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DIRICHLET FINITE BIHARMONIC FUNCTIONS ON
THE PLANE WITH DISTORTED METRICS

MITSURU NAKAT*

1. The Laplace-Beltrami operator 4 on a smooth manifold M with
a smooth Riemannian metric ds® = 3, ;0:;(x)dx’dx? applied to a smooth
function ¢ takes the form dp = g2 >, ; (029" ¢, ). Functions in the
class H*(M) = {ue C*(M); 4Lu =0} are called biharmonic. The eclass
HM) = H(M) = {ue CX(M); 4du = 0} of harmonic functions is a subclass
of HXM). Let D(M) be the class of functions ¢ on M having square-
integrable gradients, i.e. the Dirichlet integrals Dy(p) = IMlgrad P+l are

finite. In contrast with the harmonic null class 0y, = {M; HD(M) = R},
R being the real number field (cf. Sario-Nakai [3]), we consider the
biharmonic null class

(1) Opep = {M; H'DM) = HD(M)} .

This class was introduced and intensively studied by Nakai-Sario [1].
One of the main questions concerning the class (1) is: Does the pro-

perty M e 0., have anything to do with the harmonic degeneracy of
the ideal boundary of M?

Let D be the unit disk |2] <1 and D, be the disk D equipped with
the Riemannian metric

ds = (1 — |z])7%|dz]|.
Nakai-Sario [1] proved

THEOREM 1. The manifold D, belongs to the null class Oy, if and
only if a > 3/4.

The case o = 3/4 was supplemented by O’Malla [2]. The significance
of this assertion lies in an interesting contrast with the harmonic case:
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D, ¢ 0y, for every a. Let C be the finite plane |z] < « and C, be the
plane C equipped with the Riemannian metric

ds = (1 + |z)D~%|dz],

a counter part of D,. Nakai-Sario [1] also proved that Cy, = Ce 0y
and C,& 0., if a is chosen large enough. Again its significance is
revealed in an interesting contrast with the harmonic case: C,e0yp
for every a. Although the existence of « with C, ¢ 0., was assured in
[1], its exact determination, which may be useful for e.g. producing a
more delicate examples, was left unsettled. Therefore the main object
of this paper is to establish a counterpart of the above Theorem 1:

THEOREM 2. The manifold C, belongs to the null class Op.p if and
onlg if a < 3/2.

2. We denote by 4,, dv,, and grad, the Laplace-Beltrami operator,
the volume element, and the gradient with respect to the Riemannian
manifold C,. Let 4, dv, grad, and C stand for the case « = 0. By
using 2.(2) = (1 + |z2)~%, we see that 4, = 2;%4, dv, = 22dv, and grad, =
2;2grad. Therefore H(C,) = H(C), D(C,) = D(C), and D (¢p) = D¢(p). A
fortiori the assertion C, & 0., is equivalent to the Poisson equation

(2) du(z) = 2,(2)'(2)

having a nonharmonic (Euclidean) Dirichlet finite solution # on C for
some harmonic function 2. We denote by H,(C) the class of such har-
monic functions. Clearly the constant function 0 does not belong to
H.(C) but H,(C) U {0} forms a vector space.

In order to prove Theorem 2, we only have to show that H (C) = 0§
if and only if ¢« < 8/2. It will be convenient to provide a test for an
h e H(C) to belong to H(C). We denote by (f,9), the inner product of
S and g in LXC,) = LXC, 2dv) and by (f,9) the (f,9),, Then we have
(Nakai-Sario [1])

LEMMA 1. A nonzero harmonic function h on C belongs to the
class H,(C) if and only if

(3) sup [(h, 9).[/De(p) < oo .
9€CH(0)

Here C} is the class of C'-functions with compact supports. To
prove Lemma 1 suppose ke H (C), i.e. (2) has a solution # e D(C). For
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p € Cy(C), the Green formula yields (%, ¢), = (4u, ) = —D(u, ). By the
Schwarz inequality, [(k, @), < Dg(w)-De(p). Conversely suppose (3) is
valid. Let & be the closure of CJ(C) in D(C) with respect to Dg(-).
By the Riesz theorem, there exists ue.# such that 4(p) = D¢(u, ) for
every pe % and in particular for every ¢ e Cy, where ¢ is the bounded
extension to &% of (k, -),. Namely, (&, ¢), = —Dc(u, ¢) for every ¢ e Cy(C).
By the Weyl lemma % is a genuine solution of (1) and also u e D(C).

