

≤
(
2 + sup

x∈Xo

‖x‖
)
ε.

As ε and x are freely chosen, it follows that M ⊂ co τ‖.‖(σs(D)) and this shows that
σs(ω)

τw is norm separable. Therefore, so are W and its norm closed convex hull.

Case 1. ω is finite. Assume, by contradiction, that |ω| ≥ 2. Then the convex hull of ω
possesses a normal structure as a norm compact set (see [6]). Pick u ∈ co(ω) such that

sup
x∈ω
‖x − u‖ < sup

x,y∈ω
‖x − y‖.

Given y ∈ ω, let B[y, r] denote the closed ball with centre y and radius r, where
r := supx∈ω ‖x − u‖. Then

K∗o :=
⋂
y∈ω

B[y, r]

is a nonempty, closed convex and S -invariant subset of Ko. Indeed, it is nonempty
because it contains u, and closedness and convexity are clear. To see the S -invariance
property, fix x ∈ K∗o and s ∈ S . For all y ∈ ω, from (2.1), there is a net (yα)α in ω such
that σs(yα)→ y weakly. Therefore, by lower semi-continuity of the norm together
with the nonexpansiveness of the action,

‖y − σs(x)‖ ≤ lim inf
α
‖σs(x) − σs(yα)‖ ≤ lim inf

α
‖x − yα‖ ≤ r.

Thus σs(x) ∈ B[y, r] for all y ∈ ω and, by minimality of Ko, we necessarily have
Ko = K∗o . But, since r < supx,y∈ω ‖x − y‖, there are x, y ∈ ω such that r < ‖x − y‖. It
follows that Ko 3 x < B[y, r] ⊃ Ko, which is a contradiction. Therefore we must have
|ω| = 1. So, by minimality of Xo and (1), we have Xo = ω = {x̄} for some x̄ ∈ Xo: that
is, there is a common fixed point for S .

Case 2. |ω| =∞. By separability, let {a j ; j ∈ N} be a countable norm dense subset of
co τ‖.‖(W). For i, j ∈ N with i , j, put

Γi, j := {tai + (1 − t)a j : t ∈ Q ∩ [0, 1]}.
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Then Γ :=
⋃

i, j Γi, j is a countable dense family of co τ‖.‖(W) because {a j : j ∈ N} ⊂ Γ.
We can write Γ := {γ j : j ∈ N} because Γ is countable and infinite (since ω ⊂ W is
infinite). Consider the asymptotic centreA(Γ; Ko) :=A((γ j) j; Ko). We claim that this
asymptotic centre is S -invariant. In fact, let x ∈ A(Γ; Ko) and s ∈ S . Given ε > 0, let
jε ∈ N be sufficiently large so that

lim sup
j
‖γ j − σs(x)‖ ≤ ‖γ jε − σs(x)‖ + ε

and
sup
j≥ jε
‖γ j − x‖ ≤ r(Γ; Ko) + ε

with r(Γ; Ko) := r((γ j) j; Ko). Since W ⊂ σs(ω)
τw , we can write

γ jε = τw- lim
α
σs(xα)

for some net (xα)α∈J in ω. By nonexpansiveness of the action and the lower semi-
continuity of the norm,

‖γ jε − σs(x)‖ ≤ lim inf
α
‖σs(xα) − σs(x)‖ ≤ lim inf

α
‖xα − x‖.

Fix αε ∈ J such that lim infα ‖xα − x‖ ≤ ‖xαε − x‖ + ε and choose an integer j ≥ jε such
that ‖γ j − xαε ‖ ≤ ε. Such an integer j exists because, by density, there is a γk ∈ Γi, j for
some i, j such that ‖xαε − γk‖ ≤

1
2ε. Let γk = toai + (1 − to)a j for some to ∈ Q ∩ [0, 1].

Then, for t ∈ Q ∩ [0, 1],

‖tai + (1 − t)a j − γk‖ = |t − to| ‖ai − a j‖ → 0 as t→ to.

So there are infinitely many rationals t in [0,1] (and, therefore, infinitely many γ j) such
that the distance from γk to each such γ j is within 1

2ε. Therefore, there is a j ≥ jε such
that ‖γk − γ j‖ ≤

1
2ε. For such an integer, ‖xαε − γ j‖ ≤ ε. Then using (4),

lim sup
j
‖γ j − σs(x)‖ ≤ lim inf

α
‖xα − x‖ + ε ≤ ‖xαε − x‖ + 2ε

≤ ‖γ j − x‖ + 3ε ≤ sup
j≥ jε
‖γ j − x‖ + 3ε ≤ r(Γ; Ko) + 4ε.

