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Abstract
Di�erence-in-di�erences is awidely used evaluation strategy that draws causal inference fromobservational
panel data. Its causal identification relies on the assumption of parallel trends, which is scale-dependent and
may be questionable in some applications. A common alternative is a regression model that adjusts for the
lagged dependent variable, which rests on the assumption of ignorability conditional on past outcomes. In
the context of linear models, Angrist and Pischke (2009) show that the di�erence-in-di�erences and lagged-
dependent-variable regression estimates have a bracketing relationship. Namely, for a true positive e�ect,
if ignorability is correct, then mistakenly assuming parallel trends will overestimate the e�ect; in contrast,
if the parallel trends assumption is correct, then mistakenly assuming ignorability will underestimate the
e�ect. We show that the same bracketing relationship holds in general nonparametric (model-free) settings.
We also extend the result to semiparametric estimation based on inverse probability weighting. We provide
three examples to illustrate the theoretical results with replication files in Ding and Li (2019).

Keywords: causal inference, ignorability, nonparametric, panel data, parallel trends

1 Introduction
Di�erence-in-di�erences is a popular evaluation strategy in the social sciences; it makes causal
comparisons from observational panel data by exploiting variation across time (Ashenfelter 1978;
Bertrand, Duflo, and Mullainathan 2004; Angrist and Pischke 2009; Bechtel and Hainmueller
2011; Keele and Minozzi 2013; Malesky, Nguyen, and Tran 2014; Keele et al. 2019; Callaway and
Sant’Anna 2019). The key assumption underlying di�erence-in-di�erences is parallel trends, that
is, the counterfactual trendbehavior of treatment andcontrol groups, in theabsenceof treatment,
is the same, possibly conditioning on some observed covariates (Heckman, Ichimura, and Todd
1997; Abadie 2005). In practice, the parallel trends assumption can be questionable because
unobserved confounders may have time-varying e�ects on the outcomes. A common alternative
method is a regression model that adjusts for the lagged dependent variables (Ashenfelter 1978),
which assumes ignorability conditional on past outcomes and observed covariates.
Di�erence-in-di�erencesand lagged-dependent-variableadjustment—alsoknownrespectively

as the gain score estimator and the analysis of covariance estimator in sociology and
psychology—are two di�erentmethods relying on di�erent identification assumptions. Extensive
conceptual, empirical and numerical comparisons between the two methods have been made
in the literature (e.g., Allison 1990; Maris 1998; van Breukelen 2013; Ryan, Burgess, and Dimick
2015; O’Neill et al. 2016). In particular, in the context of linear models, Angrist and Pischke (2009)
show that di�erence-in-di�erences and lagged-dependent-variable regression estimators have
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a bracketing relationship. Namely, for a true positive e�ect, if the ignorability assumption is
correct, then mistakenly assuming parallel trends will overestimate the e�ect; in contrast, if the
parallel trends assumption is correct, then mistakenly assuming ignorability will underestimate
the e�ect. The opposite holds for a true negative e�ect.
The bracketing relationship is important in practice. Though we usually do not know which

one of the two assumptions is true in real applications, we can analyze the data under each
assumption and treat the estimates as the upper and lower bounds of the true e�ect. However,
the linear setting in Angrist and Pischke (2009) is restrictive, particularly for applications with
noncontinuous outcomes. For example, binary outcomes are common in political science (e.g.,
Keele and Minozzi 2013; Malesky, Nguyen, and Tran 2014) and health studies (e.g., Stuart et al.
2014); count outcome are common in transportation safety studies where the before–a�er design
is popular (e.g., Hauer 1997). Moreover, the parallel trends assumption is scale-dependent (Athey
and Imbens 2006). Therefore, an extension to nonlinear settings is relevant for both theory and
practice. In this paper, we prove that, within the canonical two-period two-group setting, the
same bracketing relationship holds in general nonparametric and semiparametric settings. We
give three examples to illustrate the theoretical results.

