
BULL. AUSTRAL. MATH. SOC. 28A60 , 28A32

VOL. 18 (1978) , 267-285. ( 5 4 D 3 5 , 54D6O, 6 0 B I 0 )

Measure theoretic techniques in

topology and mappings of

replete and measure replete spaces

George Bachman and Alan Sultan

We prove in this paper several results on lattice related

measures and. images of such measures under mappings. If we apply

these to various areas of point set topology we obtain as

corollaries many known and new results on sequential compactness,

repleteness,and measure repleteness - areas of recent considerable

interest to mathematicians.

1. Introduction

In recent papers, we were concerned with general measure extension

procedures and their applications to various areas of analysis and point

set topology. The results, which were proved for measures on pavings,

enabled one to obtain simultaneously many different types of results from a

unified point of view (see, in particular, [5, 6, 7, 25, 261). In this paper

we study similar questions but with particular emphasis on the concepts of

outer measure and y*-measurability. In this manner we are able to obtain

many new theorems and many new nontrivial applications to the areas of

compactness, repleteness, and measure repleteness. Specifically after

defining terms in Section 2, we prove in Section 3 a general theorem on

weak convergence of measures, generalizing theorems of Alexandroff [3],

Moran [23], and Varadarajan [27]. When this theorem is applied to the

specific case of 2-valued measures, we obtain many new theorems on

different types of sequential compactness and countably compact lattices.
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In the next section we deal with mappings of measures and apply our resul ts

to obtain new theorems on mappings of measure replete spaces, a concept

studied by several authors, including Moran [27, 22, 23], Varadarajan [27],

Mosiman and Wheeler [24] , Kirk 118, 19, 20], Gardner [77], Haydon [74], and

others in some very special cases. We generalize th i s even further to the

concept of fully measure replete . In the f inal section we apply the

concept of u*-measurability and obtain a substantial generalization of

one of the main theorems of [ 6 ] . Again we are able to apply th i s to obtain

many new theorems on repleteness of a different character. The techniques

presented are very general and have applications above and beyond those

presented here.

2. Def ini t ions and notations

Our definitions and notations will be the same as those in [6] and we

assume that the reader is familiar with the basic results of that paper,

in particular with Section 2 of that paper. We keep our blanket assumption

that 0 and X are elements of all lattices involved, and that all

measures are bounded and nonnegative. We will need the following

additional notations and concepts: if u € MR(a, L) , then by the support

of u denoted by 5(u) , we mean f\{A € L : u(4) = \i(X)} . L is called

measure-replete if and only if every y € MR(a, L) has non empty support.

Since L is replete if and only if every \l € IR(a, L) has non empty

support, that is, is fixed, we see that L-measure replete implies

L-replete : however, the converse in general does not hold. If L = Z for

some Tychonoff space X , then L is measure replete if and only if X is

measure compact in the sense of [22, p. 1+95] and this is true if and only

if MR(a, L) = M R ( T , L) (see [27, p. 631+]). If L = F a similar state-

ment holds (see [7 7, p. 96]). It is not difficult to see that a similar

results holds if L is any delta lattice.

The vague or weak topology on MR(L) is that characterized by the

following convergence of nets: p + p if and only if fd •*• fd for

all / € CAL), where \i , u € MR(L) If L is delta normal, then the

vague topology on IR(O coincides with the Wallman-Frink topology on

IR(L) , having, as a base for the closed sets, sets of the form

W(A) = {u € IR(L) : \i(A) = 1} . This is a fairly easy consequence of the
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Portmanteau Theorem (see [26] for details). We also note that if L is

separating and disjunctive as well as delta normal, then the vague topology

on X ,when X is identified with the collection of meas-ures concentrated

at a point, coincides with the topology on X having as a base for the

closed sets the lattice L , that is, the T ( L ) topology. (Again see

[26].) If X is a Tychonoff space we denote by 6X the Stone-Cech

compactification of X , and by \)X , the real compactification of X . In

general, when we are dealing with several different lattices, we will, for.

clarity, subscript a lattice by the set from which it comes. Thus for

example F will denote the lattice of closed sets of X , while F
A X

denotes the lattice of closed sets of Y . If L is a lattice of subsets

of X we will denote by L* the collection of subsets of X which are

)j*-measurable with respect to every u £ IR(a, L) . Finally we will need

one result for applications: if X is an analytic space (the continuous

image of a complete separable metric space) then a(F) c s(F) (see [76],

p. 115).

