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Pair Correlation
of Squares in p-Adic Fields

Alexandru Zaharescu

Abstract. Let p be an odd prime number, K a p-adic field of degree r over Qp , O the ring of integers

in K, B = {β1, . . . , βr} an integral basis of K over Qp , u a unit in O and consider sets of the form

N = {n1β1 + · · · + nrβr : 1 ≤ n j ≤ N j , 1 ≤ j ≤ r}. We show under certain growth conditions that

the pair correlation of {uz2 : z ∈ N} becomes Poissonian.

1 Introduction

In a p-adic field the squares are distributed very regularly in many respects. Our aim
here is to describe a p-adic context in which squares show signs of Poisson behavior.
Given a sequence {θn} ⊂ [0, 1), the nearest neighbor spacing distribution is defined
by ordering the first N elements of the sequence: θ1,N ≤ θ2,N ≤ · · · ≤ θN,N , and then

defining the normalized spacings to be

δ(N)
n := N(θn+1,N − θn,N ).

The asymptotic distribution function of {δ(N)
n }N

n=1 is level spacing distribution P1(s),
that is for each interval [a, b] we require that

lim
N

1

N
#{n < N : δ(N)

n ∈ [a, b]} =

∫ b

a

P1(s) ds.

In the Poisson model of a sequence generated by uncorrelated levels, P1(s) = e−s.

Moreover in that model one knows the behavior of all other local spacing statistics.
For a fixed real number α, the problem of the distribution of local spacings between
the members of the sequence αn2(mod 1) has been investigated in [7]. The standard
approach to the analysis of the consecutive spacing measures is via m-level correla-

tions, for any m ≥ 2. One of the main results in [7] gives conditions on the dio-
phantine approximations to α which ensure that along a subsequence all the m-level
correlations of αn2(mod 1) become Poissonian. It is also shown in [7] that there are
irrational numbersα for which the 5-level correlations diverge to infinity. The source

of this phenomenon is large square factors in the denominators of the convergents to
the continued fraction of α. The extreme case when these denominators are powers
of a fixed prime number p can be interpreted in a p-adic context. In this paper we
are concerned with such a case. Since we know that in this situation higher correla-

tions diverge, we will only consider the pair correlation problem (m = 2). The pair

Received by the editors November 13, 2001; revised May 28, 2002.
AMS subject classification: 11S99, 11K06.
c©Canadian Mathematical Society 2003.

432

https://doi.org/10.4153/CJM-2003-019-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-019-6


Pair Correlation of Squares in p-Adic Fields 433

correlation function measures the density of differences between pairs of elements of
a given sequence. Thus for a sequence (xn)n∈N uniformly distributed in [0, 1], the

pair correlation function R2(x) is given, if it exists, by

(1) lim
N→∞

1

N
#
{

1 ≤ n1 6= n2 ≤ N : xn1
− xn2

∈
1

N
I
}

=

∫

I

R2(x) dx

for any interval I ⊂ R. In the Poissonian model the pair correlation function R2(x) is
identically equal to 1. It was proved in [6] that, given a polynomial f of degree ≥ 2

with integer coefficients, the pair correlation of the sequence α f (n)(mod 1) is Pois-
sonian, for almost all α ∈ R. In particular, for almost all α ∈ R the pair correlation
of αn2(mod 1) is Poissonian. One also knows (see [1]) that for any irrational number
α there is a sequence of “windows” [M + 1,M + N], with N as large as M1/5, along

which the pair correlation of αn2(mod 1) becomes Poissonian. In order to under-
stand for fixed α the distribution of αn2(mod 1), approximations of α by rationals b

q

have been considered in [7]. This leads to the problem of studying the distribution of
finite sequences of the form bn2(mod q), 1 ≤ n ≤ N , with (b, q) = 1, where q → ∞
and N grows with q. The case q prime is investigated in [7] in the context of general

m-level correlations, and the case q almost square free is discussed in [9]. In [5], [4]
the distribution of squares modulo q is shown to be Poissonian as q → ∞ provided
the number of distinct prime factors of q goes to infinity. In the present paper we let
q be a power of a fixed prime number p. Then the pair correlation of the complete se-

quence bn2(mod q) is not Poissonian. However, for N in the range q
3
4

+δ < N < q1−δ

for some fixed δ > 0, the pair correlation of the sequence bn2(mod q), 1 ≤ n ≤ N

becomes Poissonian as q → ∞. In other words, with δ, q, b and N as above, for any

interval I ⊂ R one has

(2) lim
q→∞

1

N
#
{

1 ≤ n1 6= n2 ≤ N : bn2
1 − bn2

2 ≡ h(mod q), h ∈
q

N
I
}

= length(I).

This result holds for general q and it was known to the authors of [7], although it
was not inserted in the final version of [7]. In what follows we let q be a power of p,
interpret (2) in the field Qp of p-adic numbers and then prove an extension of that
result in the context of a general p-adic field K.