Since ε > 0 is arbitrary, it follows that lim sup j ‖γ j − σs(x)‖ = r(Γ; Ko), which shows
that σs(x) ∈ A(Γ; Ko). Consequently, the asymptotic centre of Γ with respect to Ko

is S -invariant, which proves our claim. Thus, the asymptotic centre of Γ in Ko is a
nonempty weakly compact convex and S -invariant subset of Ko. The minimality of Ko

forces the equalityA(Γ; Ko) = Ko. On the other hand, since the underlying space E is
uniformly convex, it is known thatA(Γ; Ko) is a singleton (see [1]). PutA(Γ; Ko) = {x̄}
for some x̄ ∈ Ko. Then x̄ is a common fixed point for S . �

Corollary 2.2 (Browder, [4, Theorem 1]). Let X be a uniformly convex Banach space
and let U be a nonexpansive mapping of the bounded closed convex subset C of X into
C. Then U has a fixed point in C.
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Proof. If U : C → C is nonexpansive, then the set S = {U j : j ∈ N} of all iterates of U
is an abelian (therefore amenable; see [2]) countable semigroup. By Theorem 2.1, S
has a common fixed point in C that is a fortiori a fixed point for U. �

Remark 2.3. Usually, for noncommuting families, one has to assume weak continuity
of the action to ensure the existence of a fixed point. The interest of Theorem 2.1 is
that it completely avoids the use of such a strong condition.

Theorem 2.4. Let S be a semigroup. If S is left amenable, then S possesses the
following fixed point property.

(∗) Whenever σ : S × K → K is a nonexpansive action on a nonempty bounded
closed convex subset K of a uniformly convex Banach space E, there exists a
common fixed point for S in K.

Proof. Let Γ := {ς ⊂ S : ς , ∅ and |ς| < ∞}. Order Γ by ς1 ≤ ς2 ⇔ ς1 ⊂ ς2. Given
ς ∈ Γ, let 〈ς〉 denote the semigroup generated by ς and F(s) := {x ∈ K : σs(x) = x}.
From [7], for each ς ∈ Γ there is a subsemigroup S ς ⊂ S such that:

• S ς is countable and left amenable; and
• 〈ς〉 ⊂ S ς.

By Theorem 2.1, the restriction S ς × K→ K of the S -action on K possesses a common
fixed point in K. Therefore ⋂

s∈ς

F(s) , ∅ for all ς ∈ Γ.

On the other hand, since E is uniformly convex (a fortiori strictly convex), each fixed
point set F(s) is convex (see [8]). So each set of type (2.1) is weakly closed as an
intersection of norm closed convex sets. Thus, the collection

F :=
{⋂

s∈ς

F(s) : ς ∈ (Γ,≤)
}
,

being a decreasing family of nonempty weakly closed subsets of K, must have a
nonempty intersection. Hence

∅ ,
⋂
ς∈Γ

(⋂
s∈ς

F(s)
)
⊂ {x ∈ K : σs(x) = x for all s ∈ S }.

�

Corollary 2.5 (Browder, [4, Theorem 2]). Let X be a uniformly convex Banach space
and let (Uλ) be a commuting family of nonexpansive mappings of a given bounded
closed convex subset C of X into C. Then the family of mappings (Uλ) has a common
fixed point in C.

Proof. Given a commuting family U of self-nonexpansive mappings of C, the
semigroup S := 〈U〉 spanned by U is commutative and therefore amenable. Hence
Theorem 2.4 ensures the existence of a common fixed point for S and so forU. �
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Remark 2.6. If we make use of the fact that left amenable semigroups are left
reversible, then Theorem 2.4 follows from our result in [10] for left reversible
semitopological semigroups. It is much easier to prove Theorem 2.1 using left
reversibility techniques rather than amenability methods. But the interest in our
approach here is that it shows once more how amenability techniques can lead to strong
existence results in fixed point theory.

Remark 2.7. Theorem 2.4 follows from [9] and [11] (note that a left amenable discrete
semigroup is always left reversible) if K is assumed to be compact with respect to the
norm topology.

Remark 2.8. In general, the uniform convexity condition of the underlying space in
Theorems 2.1 and 2.4 cannot be removed. In fact, Alspach [2] has constructed a fixed
point free nonexpansive self-mapping of a nonempty weakly compact convex subset
of L1([0, 1]). Alspach’s counterexample, together with Theorem 2.4, provide a fixed
point proof of the fact that the Lebesgue space L1 fails, in general, to be uniformly
convex.
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