3. Measure and sequential compactness

We prove in this section some results on weak or vague convergence of

measures which generalize theorems of Moran [232, Varadarajan [27], and

Alexandroff [3], When our results are applied to the special case of 2-

valued regular measures, we obtain as corollaries some new results on

sequential compactness and countably compact lattices generalizing several

known results.

THEOREM 3.1. Suppose u € MR(a, L) , n = 1, 2, 3, ... , where L

is a delta lattice which -is normal and countdbly paracompact. Then if

y •* \i in the vague topology, y € MR(a, L) .

Proof. Let U = y restricted to Z(L) , and U = y restricted to

Z[L) . Since / is L-continuous, /" {C) € Z(L) for every closed set

C c R (the real line). It follows from the definition of the integral

given in [2], p. 576, that j fdon = I fdvn and that I /d) = I fd\i .

Thus U •+• U weakly. Since the lattice Z(L) is complement generated

(that is, completely normal in the sense of [7, 2_ 3]), it follows from [3],
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p. 209, Theorem 3, that u is a-smooth and thus by Theorem k.3 of [6]

that y is a-smooth, since y is the unique I -regular extension of u

to A(L) .

One immediate corollary of the above theorem is:

COROLLARY 3.2. If L is a separating disjunctive delta lattice

which is normal and aountably paracompact, then if IR(L) is sequentially

compact, IR(a, L) is sequentially compact.

Proof. If \xn -*• u then y € MR(a, L) by Theorem 3.1. Since

IR(O is sequentially closed in MR(L) (by a proof similar to the

proof of Theorem 11, p. 187 of [27]) we have that y (. IR(a, L) .

Taking L = !„ in the case that X is Tychonoff and noting that

IR(L) = (3X ([27], p. 212), we obtain:

COROLLARY 3.3. If $X is sequentially compact, then vX is

sequentially compact.

THEOREM 3.4. If IR(a, L) is sequentially compact where L is a

separating disjunctive delta normal lattice which is countabily paracompact,

then L is countably compact.

Proof. Suppose L is not countably compact. Then there is a

sequence of sets B 4-0 such that B € L and each B + 0 . Choose an
* n n n

x € B for each n , and consider fu } , the sequence of measures
n n l xn'

concentrated at the points x . Then we may assume by hypothesis that

some subsequence also denoted by {\i } converges weakly to a
n

\i € IR(a, L) , by the previous theorem. We have that y [B/] = 1 for a l l
n

n > k ; hence, by Theorem 2, p. 180 of [3], lim sup u (fl,) S u(B,) = 1

Xn K K.

for a l l k . Since y is a-smooth, yO"IB,) = 1 contradicting the fact

that OS, = 0 . Thus L is countably compact.

COROLLARY 3.5. If X is a Tychonoff space and \)X is sequentially

compact, then X is pseudocompact.

Proof. Take L = Z in Theorem 3.h and use the fact tha t Z i s
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countably compact if and only if X is pseudocompact ([27], Theorem 16,

p. 170).

It is possible to apply the above techniques to get some other

topological and measure theoretic corollaries. For this we must prove a

lemma.

LEMMA 3.6. If y •*• y in the vague topology, where

y , y € MR(a, L ) , then if L semiseparates I , and L is delta

normal, then

(1) lim sup u*(L2) < V*{L2) for all L^ € Lg ,

(2) lim inf y*a(£,p -
IVL*(LZ) for al1 L2 € L2 •

(Here y* represents the outer measure and ŷ  the inner measure

associated with y .)

Proof. We only prove (l) since the proof of (2) is similar. Since

y •*• vi , lim sup y [L ) S y(£,) for all L € L . Since L is a delta

lattice, vi* is /.,-regular and thus y*(Lp) = inf \x {L'S\ where

I' D I. , and L € L, . But L, semiseparates Lp , and we therefore

have that

y^ZvJ = inf y a ( i 1 ) where L± € L± and ^ =) Lg . (*)

Thus H*(£2) - y ( i , ) for any L r> L where L € L , and thus

lim sup y*(i/p] £ lim sup y v^i) — ^(^1) ^ o r a n l r ^ ^ '•I containing £ ? .

