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Modelling the nonlinear forcing is critical for linear models based on resolvent or input–
output analyses. For compressible wall-bounded turbulence, little is known on what the
real forcing looks like due to limited data, so the prediction agrees more qualitatively
than quantitatively with direct numerical simulations (DNSs). Here, we present detailed
forcing statistics of stochastic linear models, derived from elaborate DNS datasets for
channel flows with bulk Mach number reaching 3. These statistics directly explain the
success and failure of current models and provide guidance for further improvements. The
benchmark linearised Navier–Stokes (LNS) and eLNS models are considered; the latter is
assisted by eddy-viscosity-related terms. First, we prove the self-consistency of the models
by using DNS-computed forcing as the input. Second, we present the spectral distributions
of the forcing and its components. Third, we quantify the acoustic components, absent in
incompressible cases, within the linear models. We reveal that the LNS forcing can exhibit
relatively high coherence and low rank, very different from the modelled diagonal full-
rank forcing. The eddy-viscosity-related term is not partial modelling of the LNS forcing;
contrarily, the former is much larger than the latter, serving to disrupt the low-rank feature,
enhance diagonal dominance and increase robustness across scales. The scales narrow in
either horizontal direction are most susceptible to acoustic modes, while the others are
little affected (<2 % in energy). Furthermore, the extended strong Reynolds analogy is
assessed in predicting the density and temperature components.
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1. Introduction
It is known that compressible wall-bounded turbulence critically influences the surface
drag and heat transfer, so deep physical understanding and accurate modelling of turbulent
flows are significant for reliable vehicle design and flow control (Lele 1994; Cheng
et al. 2024). Compared with the incompressible counterpart, current knowledge on
compressible wall-bounded turbulence is still limited, likely due to a less comprehensive
database and higher physical complexity resulting from extra thermodynamic processes,
such as heat transfer, acoustics, dilatational work and high-enthalpy gas effects (Gatski &
Bonnet 2013).

So far, numerous high-quality experiments and direct numerical simulations (DNSs)
have provided us with the most comprehensive details of turbulence (e.g. Hultmark et al.
2012; Lee & Moser 2015). As an attempt to conduct operator-based modal decomposition
and develop reduced-order modellings, various linear models have been developed for
wall-bounded turbulence, which are promising and have been an academic hotspot in
recent years; see the reviews of McKeon (2017) and Jovanović (2021). These linear
models are built upon the linearised Navier–Stokes (LNS) equations relative to a time-
invariant reference state, usually the mean flow assumed known. Contrary to the laminar
case where the nonlinear fluctuation terms can be neglected, the nonlinear terms are
retained for turbulent cases, and are treated as feedback or forcing to this linearly stable
system. The fluctuation can then be solved in the wavenumber space based on non-modal
instability theory and resolvent and input–output analyses. Within such frameworks, the
linear operator and nonlinear forcing represent the energy amplification and redistribution
mechanisms, respectively. For incompressible flows, outcomes from these linear models
include revealing the multi-scale coherent motions (del Álamo & Jiménez 2006; Hwang &
Cossu 2010), deriving fluctuation scalings (McKeon & Sharma 2010; Moarref et al. 2013),
constructing low-rank estimation models (Illingworth, Monty & Marusic 2018; Gupta
et al. 2021; Ying et al. 2024b) and designing flow control strategies (Moarref & Jovanović
2012; Ran, Zare & Jovanović 2021). Many of these works adopt the eddy-viscosity-
enhanced models (termed eLNS), where the Reynolds stress fluctuation is linearised using
the eddy viscosity μt in the same spirit as the Reynolds-averaged NS (RANS) models, to
partly model the colour of the forcing. The eLNS models are shown to perform generally
better than those without using μt , i.e. the LNS model, in terms of estimating coherent
fluctuations and spectra for wall-bounded flows (Reynolds & Hussain 1972; Illingworth
et al. 2018; Morra et al. 2021; Symon et al. 2023).

The linear models have also been developed for compressible wall-bounded turbulent
flows, mainly in the aspects of studying multi-scale coherent fluctuations (Alizard et al.
2015; Bae, Dawson & McKeon 2020; Dawson & McKeon 2020; Chen et al. 2023a,b;
Fan et al. 2024). In addition to the wide similarities to incompressible flows, some notable
differences have been reported. Bae et al. (2020) highlighted that, for supersonic boundary
layers, the fluctuation in the relatively supersonic region (phase speed faster than the free-
stream speed of sound) is centred around the relative sonic line instead of the critical
layer, and exhibits Mach-wave radiation and eddy shocklets (also Madhusudanan, Stroot &
McKeon 2025), which are absent in incompressible flows. Chen et al. (2023b) noted that
the acoustic components can be overly amplified in the eLNS models due to reduced non-
normality of the linear operator and inaccurate modelling of the forcing, which can disrupt
the linear coherent estimation. They designed a post-processing decomposition to remove
the acoustic components, which can improve the model results regarding velocity and
temperature estimations.

One of the central problems in the linear models is the modelling of the forcing.
Although the linear operator can solely determine the characteristic modes of the system,
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realistic fluctuations result from a combination of these modes, and the imposed forcing
directly affects the energy distribution and sorting of these modes (Morra et al. 2021).
Therefore, the accuracy of the forcing directly determines the predictability of the linear
models. A feasible way to bypass the explicit evaluation of the forcing is to directly
determine the weights of different modes from the DNS data (Moarref et al. 2013, 2014),
whereas for more general cases, a priori modelling of the forcing is preferred if DNS
is not available. Early works, for both incompressible and compressible cases, adopted
the simplest form of the forcing that it is either a white noise or a harmonic signal
uniform in spatial spectra and delta correlated in the wall-normal direction. The resulting
agreement with the DNS data regarding the fluctuations turns out to be more qualitative
than quantitative (e.g. Hwang & Cossu 2010; Alizard et al. 2015; Chen et al. 2023a).

Improvements on the forcing modelling have been extensively explored for
incompressible flows. Successful attempts include considering the spatial and spectral
dependence of the forcing (Gupta et al. 2021; Wu & He 2023), and modelling its colour
through elaborate optimisation processes (Zare, Jovanović & Georgiou 2017; Hwang &
Eckhardt 2020; Holford, Lee & Hwang 2023; Ying et al. 2024a). Limited instantaneous
DNS data can also assist by providing additional constraints (Illingworth et al. 2018;
Towne, Lozano-Durán & Yang 2020). To gain a complete understanding of the real
forcing, the spatial-temporal statistics of the forcing can be derived from the DNS data, as
done for incompressible cases by Amaral et al. (2021), Morra et al. (2021) and Nogueira
et al. (2021). It is revealed that the forcing also features relatively high spatial–temporal
coherence, which benefits the construction of more reliable forcing models. Morra et al.
(2021) also clarified why the eLNS model leads to an improved response prediction than
the LNS one, because the weights of principal resolvent modes from the eLNS model
are closer to the DNS data. Besides, Symon, Illingworth & Marusic (2021) analysed the
nonlinear forcing term from the perspective of energy transfer, and clarified how the gain
or loss of the redistributed energy affects the behaviour of resolvent models for different
scales.

Nevertheless, the forcing statistics from DNS and possible improved models for
compressible wall-bounded turbulence have not been carefully investigated. Therefore,
it is the objective of this work to reveal the real forcing statistics of the linear models from
DNS for compressible channel flows, which can straightforwardly explain the success
and failure of current models for different cases and provide direct guidance for model
improvements.

The classic LNS and eLNS models will be focused on. Although their differences have
been extensively discussed for incompressible flows, we still include both models because
relevant discussions for compressible flows are inadequate due to insufficient DNS data,
and some new observations are worth reporting. Meanwhile, different from the various
forcing models for incompressible flows, rare attempts have been made to optimise the
compressible models, so candidate models for the present work are in fact very limited.
Nonetheless, the classic LNS and eLNS models, although simple, can serve as benchmarks
to provide insights into the forcing physics. To accurately compute the forcing statistics,
we will employ a series of DNS data with the maximum bulk Mach number reaching 3.
In addition to reporting the similar features to the incompressible counterparts, we will
particularly focus on the distinctions in compressible flows, regarding the forcing for
density and temperature, turbulent heat fluxes, the role of acoustic components and Mach
number effects. The remainder of the article is organised as follows. Section 2 introduces
the mathematical framework of the employed linear models and describes the DNS
datasets. Section 3 verifies the DNS data processing and demonstrates the mathematical
self-consistency of the linear models. The forcing distributions of different models are
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summarised in § 4, and the role of acoustics modes is discussed in § 5. The work is finally
concluded in § 6.

2. Problem formulations

2.1. Mean flow and fluctuation equations
We consider canonical compressible turbulent channel flow under the calorically perfect
gas assumption. To obtain reliable statistics from the DNS, we need to carefully deal with
each term in the mean and fluctuation equations, especially those regarding high-order
fluctuation terms and the difference between Reynolds and Favre averages. The equations
in compressible flows are far more complicated than the incompressible version, so it is
necessary to first present the complete form of the equations to be dealt with.

The Favre-averaged quantities are chosen as basic variables for the linear models, for
ease of realising a thorough linearisation (Chen et al. 2023b). The continuity, momentum
and enthalpy equations of the mean flow are written as (e.g. Gatski & Bonnet 2013)

∂ρ̄

∂t
+ ∂ρ̄ũ j

∂x j
= 0, (2.1a)

ρ̄

(
∂ ũi

∂t
+ ũ j

∂ ũi

∂x j

)
= − ∂

∂x j

(
ρ̄˜u′′

i u′′
j

)
− ∂ p̄

∂xi
+ ∂τ̄ij

∂x j
, for i = 1, 2, 3, (2.1b)

∂

∂t

(
ρ̄cpT̃
)+ ∂

∂x j

(
ρ̄cpũ j T̃

)−(∂ p̄

∂t
+ ũ j

∂ p̄

∂x j
+ u′′

j
∂p′
∂x j

+ u′′
j
∂ p̄

∂x j

)

= − ∂

∂x j

(
ρ̄cp

˜u′′
j T

′′
)

− ∂ϑ̄ j

∂x j
+ τ̄ij

∂ ũi

∂x j
+ τij

∂u′′
i

∂x j
.

(2.1c)

Here, ϕ̄ is the temporal (Reynolds) average and ϕ̃ = ρϕ/ρ̄ is the Favre average; ρ,
ui = [u, v, w]T and T are the fluid’s density, velocities and temperature, respectively; the
mean pressure is p̄ = ρ̄RT̃ , with R the gas constant and cp is the isobaric specific heat.
Note that the temporal derivatives are retained in (2.1) for reference for the fluctuation
equations. No-slip and isothermal walls are set on both sides as the boundary condition.
The mean viscous stress τ̄ij and heat flux ϑ̄ j are calculated as

τ̄ij = μ̄

(
∂ ũi

∂x j
+∂ ũ j

∂xi

)
− 2

3
μ̄

∂ ũk

∂xk
δij︸ ︷︷ ︸

≡τ̄ij,lin

+ μ
∂u′′

i

∂x j
+μ

∂u′′
j

∂xi
− 2

3
μ

∂u′′
k

∂xk
δij︸ ︷︷ ︸

≡τ̄ij,nln

, ϑ̄ j = −κ̄
∂ T̃

∂x j
− κ

∂T ′′
∂x j

,

(2.2)
where μ(T ) and κ = μcp/Pr are the viscosity and thermal conductivity; μ is calculated
by Sutherland’s law and Pr = 0.72 is the Prandtl number; δij represents the Kronecker
delta. Note that τ̄ij is divided into two parts, as underbraced, for later linearisation of the
fluctuation equations. The first part τ̄ij,lin is a function of mean-flow variables only, while
the second part τ̄ij,nln is contributed by the second-order moment of the fluctuations.