2 Setup
2.1 Di�erence-in-Di�erences

Weproceedunder the potential outcomes framework (Neyman 1923; Rubin 1974).We consider the
basic two-period two-group panel design, where a sample of units, indexed by i ∈ {1, . . . , n}, are
drawn from a target population of two groups, labeled by Gi = 0 or 1. Each unit can potentially
be assigned to a treatment d , with d = 1 for the active treatment and d = 0 for the control.
Units in both groups are followed in two periods of timeT , withT = t andT = t + 1 denoting
the before and a�er period, respectively. The treatment is only administered to the group with
Gi = 1 in the a�er period. For each unit i , let DiT be the observed treatment status at time T .
The above design implies Di t = 0 for all units and Di ,t+1 = 1 for the units in group Gi = 1; thus
Gi = Di ,t+1. Assume that each unit has two potential outcomes in each period, {YiT (1),YiT (0)} for
T = t and t +1, and only the one corresponding to the observed treatment status,YiT =YiT (DiT ),
is observed. Therefore,Yi t =Yi t (0) andYi ,t+1 = (1−Gi )Yi ,t+1(0)+GiYi ,t+1(1). For each unit, a vector
of pretreatment covariates Xi are also observed in the before period.
In the two-period two-grouppanel design, the target estimand is usually the average treatment

e�ect for the treated (ATT) (Abadie 2005; Angrist and Pischke 2009; Lechner 2011):

τATT ≡ E {Yi ,t+1(1) −Yi ,t+1(0) ` Gi = 1} = µ1 − µ0, (1)

where µ1 = E {Yi ,t+1(1) ` Gi = 1} and µ0 = E {Yi ,t+1(0) ` Gi = 1}. When the outcome is discrete,
ratio versions of τATT are o�en of interest, such as

γATT ≡ E {Yi ,t+1(1) ` Gi = 1}/E {Yi ,t+1(0) ` Gi = 1} = µ1/µ0, (2)

which is the causal risk ratio for binary outcomes and the causal rate ratio for count outcomes.
The quantity µ1 equals E (Yi ,t+1 ` Gi = 1), and thus is directly estimable from the observed

data, e.g., by themomentestimatorȲ1,t+1 =
∑n
i=1GiYi ,t+1/

∑n
i=1Gi . In contrast, thequantityµ0, the

counterfactual outcome for the treatment group in the a�er period in the absence of treatment, is
not observable andmust rely on additional assumptions to identify. The central task in this design
is to use the observed data to estimate the counterfactual µ0. Any consistent estimator of µ0 leads
to consistent estimators of τATT and γATT.
With di�erence-in-di�erences, the key for identifying µ0 is the parallel trends assumption.
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ASSUMPTION 1 (Parallel trends). E {Yi ,t+1(0)−Yi t (0) ` Xi ,Gi = 1} = E {Yi ,t+1(0)−Yi t (0) ` Xi ,Gi =
0}.

The parallel trends assumption requires that, conditional on covariates Xi , the average
outcomes in the treated and control groups in the absence of treatment would have followed
parallel paths over time. Under Assumption 1, we have the nonparametric identification formula
for µ0:

µ̃0,DID = E
�
E {Yi t (0) ` Xi ,Gi = 1} + E {Yi ,t+1(0) −Yi t (0) ` Xi ,Gi = 0} ` Gi = 1

�

= E (Yi t ` Gi = 1) + E {E (Yi ,t+1 −Yi t ` Xi ,Gi = 0) ` Gi = 1}

= E (Yi t ` Gi = 1) +
∫
E (Yi ,t+1 −Yi t ` Xi = x ,Gi = 0)FX `G=1(dx ), (3)

where FX `G=1(x ) = pr(X ≤ x ` G = 1) is the distribution of X in the treatment group. All
terms of the right hand side of (3) are identifiable from the observed data. A stronger version of
Assumption 1 imposes parallel trends without conditioning on covariates, under which we can
write

µ̃0,DID = E (Yi t ` Gi = 1) + E (Yi ,t+1 ` Gi = 0) − E (Yi t ` Gi = 0). (4)

Based on the identification formula (4), a moment estimator of τATT is

τ̂DID = (Ȳ1,t+1 − Ȳ1,t ) − (Ȳ0,t+1 − Ȳ0,t ), (5)

where Ȳg ,T is the mean observed outcome for group g at timeT (g = 0, 1;T = t , t + 1). The form
of this estimator underlies the name “di�erence-in-di�erences”.
A well-known limitation of the di�erence-in-di�erences approach is that the parallel trends

assumption depends on the scale of the outcome (Athey and Imbens 2006; Lechner 2011).
Specifically, the parallel trends assumption may hold for the original Y but not for a nonlinear
monotone transformation of Y , for example, logY . This scale dependence restricts the use of
di�erence-in-di�erences in settings with non-Gaussian and discrete outcomes.