2 Statement of Main Result

We start with a prime number p and an extension K of Qp of degree r. In order to

simplify the presentation we assume in the following that p 6= 2. Denote as usually
by Zp the ring of integers in Qp. Choose a large natural number s and set q = ps. The
number b which appears on the left side of (2) can be replaced by any p-adic unit.
Also, the conditions bn2

1 − bn2
2 ≡ h(mod q), h ∈ q

N
I may be written in the form

(3) bn2
1 − bn2

2 ∈ Iq,N

where

(4) Iq,N =

( q

N
I ∩ Z

)

+ qZp.

https://doi.org/10.4153/CJM-2003-019-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-019-6


434 Alexandru Zaharescu

Here we used simultaneously the canonical injections of Z in R and in Zp. Note that
for fixed I, if N, q → ∞ such that q

N
→ ∞ then one has

#
( q

N
I ∩ Z

)

∼
q

N
length(I).

Note also that for N larger than the length of I the sets n + qZp, with n ∈ q
N

I ∩ Z,
are disjoint balls in Zp . Therefore, if we denote by µZp

the Haar measure on Zp ,
normalized by µZp

(Zp) = 1, then one has

(5) µZp
(Iq,N) ∼

length(I)

N
.

Relations (3), (4) and (5) point to the following interpretation of the problem. We
have a sequence bn2, 1 ≤ n ≤ N in Zp and we look for pairs of elements in this

sequence for which their difference belongs to a certain set Iq,N of measure ∼ length(I)
N

.
This is analogous to the pair correlation problem for sequences in [0, 1], stated in

(1). We now return to our p-adic field K and view the pair correlation problem as
an r-dimensional extension of the previous case. Denote by O the ring of integers in
K and fix an integral basis B = {β1, . . . , βr} of K over Qp. Choose s large and set
q = ps as before. Next, choose positive integers N1, . . . ,Nr ≤ q and consider the set

(6) N = {n1β1 + · · · + nrβr : 1 ≤ n j ≤ N j , 1 ≤ j ≤ r}.

Denote N = N1 · · ·Nr . Choose a unit u ∈ O, and consider the finite sequence uz2,
z ∈ N. In order to find analogs of (3), (4) and (5) in this more general context, let us
fix a box I = I1 × · · · × Ir ⊂ Rr . The dilate factor q/N from (4) needs to be replaced
by q/N1/r. We take all the integer points h = (h1, . . . , hr) from (q/N1/r)I and then

send them to O through the map (h1, . . . , hr) 7→ h1β1 + · · · + hrβr = h · β, where we
set β = (β1, . . . , βr). Thus we consider the set

(7) Iq,N =

{

h · β : h ∈
q

N1/r
I ∩ Zr

}

+ qO.

Again the Haar measure of Iq,N and the Lebesgue measure of I are connected by the
asymptotic relation

(8) µO(Iq,N ) ∼
Vol(I)

N

as q,N → ∞ such that q/N1/r → ∞. Here the Haar measure µO is normalized
by µO(O) = 1. Then the basic quantity to be investigated in the pair correlation
problem for the sequence uz2, z ∈ N is

(9) R(2)(K,B, u, I, q,N) :=
1

N
#{z1 6= z2 ∈ N : uz2

1 − uz2
2 ∈ Iq,N}.

The question is whether, by analogy with (2), one has

R(2)(K,B, u, I, q,N) → Vol(I)

as q → ∞. For simplicity in what follows we will only consider boxes I which do not
contain the origin. Then we may drop the condition z1 6= z2 on the right side of (9).
Our main result is the following
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Theorem 1 Let p be an odd prime number, 1
8
> δ > 0, K a p-adic field of degree

r over Qp , O the ring of integers in K, B an integral basis of K over Qp , u a unit in

O and 0 /∈ I a box in Rr. Then as q,N1, . . . ,Nr → ∞, q = ps, s integer, such that

qδ ≤ N1, . . . ,Nr ≤ q and N := N1 · · ·Nr ∈ [q
3r
4

+δ, qr−δ] one has

(10) R(2)(K,B, u, I, q,N) → Vol(I).

3 The Case of the Complete Sequence (mod q)

In this section we consider the sequence uz2, z ∈ N in the particular case when N1 =

· · · = Nr = q. Then N consists of a complete set of representatives in O modulo the
ideal qO. For any a ∈ O denote

c(K, q, a) = #{z1, z2 ∈ N : uz2
1 − uz2

2 ∈ a + qO}.

Note that c(K, q, a) does not depend on the choice of the integral basis B. If we set
A = O/qO then c(K, q, a) equals the number of solutions (x1, x2) ∈ A × A of the
equation

(11) ux2
1 − ux2

2 = a.

Here u is invertible in A. We make a change of variables x1 + x2 = y1, x1 − x2 = y2.
Then (recall that p is odd) c(K, q, a) equals the number of solutions (y1, y2) ∈ A×A

of the equation

(12) y1 y2 = au−1.

Assume first that a is invertible in A. This forces both y1 and y2 to be invertible in
A. Conversely, for any invertible element y1 ∈ A there is a unique y2 ∈ A satisfying
(12). It follows in this case that c(K, q, a) equals the number of invertible elements of

A. These are the elements of A which do not vanish in the residue field of K, call it k.
Say #(k) = p f . Then

(13) c(K, q, a) =

(

1 −
1

p f

)

#A = prs − prs− f .