The fluctuation equations are far more complex than the incompressible counterparts.
Following the derivation in Chen et al. (2023b), the fluctuation equations relative to (2.1)
are written as
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∂ρ′

∂t
+ ∂ρ̄u′′

j

∂x j
+ ∂ρ′ũ j

∂x j︸ ︷︷ ︸
linear terms

= −∂ρ′u′′
j

∂x j︸ ︷︷ ︸
nonlinear term

, (2.3a)

ρ̄

(
∂u′′

i

∂t
+ ũ j

∂u′′
i

∂x j

)
+ (ρ′ũ j + ρ̄u′′

j

) ∂ ũi

∂x j
+ ∂p′

lin
∂xi

− ∂τ ′
ij,lin

∂x j

= − ∂

∂x j

(
ρu′′

i u′′
j − ρ̄˜u′′

i u′′
j

)
︸ ︷︷ ︸

RSF

−∂p′
nln

∂xi︸ ︷︷ ︸
PGNF

+ ∂τ ′
ij,nln

∂x j︸ ︷︷ ︸
VSNF

+ MMNF,
(2.3b)

ρ̄

(
cv

∂T ′′

∂t
+ cpũ j

∂T ′′

∂x j

)
− RT̃

∂ρ′

∂t
+ (ρ′ũ j + ρ̄u′′

j

)
cp

∂ T̃

∂x j
−
(

ũ j
∂p′

lin
∂x j

+ u′′
j
∂ p̄

∂x j

)
+ ∂ϑ ′

j,lin

∂x j
− τ̄ij,lin

∂u′′
i

∂x j
− τ ′

ij,lin
∂ ũi

∂x j
= −cp

∂

∂x j

(
ρu′′

j T
′′ − ρ̄ ˜u′′

j T
′′
)

︸ ︷︷ ︸
THF

−∂ϑ ′
j,nln

∂x j︸ ︷︷ ︸
MHNF

+ τ̄ij,nln
∂u′′

i

∂x j
+ τ ′

ij,nln
∂ ũi

∂x j
+
(

τ ′
ij

∂u′′
i

∂x j
− τij

∂u′′
i

∂x j

)
︸ ︷︷ ︸

VDNF

+ PCNF + EMNF.

(2.3c)
Here, ϕ′ and ϕ′′ are the Reynolds and Favre fluctuations, respectively; the linear and
nonlinear fluctuation terms are listed on the two sides of each equation. There are five
independent variables in the system. We choose the basic variable set as q′′ = [ρ′, u′′,
v′′, w′′, T ′′]T , then the derived variables p′, ϑ ′

j and τ ′
ij are not strictly linear functions

of q ′′. To achieve a thorough linearisation of the system, p′ and ϑ ′
j are also divided into

the linear and nonlinear parts in terms of q ′′, as

p′ = ρ̄T ′′ + ρ′T̃︸ ︷︷ ︸
≡ p′

lin

+ ρ′T ′′︸︷︷︸
≡ p′

nln

, ϑ ′
j = −κ̄

∂T ′′

∂x j
− κ ′ ∂ T̃

∂x j︸ ︷︷ ︸
≡ ϑ ′

j,lin

−
(

κ ′ ∂T ′′

∂x j
− κ

∂T ′′
∂x j

)
︸ ︷︷ ︸

≡ ϑ ′
j,nln

, (2.4)

and so is τ ′
ij = τ ′

ij,lin + τ ′
ij,nln (not detailed for brevity). As a result, the left-hand sides

in (2.3) are all linear functions of q ′′, ready for constructing the linear operator. The
various nonlinear fluctuation terms reside on the right-hand sides of (2.3), classified as
underbraced. Their names are collectively defined in table 1. The expressions of the
unspecified terms MMNF, PCNF, EMNF are detailed in Appendix A.

Notably, the term RSF is the only nonlinear term in incompressible flows. For
compressible cases, however, many other terms appear due to the thermodynamic
processes. In previous works (e.g. Alizard et al. 2015), RSF and THF were of the
primary concern and were modelled using algebraic RANS relations to formulate the
eLNS model; other terms were usually neglected. But here, we provide the complete form
of the fluctuation equations and will clarify in § 4.1 the contribution of each nonlinear
term.
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Abbreviation Full name Equation

RSF Reynolds stress fluctuation (2.3b)
PGNF pressure gradient nonlinear fluctuation (2.3b)
VSNF viscous stress nonlinear fluctuation (2.3b)
MMNF momentum material derivative nonlinear fluctuation (2.3b)
THF turbulent heat-flux fluctuation (2.3c)
MHNF molecular heat-flux nonlinear fluctuation (2.3c)
VDNF viscous dissipation nonlinear fluctuation (2.3c)
PCNF pressure convection nonlinear fluctuation (2.3c)
EMNF enthalpy material derivative nonlinear fluctuation (2.3c)

Table 1. Names and abbreviations of the nonlinear terms in the fluctuation equations.

2.2. The LNS and eLNS models
Equation (2.3) constitutes a closed set of equations for q ′′, and can be rearranged into an
operator form as

∂ρ′

∂t
−Lρq ′′ = f ′′

ρ , ρ̄
∂u′′

i

∂t
−Lmi q

′′ = f ′′
mi

, ρ̄cv

∂T ′′

∂t
− RT̃

∂ρ′

∂t
−Lhq ′′ = f ′′

h ,

(2.5a)
where L denotes the linear operator determined only by the mean flow q̃, and f ′′ represents
the nonlinear terms. Detailed expressions of L are readily contained in (2.3), also available
in Dawson & McKeon (2020) and Chen et al. (2023a). Equation (2.5a) is rewritten into a
matrix form as

A
∂

∂t

⎡⎣ ρ′
u′′

j
T ′′

⎤⎦=
⎡⎣ Lρ

LmiLh

⎤⎦ q ′′ +
⎡⎣ f ′′

ρ

f ′′
mi
f ′′
h

⎤⎦ , A ≡
⎡⎣ 1

ρ̄δij

−RT̃ ρ̄cv

⎤⎦ , (2.5b)

or equivalently

∂q ′′

∂t
=Lq q ′′ + f ′′

q , (2.6)

where A−1 has been absorbed into Lq and f ′′
q ≡ [ f ′′

ρ , f ′′
u , f ′′

v , f ′′
w, f ′′

T ]T. Equation (2.6)
is the linearised NS equation and serves as a classic model problem. The linear model built
upon (2.6) is often referred to as the LNS model.

In addition to the LNS model, the compressible eLNS model is frequently considered
for model improvement, which is built upon algebraic RANS models (Alizard et al. 2015;
Chen et al. 2024, 2025). Specifically, the Boussinesq assumption and the strong Reynolds
analogy (SRA) are introduced to linearise the Reynolds stress τR,ij and turbulent heat
flux ϑR, j

τ ′
R,ij = μt

(
∂u′′

i

∂x j
+ ∂u′′

j

∂xi

)
− 2

3
μt

∂u′′
k

∂xk
δij , ϑ ′

R, j = −κt
∂T ′′

∂x j
. (2.7)

Here, κt is the eddy diffusivity. In practice, μt and κt are either assumed known from the
DNS data or from semi-empirical models (e.g. Fan et al. 2024). The terms τ ′

R and ϑ ′
R were

originally designed to partially model the colour of the nonlinear terms. Taking the RSF
term as an example, it is modelled as

− ∂

∂x j

(
ρu′′

i u′′
j − ρ̄˜u′′

i u′′
j

)
≡ RSFi = ∂τ ′

R,ij

∂x j
+ eRSFi , (2.8)
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where eRSF represents the residual nonlinear term of RSF, after subtracting the modelled
stress flux ∂τ ′

R,ij/∂x j . The other two residual terms eTHF and eVDNF, after modelling the
turbulent heat flux and viscous dissipation, are similarly defined (e.g. Chen et al. 2023b).

It is worth emphasising that (2.8) is the core assumption for the eLNS model. However,
we will show in § 4 that (2.8) can deviate from its original intention. The supposedly small
residual terms, eRSF and eTHF, turn out to essentially rebuild the forcing distributions.

Since μt and κt profiles are assumed fixed, τ ′
R and ϑ ′

R are linear in terms of q ′′, so these
eddy-viscosity-related terms in the momentum and enthalpy equations are linearised as

∂τ ′
R,ij

∂x j
≡Mmi q

′′, −∂ϑ ′
R, j

∂x j
+ τ̄R,ij

∂u′′
i

∂x j
+ τ ′

R,ij
∂ ũi

∂x j
≡Mhq ′′. (2.9)

Consequently, parts of the LNS nonlinear terms can be linearised and moved into
the linear operator, so that the model is eddy-viscosity enhanced, following the term
for incompressible flows (Madhusudanan, Illingworth & Marusic 2019). The resulting
operator form of the eLNS model reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ′

∂t
= Eρq ′′ + e′′

ρ, with Eρ ≡Lρ and e′′
ρ ≡ f ′′

ρ ,

ρ̄
∂u′′

i

∂t
= (Lmi +Mmi

)︸ ︷︷ ︸
≡ Emi

q ′′ + ( f ′′
mi

−Mmi q
′′)︸ ︷︷ ︸

≡ e′′
mi

,

ρ̄cv

∂T ′′

∂t
− RT̃

∂ρ′

∂t
= (Lh +Mh)︸ ︷︷ ︸

≡ Eh

q ′′ + ( f ′′
h −Mhq ′′)︸ ︷︷ ︸

≡ e′′
h

,

(2.10)

where the linear operator E and the nonlinear term e′′ for eLNS are defined as underbraced.
The final standard form similar to (2.6) is

∂q ′′

∂t
= Eq q ′′ + e′′

q . (2.11)

Note that Eq is the same as Lq except for replacing μ̄ with μ̄ + μt and κ̄ with κ̄ + κt .
Equations (2.6) and (2.11) constitute the model equations for LNS and eLNS, respectively.

It is worth mentioning that the eLNS model was originally derived based on the
triple decomposition of q (Reynolds & Hussain 1972; Alizard et al. 2015), where q
is decomposed into the mean part, the turbulent fluctuation part and a small-amplitude
organised perturbation. This approach is more physically interpretable, whereas the final
linearised equation is mathematically equivalent to (2.11). Therefore, we do not present
the triplydecomposed fluctuation equations, considering the already complicated (2.3).