3. Expand an h e H(C) into its Fourier series:
(4) hre”) = S 7™, cosnd + b, sinnd), by =0
n=0

for re[0,0) and #cR. For the sake of simplicity we call m(h) =
sup {n; a + b4 #* 0} < oo the order of h. We denote by E, the class
{he H(C); m(h) <k} for k£ =0,1,2,--- and we set E, = {0} for k = —1,
—2,--+, B, ={heE;; h#0, ay=0,=0}, for k=1,2,.--, and E} =0
for k=0,—-1,-2,.... We first prove

LEMMA 2. If 20 >k + 2 > 3, then E, C H,(C).

We only have to show that 7% cosnf and #"sinnf belong to H.(C)
for every n with 1 < n < 2« — 2. Since the reasoning is the same, we
only show that 7" cos nfe H (C). Let ¢e Cy(C), and expand it into its
Fourier series:

(5) o(ret?) = nZ:g (a,(r) cos nd + b,(r) sin nf)
where a,(r) and b,(r) are all in C;[0, c0). Observe that
(6) Do) = Xa([ @y + buwrdr + v @07 + 0,0 7).
On the other hand we have
Iy ). = j : (ﬁ";o(re”) cos nﬁd&) (L 4 )ty
= [ @@ + v
By the Schwarz inequality
dr

(1) ()P < nZKa-j“am_
0 r
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where K, = rr“”(l + r)~**dr is finite if and only if 2« > n + 2 > 3.
0
By (6) and (7), we have (3) and 7" cos nf € H (C).

LEMMA 3. If k + 8 > 2a, then H(C) C Ej.

Let the Fourier expansion of k¢ H,(C) be given by (4) and suppose
at + b2 +0., For t>1let

(r =t —r?, reltsil;
8 r) =
(8) Pz( ) 0, rel0, 00) — [£,1],
which belongs to Ci(0, o). Then the function
o (re’’) = p,(r)(a, cos nd + b, sin nd)

belongs to CYC). By an easy computation we find the universal positive
constants A, B and t, > 1 such that

(9) (R, 70 = Art™* "7, Del(rg) < Bt

for every t >1t, and ¢ > 0. If 6 +n — 2a¢ > 4, then (9) implies that
[(By 9o | Delp,) — o0, which contradicts (3). If 6 + n — 2« = 4, then (9)
takes the form

(10) (h, 79, = Att!, De(re) < Brt®.

Let {¢,}=, be a sequence of real numbers such that ¢, + v < ¢}, Next
consider a sequence {7}, given by

1y =yt (=1,2...).

We then consider a sequence {@,};., of functions @, in Ci(C) given by
(12) O, (re'’) = i .0, (Te1?) .

By (10) and (11) we deduce that

13) (h,®,). > A z"jl =

By definition (12) we see that (39,/0x")* = > 1, (¢,0¢,/02")* (i = 1,2), and
a fortiori Dy(@,) = > *., Do(r,0,). Again by (10) and (11) we obtain

14 De(@,) < B Y, v,

From (13) and (14) it follows that
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(R, ,),7/De(®,) > (A*/B) (z u“) 2 / (Z u—z) oo

as pu— oo, in violation of (3). Hence n must satisfy 6 + n — 2o < 4,
ie. n+2<2a<k+3. Then n<k, and H/(C)C E,. Because of
Lemma 2

m(h)
a, = h(re¥y — > r*(a, cos nd + b, sin nf)

n=1

must belong to H(C) unless a, = 0. It is easy to find a bounded se-
quence {p, )7 < Cy(C) such that ¢, converges to 1 and Dg(p,)— 0. If

ay€ H,(C), then [(ay,p,)f — (z’fao a+ ”‘“’”‘”)2 > 0; but Delp) — 0 as
0
p¢— oo, in violation of (3). Therefore a, = 0 and ke E}, i.e. H(C) C Ej.

4. Suppose that H,(C) = 0. If 2« > 1+ 2 = 3, then by Lemma 2,
E; c H/(C), a contradiction. Therefore 2« < 8. Conversely suppose that
20¢ < 8, i.e. 0 + 3 > 2x. By Lemma 3 we see that H,(C) C E}, = @. Thus
H,(C) = 0 if and only if @ < 8/2. This completes the proof of Theorem 2.

5. Let u, and u, be Dirichlet finite solutions of (2). Then wu, — u,
is a Dirichlet finite harmonic function on C, i.e. u;, — u, ¢ HD(C) = R.
Therefore the vector space H?D(C,)/R is isomorphic to H,(C) U {0}. By
Lemmas 2 and 3, H(C) U {0} = E{(2a — 2> k > 2« — 8). Since dim £,
=2k for k> 0 and = 0 for £k < 0, as a more precise form of Theorem
2, we obtain

THEOREM 3. Let d, be the dimension of the vector space H2D(C,)/
HD(C,) = H*D(C)/R. If « <3/2, thend,=0. If @« > 3/2, then d, = 2k,
with 200 — 2 >k, > 200 — 3.
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