Taking the infimum over such L we get

lim sup y*(£2) £ inf y ^ J = V*{LZ) ,

the last inequality following from (•) above.

THEOREM 3.7. If L is a separating disjunctive delta lattice of

subsets of X which is normal and countably paraaompaat, and if L semi-

separates T(L) , then X with the vague topology is sequentially compact

if IR(o, L) with the vague topology is sequentially compact.

Proof. Suppose {x } is a sequence of distinct points in X .

https://doi.org/10.1017/S0004972700008078 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008078


272 George Bachman and Alan Sultan

Consider {y^ } = A . By hypothesis we may suppose {y } converges to a
n xn

y (. IR(a, L) . To complete the proof we need only show that {x } has a

limit point x € X , for then \i is a limit point of A and therefore

V = V since IR(a, L) is Hausdorff. Suppose A does not have a limit

point in X . Then A and all its subsets are closed; hence elements of

T(L) , since the T(L) topology and weak topology coincide. Choose any

x. in A and fix it. Let B. = {x.} ... . Then B. € T(L) , and thus

there exists a B € L such that B r> B. and x. i B . Since

\i(B) > lim sup y (S) = 1 , we have y(S) = 1 . Thus y(S') = 0 and hence
X

n

y*({x.}) = 0 . But V*(A) 2 lim sup y* (4) = 1 by the previous lemma, and
% X

n

this is a contradiction since \i*(A) s V y*{x.} = 0 .
We give some corollaries of this.

COROLLARY 3.8. If X is a Tychonoff space and if 1 semiseparates

F , then if vX is sequentially aompact, then X is sequentially aompact.

Proof. Take L = Z and make use of the fact that IR(a, L) = \)X

([27], p. 215).

COROLLARY 3.9. If (5X is sequentially compact and 1 semiseparates

F , then X is sequentially aompact.

Proof. Using Corollary 3.3 it follows that vX is sequentially

compact and the result follows from the previous corollary.
i

REMARK 3.10. Corollary 3.9 is known if Z separates F , that is,

if X is a normal space. The proof is not difficult (see [2S], p. lU8,

Theorem 8.32). However, it is also known that the result is false if X

is just a Tychonoff space. Thus, our result, which is new, represents an

intermediate result.

4. Measure replete spaces

In this section we prove some theorems on the images of measures under

certain mappings. We apply the general results to get as corollaries

several known and new results on measurecompactness and its generalizations.
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In the next section we modify some of the proofs here and apply them to

2-valued regular measures getting a substantial generalization of Theorem

5.1* of [6 ] , one of the main theorems for 2-valued measures in that paper.

Measure compact spaces are abundant. Any paracompact space every closed

discrete subspace of which i s measurecompact, i s measurecompact. This is

proved in [27]. Generalizations of th is have appeared in [23] and [25] ,

and Gardner [7 7] has given theorems on when a space i s F-measure replete .

Measure compactness does not behave as well as realcompactness. Measure

compactness i s not closed under arbi trary in tersect ions , in contrast to

realcompactness. While realcompactness i s productive, measurecompactness

i s not even f in i t e ly productive, although in local ly compact spaces i t is

countably productive, as Kirk has shown in [79]. The f i r s t theorem we

prove is an analogue of Theorem 5-7 of [6] for arbi t rary regular measures.

However, we f i r s t need a lemma.

LEMMA 4 . 1 . Let T : X -»• Y and let u € M(o, L) , where I is a delta

lattice. If T~X{y} is L-Lindelof for each y € Y and

H = {Aa € L : y(i4j = yU)} „ then T̂ rM ) = f lT^J , where A^ € H .

Proof. Suppose y € [\T[A ) ; then T~ {y} n A # 0 for a l l

Aa € H . Let 8 = T~X{y) n H . Then B i s a T~X{y) n L f i l t e r with the

countable intersection property and since T {y} i s L-Lindel'6f,

DT"1^} n A ± 0 . I f 2 € T~X{y') and i f z € fW , then T(z) = y .

Thus (\T[A ) c r(rM ) and since the reverse inclusion is t r i v i a l , the

lemma i s proved.

THEOREM 4.2. Suppose T : X •*• Y is L - L2 continuous and

L, - x(Lp) closed, where L and L2 are delta lattices of subsets of X

and 1 respectively, and where o[L^} C S[L^ . Then if T~ {y} is

L -Lindelof for each y € Y , then i is measure replete implies L, is

measure replete.