2.3. The DNS datasets
A series of DNSs for compressible turbulent channel flows have been conducted by
the present authors’ group, as described at length in Cheng & Fu (2022, 2023). The
simulations adopt three bulk Mach numbers Mab = Ub/aw = 0.8, 1.5, 3.0 and a series
of bulk Reynolds numbers Reb = ρbUbh/μw. Here, ρb and Ub are the bulk density and
streamwise velocity, a = (γ RT )1/2 is the speed of sound with the specific ratio γ = 1.4,
h is the channel half-width and the subscript w denotes wall quantities. Our focus is
the compressibility effects on the forcing models, so we first select two DNS cases at
Mab = 1.5 and 3.0 with nearly equal Re∗

τ . A third case with a higher Re at Mab = 1.5 is
also included, to examine potential scalings. Additionally, two incompressible DNS cases
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Case Mab Re∗
τ Reτ Reb T̃c/Tw Lx/h Lz/h ttotaluτ /h Nt

Ma15Re3k 1.5 144 219 3000 1.40 4π 2π 27.1 255
Ma30Re5k 3.0 141 455 4880 2.64 4π 2π 20.4 221
Ma15Re9k 1.5 393 598 9400 1.39 4π 2π 11.8 206
Ma00Re3k 0.0 186 186 2920 1.00 4π 2π 34.3 301
Ma00Re10k 0.0 547 547 10060 1.00 4π 2π 23.4 201

Table 2. Parameters of the DNS cases for turbulent channel flows, where ttotaluτ /h is the total eddy turnover
time to accumulate statistics. Two incompressible cases are also included for later reference.

at different Reτ are adopted, with data from Ying et al. (2023), to facilitate quantitative
measure of the compressibility effects. Detailed parameters of the five cases are listed
in table 2. Here, Reτ = ρwuτ h/μw and Re∗

τ = ρ̄u∗
τ h/μ̄ are the friction and semi-local

Reynolds numbers; uτ is the friction velocity and u∗
τ is the semi-local counterpart; T̃c is the

temperature at the channel centre; Lx and Lz are the domain sizes. For later use, the wall
viscous and semi-local length scales are defined as δν = μw/(ρwuτ ) and δ∗

ν = μ̄/(ρ̄u∗
τ ),

based on which the two sets of non-dimensional lengths are denoted by superscripts +
and ∗, respectively.

To obtain the real forcing statistics, the nonlinear terms f ′′
q and e′′

q are calculated by
their definitions in §§ 2.1, 2.2 using the DNS data. The linear models in this work are
solved within the framework of the stochastic Lyapunov equation (see § 2.4), so we do
not need time-resolved DNS data of massive memory requirement as in Morra et al.
(2021) and Ying et al. (2024a) for incompressible cases. Instead, we focus on the ensemble
(temporal) average 〈·〉 of variables, where time-not-resolved data are adequate. Therefore,
the sampling number of the instantaneous fields Nt can be orders of magnitude lower
than that required by the time-resolved data; for the latter case, Nt can reach ∼104 at
current Reτ . The price is that the frequency spectrum is not resolved, but we can still
reveal the forcing statistics in the spatial spectra, which provides adequate information to
improve the stochastic linear models. The Fourier decomposition is applied on q′′ in two
homogenous directions as

q ′′(x, y, z, t) =
∫∫ ∞

−∞
q̂ ′′

(y, t; kx , kz) exp
[
i (kx x + kzz)

]
dkx dkz, (2.12)

where kx and kz are the streamwise and spanwise wavenumbers, and q̂ ′′ is the shape
function. The Fourier components of f̂

′′
and ê′′ are similarly defined. Thevalue of Nt

used for different cases is listed in table 2, which will be shown in § 3 to be large enough
to provide converged spectral statistics.

2.4. Fluctuations in response to modelled and DNS forcing
In this subsection, we first present how the spectral correlation tensor Φ̂(y, y′; kx , kz) =
〈q̂ ′′

(y, t; kx , kz)q̂
′′H

(y′, t; kx , kz)〉 in response to a modelled forcing is obtained in
the linear model, which requires only the mean flow (including μt , κt ) as the input.
Afterwards, we present how the real forcing can be computed from the DNS data, hence
enabling a direct interpretation of the model errors.

In the Fourier space, the model equations (2.6) and (2.11) are expressed as

∂ q̂ ′′

∂t
= L̂q q̂ ′′ + f̂

′′
q ,

∂ q̂ ′′

∂t
= Êq q̂ ′′ + ê′′

q . (2.13a,b)
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When the real forcings f̂
′′
q and ê′′

q are unknown, the stochastic linear models provide
a mean to estimate Φ̂. An idealised stochastic forcing is assumed as f̂ q = F f̂ 0 (so is
êq = Eê0), where the matrix F(y) models the wall-normally varied forcing amplitude,
and f̂ 0 (and ê0) is a delta-correlated Gaussian white noise with zero mean. Consequently,
the correlation tensor Φ̂ is obtained by solving the Lyapunov equation (Farrell & Ioannou
1993), as

L̂ Φ̂ + Φ̂L̂H + (FFH ) = 0, for the LNS model, (2.14a)

Ê Φ̂ + Φ̂ÊH + (EEH ) = 0, for the eLNS model, (2.14b)

where the Hermitian transpose of L̂ and Ê is defined as the discrete adjoint. In the simplest
models, F and E are assumed to be diagonal, suggesting perfect zerocorrelation of the
forcing between different variables and between different wall-normal heights. The simple
yet well-behaved W-model (Gupta et al. 2021; Chen et al. 2023b) is considered here, where
the forcing amplitude varies in proportion to the kinematic eddy viscosity νt = μt/ρ̄, as

F, E = diag

([
1

Prt

∂ρ̄

∂ ũ
νt , νt , νt , νt ,

1
Prt

∂ T̃

∂ ũ
νt

]T)
M−1/2. (2.15)

The weight matrix M will be defined later, and the extended SRA (Huang, Coleman &
Bradshaw 1995) has been utilised in deriving (2.15) as

T ′′
rms ≈ 1

Prt

∣∣∣∣∂ T̃

∂ ũ

∣∣∣∣ u′′
rms, ρ′

rms ≈ 1
Prt

∣∣∣∣∂ρ̄

∂ ũ

∣∣∣∣ u′′
rms, (2.16)

where rms denotes the root mean square. Equation (2.16) also suggests two wall viscous
units for the temperature and density, Tτ = (∂ T̃ /∂ ũ)wuτ /Pr and ρτ = (∂ρ̄/∂ ũ)wuτ .

The eigenmodes of Φ̂, known as the proper orthogonal decomposition (POD) or
Karhunen–Loève modes, are of interest in various analyses on turbulence. They are
defined as (

Φ̂, q̌ ′′
j

)
E

= θ j q̌
′′
j , j = 1, 2, . . . , (2.17)

where the eigenvalues and eigenfunctions θ j and q̌ ′′
j are sorted in the descending order of

the energy of the j th mode (θ j ). These POD modes are orthogonal to each other under the
energy norm (·, ·)E , which is defined following common usage (Chu 1965) as

‖q̌ ′′‖2 = (q̌ ′′
, q̌ ′′)

E =
∫ 2h

0

(
ρ̄ ǔ′′H ǔ′′ + RT̃

ρ̄
ρ̌′†ρ̌′ + ρ̄cv

T̃
Ť ′′†T̂ ′′
)

dy = Q̌
′′H

M Q̌
′′
.

(2.18)
Here, † denotes complex conjugate, the global vector Q̌

′′
contains q̌ ′′ at all wall-normal

grids and M is the weight matrix. Regarding the numerics, (2.14) is discretised using the
Chebyshev collocation point method; 241 points are used in default, which is abundant to
ensure grid independence. The solver verification can be found in Chen et al. (2023a).

Instead of the ideal modelling in (2.15), the forcings can be realistically computed by
their definitions from the DNS data. Equation (2.13) indicates that the correlation tensor
satisfies the following two Lyapunov equations for the LNS and eLNS models, respectively
(derivations in Appendix A):

1015 A40-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
33

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10339


X. Chen, A. Ying, J. Gan and L. Fu

0 ≈ ∂Φ̂

∂t
= L̂qΦ̂ + Φ̂L̂H

q +
〈

f̂
′′
q q̂ ′′H + q̂ ′′ f̂

′′H
q

〉
︸ ︷︷ ︸

≡(FFH )DNS

, for the LNS model, (2.19a)

0 ≈ ∂Φ̂

∂t
= ÊqΦ̂ + Φ̂ÊH

q +
〈
ê′′

q q̂ ′′H + q̂ ′′ ê′′H
q

〉
︸ ︷︷ ︸

≡(EEH )DNS

, for the eLNS model. (2.19b)

Here, the approximation on the left-hand side holds subject to a sufficiently large Nt .
Comparing between (2.14), (2.19), we can define the real forcing matrix from DNS as
(FFH )DNS and (EEH )DNS, as underbraced in (2.19). A reasonable consequence is that
when (FFH )DNS and (EEH )DNS are input into the stochastic linear models (2.14), the
output Φ̂ should be identical to the DNS counterpart Φ̂DNS, which is required by the
models’ mathematical self-consistency. On the other hand, (FFH )DNS and (EEH )DNS
naturally provide the ‘standard answers’ to how to model FFH and EEH , and can directly
tell why the current LNS and eLNS models succeed or fail in specific cases.

It is worth noting that, when deriving (2.19), we do not and need not assume the DNS
signal to be a white noise in the temporal domain; it is indeed not a white noise. The
consequence is that (FFH )DNS (and also (EEH )DNS) may be negative definite for some
scales, so the matrix (F)DNS may not really exist to satisfy this product. That is also the
case when the white noise assumption and (2.15) fail. Nonetheless, this consequence does
not affect the proof of the models’ self-consistency because we simply treat (FFH )DNS as
a whole and do not pursue further matrix decompositions.

3. Data verification and models’ self-consistency
Two central objectives in this section are to confirm that (i) Nt in table 2 is adequate
to obtain converged forcing statistics, and (ii) the stochastic linear models in § 2.4 are
mathematically self-consistent. Note that the different variable components in Φ̂, (FFH )

and (EEH ) below will be normalised by ρb, Ub, Tw and h, unless otherwise stated.
First, we inspect the mean-flow budgets in (2.1) for all the cases (shown in Appendix B).

A term balance is realised throughout the field for each case, demonstrating the reliability
of the averaged DNS data and the post-processing schemes. Second, we calculate the real
forcing matrices (FFH )DNS and (EEH )DNS in (2.19) at different kx , kz , and input them into
the LNS and eLNS models in (2.14). Both models are anticipated to output Φ̂ values that
are identical to Φ̂DNS. This is realised in figure 1 at nearly all kx and kz that are resolved.
Specifically, close resemblance among Φ̂LNS, Φ̂eLNS and Φ̂DNS is observed in figures 1(a)
and 1(b) for all the 15 components of Φ̂ (hence Φ̂LNS is not displayed for conciseness), at
(kx , kz)h = (0.5, 3) (wavelengths λ+x = 2750, λ+z = 460). A more quantitative comparison
is shown in figure 1(c) by plotting the leading fortieth θ j of the POD modes. They cover
nearly four orders of magnitude, and the three sets of θ j are still in close agreement with
each other. Such agreement in θ j is also achieved at other kx and kz . Two representative
results are displayed in figures 1(d) and 1(e), where λ+x < λ+z for the former scale and
λ+x , λ+z are both small (<70) for the latter. The θ j from the eLNS model matches slightly
better the DNS than the LNS model for different scales, and the reason will be clear in
§ 4.1.