Denote by e the ramification index of K over Qp and let π be a uniformizer of K.
Then r = f e, pO = πeO and qO = πseO. Let now a ∈ O \ qO. Write a in the

form a = πma ′ where a ′ is a unit in O. If (y1, y2) is a solution of (12), y1 = πm1 y ′
1,

y2 = πm2 y ′
2 with y ′

1, y ′
2 invertible in A, then

(14) m1 + m2 = m

and

(15) y ′
1 y ′

2 = a ′u−1(mod qπ−mA).
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Conversely, if y1, y2 ∈ A are such that (14) and (15) hold true, then (y1, y2) is a
solution of (12). Let us count the solutions to (12) for a fixed pair (m1,m2) satisfying

(14). We treat (15) as an equality in the ring A/qπ−mA. As before, the number of
solutions of (15) in A/qπ−mA equals the number of invertible elements in A/qπ−mA,
which in turn equals

(

1 −
1

p f

)

#(A/qπ−mA) =

(

1 −
1

p f

)

p f (se−m)
= prs− f m − prs− f (m+1).

Now by the equality y1 = πm1 y ′
1, y ′

1 is well defined in A/qπ−m1 A, therefore there are
exactly

#(A/qπ−m1 A)

#(A/qπ−mA)
=

p f (se−m1)

p f (se−m)
= p f m2

values of y ′
1 which have the same image in A/qπ−mA. Similarly, there are p f m1 values

of y ′
2 which have the same image in A/qπ−mA. It follows that each of the above

prs− f m − prs− f (m+1) solutions in A/qπ−mA corresponds to p f m solutions (y1, y2) ∈
A×A. This gives prs − prs− f solutions to (12) for each fixed pair (m1,m2). There are
m + 1 pairs (m1,m2) satisfying (14). We obtain the following generalization of (13).

Lemma 1 For any 0 ≤ m < se and any a ∈ πmO \ πm+1O one has

(16) c(K, q, a) = (m + 1)(psr − psr− f ).

4 Characters

Any element t ∈ O can be written uniquely in the form t = t1β1 + · · · + trβr

with t1, . . . , tr ∈ Zp , and t ∈ qO if and only if t1, . . . , tr ∈ qZp. Since Zp/qZp

is canonically isomorphic to Z/qZ, we get a natural map H : A → (Z/qZ)r given
by H(t) =

(

t1(mod q), . . . , tr(mod q)
)

. Note that H is an isomorphism of abelian
groups. One may then use H in order to describe the characters of the group (A,+).
We choose a vector v = (v1, . . . , vr) ∈ (Z/qZ)r such that if we let t = πse−1 the dot

product H(t) · v = t1v1 + · · ·+ trvr is not zero in Z/qZ. Clearly there are such vectors
v since t = πse−1 6= 0 in A so not all the components t1, . . . , tr are zero in Z/qZ.
The vector v depends on the basis B, and will be fixed in what follows. Consider the
map ψ : A → C given by ψ(t) = eq

(

H(t) · v
)

, where eq : Z/qZ → C is defined by

eq(n) = exp( 2πin
q

). Note that

ψ(t + w) = ψ(t)ψ(w),

that is, ψ is a character of the group (A,+). In particular we have ψ(0) = 1 and
ψ(−t) = ψ(t)−1

= ψ(t). For any w ∈ A define a map ψw : A → C by ψw(t) =

ψ(wt). Clearly ψw is a character of A for each w ∈ A. Moreover one has ψ1 = ψ and
ψw+z = ψwψz for any w, z ∈ A. We claim that distinct elements w ′, w ′′ of A produce
distinct characters. Indeed, if w ′ 6= w ′ ′ and ψw ′ = ψw ′′ then if we set w = w ′ − w ′ ′,
ψw will be the trivial character: ψw(t) = 1 for all t ∈ A. Now the point is that any
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nonzero element of A is a divisor of πse−1 in A. Thus if we choose t ∈ A such that
wt = πse−1 we will have

ψw(t) = ψ(wt) = ψ(πse−1) = eq

(

H(πse−1) · v
)

6= 1

since H(πse−1) · v 6= 0 in Z/qZ by our choice of v. This proves the claim. It follows
thatψw, w ∈ A are all the characters of A. As a consequence one has the orthogonality
relation

(17)
1

#(A)

∑

w∈A

ψw(t) =
1

#(A)

∑

w∈A

ψ(wt) =

{

1, if t = 0

0, else.

Next, we claim that for any 0 ≤ m ≤ se and any t ∈ A one has

(18)
∑

z∈πmA

ψ(tz) =

{

psr− f m, if t ∈ πse−mA

0, else.

Indeed, if t ∈ πse−mA then tz = 0 for any z ∈ πmA and the left side of (18) equals

#(πmA) = psr− f m. Assume now that t /∈ πse−mA. Then πmt 6= 0. By applying (17)
to πmt one obtains

(19)
∑

w∈A

ψ(wπmt) = 0.

Note that for any z ∈ πmA we have the same number of elements w ∈ A for which
z = πmw. For, if z = πmw1 = πmw2 then πm(w1 − w2) = 0, so w1 − w2 ∈ πse−mA.

Conversely, if z = πmw1 and w1 − w2 ∈ πse−mA then z = πmw2. It follows that for
each z ∈ πmA the set {w ∈ A : πmw = z} coincides with one of the cosets of A

modulo the ideal πse−mA, so all these sets have the same number of elements, equal
to #(πse−mA) = pm f . We conclude that the left side of (19) equals the left side of (18)

multiplied by pm f , and this proves the claim.