Proof. Suppose u € MR(a, L ) . Define u = \iT~ . Then
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U € MR(a, L2) by Theorem 2.3 of [6]. By hypothesis, 5(u) ? 0 . Let

H = {4a € Lx : u(i4a) = pU)} . For each Aa € H , T ^ J = 0La where

£ a € L2 . Clearly for any such L^ , ^ ( L J = \i(X) = u(y) . Thus

5(u) c £a for a l l a , and hence S(\)) c t)T[A ) . By the previous lemma,

r\A ^ 0 and L. is measure replete.

COROLLARY 4.3. If T : X •+ ¥ is a continuous Z map [that is,
T(Z) e F for each Z e 1 ) u^ere X and Y are Tychonoff spaces and Y

is measure compact, then if T~ {y} is Lindelof for each y € Y , then X
is measure compact.

Proof. Take L = 1^ and l^ = Zy

If in the above corollary we take X c Y , where X is closed, and T
to be the inclusion map, then we have:

COROLLARY 4 .4 (Kirk [ 7 8 ] ) . If X is closed in a Tychonoff measure

compact space Y then X is measurecompact.

COROLLARY 4 .5 (Kirk VSI). The product of a measure compact space

A and a compact space B is measure compact.

P r o o f . I n C o r o l l a r y k . 3 t a k e X = A * B , Y = A , L = Z ,
X A

L„ = Z , and T to be the projection map from X to Y . Since B is

compact, T is closed,as is well known. T {y} is trivially Lindelof,
since i t is compact.

If in Theorem k.2 we take T to be L - L continuous, L - L

closed and onto, then we may relax the condition that o(LJ C S[L J ,

since the measure U constructed in the proof there is necessarily L^ -

regular. This is essentially due to the remark made in the proof of
Theorem 5.1 (a) of [6] . Thus we have:

COROLLARY 4.6. If T : X •* Y is a continuous closed surjection such

that T~ {y} is Lindelof, then T^-measure replete implies F^-measure

replete.
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Other corollaries are easy to obtain, and we turn to the question of

the preservation of measure repleteness under direct images.

THEOREM 4.7. Let L and L be lattices of subsets of X with

L c L_ c T(L.) , where L_ is a delta normal lattice and either L is

delta and a[L ) c s[L ) , or L semiseparates L . Let L c L be

lattices of subsets of Y such that L is an L^ countably paracompact

lattice, and both L and L, are delta normal, where L semiseparates

L, . Then if T is an L - L, continuous closed surjection such that

L is f~ [L) countably paracompact, then L measure replete implies

L- measure replete.

Proof. Since L c i a T[L ) , we have, as is easily seen by a

simple restriction argument, that L, is measure replete. Now let

U € MR(a, L2) . By Theorem k.3 of [6], U may be extended to a

Ux € MR (a, L̂ ) . Define v± on AJT"1^) by y^"1^) =^(3) .

\l € MR 0, T~ ('-J and extends to a \l € MR(a, L_) again by Theorem 1*.3

of [6]. Since S(u) + 0 and U = uT"1 , S(u ) # 0 and hence 5(u) f 0

since 5(u) 3S(u ) . Thus L is measure replete.

COROLLARY 4.8. Let X be a normal Tychonoff space and T be a

perfect map from X onto a countably paracompact Tychonoff space Y .

Then X measure compact implies Y is measure compact.

Proof. In the theorem take L = Z , L = 1^ , L = F̂ . ,

Li = F . Note that since normality is preserved under continuous closed

surjections, Y is a countably paracompact space, being countably para-

compact and normal (see [4], p. 2U8), and hence Fy is a countably para-

compact Z lattice. Clearly L separates L, and hence semiseparates

Li , and since T is perfect, L is T (L. J countably paracompact, by

Lemma 5.3 of [6].
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If in Theorem h.J one takes L± = L = Z^ and l^ = L^ = 1 , and

notes that for open perfect mappings T{l ) c Z , one has:

COROLLARY 4 .9 . If X and Y are Tychonoff spaces and if T : X ->• Y

is an open perfect map, then X is measurecompact implies Y is measure-

compact.

Clearly the following is also true.

COROLLARY 4.10. If T -. X •* Y is a perfect map from the countably

paracompact normal space X onto Y , then F is measure replete implies
A

Fy is measure replete.