Consequently, we arrive at the following two points. First, the value of Nt in table 2 is
adequate to obtain converged ensemble averages of the variables and nonlinear forcing
at different scales. The computation of the complicated fluctuation terms in (2.3) is
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Figure 1. (a,b) Ensemble-averaged correlation tensor 〈q̂ ′′ q̂ ′′H 〉 (logarithmic scale to display all structures) from
(a) the DNS data and (b) the eLNS model using the DNS-computed forcing, at (kx , kz)h = (0.5, 3) for case
Ma15Re3k; only 15 components of the correlations out of 25 are shown because the tensor is Hermitian. (c–e)
Leading eigenvalues of the correlation from DNS and the LNS/eLNS models using the DNS-computed forcing
with (kx , kz)h equal to (c) (0.5, 3), (d) (3.5, 1) and (e) (20, 40).

also accurate enough. Second, the framework of the stochastic linear models in § 2 is
mathematically self-consistent. Both the LNS and eLNS models can provide accurate
Φ̂ at different kx and kz , if the forcings FFH and EEH are accurate enough. In that
case, the derived variables of Φ̂, like the fluctuation variance, spatial spectra and the
linear stochastic estimations (e.g. Madhusudanan et al. 2019), can also closely agree
with DNS.

4. Real forcing distributions from DNS
The characteristics of the real matrices (FFH )DNS and (EEH )DNS are detailed here.
Prior to that, the nonlinear terms f ′′

q and e′′
q from the DNS, required by (FFH )DNS and

(EEH )DNS (see (2.19)), are discussed in § 4.1. Note that we concern with three central
problems. The first is to clarify the relative contributions of different nonlinear components
in (2.3) and table 1. The second is to examine whether the diagonally modelled forcing
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Figure 2. Root mean squares of different nonlinear fluctuation terms from DNS in the (a) streamwise, (b) wall-
normal and (c) spanwise momentum equations, and (d) the enthalpy equation, for case Ma15Re3k. Panels (a–c)
are normalised by uτ and panel (d) is by Tτ . See table 1 for term abbreviations. Note that all the components
have been scaled by the mean-flow coefficients in (2.5b), as in (2.6).

(2.15) aligns with the DNS statistics, which directly explains the success or failure of
current models. The third is to reveal the differences between the LNS and eLNS models,
and clarify the role of the critical eddy-viscosity-related terms.

4.1. Distributions of the nonlinear terms
Given the significance of accurately computing the forcing (§ 3), we scrutinise each
nonlinear fluctuation term defined in (2.3). Their root mean squares in the LNS and eLNS
models are computed from the DNS. The wall-normal distributions of these components
are plotted in figures 2 and 3 for cases Ma15Re3k and Ma30Re5k, respectively. The LNS
model is discussed first. For f ′′

u,rms and f ′′
T,rms, RSF and THF are respectively the dominant

terms in nearly all regions. The terms related to molecular viscosity and conductivity
(VSNF, VDNF and MHNF) are negligible except in the viscous sublayer, and the pressure-
related terms PGNF and PCNF remain small throughout. For f ′′

v,rms and f ′′
w,rms, RSF still

dominates away from the wall, but within and below the buffer layer, PGNF is significant
and leads to an additional peak of f ′′

rms, especially for case Ma30Re5k (figures 3b and 3c).
Therefore, the compressibility effect is prominent near the wall for the nonlinear terms in
the wall-normal and spanwise momentum equations. The physics behind this additional
peak will be clarified later using its spectra. Moreover, the convection-related terms
MMNF and EMNF remain moderate throughout the field. They become increasingly
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Figure 3. Same as figure 2 except for case Ma30Re5k. See table 1 for the term abbreviations.

important as Mab rises, suggesting notable convection of momentum and energy caused
by ρ′. The results of case Ma15Re9k are qualitatively the same as case Ma15Re3k, and
are hence not displayed.

Next, we turn to the eLNS model. The original intention of introducing τ ′
R and ϑ ′

R is
to partially model RSF and THF, so the residual terms eRSF and eTHF should be smaller
than RSF and THF (see (2.8)). In figures 2 and 3, however, the results are the opposite.
For all the equations shown, eRSF and eTHF are close to RSF and THF at y∗ � 15, where
μt/μ̄ (and κt/κ̄) is small. In the outer region with μt � μ̄, however, eRSF and eTHF can
be over two times larger than RSF and THF, so e′′

rms are much higher than f ′′
rms in all the

momentum and enthalpy equations. The Reτ in the present cases are relatively low, so the
ratio e′′

rms/ f ′′
rms will become even larger under higher Reτ , due to the increased μt/μ̄.

Considering the unusual trend of eRSF and eTHF, the modelling assumption (2.8)
deserves more discussion. The variances of the three components in (2.8), i.e. RSFi ,
∂τ ′

R,ij/∂x j and eRSFi , are plotted in figure 4 for case Ma30Re5k, along with the
correlation between RSFi and ∂τ ′

R,ij/∂x j . For both the streamwise and wall-normal
momentum equations (and also the spanwise one not shown), the modelled stress flux
∂τ ′

R,ij/∂x j does not follow RSFi throughout, regarding both shapes and amplitudes. The
modelled flux highly overestimates, and has moderately negative correction with RSF in
the outer layer, which leads to the much higher amplitudes of eRSF and RSF. The same
conclusion applies to THF and eTHF. Also, we have examined that the trends in figure 4
are analogous for other cases, insensitive to Reτ and Mab.
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Figure 4. Variance of the three terms in (2.8) and the correlation between RSF and the modelled stress flux
(all normalised by u2

τ ) for case Ma30Re5k: (a) streamwise and (b) wall-normal momentum equations.

Consequently, we arrive at a conclusion that, the τ ′
R and ϑ ′

R fluxes are not partial
modellings of RSF and THF, as previously believed (Hwang & Cossu 2010; Pickering
et al. 2021; Chen et al. 2023a; Ying et al. 2023). On the contrary, the ‘residual’ terms
eRSF and eTHF can be several times larger than RSF and THF, so e′′

rms is more dominant
by eRSF and eTHF, than the dominance of RSF and THF over f ′′

rms. As a result, the effects
of other unmodelled nonlinear fluctuations (VSNF, MMNF, etc.) become minor, which
increases the robustness of the shapes and amplitudes of the forcing. More discussions on
this point will be provided in § 4.2. This robustness of the eLNS forcing also explains the
trend in figure 1 that its ensemble average can reach convergence using a lower Nt than
the LNS counterpart.

The spectra of these nonlinear fluctuations are calculated, to identify the active
wavenumbers of different components. Case Ma30Re5k is studied first, as it features the
strongest density and temperature fluctuations. The pre-multiplied one-dimensional (1-D)
spectra of f̂

′′
q and ê′′

q in the streamwise and spanwise directions are displayed in figure 5.
The semi-local coordinates y∗, λ∗x and λ∗z are adopted, and the spectra of the u component
are used as references in each row to examine the spectral similarity among different
variables. A notable observation is that, compared with the LNS model, the spectra of ê′′

u ,
ê′′
v , ê′′

w and ê′′
T in eLNS have greater resemblance to each other in shapes and peak locations

for both the streamwise and spanwise ones; see figures 5(b) and 5(d). This similarity
among variables can be explained by the dominance of eRSF and eTHF over other terms,
as observed in figure 3. A further decomposition of ∂τ ′

R,ij/∂x j and ∂ϑ ′
R, j/∂x j (difference

between f ′′
q and e′′

q ) shows that the dominant terms for the four terms are μtû′′, μtv̂′′,
μtŵ′′ and κtT̂ ′′, respectively, with  the Laplace operator. Therefore, ê′′

q resides in

smaller scales than q̂ ′′ and f̂
′′
q , and the similarity among ê′′

u , ê′′
v , ê′′

w and ê′′
T is more easily

established than f̂
′′
.

An additional peak appears in the f̂ ′′
v and ê′′

v spectra in the viscous sublayer, which
is contributed by PGNF (equal to −∂(ρ′T ′′)/∂y) from figure 3. Compared with the
outer peak, this inner peak resides in a larger scale of λ∗z ≈ 180. The value of λ∗x of this
inner peak exceeds 1500, but due to the relatively low Reτ in this case, its streamwise
spectrum is not fully resolved. The λ∗x � λ∗z feature of this inner peak indicates that it is
not caused by the near-wall acoustic motions (where λx < λz ; see § 5), but is attributed
to the near-wall density and temperature streaks which are most active at λ+x ∼ 1000 and
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Figure 5. Pre-multiplied one-dimensional spectra of the nonlinear fluctuation terms in the (a,b) streamwise
and (c,d) spanwise directions in semi-local units, for the (a,c) LNS model ( f̂

′′
q ) and (b, d) eLNS model (ê′′

q ),
respectively, for case Ma30Re5k. The contours in each panel are normalised by their extreme values labelled
on the top (in wall units ρτ , uτ and Tτ ). The blue dotted lines denote the peak location of the u-spectrum, and
the blue dashed lines denote the u-contour of 0.4.

λ+z ∼ 100; these two streaks are also in nearly perfect negative correlation (Coleman,
Kim & Moser 1995; Patel, Boersma & Pecnik 2016; Cheng & Fu 2024).

To examine the robustness of the spectral features of the eLNS nonlinear terms at
different Mab and Reτ , the 1-D spectra of ê′′

q for cases Ma15Re3k and Ma15Re9k are
depicted in figure 6. As in case Ma30Re5k, similarity between the spectra of ê′′

u , ê′′
v , ê′′

w

and ê′′
T is observed in both the streamwise and spanwise directions. Meanwhile, the inner

peak of ê′′
v due to the PGNF is less evident than in figure 5 owing to the reduced Mab.

Comparing between figures 6 and 5, we note that the (outer) peak location of these 1-D
spectra is not sensitive to Mab and Reτ after using the semi-local units, which is measured
to be λ∗x ≈ 90, λ∗x ≈ 30 and y∗ ≈ 40.

In short, we emphasise that the introduction of τ ′
R and ϑ ′

R is not a partial modelling
of RSF and THF. On the contrary, it highly lifts the amplitudes of eRSF and eTHF, and
hence the dominance of ê′′

q by eRSF and eTHF. Therefore, ê′′
q is more robust than f̂

′′
q

for different variables in terms of the peaks and shapes of their physical and spectral
distributions. Consequently, ê′′

q can be more easily modelled than f̂
′′
q by featuring more

robust composition and structures, although this robustness may not always improve the
model results; see § 4.2.
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′′êu

′′†〉 kx 〈êv
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′′êu

′′†〉 kz 〈êv
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′′êT

′′†〉max: 0.26 max: 0.06 max: 0.06 max: 0.03
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Figure 6. Same as figure 5, but for (a,b) case Ma15Re3k and (c,d) case Ma15Re9k and only the results of the
eLNS model are shown. Panels (a,c) are the streamwise spectra and panels (b,d) are the spanwise ones.