5 Kloosterman Sums

In order to study the distribution of sequences of the form bn2(mod p), 1 ≤ n ≤ N

for large prime numbers p, exponential sums of linear forms along certain curves

(mod p) are considered in [7]. In the pair correlation problem, the curves are given
by equations of the form bx2

1 − bx2
2 = constant. The change of variables x1 + x2 = y1,

x1 − x2 = y2 transforms the above exponential sums into Kloosterman sums. Here
we try to follow the same argument, so at this point we bring into play Kloosterman

sums in our context. Notations are as in the previous sections. We associate to any
a, b ∈ A the Kloosterman sum

(20) Kl(a, b, q) =

∑

x∈A×

ψ(ax + bx−1)
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where A×
= A\πA is the group of invertible elements in A. Thus #(A×) = #(A)(1−

p− f ) = psr − psr− f . Note that when K = Qp , B = {1}, the sums Kl(a, b, q) coincide

with the classical Kloosterman sums (mod q). In that case one has (see [8], [3])

(21) Kl(a, b, q) � q
1
2 (a, b, q)

1
2 ,

where (a, b, q) denotes the greatest common divisor of the numbers a, b and q. Re-

turning to the case of a general K, we set s1 = [ s+1
2

], where [·] denotes the integer
part function. Let us fix a set L of representatives in A modulo the ideal ps1 A. Next,
we take any element x ∈ A and write it uniquely in the form

(22) x = y + z, y ∈ L, z ∈ ps1 A.

In the argument that follows, y and z are assumed to be functions of x, given by (22).

Clearly x ∈ A \ πA if and only if y ∈ A \ πA. Denote L
×

= L∩ A×. Then, as x runs
over A×, y and z will run independently over L× and respectively ps1 A. Therefore

(23) Kl(a, b, q) =

∑

y∈L×

∑

z∈ps1 A

ψ
(

ay + az + b(y + z)−1
)

.

Now z2
= 0 by our choice of s1. It follows that (1 − y−1z)(1 + y−1z) = 1 and hence

(y + z)−1
= y−1(1 + y−1z)−1

= y−1(1 − y−1z) = y−1 − y−2z for any y ∈ L× and
z ∈ ps1 A. Inserting this in (23) one obtains

(24) Kl(a, b, q) =

∑

y∈L×

∑

z∈ps1 A

ψ(ay + az + by−1 − by−2z)

=

∑

y∈L×

ψ(ay + by−1)
∑

z∈ps1 A

ψ
(

(a − by−2)z
)

.

Here the inner sum is zero unless a − by−2 ∈ ps−s1 A when it equals p(s−s1)r by (18).

Thus

(25) Kl(a, b, q) = p(s−s1)r
∑

y∈L
×

a−by−2∈ps−s1 A

ψ(ay + by−1).

This further implies

(26) |Kl(a, b, q)| ≤ p(s−s1)r#(Ua,b,q)

where

Ua,b,q := {y ∈ L
× : a − by−2 ∈ ps−s1 A} = {y ∈ L

× : ay2 − b ∈ ps−s1 A}.

Let us assume first that at least one of a, b is not divisible by p. Fix y0 ∈ Ua,b,q. For
any y ∈ Ua,b,q one has a(y2− y2

0) ∈ ps−s1 A and by−2 y−2
0 (y2− y2

0) = b(y−2
0 − y−2) ∈

https://doi.org/10.4153/CJM-2003-019-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-019-6


Pair Correlation of Squares in p-Adic Fields 439

ps−s1 A. It follows that y2 − y2
0 ∈ ps−s1−1A, which in turn implies y − y0 ∈ ps−s1−1A

or y + y0 ∈ ps−s1−1A. Thus Ua,b,q is contained in the union of the sets y0 + ps−s1−1A

and −y0 + ps−s1−1A. By the definition of L we know that the elements of Ua,b,q have
distinct images in A/ps1 A. We conclude that

#(Ua,b,q) ≤ 2#(ps−s1−1A/ps1 A) = 2p(2s1+1−s)r.

Employing this in (26) one obtains

(27) |Kl(a, b, q)| ≤ 2p(s1+1)r ≤ 2p
(s+3)r

2 .

Let now a, b be arbitrary elements of A. There is no cancellation in the sum from the

right side of (20) if a = b = 0. Assume at least one of a, b is not zero, and let l be the
largest positive integer for which pl divides both a and b. Choose a1, b1 ∈ A such that
a = pla1 and b = plb1. Each invertible element of O/ps−lO is the image of exactly
plr elements of A× and

(28) Kl(a, b, q) = plr Kl(a1, b1, ps−l).

Here at least one of a1, b1 is not divisible by p, so one may apply (27) to
Kl(a1, b1, ps−l):

(29) Kl(a1, b1, ps−l) ≤ 2p
(s−l+3)r

2 .

We have proved the following

Lemma 2 Let a, b ∈ A and let l be the largest positive integer ≤ s for which a, b ∈ p lA.

Then

Kl(a, b, q) ≤ 2p
(s+l+3)r

2 .

Let now a, b, c ∈ A, c 6= 0 and consider the sum

(30) T(a, b, c, q) =

∑

x1,x2∈A
x1x2=c

ψ(ax1 + bx2).

Let ma, mb, mc be the largest integers ≤ se for which πma divides a, πmb divides b and
πmc divides c. We put (30) in the form

(31) T(a, b, c, q) =

∑

m1+m2=mc

∑

x1∈π
m1 A\πm1+1A

x2∈π
m2 A\πm2+1A
x1x2=c

ψ(ax1 + bx2).