The following theorem is an analogue of Theorem 7.1 of [6] for measure
repleteness. Two special cases have been given in [M], Theorems 3.7 and
7.U, and the proof of the following is virtually identical to the proofs
given in [/7].

THEOREM 4.11. If X is the union of a sequence of relatively
measure replete svbspaces where L is a delta lattice then L is measure
replete.

One can generalize the notion of L measure replete even further,
namely, call L fully measure replete if and only if every \i € M(a, L)
has non empty L-support. Here by L-support we mean
fl{L € L : \i(L) = \i(X)} . Many of the known theorems about support and
measure repleteness may now be carried over to this situation. For example
we mention that if L is delta, L is fully measure replete if and only
if Mia, L) = M(T, L) . (The proof follows the proof of Theorem 2.1 of
[2/] .) The following analogue of Theorem U.2 also clearly holds. The same
proof works, and we only note that we are able to relax the conditions that
a(i-p) c s[lS\ and that L2 is a delta latt ice since we do not need the

measure u in that proof to be Lp-regular.

THEOREM 4.12. Suppose T : X •*• Y is L - L continuous and

L.. - T[L ) closed where L is a delta lattice. Suppose T {y} is L -

Lindetof for each y 6 Y . Then L is fully measure replete implies L

is fully measure replete.
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COROLLARY 4.13. If X and Y cere topological spaces, and

T : X •*• ¥ is continuous and closed, then if T~ {y} is Lindeldf for each
y € Y , then Fy is fully measure replete implies V is fully measure

replete.

Proof. Take L = F and L = T .
- L A CL X

We note that the analogue of Corollary 1+.3 holds for fully measure

replete; however, this gives us no new information, since if L = Z then L

is fully measure replete if and only if L is measure replete, clearly,

since in this case MR(a, L) = M{a, L) .

We have noted that if L c I c T[L ) , then L fully measure

replete implies /.„ fully measure replete. However if L c L and L?

is fully measure replete, then it need not follow that L is fully

measure replete. However we do have the following:

LEMMA 4.14. If L± e l_2 and L2 is delta normal, then if

y € M[a, L ) and L is L countably paracompact, then y eortends to a

u € M[p, L.) . Thus L- fully measure replete implies L fully measure

replete.

Proof. We first observe that if U € M[L^ there exists a

p € MR(L2) such that u 5 p on L? . To see this, form the linear

functional $ on Cfc(i-2) given by $(/) = j fdo where /€Cfc(L2) . By

Theorem 2.k of [6], $(/) = /dp .where p € MR(L2) , and furthermore

pGO = inf $(/) .where / € Ch^L2^ a n d f ~ ̂ A ' Clearly ^^ l s l e s s

than or equal to the above infimum for A € L^ ; thus u(4) 5 p(/l) . To

prove the theorem now suppose that y € M[p, L ) . Then by [S, Theorem 11,

p. 26U], for example, there exists a U € M{L^ which extends y . By the

above there exists a p > U on /.„ , where p € MR(L ) . If we can show

that p is a-smooth on /.„ , then by regularity p is o-smooth on

o{i^ and therefore P € M(O.. L2) . Thus by hypothesis 5( p) will be
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nonempty, and since 5(u) => S(p) , S(u) wil l be nonempty, and i t wi l l

follow that L. i s fully measure rep le te . We proceed therefore to show

that p i s a-smooth on L,, . Suppose then that A + 0 , where

A € L2 . Then by hypothesis there exist B € L where A c B' \ 0 .

Thus p{Aj < p[B^ . However p[B^ 2 U(B^) since p 2 u on L± and

p(X) = \i(X) . Thus since u is a-smooth p{B') , hence p(A ) + 0 , and

the proof is complete.

THEOREM 4.15. Let L1 and L be lattices of subsets of X with

L c / c T ( L . ) , where L_ i s a delta normal lattice. Let L-c L be

lattices of subsets of Y such that L is L^ countably paraaompaot and

L, is delta normal. If T : X •+• Y is an L - L continuous closed

surjection such that L_ is T~ [L,) countably paraaompact, then if L

is fully measure replete, L is fully measure replete.

Proof. The proof given in Theorem k.J works here.

We remark tha t using a proof somewhat similar to the proof of Lemma

U.lU we may show tha t i f L i s countably paracompact and delta normal,

then L i s fully measure replete i f and only if L i s measure rep le te .