4.2. Distributions of the forcing matrix
As mentioned in § 3, (FFH )DNS and (EEH )DNS provide standard answers to how to
model (FFH ) and (EEH ) in the stochastic linear models, so the distributions of these
forcing are discussed at different kx and kz . The spectral fluctuation is usually classified
into two branches according to its aspect ratio λx/λz . The structure with λx > λz is
considered as streamwise elongated, which is energetic and has strong linear coherence in
the wall-normal direction (e.g. del Álamo & Jiménez 2006). In comparison, the structure
with λx < λz is regarded as spanwise elongated, which receives energy from the nonlinear
terms and can be worse predicted by the linear models than the streamwise-elongated
one (Gupta et al. 2021; Symon et al. 2021). These two types of fluctuations are discussed
separately below.

The streamwise-elongated fluctuations are considered first. Figure 7 vividly demon-
strates what the real forcing matrices (FFH )DNS and (EEH )DNS look like for case
Ma30Re5k at (kx , kz)h = (0.5, 15) (λx = 12.6h, λz = 0.4h). A direct observation is that
these two matrices are far more complicated than the simple diagonal modelling in
(2.15). Recall that two levels of simplification are made in (2.15). First, only the self-
correlation matrices of the forcing variables ( f̂ ′′

ρ f̂ ′′H
ρ , f̂ ′′

u f̂ ′′H
u , etc.) are retained, while all
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Figure 7. Contours of the forcing matrix (a) |(FFH )DNS| and (b) |(EEH )DNS|, at (kx , kz)h = (0.5, 15) for case
Ma30Re5k. Their diagonal terms, as labelled in blue dotted lines, are plotted in panels (c,d) in normalised
values; the purple reference lines are from (2.15).

the inter-variable correlations ( f̂ ′′
ρ f̂ ′′H

u , etc.) are neglected. Second, each self-correlation
matrix is set to be diagonal, signifying perfect zerocorrelation between different y.
In figure 7, however, there are significant off-diagonal terms for both (FFH )DNS
and (EEH )DNS, suggesting non-negligible inter-variable and inter-height correlations.
Regarding the difference between the LNS and eLNS forcing, a visual observation seems
to suggest that (EEH )DNS is more diagonal than (FFH )DNS, in terms of wall-normal
correlations. This is reasonable because the dominant terms τ ′

R and ϑ ′
R in eLNS are linear

functions of the fluctuations and are related to local mean-flow gradients, so they are more
localised than the other nonlinear terms which contain high-order fluctuation moments.
More quantitative evidence will be provided later. Consequently, the diagonal modelling
in (2.15) benefits more the forcing in the eLNS model, than the LNS one. The diagonal
elements of (FFH )DNS and (EEH )DNS are extracted in figures 7(c) and 7(d). The modelled
distributions in (2.15) are also displayed for reference. As discussed in § 4.1, the diagonal
terms for eLNS reflect the large contributions of eRSF and eTHF, so the diagonal terms of
the u, v, w and T components exhibit stronger resemblance to each other, hence they are
more robust for modelling compared with the LNS model. Nevertheless, the prediction of
(2.15) is not very consistent with the DNS results; the real forcing is more concentrated
near the wall under this small λz .

From the modelling perspective, it is interesting to show whether the DNS forcing is
of low rank. The diagonal modelling in (2.15) means that the forcing is assumed to be of
full rank, while Morra et al. (2021) demonstrate using the incompressible DNS data that
the forcing has clear spatial-temporal coherence. The rank characteristics of the forcing
matrix can be measured using the singular value decomposition (SVD), as
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Figure 8. (a,c) Energy ratios occupied by the leading 10 singular values of the forcing matrix in figure 7, and
(b,d) shape functions of the principal forcing mode (case Ma30Re5k, (kx , kz)h = (0.5, 15)). Panels (a,b) are
for the LNS model, and (c,d) for the eLNS one.

(FFH )DNS =
∑

j

σ j f̌
′′
j f̌

′′H
j =
∑

j

σ j Ψ̌ j , (4.1)

where σ j is the singular value sorted in the descending order; f̌
′′
j is the singular vector

satisfying the orthogonal condition ( f̌
′′
i , f̌

′′
j )E = δij , so each component Ψ̌ j is of rank one.

The left and right singular vectors are the same because the forcing matrix is Hermitian.
Besides, the sum of the singular values,

∑
j σ j ≡ Vσ , represents the total energy input

by the forcing. The decomposition for (EEH )DNS is defined likewise. Based on (4.1), we
would regard a forcing matrix as of low rank if the first or first few SVD modes occupy a
large portion of the total forcing energy.

The leading ten σF, j and σE, j of the matrices in figure 7 are plotted in figures 8(a)
and 8(c), expressed in relative ratios rσ, j = σ j/Vσ . Note that σ j appears in pairs due
to the flow symmetry or antisymmetry on the two sides of the channel regarding the
centreline, so every two σ j are combined to reflect their joint contributions. The forcing
(FFH )DNS for the LNS model is of relatively low rank, with rσ F,1 over 57 %. This low-
rank feature is very different from the full-rank FFH (fully diagonal) assumed in the linear
model. The shape of the principal mode f̌

′′
1 is plotted in figure 8(b). The f̌ ′′

u,1 and f̌ ′′
T,1

components turn out to be the two largest, which is different from a previous suggestion
of the linear models that, for the principal forcing mode, the f̌ ′′

v,1 and f̌ ′′
w,1 components are

dominant for streamwise-elongated modes in the form of streamwise vortices to induce
streaks (Hwang & Cossu 2010; Chen et al. 2023a). In comparison, rσ E,1 = 26 % for the
eLNS model is lower than rσ F,1. In other words, the modelled terms eRSF and eTHF
lessen the spatial coherence of the forcing, and add to its diagonal dominance. Meanwhile,
eRSF and eTHF markedly enhance the outer-layer forcing (figure 3), so the shapes of the
principal mode in figure 8(d) is also lifted away from the wall, compared with its LNS
counterpart. This amplified outer-layer forcing energy can be rapidly dissipated within the
linear operator, where the stronger damping in eLNS is due to the replacement of μ̄ with
μ̄ + μt in the linear operator (see § 2.2). Consequently, the response mode can still take
the form of near-wall streaky motions (c.f. figure 1b also with λx > λz).

The forcing pattern for spanwise-elongated modes is demonstrated in figure 9,
where the wavenumbers are selected to be (kx , kz)h = (20, 3) (λx = 0.6h, λz = 4.2h).
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Figure 9. Same as figure 7 except for scale (kx , kz)h = (20, 3).

Compared with figure 7, the matrices (FFH )DNS and (EEH )DNS become visually more
diagonal in the wall-normal direction. Equivalently, the two forcings are both of higher
rank, compared with those in figures 7, 8, which is inferred from their more uniform
σ j (not shown; rσ F,1, rσ E,1 < 12 %). This stronger diagonality for spanwise-elongated
structures is reasonable, because they tend to be more localised and exhibit weak inter-
layer linear coherence (e.g. Marusic, Baars & Hutchins 2017). The diagonal elements of
the two forcing matrices are plotted in figures 9(c) and 9(d). It is interesting to show
that the prediction of (2.15) is in good agreement with the DNS results, especially for
the eLNS model. Nevertheless, both incompressible and compressible works suggest that
the linear models perform worse for spanwise-elongated fluctuations (Gupta et al. 2021;
Symon et al. 2021; Chen et al. 2023b). From the modelling aspect, a prominent disrupting
factor is the unmodelled inter-variable correlations, particularly f̂ ′′

ρ f̂ ′′H
u , f̂ ′′

ρ f̂ ′′H
T , f̂ ′′

u f̂ ′′H
v

and f̂ ′′
u f̂ ′′H

T (and also the ê′′ counterparts). They are all assumed zero in (2.15). From the
physical perspective, previous studies showed that the linear dynamics (lift-up mechanism,
transient growth, etc.) is important for generating streamwise-elongated structures, but
contrarily, the travelling-wave-like spanwise-elongated fluctuations are mainly caused by
nonlinear effects related to turbulent bursting, vortex stretching and streak breakdown
(Schoppa & Hussain 2002; Yu et al. 2024).

The diagonality of the forcing matrices in figures 7 and 9 relies on visual measurement.
For more quantitative estimation, we project the forcing into the space spanned by the
POD modes of 〈q̂ ′′q̂ ′′H 〉. The projection coefficients for models LNS and eLNS are then
computed as

αij = q̌ ′′H
i M
(
FFH )

DNS Mq̌ ′′
j , βij = q̌ ′′H

i M
(
EEH )

DNS Mq̌ ′′
j . (4.2)
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Figure 10. Projection coefficients of the DNS forcing to the space spanned by the POD modes for
case Ma30Re5k: (a,b,c,d) LNS part αij , (e,f ,g,h) eddy-viscosity part ξij and (i,j,k,l) eLNS part βij ;
see (4.2). Panels show (a,e,i) λx = 6.3h, λz = 3.1h; (b,f ,j) λx = 6.3h, λ+z = 179; (c,g,k) λ+x = 143, λz = 3.1h;
(d,h,l) λ+x = 143, λ+z = 179. The input energy Vσ shown is amplified by 105 for all panels for convenience.

This projection reduces the forcing in the physical space into discrete coefficients, and
can jointly reflect inter-variable and inter-height correlations. If the forcing is ideally a
white noise modelled by (2.15), then αij (and βij ) is also a diagonally dominant matrix for
nearly all spatial scales. The difference between αij and βij is also of interest, denoted as
ξij = βij − αij , which reflects the contribution of the eddy-viscosity-related terms.

The Ma30Re5k case is discussed first using four representative scales. The first two
are streamwise- and spanwise-elongated fluctuations discussed above; the third type is a
large-scale fluctuation in the outer region with (λx , λz)/h = (6.3, 3.1), and the fourth is
a small-scale fluctuation with λ+x , λ+z ∼ 100. Their αij , ξij and βij values are depicted in
figure 10 for the leading indices i, j < 10. These coefficients are normalised by their input
energy Vσ , as labelled, such that their trace is unity: �iαi i/Vσ,α = 1 (so are ξij and βij ).
For the large-scale fluctuation in figure 10(a), αij for the LNS model has pronounced
off-diagonal elements, indicating strong inter-variable and/or inter-height correlations. In
comparison, the eddy-viscosity term ξij has much higher energy (Vσ ) than αij , as discussed
for figure 3, and is highly diagonally dominant. As a result, their summation βij = αij + ξij
for the eLNS model has a similar distribution to ξij and features high diagonal dominance.
The above trend is analogous to streamwise-elongated structures in the second column of
figure 10, which has been visually shown in figure 9. In comparison, for the structures of
small λx (irrespective of λz), αij , ξij and βij are all diagonally dominant, as shown in the
last two columns of figure 10, which is in line with the observations in figure 9.