For any x1 ∈ πm1 A \ πm1+1A there are exactly p f m1 elements y1 ∈ A× for which

x1 = πm1 y1. Similarly, given x2 ∈ πm2 A \ πm2+1A, there are p f m2 elements y2 ∈ A×

such that x2 = πm2 y2. Therefore

(32) T(a, b, c, q) =
1

p f mc

∑

m1+m2=mc

∑

y1,y2∈A×

πmc y1 y2=c

ψ(aπm1 y1 + bπm2 y2).
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If we choose c ′ ∈ A× such that c = πmc c ′ then the condition πmc y1 y2 = c can be
written as y2 = c ′y−1

1 + z, with z ∈ πse−mc A, hence

T(a, b, c, q) =
1

p f mc

∑

m1+m2=mc

∑

y1∈A×

∑

z∈πse−mc A

ψ
(

aπm1 y1 + bπm2 (c ′y−1
1 + z)

)

.

We infer from (18) that

(33)
∑

z∈πse−mc A

ψ(bπm2 z) =

{

p f mc , if bπm2 ∈ πmc A

0, else.

The condition bπm2 ∈ πmc A is equivalent to mb ≥ m1. On combining the last two
relations we see that

T(a, b, c, q) =

∑

m1+m2=mc
m1≤mb

∑

y1∈A×

ψ(aπm1 y1 + bπm2 c ′y−1
1 )(34)

=

∑

m1+m2=mc
m1≤mb

Kl(aπm1 , bπm2 c ′, q).

From Lemma 2 we derive

(35) |T(a, b, c, q)| ≤ 2
∑

m1+m2=mc
m1≤mb

p
(s+l(m1 ,m2)+3)r

2

where l(m1,m2) is the largest integer ≤ s for which aπm1 , bπm2 ∈ pl(m1,m2)A. The
condition aπm1 ∈ pl(m1,m2)A gives el(m1,m2) ≤ ma + m1 ≤ ma + mc. Similarly,

bπm2 ∈ pl(m1,m2)A implies el(m1,m2) ≤ mb + m2 ≤ mb + mc. Therefore rl(m1,m2) =

f el(m1,m2) ≤ f (mc + min{ma,mb}), and from (35) we derive

(36) |T(a, b, c, q)| ≤ 2sep
(s+3)r+ f (mc+min{ma ,mb})

2 .

Recalling that r = f e, we have the following result.

Lemma 3 Let a, b, c ∈ A and let l,m be the largest integers ≤ s for which a, b ∈ p lA

and c ∈ pmA. Then

(37) |T(a, b, c, q)| ≤ 2rsp
(s+l+m+5)r

2 .

6 Proof of Theorem 1. Preliminaries

Let p, δ, K, O, B, u and I be as in the statement of the theorem. Choose a large number
q = ps and positive integers qδ ≤ N1, . . . ,Nr ≤ q such that N := N1 · · ·Nr ∈
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[q
3r
4

+δ, qr−δ], and consider the sequence uz2, z ∈ N with N given by (6). For any
a ∈ O denote

(38) ν(a) = #{z1, z2 ∈ N : uz2
1 − uz2

2 − a ∈ qO}.

Then (9), (7) and (38) give

(39) R(2)(K,B, u, I, q,N) =
1

N

∑

h∈ q

N1/r
I∩Zr

ν(h · β).

Since N1, . . . ,Nr ≤ q, the set N injects in A via the canonical projection O →
O/qO = A. In (38) we view N, u and a as lying inside A (note that ν(a) = ν(a ′) if
a, a ′ ∈ O have the same image in A) and write (38) in the form

(40) ν(a) = #{z1, z2 ∈ N ⊆ A : uz2
1 − uz2

2 = a}.

Denote by J the image in A of the the set {h · β : h ∈ q

N1/r I ∩ Zr}. Then (39) may be
rewritten as

(41) R(2)(K,B, u, I, q,N) =
1

N

∑

a∈ J

ν(a).

For any a ∈ A define a function ga on A × A by

(42) ga(x1, x2) =

{

1, if ux2
1 − ux2

2 = a

0, else

so that

(43) ν(a) =

∑

z1,z2∈N

ga(z1, z2).

For a, y1, y2 ∈ A consider the sum

(44) S(a, y1, y2) =
1

#(A)2

∑

w1,w2∈A

ga(w1,w2)ψ(−y1w1 − y2w2).

Let us compute

∑

y1,y2∈A

S(a, y1, y2)
∑

z1,z2∈N

ψ(y1z1 + y2z2)(45)

=
1

#(A)2

∑

z1,z2∈N

∑

y1,y2∈A

ψ(y1z1 + y2z2)
∑

w1,w2∈A

ga(w1,w2)ψ(−y1w1 − y2w2)

=
1

#(A)2

∑

z1,z2∈N

∑

w1,w2∈A

ga(w1,w2)
∑

y1,y2∈A

ψ
(

y1(z1 − w1) + y2(z2 − w2)
)

.
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Here the inner sum vanishes unless z1 = w1 and z2 = w2 when it equals #(A)2 by
(17). Thus

(46)
∑

y1,y2∈A

S(a, y1, y2)
∑

z1,z2∈N

ψ(y1z1 + y2z2) =

∑

z1,z2∈N

ga(z1, z2) = ν(a)

by (43). Using (46) in (41) one obtains

R(2)(K,B, u, I, q,N) =
1

N

∑

a∈ J

∑

y1,y2∈A

S(a, y1, y2)
∑

z1,z2∈N

ψ(y1z1 + y2z2).