5. Mappings of replete spaces

In this section we modify some of the results proved in the previous

section to 2-valued measures. We get in particular a substantial

generalization of one of the main theorems of [6D for 2-valued measures.

That theorem had numerous applications to the area of repleteness and we

are able to obtain here new results not obtainable by that theorem. The

first lemma is true for arbitrary measures.

LEMMA 5.1 . If L is a delta lattice, u 6 MR(a, L n S) , and

S c X , then if a(L) c s{L) and if u is defined on a(L) by

v(B) = \i(B n S) , where B € a(L) , then u € MR(a, L) and for any subset

E of S , V*(E) = \i*(E) . In particular, if y f IR(a, L n E) , then

u*(S) = 1 .

Proof. That U € MR(cr, L) is clear. We have \1*{E) = inf y(B) ,
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where B € o(L) n S and B => E . But B = B* n 5 where B* € a(L) .

Since E c S , B ̂ > E i f and only i f B* 3 E . Thus

u*(£) = inf \x(B) = inf u(B* r\ S) = inf u(B*) = u*(£) ,

where in th i s chain of equal i t ies B € 0"(L) , B = B* n S , and B* 3 E .

The following lemma i s very important in matters of repleteness.

LEMMA 5.2. Jf L is a separating disjunctive delta lattice and

u € IR(a, L) , then if \A } i s a family of v-thick relatively L-replete

subsets of X , then I~U ^ 0 and u is fixed at some point p € fl/1

Proof. Since J4 is U-thick in X for each a , we may project U

onto each A . If the projection is U , then by construction

Wa(B) = u(S*) , where B € a(L n AJ , B* € a(L) , and B* n A = B . As

is well known, u is well defined, and since V € IR(o, L n A ) , each

V is fixed at a unique point p € 4 . Thus U must be "concentrated at

each p . But L is separating and disjunctive and therefore U can

only be concentrated at a single point. I t follows that a l l of the p

are the same point p and that p 6 I"I4 .

Before proceeding with the main result, we give some immediate

applications of the above lemma.

COROLLARY 5.3. If L is a separating disjunctive delta lattice of

subsets of X , with a{L) c s(L) , and, if \A^ is a family of

relatively l-replete subsets of X , then if E = fM , E is relatively

L replete. If in addition there is a lattice of subsets of E , L_ ,

such that L n ? c L c T(O(L n E)) , then L is also replete.

Proof. If E = 0 , there is nothing to prove. Suppose then that

E t 0 . Suppose that V £ IR(o", L n E) and that u is defined as in

Lemma 5.1. If U*(J4 ) = 0 for any a then \i*(E) = 0 contradicting

Lemma 5.1. Thus V*[A ) = 1 for a l l A . I t follows from the preceding

lemma that U is fixed at a unique point p € E . Hence y is fixed at
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p . The remainder of the proof is simple, for if p € IR(a, L_) and p

i t s restriction to L n E , then p.. i IR(cr, L n E) , since

a(L n E) = o(L) n E c s(L) r, E c s(L n E) .

Thus p is concentrated at p and so is i t s unique L n E regular

extension p2 to a{L n E) . Since s(p2) = s{p ) * 0 and since

LEc T[O{L n E)) , 5(p) t 0 and LE is replete.

The atove corollary generalizes Theorem 5.3 of [J2]. As an

application we have the following:

COROLLARY 5.4. If X is analytic, then the arbitrary intersection

of V-replete (that is ^.-complete [9], [70]J spaces is F-replete.

Proof. Take L = F in Corollary 5.3.

We are now ready to present the main theorem of this section. This

theorem generalizes considerably Theorem 5.** of [6].

THEOREM 5.5. if T : X * 1 is L* - L2 continuous, where L is a

delta lattice and L is a separating disjunctive delta lattice with

a(L-) c s[L_) , then if L~ =) L is a lattice of subsets of X such that

(a) L3 c x(L*) and

(b) every \i € IR(cr, L-) when restricted to a(L,) is in

IR(a, L±) , and if

(1) T~X{y} is relatively lx replete for each y € Y

and

(2) T[L ) is relatively L~ replete for each L € L. ,

it follows that L^. is replete.