The projection results for cases Ma15Re3k and Ma15Re9k are shown in figure 11. The
distributions of αij and βij for different scales resemble a lot those in figure 10, suggesting
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Figure 11. Same as figure 10 but for (a,b,e,f ) case Ma15Re3k and (c,d,g,h) case Ma15Re9k. Panels (a,c,e,g)
are fluctuations of large λx , λz and panels (b,d,f ,h) are of small λx , λz .

weak dependence on Mab and Reτ . Therefore, the role of the eddy-viscosity terms is
clarified again (as in § 4.1) that it adds a large-amplitude diagonallydominant term to the
LNS forcing matrix (specifically, the self-correlation part of the forcing variables), so that
the eLNS forcing is more diagonally dominant and has similar shapes at different scales.
From the physical point of view, this enhanced diagonal dominance was shown to build
a better balance between local turbulent energy dissipation and transport (Symon et al.
2023; Ying et al. 2024a). Consequently, the eLNS model is more robust among different
scales in predicting variable correlations than LNS.

Based on the above conclusion, a natural thought to improve the model arises that the
robustness of the eLNS model can be further strengthened by artificially adding very large
diagonal elements, for example, 10 times eRSF, although unphysical, to the forcing matrix
(EEH ). Nevertheless, we note that the model behaviours will not be necessarily improved
for two reasons. First, although the inter-height correlation is more robustly modelled, the
off-diagonal inter-variable correlation for the forcing also matters (see figure 9), so the
relative amplitudes of different variables still need to be carefully determined. Second,
artificial enhancement of the diagonal terms can destroy the non-normality of the NS
operator, as already reflected in the eLNS model to some extent (Symon et al. 2021; Chen
et al. 2023b). As a result, not only can the linear amplification mechanism be disrupted,
but also the energies of different branches of modes can be disorderly sorted, possibly
leading to excessive amplification of the acoustic and other components for compressible
flows.

Finally, we provide a global view of the coherence of the LNS and eLNS forcing at
all scales. The contours of rσ,1, which measures the energy ratio of the most energetic
forcing mode to all modes, are plotted in figure 12 for all three cases. For the LNS model,
the forcing for streamwise-elongated fluctuations (λx > λz) has relatively high coherence
and low rank, compared with the spanwise-elongated parts. The maximum rσ,1 for case
Ma15Re3k reaches over 70 % at (λx , λz)/h ≈ (12.6, 0.7). The maxima in other two cases
(figures 12b and 12c) also appear at approximately the same scale, suggesting a robust
mechanism of scale selection for the forcing at different Mab and Reτ . As discussed
above, this low-rank feature of the LNS forcing at λx > λz explains its poor behaviours
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Figure 12. Energy ratio occupied by the leading POD mode (rσ,1 = σ1/
∑

j σ j ) for the forcing in the
(a,b,c) LNS and (d,e,f ) eLNS models at different λx , λz for cases (a,d) Ma15Re3k, (b,e) Ma30Re5k and
(c,f ) Ma15Re9k. The black dashed line denotes λx = λz .

in predicting these energetic fluctuations (e.g. Madhusudanan et al. 2019). Meanwhile,
we notice that the distribution of rσ,1 resembles a lot the linear coherence spectra of
u and T between different heights (Marusic et al. 2017; Gupta et al. 2021; Chen et al.
2023b) within the inner–outer interaction model. Therefore, the LNS forcing for the scales
with strong inter-height linear coherence of velocity and temperature is of particularly
low rank.

For a more quantitative comparison of rσ,1 between different cases, its variation with
λz/h is plotted in figure 13 for all three compressible cases, at the largest streamwise
scale λx = 4πh. The two incompressible cases are also included for reference. Cases
Ma00Re3k, Ma15Re3k and Ma30Re5k have comparable Re∗

τ = 141∼186, and their rσ,1
values are also close to each other, except at the very small scale. For the two higher Re∗

τ

cases Ma15Re9k and Ma00Re10k, their rσ,1 also have analogous distributions. Therefore,
it is concluded that the low-rank feature of the LNS forcing is not sensitive to Mab,
although a higher Mab can slightly decrease rσ,1 due to the increasing acoustic components
(see § 5). Meanwhile, the low-rank feature is weakened by a rising Reτ , suggesting reduced
spatial-temporal coherence as turbulence intensifies.

Regarding the eLNS results, figure 12 shows that the eLNS model largely disrupts the
low-rank feature of the LNS forcing for scales λx > λz , by including the eddy-viscosity-
enhanced terms. The large-scale fluctuations of high linear coherence are particularly
affected, with rσ,1 down to � 30 %, so these scales are the region where the prediction
of the linear coherence is mostly improved by the eLNS model over LNS. For other scales
(λx < λz , or small λz), the improvement by eLNS is not obvious. Further improvements
are anticipated by optimising the μt profile for different scales, as realised by Symon et al.
(2023) and Ying et al. (2024a) for incompressible flows, and by considering inter-variable
correlations.
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Figure 13. Energy ratio of the leading POD mode (rσ,1) for the LNS forcing with different λz for different
cases (at largest λx = 4πh). Cases Ma00Re3k, Ma15Re3k and Ma30Re5k have comparable Re∗

τ = 141∼186;
cases Ma15Re9k and Ma00Re10k have higher Re∗

τ = 393 and 547 (see table 2).

5. Role of acoustic modes
It is known that the fluctuations in compressible flows can be decomposed into the
vortical, acoustic and entropy components (Kovasznay 1953). The latter two are absent in
incompressible flows, and are primarily responsible for intrinsic compressibility effects.
The acoustic modes were shown to result in distinct features of the linear models
from the incompressible counterpart (Jeun, Nichols & Jovanović 2016; Bae et al. 2020;
Madhusudanan et al. 2025), such as centred fluctuations around the relative sonic line and
notable Mach-wave radiation into the freestream. Particularly, Chen et al. (2023b) found
that overlypredicted acoustic modes can severely degrade the performance of stochastic
linear models in estimating wall-normally coherent density and temperature fluctuations
(i.e. the components of 〈q̂ ′′q̂ ′′H 〉). When using (2.15) as the forcing model, for example,
they showed that the predicted acoustic and entropy modes can contribute up to 55 % of the
response growth. Although, they pointed out that such a high energy portion contradicted
the DNS data (their figures 5 and 14), the real energy portion was not revealed.

Here, we assess quantitatively the role of the acoustic components within the current
linear-model framework using the DNS data. We first seek to extract the acoustic
components out of 〈q̂ ′′q̂ ′′H 〉 and the forcing matrix, and then discuss the key characteristics
of these acoustic components.

5.1. Pressure decomposition for acoustic fluctuations
One viable path to extract the acoustic fluctuations is to first decompose the pressure
fluctuation p′ based on the pressure Poisson equation, and then formulate other acoustic
variables based on the compressible part of p′. The first step is conducted in this
subsection.

Following Sarkar (1992) and Zhang et al. (2024), p′ is decomposed into the quasi-
incompressible part p′

ic and the compressible part p′
c. The governing equations for the two

are obtained by classifying the right-hand-side terms of the pressure Poisson equation, as

∂2 p′
ic

∂xi∂xi
= −2

∂ ũi

∂x j

∂ρu′′
j

∂xi
− ∂2

∂xi∂x j

(
ρu′′

i u′′
j − ρ̄˜u′′

i u′′
j

)
+ ∂2τ ′

i j

∂xi∂x j
, (5.1a)

∂p′
c

∂xi∂xi
= ∂2ρ′

∂t2 − ∂2(ρ′ũi ũ j )

∂xi∂x j
− ũi

∂2(2ρu′′
j )

∂xi∂x j
− ∂

∂xi

(
2ρu′′

i
∂ ũ j

∂x j

)
. (5.1b)
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Figure 14. (a) Variance and correlation of pressure fluctuation components for cases Ma15Re3k and
Ma30Re5k. (b−e) Pre-multiplied 2-D spectra for the (b,d) incompressible and (c,e) compressible parts of the
wall pressure fluctuations for cases (b,c) Ma15Re3k and (d,e) Ma30Re5k. The black dashed line in the right
four panels denotes λx = λz .

The boundary conditions are ∂p′
ic/∂y = ∂τ ′

i2/∂xi and ∂p′
c/∂y = 0 at both wall sides

(Yu, Xu & Pirozzoli 2020). For incompressible flows, p′
c naturally reduces to zero since

ρ′ = ∂ ũ j/∂x j = ∂u′′
j/∂x j = 0. The part p′

ic can be further decomposed (into a rapid
term, etc.), but here, we simply treat it as a whole, as we focus on the compressibility
effects. In this sense, p′

ic reflects the collective contribution of vortical modes, while p′
c is

mainly contributed by acoustic modes. Equation (5.1) is solved using the Fourier–Galerkin
scheme. Since the temporal derivative in (5.1b) is not available in our time-not-resolved
data, we obtain p′

c simply from p′
c = p′ − p′

ic after solving p′
ic from (5.1a). The accuracy

of p′
c is reliable because the realistic p′ and that solved from the Poisson equation were

shown to differ by less than 1 % for similar channel cases (Yu et al. 2020).
The variances of the pressure and its components for cases Ma15Re3k and Ma30Re5k

are plotted in figure 14(a), where the normalisation is p′+ = p′/τw. After the
decomposition, the p′+

ic,rms in the two cases are close to each other under the same Re∗
τ ,

suggesting robust contributions from the quasi-incompressible part. If p′+
ic is regarded as

the result at Mab = 0, then the wall pressure variance roughly follows a linear relation

p′+2
w (Mab) ≈ p′+2

w (0) + 0.216Ma2
b, for Re∗

τ ≈ 140. (5.2)

This scaling is consistent with Yu et al. (2020) although the slope differs due to a
different Re. With Mab increased, p′+

c,rms quickly rises and surpasses p′+
ic,rms at Mab = 3 at

the wall. Moreover, p′+
c,rms is mostly amplified near the wall, suggesting locally intensified

fluctuations of mass flux. The correlation p′+
ic p′+

c is also plotted, which remains small
(<0.2) throughout the field for both cases.

Furthermore, the pre-multiplied 2-D spectra of p̂′
ic and p̂′

c at the wall are displayed in
figure 14. The pressure spectra in compressible flows have been comprehensively studied
before (Bernardini & Pirozzoli 2011; Duan, Choudhari & Zhang 2016). Our intention here
is to provide further support to the decomposition (5.1), by demonstrating the resemblance
of the p̂′

ic spectra under different Mab and the clear scale separation between p̂′
ic and p̂′

c.
The part p̂′

c resides at much smaller streamwise scales than p̂′
ic, taking the form of
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travelling waves, so p̂′
c turns out to be spanwiseelongated with the peak locating at

(λx , λz)/h ≈ (0.5, 1) for case Ma30Re5k.