We now change the order of summation, then separate out the contribution of
(y1, y2) = (0, 0):

(47) R(2)(K,B, u, I, q,N) = M + E

where the main term M equals

(48) M =
1

N

∑

a∈ J

S(a, 0, 0)
∑

z1,z2∈N

ψ(0) = N
∑

a∈ J

S(a, 0, 0),

and the remainder E is given by

(49) E =
1

N

∑

(0,0)6=(y1,y2)

∑

z1,z2∈N

ψ(y1z1 + y2z2)
∑

a∈ J

S(a, y1, y2).

7 The Main Term

In this section we show that

(50) M → Vol(I)

as q,N1, . . . ,Nr → ∞ subject to the conditions from the statement of Theorem 1.

From (44) and (42) it follows that

S(a, 0, 0) =
1

#(A)2

∑

w1,w2∈A

ga(w1,w2)(51)

=
1

#(A)2
#{(w1,w2) ∈ A × A : uw2

1 − uw2
2 = a}

=
1

#(A)2
c(K, q, a) = p−2src(K, q, a).

Therefore

(52) M = N p−2sr
∑

a∈ J

c(K, q, a).
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We now apply Lemma 1, which gives

M = N p−2sr
∑

0≤m<se

∑

a∈ J∩(πmA\πm+1A)

(m + 1)(psr − psr− f )(53)

= N p−2sr(psr − psr− f )
∑

0≤m<se

(m + 1)
(

#( J ∩ πmA) − #( J ∩ πm+1A)
)

= N p−sr(1 − p− f )
∑

m≥0

#( J ∩ πmA).

Here #( J ∩ πmA) = 0 as soon as m > se
4

. Indeed, any element t ∈ J is of the form
t = t1β1 + · · · + trβr with t1, . . . , tr ∈ Z, (t1, . . . , tr) 6= (0, . . . , 0) and |t1|, . . . , |tr| �

q

N1/r ≤ q
1
4
− δ

r = p
s
4
− δs

r , so t can not be divisible by πm if m > se
4

. We now fix an m

and estimate #( J ∩ πmA). Assume first that m is a multiple of e, say m = em1. Let
h ∈ q

N1/r I ∩ Zr , h = (h1, . . . , hr). Since B is an integral basis, pm1 divides h · β if and

only if pm1 divides each of the integers h1, . . . , hr. We deduce that

(54) #( J ∩ πmA) = #
( q

N1/r
I ∩ pm1 Zr

)

.

The right side of (54) coincides with the number of integer points in the box
q

N1/r pm1
I.

By the Lipschitz principle (see Davenport [2]) it follows that

#( J ∩ πmA) = #( J ∩ pm1 A) = Vol
( q

N1/r pm1
I
)

+ Or,I

(

(

1 +
q

N1/r pm1

) r−1
)

(55)

=
qr

N prm1
Vol(I) + Or,I

(

1 + qr−1N
1−r

r p(1−r)m1

)

.

Note that the main term on the right side of (55) equals qr

N p f m Vol(I). We now extend

this estimate to the case of a general m. Write m = em1 + l with 0 ≤ l < e. If
h ∈ q

N1/r I ∩ Zr , h = (h1, . . . , hr), then πm divides h · β if and only if h j = pm1t j ,

1 ≤ j ≤ r with t1, . . . , tr ∈ Z and t1β1 + · · · + trβr divisible by πl. Thus

(56) #( J ∩ πmA) = #
{

t ∈
q

N1/r pm1
I ∩ Zr : πl divides t · β

}

.

We break the box
q

N1/r pm1
I into cubes of side p of the form y + pU , y ∈ pZr , where

U = {0 ≤ x1, . . . , xr < 1} is the unit cube in Rr . Note that as t runs over the set of
integer points in such a cube y + pU , t · β runs over a set of representatives in O for

O/pO. In the ring O/pO there are exactly #(π lO/pO) = p f (e−l)
= pr− f l elements

which are divisible by πl. Thus for any cube y + pU as above one has

(57) #{t ∈ Zr ∩ (y + pU ) : πl divides t · β} = pr− f l.
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Now the number of cubes y + pU , y ∈ pZr which are entirely contained in the box
q

N1/r pm1
I equals

Vol
( q

N1/r pm1+1
I
)

+ Or,I

(

(

1 +
q

N1/r pm1+1

) r−1
)

(58)

=
qr

N pr(m1+1)
Vol(I) + Or,I(1 + qr−1N

1−r
r p(1−r)(m1+1)).

Also, the number of boundary cubes, that is the number of cubes y + pU , y ∈ pZr

which have a nonempty intersection with the box q

N1/r pm1
I but are not contained in it,

is Or,I

(

(1 + qN−1/r p−(m1+1))r−1
)

. It follows that the number of integer points from

the box q

N1/r pm1
I which belong to boundary cubes is Or,I(pr + qr−1N

1−r
r pr+(1−r)(m1+1)).

