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Abstract. The resonant coupling between Alfvén waves is reconsidered. New results
are found for cold magnetoplasmas where temperature effects are negligible.

The nonlinear interaction between Alfvén waves (Sagdeev and Galeev 1969;
Hasegawa and Uberoi 1982; Petviashvili and Pokhotelov 1992) is a key subject
within modern plasma science (Shukla 2004) that is still a matter of subtle analysis
(e.g. Fedun et al. 2004; Voitenko and Goossens 2005; Shukla and Stenflo 2005). In
order to put the theory on a firm theoretical basis, we shall consider the resonant in-
teraction between three inertial Alfvén waves in a uniform coldmagnetized plasma,
starting our analysis from the exact expressions for the coupling coefficients in such
a plasma. Considering the appropriate frequency limits, we shall then derive results
that have not been presented previously.
Let us thus investigate the resonant interaction between three waves with fre-

quencies ωj (j = 1, 2, 3) and wavevectors kj , and assume that the matching condi-
tions

ω3 = ω1 + ω2 (1)

and

k3 = k1 + k2 (2)

are satisfied. The evolution of, for example, the z-components (Ejz) of the wave
electric field amplitudes is then governed by the three coupled bilinear equations
(e.g. Stenflo 1994)

dE∗
1z

dt
= α1E2zE

∗
3z, (3a)

dE∗
2z

dt
= α2E1zE

∗
3z (3b)

and
dE3z

dt
= α3E2zE1z, (3c)

where the z-axis is along the external magnetic field (B0ẑ), the asterisk denotes the
complex conjugate, αj are the coupling coefficients, d/dt = ∂/∂t+vgj ·∇+νj , where
vgj is the group velocity of wave j, and νj accounts for the linear damping rate. As
shown by Stenflo and Brodin (2005), the coefficients αj for a cold magnetoplasma
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are

α1,2 =
M1,2

∂D(ω1,2,k1,2)/∂ω1,2
C, (4a,b)

and

α3 = − M3

∂D(ω3,k3)/∂ω3
C, (4c)

where

C =
∑

σ

qω2
p

mω1ω2ω3k1zk2zk3z

×
[
k1·K1

ω1
K2·K∗

3 +
k2·K2

ω2
K1·K∗

3 +
k3·K∗

3

ω3
K1·K2

− iωc
ω3

(
k2z

ω2
− k1z

ω1

)
K∗

3·(K1 ×K2)
]
, (5)

K = −
[
k⊥ + i

ωc
ω
k× ẑ

+
( ∑

i(ωc/ω)
[
ω2
p/

(
ω2 − ω2

c

)]
1 − (k2c2/ω2) −

∑
ω2
p/

(
ω2 − ω2

c

))(
k× ẑ− i

ωc
ω
k⊥

)]

×
(
1 −

(
k2

⊥c2/ω2
)

−
∑

ω2
p/ω2

)
ω4(

ω2 − ω2
c

)
k2

⊥c2
+ kz ẑ, (6)

D(ω,k) =
(

1 − k2c2

ω2
−

∑ ω2
p

ω2 − ω2
c

)

×
[(

1 − k2
zc2

ω2
−

∑ ω2
p

ω2 − ω2
c

)(
1 − k2

⊥c2

ω2
−

∑ ω2
p

ω2

)
− k2

⊥k2
zc4

ω4

]

−
(∑ ω2

pωc

ω
(
ω2 − ω2

c

))2(
1 − k2

⊥c2

ω2
−

∑ ω2
p

ω2

)
, (7)

and

Mj =
(

1−
k2

j c2

ω2
j

−
∑ ω2

p

ω2
j − ω2

c

)(
1−

k2
jzc

2

ω2
j

−
∑ ω2

p

ω2
j − ω2

c

)
−

(∑ ω2
pωc

ωj

(
ω2

j − ω2
c

))2

,

(8)

where k = (k2
z + k2

⊥)1/2, k⊥ is the perpendicular (to ẑ) part of the wavevector, ωp
is the plasma frequency (ωpe for the electrons and ωpi for the ions), ωc = qB0/m is
the gyrofrequency, q and m are the particle charge and mass and c is the speed of
light in vacuum. For notational convenience, the subscript σ, denoting the various
particle species, has been dropped out in the above formulas.
Equations (3)–(8) can be used to study the high-frequency coherent wave gen-

eration (Christiansen et al. 1981) or the energy transfer from a large-amplitude
electromagnetic wave into an electrostatic electron wave and a lower-hybrid wave
(e.g. Yu et al. 1974; Larsson et al. 1976; Yu et al. 1978; Murtaza et al. 1984; Shukla
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and Stenflo 1985, Stenflo 1994; Kuo 2003; Stenflo 2004). However, here we shall only
adopt the above results to investigate wave couplings in the magnetohydrodynamic
(MHD) regime, which includes the electron inertial effects. In a previous work
(Brodin and Stenflo 1988), we noted that in the ideal MHD regime there is no
coupling between three shear Alfvén waves. We will, therefore, show below that the
more accurate two-fluid model gives predictions significantly different from the
ideal MHD model. To demonstrate this fact, we will consider low-frequency waves
where the parameters have the standard MHD ordering ω ∼ kzVA�ωci and ωci�ωpi,
where VA is the Alfvén speed. However, in contrast to the ideal MHD, here we shall
also allow for large perpendicular wavenumbers, reaching up to k⊥ ∼ ωpe/c ≡ λ−1

e ,
or even k⊥�λ−1

e , where λe is the electron skin depth. Applying this scaling to (7),
we find that the usual shear Alfvén waves are modified to inertial Alfvén waves,
with frequencies