5.2. Variance and structure of acoustic components
The p̂′

c obtained in § 5.1 can be utilised to recover the other variables of acoustic modes.
From 1-D eigenmode analysis, the q̂ ′′ of acoustic modes, denoted as q̂ ′′

ac, is related
to p̂′

c as

q̂ ′′
ac = [ρ′

ac, u′′
ac, v′′

ac, w′′
ac, T ′′

ac
]T = Cvis

γ p̄

[
ρ̄,

kx a

k
, − ia

k

d

dy
,

kza

k
, (γ − 1)T̃

]T
p̂′

c,

(5.3)
where k2 = k2

x + k2
z . Derivation of (5.3) is detailed in Appendix C. Consequently, the

acoustic part 〈q̂ ′′
acq̂ ′′H

ac 〉 ≡ 〈q̂ ′′q̂ ′′H 〉ac can be extracted out of 〈q̂ ′′q̂ ′′H 〉, based on 〈 p̂′
c p̂′H

c 〉
and (5.3). The residual 〈q̂ ′′q̂ ′′H 〉nac = 〈q̂ ′′q̂ ′′H 〉 − 〈q̂ ′′q̂ ′′H 〉ac is regarded as the non-
acoustic part, which mostly comes from vortical modes although it also includes weak
vortical–acoustic coupling. In the following, the relative contributions of 〈q̂ ′′q̂ ′′H 〉ac and
〈q̂ ′′q̂ ′′H 〉nac are assessed, and the two are further utilised to decompose the forcing, which
will uncover the quantitative contribution of the acoustic components in the stochastic
linear model.

Equation (5.3) explicitly indicates the scale dependence of q̂ ′′
ac. The ratios ρ̂′

ac/ p̂′
c and

T̂ ′′
ac/ p̂′

c turn out to be nearly independent of kx and kz , so the spectral distributions
of ρ̂′

ac and T̂ ′′
ac are primarily determined by p̂′

c and the mean flow. Regarding the
velocity components, the relation û′′

ac � ŵ′′
ac holds if kx � kz , so the acoustic motion

for streamwise-elongated structures is mainly active in the y–z plane with velocities
v̂′′

ac and ŵ′′
ac. Conversely, the acoustic motion is constrained in the x–y plane for

spanwise-elongated structures when kx � kz .
The p̂′

cvalue in the two Mab = 1.5 cases is relatively low, so we focus on case Ma30Re5k
to see the potential effects of acoustic modes. Before inspecting q̂ ′′

ac, we first examine the
spectral distribution of the relative strength of p̂′

c and p̂′
ic. To reflect their amplitudes at

different scales, the energy norm for pressure is defined as (Chu 1965)

Vp = ( p̂′, p̂′)E =
∫ 2h

0

[
ρ̄a2 p̂′† p̂′

(γ p̄)2

]
dy. (5.4)

Figure 15 provides the distributions of three norm ratios of the pressure components
among all scales: the compressible part rpc = ( p̂′

c, p̂′
c)E/Vp, the incompressible part

rpi = ( p̂′
ic, p̂′

ic)E/Vp and their coupling rpc pi = ( p̂′
c, p̂′

ic)E/Vp. Based on these ratios,
three distinct regions in terms of the horizontal scales (λx , λz) can be divided, as denoted
by the dashed lines (see figure 15c). The first region (I) is of either small λ+x or λ+z (� 30),
where rpc exceeds 40 % and rpi falls below 50 % and can down to 10 %. These fluctuations
reside near the wall where p′

c is the strongest, so they are most affected by acoustic
modes, resulting in deviations from their incompressible counterpart. The second region
(II) comprises the streamwise-elongated fluctuations of high linear coherence (λ+z > 30).
They are nearly unaffected by p′

c with rpi over 90 %, so they are dominated by vortical
modes. The slightly higher rpc for the largest scale in the domain (λx , λz)/h = (4π, 2π)

may be attributed to the artificial scale truncation by the domain size. In comparison,
the spanwise-elongated ones in region III feature higher rpc � 20 % and stronger p̂′

c– p̂′
i

coupling with |rpc pi | over 10 %, which is in line with the active zone of p′
c,w in figure 14(e).
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Figure 15. Energy norm ratios of (a) the compressible part 〈 p̂′
c p̂′H

c 〉, (b) the incompressible part 〈 p̂′
ic p̂′H

ic 〉 and
(c) their coupling 〈 p̂′

c p̂′H
ic 〉 relative to 〈 p̂′ p̂′H 〉 for case Ma30Re5k. Three featured regions (I, II, III) are divided

by the three black dashed lines λx = λz , λ+x = 30 and λ+z = 30. Extra contours outside the shaded levels are
shown in grey dashed lines with labelled levels.
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Figure 16. (a) Pre-multiplied 2-D spectrum of the acoustic energy Vqac (normalised by ρbU 2
b /h) and the

energy-norm ratios of (b) 〈q̂ ′′ q̂ ′′H 〉ac and (c) 〈ρ̂′ρ̂′H 〉ac relative to 〈q̂ ′′ q̂ ′′H 〉 and 〈ρ̂′ρ̂′H 〉, respectively, for case
Ma30Re5k. Three regions (I, II, III) are divided as in figure 15. The dotted lines in panel (a) are the contours
(0.2, 0.4, 0.6, 0.8) of the normalised pre-multiplied spectrum of the total energy Vq .

Next, the variance of q̂ ′′
ac, i.e. Vqac = ‖q̂ ′′

ac‖2, is computed, which reflects how much
energy is contributed by acoustic modes to the total fluctuation energy in the linear models.
The pre-multiplied 2-D spectrum of Vqac is first plotted in figure 16(a), along with the
Vq spectrum to show the region of energetic total fluctuations. The energy Vqac is more
pronounced at scales λx < λz , consistent with figure 14(e). The ratio rqac = Vqac/Vq for all
scales is displayed in figure 16(b), whose pattern is qualitatively the same as in figure 15(a).
The three distinct regions (I, II, III) analogous to figure 15 can be identified. The near-wall
fluctuations of either small λ+x or λ+z (<30) are most susceptible to acoustic modes, with
rqac > 10 %. This is consistent with Chen et al. (2023a) that the near-wall inner peak of
the energy amplification curves, representing the optimal near-wall streak in the buffer
layer, becomes non-existent with the rise of Mab. In other words, the travelling-wave-like
acoustic components disrupt the near-wall scaling of streamwise-elongated streaks and
tend to dominate the near-wall turbulent motions.

When λ+x , λ+z > 30, rqac is generally less than 2 % for this Mab = 3 case, indicative
of minor contributions from acoustic modes and dominance of vortical modes. This fact
justifies the post-processing procedure of the cospectrum decomposition designed by Chen
et al. (2023b), where the acoustic components are artificially removed from 〈q̂ ′′q̂ ′′H 〉 to
improve the prediction of the linear coherence spectra of velocity and temperature in the
eLNS model. The overly amplified acoustic components before the processing (rqac can
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Figure 17. Profiles of the total density fluctuation variance and those contributed by the acoustic and non-
acoustic parts for scales of (a) (λx , λz)/h = (0.6, 6.3), (b) (λx , λz)/h = (12.6, 6.3) and (c) (λx , λz)/h =
(12.6, 2.1) for case Ma30Re5k. Those predicted by the SRA relation (2.16) are also shown.

reach 20%–55 % in their eLNS model under (2.15)) is due to misordered energies of the
POD modes subject to an inaccurate forcing model.

Regarding different components of q̂ ′′
ac, the density fluctuation is most affected by the

acoustic components. As shown in figure 16(c), rρac = ‖ρ̂′
ac‖2/‖ρ̂′‖2 can surpass 10 % for

spanwise-elongated fluctuations (region III). In comparison, the corresponding maximum
ratios of the velocity components are all less than 3 %, so the velocities are dominated by
vortical modes.

Considering the sensitivity of rρac to acoustic modes, the wall-normal structure of ρ̂′
ac is

presented in figure 17 using three selective scales. The first scale is (λx , λz)/h = (0.6, 6.3),
corresponding to the peak of rqac (and rρac) in figure 16(b) in region III. The other
two scales are both streamwise-elongated ones with λx = 12.6h and in different λz .
In figures 17(b) and 17(c), ρ̂′

ac is much smaller than ρ̂′
nac, and the latter can be well

approximated by the SRA relation (2.16). Therefore, ρ̂′ is transported like a passive scalar
controlled by the mean-flow gradients for these streamwise-elongated motions (Coleman
et al. 1995). Compared with the temperature part, the SRA for density has received less
attention. Its effectiveness for these energetic motions also supports the usage of (2.15) for
the density and temperature components. In figure 17(a) where rqac peaks, however, ρ̂′

ac is
more prominent and is higher than ρ̂′

nac near the wall. The ρ̂′ at the wall is almost solely
contributed by ρ̂′

ac, leaving the residual ρ̂′
nac,w nearly zero. This is reasonable because ρ̂′

nac
is induced by vortical modes, then ρ̂′

nac should tend to zero near the no-slip wall. The SRA
relation (2.16) severely underestimates ρ̂′

nac at this scale because the localised spanwise
motion (ŵ′′) is active for these spanwise-elongated fluctuations.

The above decomposition of 〈q̂ ′′q̂ ′′H 〉 into the acoustic and non-acoustic elements
enables a decomposition of (FFH )DNS and (EEH )DNS, which aids the respective
modelling of the acoustic and non-acoustic parts of the forcing. From (2.19), the LNS
forcing can be decomposed into (FFH )DNS = (FFH )DNS,ac + (FFH )DNS,nac, with the two
parts satisfying (

FFH )
DNS,ac = −(L̂q

〈
q̂ ′′q̂ ′′H 〉

ac + 〈q̂ ′′q̂ ′′H 〉
acL̂H

q

)
, (5.5a)(

FFH )
DNS,nac = −(L̂q

〈
q̂ ′′q̂ ′′H 〉

nac + 〈q̂ ′′q̂ ′′H 〉
nacL̂H

q

)
, (5.5b)
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Figure 18. Contours of the decomposed eLNS forcing (EEH )DNS into the (a) non-acoustic part and
(b) acoustic part for the scale (λx , λz)/h = (0.6, 6.3) for case Ma30Re5k.

respectively. The decomposition for the eLNS forcing is defined likewise. Different from
vortical modes featuring strong non-normality, acoustic modes are nearly perpendicular to
each other. Taking the leading acoustic modes (lowest frequency |ω|) as a representative,
(FFH )DNS,ac can be approximated as −2ωac〈q̂ ′′q̂ ′′H 〉ac since L̂q q̌ ′′ = ωacq̌ ′′ (details in
Appendix C). Thereby, it can be conjectured that (FFH )DNS,ac resembles the distribution
of 〈q̂ ′′q̂ ′′H 〉ac except in different amplitudes.