Using this, together with (57) and (58) in (56) we derive

#( J ∩ πmA) = pr− f l
( qr

N pr(m1+1)
Vol(I) + Or,I(1 + qr−1N

1−r
r p(1−r)(m1+1))

)

(59)

+ Or,I(pr + qr−1N
1−r

r pr+(1−r)(m1+1))

=
qr

N p f m
Vol(I) + Or,I(pr + qr−1N

1−r
r pr+ (1−r)m

e ).

From (59) we get (recall that #( J ∩ πmA) = 0 for m > se
4

)

∑

m≥0

#( J ∩ πmA) =
qr

N(1 − p− f )
Vol(I) + Or,I(spr + sprqr−1N

1−r
r )(60)

=
psr

N(1 − p− f )
Vol(I) + Or,I(sprqr−1N

1−r
r ).

On combining (60) with (53) and the inequality N ≤ qr−δ we finally obtain

(61) M = Vol(I) + Or,I(sprq−1N
1
r ) = Vol(I) + Or,I(spr− δs

r )

which proves (50).

8 The Remainder

In order to complete the proof of Theorem 1 it remains to show that

(62) E → 0

as q,N1, . . . ,Nr → ∞ satisfying the conditions of the theorem. For any y ∈ A we set

(63) F(y) =

∑

z∈N

ψ(zy).
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Then (49) may be written as

(64) E =
1

N

∑

(0,0)6=(y1,y2)

F(y1)F(y2)
∑

a∈ J

S(a, y1, y2).

Next, we bound F(y1), F(y2) and S(a, y1, y2). Taking into account (63), (6) and the
definition of ψ, we see that

F(y) =

∑

1≤n1≤N1

· · ·
∑

1≤nr≤Nr

ψ(n1β1 y + · · · + nrβr y)(65)

=

∏

1≤ j≤r

∑

1≤n j≤N j

ψ(n jβ j y) =

∏

1≤ j≤r

∑

1≤n j≤N j

eq

(

n jH(β j y) · v
)

.

The last sums from (65) are geometric progressions and can be estimated accurately.
For any j ∈ {1, . . . , r} and y ∈ A let us denote by L j(y) the unique integer number

in the interval [− q−1
2
, q−1

2
] whose image in Z/qZ coincides with H(β j y) · v. Then

one has

∣

∣

∣

∑

1≤n j≤N j

eq

(

n jH(β j y) · v
)

∣

∣

∣
=

∣

∣

∣

∑

1≤n j≤N j

exp
( 2πin jL j(y)

q

)
∣

∣

∣
(66)

≤ min

{

N j ,
2

|1 − exp(
2πiL j (y)

q
)|

}

(67)

≤ min

{

N j ,
1

| sin
πL j (y)

q
|

}

≤ min

{

N j ,
q

|L j(y)|

}

.

As a result

(68) |F(y)| ≤
∏

1≤ j≤r

min

{

N j ,
q

|L j(y)|

}

for any y ∈ A. We now bound S(a, y1, y2). By (44) and (42) we know that

(69) S(a, y1, y2) = p−2sr
∑

w1,w2∈A

w2
1−w2

2=au−1

ψ(−y1w1 − y2w2).

Here we change the variables to w1 = −x1 − x2,w2 = x2 − x1 and get

S(a, y1, y2) = p−2sr
∑

x1,x2∈A

x1x2=a(4u)−1

ψ
(

x1(y1 + y2) + x2(y1 − y2)
)

(70)

= p−2srT
(

y1 + y2, y1 − y2, a(4u)−1
)

.
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Let l,m be the largest integers ≤ s for which y1, y2 ∈ plA and a ∈ pmA. Note that l is
also the largest integer ≤ s for which y1 + y2, y1 − y2 ∈ plA. Then Lemma 3 implies

(71) |S(a, y1, y2)| ≤ 2rsp
(−3s+l+m+5)r

2 .

We now bound the inner sum on the right side of (64). Let m0 be the largest integer

for which J ∩ pm0 A is nonempty. Then

(72)
∣

∣

∣

∑

a∈ J

S(a, y1, y2)
∣

∣

∣
≤

∑

0≤m≤m0

∑

a∈ J∩(pmA\pm+1A)

|S(a, y1, y2)|.

Choose cI > 0 such that I is contained in the cube [−cI , cI]
r . Then if we select an

element t ∈ J∩ pm0 A, t = t1β1 + · · ·+ trβr then |t1|, . . . , |tr| ≤
cI q

N1/r , and t1, . . . , tr are
integers divisible by pm0 , not all zero. It follows that pm0 ≤ cI q

N1/r . This, together with
(55) show that for any m ∈ {0, 1, . . . ,m0} one has

#
(

J ∩ (pmA \ pm+1A)
)

≤ #( J ∩ pmA)

(73)

=
qr

N prm
Vol(I) + Or,I(1 + qr−1N

1−r
r p(1−r)m) �r,I

qr

N prm
.

Using (71) and (73) in (72) we derive

∣

∣

∣

∑

a∈ J

S(a, y1, y2)
∣

∣

∣
≤

∑

0≤m≤m0

2rsp
(−3s+ly1 ,y2

+m+5)r

2 #( J ∩ pmA)(74)

�r,I
sp

(−3s+ly1 ,y2
+5)r

2 qr

N

∑

0≤m≤m0

p− rm
2 �

sp
(−s+ly1 ,y2

+5)r

2

N

where ly1,y2
is the largest integer ≤ s for which y1, y2 ∈ ply1 ,y2 A. Employing (74) in

(64) one obtains

(75) |E| �r,I
sp

(−s+5)r
2

N2

∑

(0,0)6=(y1,y2)

|F(y1)F(y2)|p
rly1 ,y2

2 .