ω � kzVA(
1 + k2

⊥λ2
e

)1/2
. (9)

Next, we assume that all the three interacting inertial Alfvén waves are described
by (9). In order to keep contact with the ideal MHD regime where ω � kzVA, we
will allow for k2

⊥λ2
e�1 as well as for k2

⊥λ2
e ∼ 1. Applying the above assumptions to

(6), we thus introduce the approximations

Ke� − iω

ωce

(
1 + k2

⊥λ2
e

)
k2

⊥λ2
e

k× ẑ+ kz ẑ (10)

and

Ki� − iω

ωci

(
1 + k2

⊥λ2
e

)
k2

⊥λ2
e

k× ẑ+ kz ẑ. (11)

Substituting (10) and (11) into (5), we find that the ion contribution is negligible
compared to the electron contribution, and that the coupling coefficient reduces to

CIAW =
qeω

2
pe

meω1ω2ω3

(
k1z

ω1
+

k2z

ω2
+

k3z

ω3

)
(12)

and that the dispersion relation (7) can be approximated by

D(ω,k) = −
c4

(
ω2 − k2V 2

A

)(
k2

⊥c2 + ω2
pe

)
ω6V 4

A

[
ω2 − k2

zV 2
A

1 + k2
⊥c2/ω2

pe

]
. (13)

Similarly (8) reduces to

M =
c4

ω4V 4
A

(
ω2 − k2V 2

A

)(
ω2 − k2

zV 2
A

)
. (14)

Thus, we have

α1,2 =
ω3

1,2k
2
1,2⊥c2

2
(
k2
1,2⊥c2 + ω2

pe

)
ω2
pe

CIAW (15)

and

α3 = − ω3
3k2

3⊥c2

2
(
k2
3⊥c2 + ω2

pe

)
ω2
pe

CIAW. (16)

For an easy comparison with the MHD result, it is convenient to eliminate Ez and
to work with the wave magnetic field amplitudes. The magnitude of the magnetic
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field perturbation is thus

Bj =
Ejz

ωkj⊥λ2
e
, (17)

where, to a good approximation, the wave magnetic field is directed in the −k× ẑ-
direction. The coupled mode equations (3a–c) can, therefore, be rewritten as

dB1,2

dt
=

ω1,2k1⊥k2⊥k3⊥V 2
A

2
(
k2
1,2⊥ + λ−2

e

)
ωci

(
k1z

ω1
+

k2z

ω2
+

k3z

ω3

)
B∗

2,1B3

B0
(18)

and
dB3

dt
= − ω3k1⊥k2⊥k3⊥V 2

A

2
(
k2
3⊥ + λ−2

e

)
ωci

(
k1z

ω1
+

k2z

ω2
+

k3z

ω3

)
B1B2

B0
. (19)

Choosing wave 3 as a pump wave, the maximum growth rate γmax deduced from
(18) is thus of the order of

γmax ∼ ω3k3⊥VA
ωci

|B3|
B0

, (20)

where the fastest growth occurs for decay products that are inertial Alfvén waves
with wavenumbers k1,2⊥ of the order of λ−1

e . We note that for decay into standard
ideal Alfvén waves with k1,2⊥ ∼ k1,2z = ω1,2/VA, the growth rate thus is reduced
by a factor ∼ ω2

3me/ω2
cimi. As a special limit of (20), we consider a pump wave that

is a standard ideal Alfvén wave with k3⊥ ∼ k3z = ω3/VA. This gives

γmax ∼ ω2
3

ωci

|B3|
B0

. (21)

As another example, we let the pump wave be an inertial Alfven wave with perpen-
dicular wavenumber k3⊥ ∼ λ−1

e , in which case (20) reduces to

γmax ∼ ω3
|B3|
B0

(
mi

me

)1/2

(22)

To summarize, we have considered nonlinear interactions of inertial Alfvén waves
using results from the exact two-fluid equations for a cold magnetoplasma. We
note that for an Alfvén pump wave in the inertial regime (k3⊥ ∼ λ−1

e ) the maximum
growth rate for decay into inertial Alfvén waves is larger than the usual MHD
growth rates (including interaction between all kinds of the ideal MHD waves) by
a factor of the order of (mi/me)1/2. Furthermore, for an ordinary Alfvén pump wave
(k3⊥�λ−1

e ), we point out that the cold ideal MHD theory does not allow for resonant
decay processes at all (Brodin and Stenflo 1988), since the Manley–Rowe relations
prevent decay into modes of higher frequencies and the coupling coefficients for
interaction with two other Alfvén waves are zero in the framework of the ideal
MHD model. Thus, the growth rate found in (21) is the fastest decay possible in
a cold magnetoplasma for an Alfvénic pump in the ideal MHD regime (k3⊥�λ−1

e ).
Furthermore, since the decay products have short scalelengths, we note that the
ideal MHD equations are unable to describe the nonlinear evolution, even if the
initial conditions lie well inside the usual validity conditions of those equations.
We point out that resistivity eventually leads to dissipation of the shorter scale
waves. Thus, we conclude that the parametric processes considered here can be
important for understanding the heating of low-beta plasmas such as those in the
Earth’s auroral zone. Finally, we stress that high-beta plasmas require a separate
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analysis (Brodin and Stenflo 1990) and that extensions to three-wave interactions in
a turbulent plasma (Vladimirov and Yu 2004) are comparatively straightforward.
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