This resemblance also applies to (EEH )DNS,ac because the eddy-viscosity-enhanced
terms reside in the outer layer, while the acoustic components are mostly amplified near the
wall (see figure 14). As a demonstration, (EEH )DNS,nac and (EEH )DNS,ac are depicted in
figure 18 for the scale in figure 17(a), at which acoustic modes are prominent. It is observed
that (EEH )DNS,ac is indeed confined in the very near-wall region like 〈q̂ ′′q̂ ′′H 〉ac. The
relative amplitudes of different components (〈ê′

ρ ê′H
ρ 〉ac, 〈ê′′

ρ ê′′H
u 〉ac, etc.) are thus readily

obtained in (5.3). Most of the eLNS forcing is produced by (EEH )DNS,nac resulting from
vortical modes, and so is the LNS forcing. The modelling of these non-acoustic parts can
learn a lot from the various forcing models for incompressible flows, as introduced in § 1.
Systematic improvements on the modelling of (FFH )DNS and (EEH )DNS for compressible
flows will be explored in future works.

6. Summary
Modelling of the nonlinear forcing is critical to the predictability of the linear models
based on the resolvent or input–output analyses. In this work, we employ elaborate DNS
datasets for compressible turbulent channel flows with Mab reaching 3, and uncover the
forcing statistics of stochastic linear models directly computed from DNS for the first time
for such flows. The results straightforwardly explain the success and failure of current
models and directly guide model improvements.
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Both the compressible LNS and eLNS models are considered. The framework of
stochastic Lyapunov equation is adopted, which does not need time-resolved data and thus
largely relaxes the requirement on the number of DNS snapshots. First, we prove the self-
consistency of the linear models, by showing that they produce the same correlation tensor
as DNS if the DNS-computed forcing is the input. Second, we present the distributions of
each nonlinear forcing term (listed in table 1) in the momentum and energy equations. In
most wall-normal regions, the nonlinear terms are dominated by the fluctuations of the
Reynolds stress and turbulent heat flux. Nonetheless, the PGNF term leads to increasingly
strong f ′′

v,rms below the buffer layer with the rise of Mab, which results from the near-wall
density and temperature streaks. In the eLNS model, eRSF and eTHF were designed to
partially model the colour of the forcing. However, we show that the resulting forcing e′′

q is
actually several times larger than f ′′

q in the outer layer. Consequently, the other unmodelled
nonlinear fluctuations become minor, and e′′

q can be more easily modelled than f ′′
q by

featuring more robust composition and structures among scales.
Furthermore, we show that the LNS forcing matrix for streamwise-elongated

fluctuations has relatively high coherence and low rank, which is very different from the
diagonal full-rank forcing model in previous works. This low-rank feature is insensitive to
Mab but is weakened by a rising Reτ . The eLNS model largely disrupts the low rank of the
forcing and adds to its diagonal dominance for the λx > λz fluctuations. Therefore, these
scales are the region where the prediction of the velocity and temperature fluctuations is
mostly improved by the eLNS model over the LNS one. The forcing matrix for small-λx
scales is indeed diagonally dominant, for both the LNS and eLNS models. However, off-
diagonal inter-variable correlations (particularly the ρ̂′ – T̂ ′′, û′ – v̂′′ components) become
prominent, which degrades the behaviour of the linear models.

Lastly, we quantitatively assess the acoustic components in the correlation tensor and
the forcing matrix, which are absent in incompressible flows. Based on the pressure
Poisson equation, the correlation tensor and forcing matrix are decomposed into the quasi-
incompressible part coming from vortical modes, and the compressible part contributed
by acoustic modes. Three distinct regions in the spectral space are identified. The scales of
either small λ+x or λ+z (<30) are most susceptible to acoustic modes. Streamwise-elongated
fluctuations (λ+x > λ+z > 30) are dominated by vortical modes, and are nearly unaffected by
acoustic modes. Their density and temperature fluctuations are well predicted by the SRA
(2.16). In comparison, spanwise-elongated fluctuations (λ+z > λ+x > 30) receive higher
acoustic energy, but Vqac/Vq is still less than 2 % at Mab = 3. Therefore, acoustic modes
make minor contributions to the total fluctuation energy except at very small scales. The
acoustic components of the forcing matrices resemble the distribution of 〈q̂ ′′q̂ ′′H 〉ac except
at different amplitudes. The remaining large part is contributed by vortical modes, whose
modelling can be learned from the incompressible cases.

Future works will be paid to systematic improvements of the forcing models, combining
the lessons learned from various incompressible models and the outcomes of this work for
compressible flows.
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Appendix A. Unspecified terms in (2.3) and the derivation of (2.19)
The expressions of the unspecified terms in (2.3) are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

MMNF = −
[
∂ρ′u′′

i

∂t
+ ũ j

∂ρ′u′′
i

∂x j
+ ρ′
(

u′′
i
∂ ũ j

∂x j
+ u′′

j
∂ ũi

∂x j

)]
,

PCNF = u′′
j
∂p′

∂x j
− u′′

j
∂p′
∂x j

− u′′
j
∂ p̄

∂x j
+ ũ j

∂p′
nln

∂x j
,

EMNF = −
[

cv

∂ρ′T ′′

∂t
+ cpũ j

∂ρ′T ′′

∂x j
+ ρ′cp

(
T ′′ ∂ ũ j

∂x j
+ u′′

j
∂ T̃

∂x j

)]
.

(A1)

Regarding the derivation of (2.19), the following two equations are obtained directly
from (2.13a):

∂ q̂ ′′

∂t
q̂ ′′H = L̂q q̂ ′′q̂ ′′H + f̂

′′
q q̂ ′′H

, q̂ ′′ ∂ q̂ ′′H

∂t
= q̂ ′′q̂ ′′H L̂H

q + q̂ ′′ f̂
′′H
q . (A2)

Their summation leads directly to (2.19a) after taking the ensemble average. The
derivation of (2.19b) is the same.

Appendix B. Data verification
Before processing the fluctuation data, we need to confirm that the terms and derivatives
in (2.1), (2.3) are correctly computed, and Nt is large enough to ensure 〈∂φ/∂t〉 ≈ 0.
Therefore, we first calculate the budget of (2.1) for all the datasets, as shown in figure 19
for cases Ma30Re5k and Ma15Re9k. Note that, in the DNS, a spatially uniform body force
f = τw is added in the streamwise momentum equation to ensure fixed mass flux (Huang
et al. 1995). The sums of all terms are all close to zero for different datasets except for
minor discretisation errors, which demonstrates the reliability of the present calculations.
The verification for the computation of the forcing and linear operators has been presented
in figure 1.

Appendix C. Derivation for the shapes of acoustic modes

For a uniform inviscid freestream [ρ̄, ũ, 0, 0, T̃ ]T , the linear operator has four
eigenmodes Lq q̌ ′′ = −iωq̌ ′′, related to vortical modes, slow and fast acoustic modes
and entropy modes, respectively. The eigenvalues of slow and fast acoustic modes are
ω = kx ũ ± |k|a, and their eigenfunctions (q ′′ = q̌ ′′ exp[i(kx x + ky y + kzz)]) take the
form

q̌ ′′
ac,uni =

p̌′

γ p̄

[
±ρ̄,

kx

|k|a,
ky

|k|a,
kz

|k|a, (γ − 1)T̃

]T
, (C1)

where ky is a virtual wall-normal wavenumber and |k|2 = k2
x + k2

y + k2
z . In the presence

of channel walls, the boundary condition requires v̌ = 0 at y = 0, 2h, so v̌∼i sin(nπy/2h)
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 (∂p/∂xj)

ũj (∂p̄/∂xj)

τ̄ij (∂ũi/∂xj)

Sum

Sum

∂ (μ̄ũy )/∂y
∂ (μuy

′′ )/∂y
–ρ̄ṽ (∂ũ/∂y)

–∂ (ρ̄u′′v′′ )/∂y
f = τw

Figure 19. Mean-flow budgets of the (a,c) streamwise momentum equation (normalised by τw) and
(b,d) enthalpy equation (normalised by ϑw) for cases (a,b) Ma30Re5k and (c,d) Ma15Re9k.

and ǔ, w̌, ρ̌, Ť , p̌∼cos(nπy/2h), where n = 0, 1, 2, . . .. As a result, the eigenfunction
(q ′′ = q̌ ′′

(y) exp[i(kx x + kzz)]), as in (5.3), is expressed as

q̌ac,inv = p̌

γ p̄

[
±ρ̄,

kx

k
a, − ia

k

d
dy

,
kz

k
a, (γ − 1)T̃

]T
. (C2)

Note that n = 0 is further adopted in (C2). This lowest-order mode was shown to contain
the highest energy compared with other higher-order modes because its eigenvalue is the
closest to the vortical and entropy modes in the eigen-spectrum (e.g. Chen et al. 2023b).
Although the wall-normal variation of the mean flow is not considered in deriving the
analytical (C2), this simple relation will be shown to be highly accurate in most wall-
normal regions.

Equation (C2) is not compatible with the viscous wall boundary which is no slip and
isothermal. This inconsistency leads to non-zero ǔ′′

i,w, w̌′′
i,w and Ť ′′

w for 〈q̂ ′′q̂ ′′H 〉nac, which
can disrupt the decomposition of the forcing based on the full NS operator. To solve this
problem, an acoustic boundary layer is required. Learning from Pierce (2019, chapter 10),
a simple exponential profile is assumed within the boundary layer to damp the finite ǔ′′

i
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Figure 20. Eigenfunctions (normalised by the energy norm) of the leading fast acoustic mode for fluctuations
of (a,b) (λx , λz)/h = (12.6, 1.3) with ωh/Ub ≈ 3.1 and (c,d) (λx , λz)/h = (0.6, 6.3) with ωh/Ub ≈ 17.5 for
case Ma30Re5k: (a,c) pressure from both the inviscid and viscous linear operators, and (b,d) the components
from the viscous linear operator and from (5.3).

and Ť ′′ to zero at the wall. The damping function, applied to ǔ′′, w̌′′ and Ť ′′, is

cvis = 1 − exp
[
−(1 − i)

|y − yw|
δvort

]
, δvort =

√
2μ̄

ωvortρ̄
, (C3)

where δvort is a characteristic boundary layer thickness, and the frequency of vortical
modes is approximated as ωvort ≈ kxUb. The introduction of (C3) finally leads to the
viscous relation in (5.3).

Equation (5.3) is examined in figure 20 for two sets of wavenumbers as in figure 17.
Here, the eigenfunctions of the leading fast acoustic mode are displayed, which is selected
from the eigen-spectrum of Lq with the minimum |ω| ≈ kx ũc + kac. The results for
slow acoustic modes are quantitatively similar. Figures 20(a) and 20(c) demonstrate that
including viscosity or not in Lq negligibly affects the shape function of p̌′, validating the
additional formulation of the acoustic boundary layer. The shape functions of velocity,
density and temperature from Lq , and from (5.3) and p̌′, are compared in figures 20(b)
and 20(d). Equation (5.3) is shown to estimate well all the five components of q̌ ′′ in the
outer layer for different (λx , λz). Using (C3) leads to slightly larger deviations near the
wall, but it does not deteriorate the evaluation of 〈q̂ ′′q̂ ′′H 〉ac in § 5.2.
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MOARREF, R. & JOVANOVIĆ, M.R. 2012 Model-based design of transverse wall oscillations for turbulent
drag reduction. J. Fluid Mech. 707, 205–240.
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