Proof. Suppose \i € IR(cf, LJ and VJ i ts restriction to o[L ) ,

and u* i ts extension to L* (which is L regular since L is a delta

l a t t i ce ) . Let H = {j^ € L^ \ V^L^ = l} . Define U = u ^ " 1 on a[L^ .
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Clearly u € IR(0, L^ . If La € H , then U*[r(iJ) = inf u(S) .where

B € a(L2) and B 3 r(ij . Thus V*[T[LJ) > P1(ia) = 1 , and therefore

T(ia) is U-thick in T . It follows from Lemma 5.2 that QT[L ) t 0 , and

thus by Lemma 5.1 of [6] applied to p OH + 0 . That is S(u ) # 0 .

Thus S(u*) # 0 , and since L^c T(L*) , S(u) # 0 .

One notes the following differences between the theorem above and

Theorem 5.U of [6]. Firstly, we do not require that T be L - x[o{L ))

closed. Secondly, we require no repleteness assumptions on Y . Finally

we weaken the condition that L c x[LA . It is not yet clear that this

theorem generalizes Theorem 5.^ of [6]. This will follow after we prove a

lemma.

LEMMA 5.6. If S € T(L*) , where L is a separating disjunctive

delta lattice, and if a(L) c s(L) , then if L is replete, S is

relatively L replete.

Proof. If p € IR(o, L n S) and u is constructed as in Lemma 5.1,

then u is concentrated at some unique point p . If p J S (i(t') ,

then there is a B € L* such that B 3 S and p f B . Thus u*(fl) = 0 ,

whence o*(£) = 0 , contradicting Lemma 5.1. Thus p Z S and y is

concentrated at p .

It is now easy to see that Theorem 5-^ of [6] is a corollary of

Theorem 5.5 above. For if T is L - T(CT(L2)) closed, indeed, even if

T is L - T(L*) closed, then if i-2 is replete, T{L ) is

automatically relatively L^-replete by the previous lemma. It follows

that Theorems 5.5 and 5.7 of [6] generalize: namely we may replace the

phrases "T is I - L continuous" and "T is L - x(a(L2)) closed"

respectively by "T is L* - L continuous" and "2" is L - T(L|)

closed" respectively, and those theorems will still be true.

We give some immediate corollaries. The first corollary is a

generalization of a theorem of Isiwata [7 7, Theorem 5.3].

COROLLARY 5.7. If T : X •*• Y is continuous, where X and Y are
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Tyohonoff spaces, then if T~ {y} is Z-embedded and realoompaot for each

y € Y , and if either

(a) T(Z) is Z-embedded and realeompact for each Z € ZY , or

(b) Y is realaompaat and T(Z) e x(a(Zy)) for each Z € Z„ ,

then X is realeompact.

Proof. One need only take L = L = Zv and Lo = Zv . The

hypotheses in (a) and (b) imply that T[L ) is relatively /.^-replete for

each L. € L. . The remaining parts of the hypothesis are readily

verified.

The next corollary generalizes a well known theorem of Varadarajan

[27, Theorem k, p . 217].

COROLLARY 5 . 8 . If Y is realeompact and E € x ( Z * ) , where EcY,

then E is realeompact.

Proof. Take X = E , and T to be the inclusion m ap. Take

L, = Zv n E , L_ = Zv , and L, = !„ . Then (a), (b) , and (l) of the

theorem are t r i v i a l . (2) follows from the fact that T[L-.) € T(Z*) for

each L± € L± , since E i x(Z|) .

The next corollary also seems new.

COROLLARY 5.9. If T : X •* Y is Baire measurable,where X and Y

are Tychonoff spaces, and the image of every Baire set of X is an inter-

section of Baire sets of Y , then if T~ {y} is Z-embedded and real-

oompaot for each y € Y , then Y realeompact implies X is realcompaet.

Proof. In the theorem take L = L = a[Z ) and L = a(Z ) . That

T {y} is relatively L replete for each y 6 Y follows from the fact

that L n T~ {y} gives the Baire sets of T~ {y} , and since Baire

replete is equivalent to realeompact as noted by Hewitt [75]. That ^(L,)

is relatively L replete for each L € L follows from Lemma 5-6.
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Again one may go on combining these theorems with those in [6], [7],

to get other theorems. However this is easy and will not be done here. We

again remark however that the theorems given here allow one to work with

sets in I* , an, in general, larger class than a(L) , and allow us to

eliminate repleteness assumptions on Y completely.
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