We now insert (68) in (75) and get
(76)

|E| �r,I
sp

(−s+5)r
2

N2

∑

(0,0)6=(y1,y2)

p
rly1 ,y2

2

∏

1≤ j≤r

min

{

N j ,
ps

|L j(y1)|

}

min

{

N j ,
ps

|L j(y2)|

}

Let us remark that the map from A to {− q−1
2
, . . . , q−1

2
}r given by y 7→

(

L1(y), . . . , Lr(y)
)

is one-to-one. Indeed, if y ′, y ′′ ∈ A are such that L j(y ′) =

L j(y ′ ′) for any j, then if we set y = y ′ − y ′ ′, we have L j(y) = 0, 1 ≤ j ≤ r. In
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other words, one has H(β j y) · v = 0 in Z/qZ for any j. Then any linear combination
w = n1β1 + · · · + nrβr with n1, . . . , nr ∈ Z satisfies H(wy) · v = 0. These linear

combinations cover the entire ring A. If y 6= 0 then there exists w ∈ A such that
wy = πse−1 and we get a contradiction since H(πse−1) · v 6= 0 in Z/qZ. Hence the
above map is one-to-one. Let now l1, . . . , l2r ∈ {− q−1

2
, . . . , q−1

2
}, not all zero. Then

there is a unique pair (0, 0) 6= (y1, y2) ∈ A × A for which L j(y1) = l j , L j(y2) = lr+ j ,

1 ≤ j ≤ r. Let pm be the greatest common divisor of q, l1, . . . , l2r. Then not all
the numbers ps−m−1l1, . . . , ps−m−1l2r are divisible by q. It follows that at least one of
ps−m−1 y1, ps−m−1 y2 is not zero in A. This means that at least one of y1, y2 does not

lie in pm+1A. Thus ly1,y2
≤ m, and hence the factor p

rly1 ,y2
2 on the right side of (76) is

bounded by p
rm
2 . We deduce that

(77) |E| �r,I
sp

(−s+5)r
2

N2

∑

0≤m<s

∑

|l1|,...,|l2r|≤
q−1

2

(q,l1,...,l2r)=pm

p
rm
2

∏

1≤ j≤2r

min{N j ,
ps

|l j |
}

where we set N j+r := N j for 1 ≤ j ≤ r. For any l1, . . . , l2r ∈ {− q−1
2
, . . . , q−1

2
}

denote C(l1, . . . , l2r) = {1 ≤ j ≤ 2r : l j 6= 0}. We take each nonempty subset
C of {1, . . . , 2r} and collect all those terms from the right side of (77) for which
C(l1, . . . , l2r) = C. We derive

|E| �r,I
sp

(−s+5)r
2

N2

∑

0≤m<s

∑

Φ6=C⊆{1,...,2r}

∑

0<|l j |≤
q−1

2
, j∈C

pm|l j

p
rm
2

+s#(C)
∏

j /∈C
N j

∏

j∈C
|l j |

If we write l j = pml ′j for j ∈ C and note that

∑

l ′j , j∈C

1

|l ′j |
�r (log q)#(C) ≤ log2r q = s2r log2r p,

and p5r/2
= O(1), then we see that

|E| �r,I,p
s2r+1 p− sr

2

N2

∑

0≤m<s

∑

Φ6=C⊆{1,...,2r}

p
rm
2

+(s−m)#(C)
∏

j /∈C

N j(78)

=
s2r+1 p− sr

2

N2

∑

Φ6=C⊆{1,...,2r}

ps#(C)
∏

j /∈C

N j

∑

0≤m<s

p( r
2
−#(C))m.

Here the inner sum is bounded by s max{1, p( r
2
−#(C))s}, hence

|E| �r,I,p
s2r+2 p− sr

2

N2

∑

Φ6=C⊆{1,...,2r}

max{ps#(C), p
rs
2 }

∏

j /∈C

N j(79)

= s2r+2
∑

Φ6=C⊆{1,...,2r}

ps max{#(C)− r
2
,0}

∏

j∈C
N j

.
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Since
∏

j∈C
N j ≥ qδ = psδ for any Φ 6= C, it follows that the contribution on the

right side of (79) of those C with #(C) ≤ r
2

is � s2r+2/psδ . For any r
2
< l ≤ 2r denote

Ñl = min{
∏

j∈C
N j : C ⊆ {1, . . . , 2r}, #(C) = l}. Then

(80) |E| �r,I,p
s2r+2

psδ
+ s2r+2 max

r
2
<l≤2r

ps(l− r
2

)

Ñl

.

For any C one has

∏

j∈C

N j =
N2

∏

j /∈C
N j

≥
N2

∏

j /∈C
ps

= N2 ps(#(C)−2r)

and so

(81) Ñl ≥ N2 ps(l−2r)

for any l. On combining (80) with (81) we conclude that

(82) |E| �r,I,p
s2r+2

psδ
+ s2r+2 max

r
2
<l≤2r

ps(l− r
2

)

N2 ps(l−2r)
=

s2r+2

psδ
+

s2r+2 p
3rs
2

N2
.

Now (62) follows since N ≥ q
3r
4

+δ , which completes the proof of Theorem 1.
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