2.2 Lagged-Dependent-Variable Adjustment
In the treatment–control panel design, a class of alternative methods relies on the assumption of
ignorability conditional on the laggeddependent variable, that is, in the absence of treatment, the
outcomes for the treated and control groups would have the same distributions, conditional on
their lagged outcome and covariates.

ASSUMPTION 2 (Ignorability). Yi ,t+1(0) ⊥⊥ Gi ` (Yi t ,Xi ).

Under ignorability, we have the following nonparametric identification formula of µ0:

µ̃0,LDV = E
�
E {Yi ,t+1(0) ` Gi = 1,Yi t ,Xi } ` Gi = 1

�

= E {E (Yi ,t+1 ` Gi = 0,Yi t ,Xi ) ` Gi = 1}

=

∫
E (Yi ,t+1 ` Gi = 0,Yi t = y ,Xi = x )FYt ,X `G=1(dy , dx ), (6)

where FYt ,X `G=1(y , x ) is the joint distribution of (Yt ,X ) in the treatment group. The formof µ̃0,LDV is
identical to the traditional identification formula for the average treatment e�ect for the treated in
observational cross-sectional studies. We can specify a model for E {Yi ,t+1(0) ` Yi t ,Gi ,Xi }, based
on which we impute the counterfactual mean µ0 = E {Yi ,t+1(0) ` Gi = 1} by averaging overYt and
X and thus obtain a consistent estimator for τATT.
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In contrast to the parallel trends assumption, the ignorability assumption is scale-free. Three
popularmethods under the ignorability assumption are the synthetic controlmethod (Abadie and
Gardeazabal 2003; Abadie, Diamond, and Hainmueller 2015), matching (Heckman, Ichimura, and
Todd 1997) or regression adjustment (Ashenfelter 1978) of the lagged dependent variable. Among
these, the lagged-dependent-variable adjustment approach is the easiest to implement. Through
extensive simulations, O’Neill et al. (2016) have found that, when the parallel trends assumption
does not hold, the lagged-dependent-variable regression adjustment approach produces the
most e�icient and least biased estimates among these three methods.

3 Theory
Our goal in this section is to establish the analytical relationship between the di�erence-in-
di�erences and lagged-dependent-variable adjustment estimators under general settings. For
notational simplicity, we condition on the covariates X and thus ignore them in the discussion.

3.1 Bracketing Relationship in Linear Models
We start with the simple case of linear regressions. Specifically, the di�erence-in-di�erences
approach is usually implemented via a linear fixed-e�ects model:

E (YiT ` DiT ,Xi ) = αi + λT + τDiT , (i = 1, . . . , n ;T = t , t + 1) (7)

where αi is the individual fixed e�ect and λT is the time-specific fixed e�ect. When model (7) is
correct, the coe�icient τ equals the estimand τATT; any consistent estimator of τ in (7) is also
consistent for τATT. By taking the di�erence between outcomes at time points t and t + 1 in (7),
we can eliminate the individual fixed-e�ects αi . BecauseGi = Di ,t+1 −Di t , we have E (Yi ,t+1 −Yi t `
Gi ) = (λt+1 −λt )+ τGi . Therefore, we can fit a linear regression of the di�erenceYi ,t+1 −Yi t on the
group indicator Gi to estimate τ . The resulting ordinary least squares estimator is the di�erence
between the samplemeans ofYi ,t+1 −Yi t in the treated and control groups, and thus it equals τ̂DID
defined in (5).
The lagged-dependent-variable adjustment method can be implemented via linear models

in two ways. In the first approach, motivated by (6), we can fit an ordinary least squares line
Ê (Yt+1 ` G = 0,Yt = y ) = α̂ + β̂Yt using only the control units; then we obtain µ̂0,LDV = α̂ + β̂Ȳ1,t
as the sample analog of µ̃0,LDV and τ̂LDV = Ȳ1,t+1 − µ̂0,LDV as the estimate of τATT. In the second
approach, as in Angrist and Pischke (2009, ch. 5.4), we can use the following linear model:

E (Yi ,t+1 `Yi t ,Gi ) = α + βYi t + τGi . (8)

When model (8) is correct, the coe�icient τ equals the causal estimand τATT, and any consistent
estimator of τ is consistent for τATT. We can fit the ordinary least squares line Ê (Yt+1 ` G ,Yt ) =
α̂ + τ̂ ′LDVG + β̂ ′Yt using all units and take the coe�icient τ̂ ′LDV as an estimate of τATT. We have the
following expressions for the two estimators τ̂LDV and τ̂ ′LDV (the proof is given in the Appendix).

PROPOSITION 1. Without covariates, the two lagged-dependent-variable adjustment estimates
are

τ̂LDV = (Ȳ1,t+1 − Ȳ0,t+1) − β̂ (Ȳ1,t − Ȳ0,t ), τ̂ ′LDV = (Ȳ1,t+1 − Ȳ0,t+1) − β̂
′(Ȳ1,t − Ȳ0,t ). (9)

These two estimates in (9) di�er from the moment di�erence-in-di�erences estimate τ̂DID =

(Ȳ1,t+1 −Ȳ0,t+1)− (Ȳ1,t −Ȳ0,t ) only in the coe�icients β̂ and β̂ ′. Consider the case with β̂ or β̂ ′ larger
than 0 but smaller than 1. The sign of τ̂DID − τ̂LDV or τ̂DID − τ̂ ′LDV depends on the sign of Ȳ1,t − Ȳ0,t .
If the treatment group has larger lagged outcomeYt on average, then τ̂DID < τ̂LDV; if the treatment
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group has smallerYt on average, then τ̂DID > τ̂LDV. In the special casewith β̂ = 1 or β̂ ′ = 1, they are
identical: τ̂DID = τ̂LDV or τ̂ ′DID = τ̂LDV. How much β̂ or β̂ ′ deviates from 1 indicates how di�erent
the two estimates are. We see this phenomenon in the examples in Section 4. Importantly,
the discussion in this subsection holds without imposing any stochastic assumptions. That is,
Proposition 1 is a purely numerical result. In contrast, the bracketing relationship in Angrist and
Pischke (2009, ch. 5.4) is proven under the linear model assumptions.
Gelman (2007) pointed out that restricting β = 1 in (8) gives identical least squares estimators

forτ frommodels (7) and (8),which is alsoevident fromProposition 1.However, thenonparametric
identification Assumptions 1 and 2 are not nested, and the di�erence-in-di�erences estimator is
not a special case of the lagged-dependent-variable adjustment estimator in general. Therefore, it
is natural to investigate whether Angrist and Pischke (2009)’s result is unique to the linearmodels
(7) and (8). In thenext subsection,wegeneralize thebracketing relationship tomodel-free settings.

3.2 Nonparametric Bracketing Relationship
Fornotational simplicity, belowwealsodrop thesubscript i .Under ignorability, thenonparametric
identification formula (6) of µ0 simplifies to

µ̃0,LDV = E {E (Yt+1 ` G = 0,Yt ) ` G = 1} =

∫
E (Yt+1 ` G = 0,Yt = y )FYt (dy ` G = 1), (10)

where FYt (y ` G = g ) = pr(Yt ≤ y ` G = g ) is the cumulative distribution function ofYt for units in
group g (g = 0, 1). The formof µ̃0,LDV is identical to the identification formula for the ATT estimand
in cross-sectional studies.
To compare τ̃DID and τ̃LDV without imposing any functional form of the outcome model, we

first obtain the following analytical di�erence between µ̃0,DID and µ̃0,LDV (the proof is given in the
Appendix).

LEMMA 1. The di�erence between µ̃0,DID and µ̃0,LDV is

µ̃0,LDV − µ̃0,DID =

∫
∆(y )FYt (dy ` G = 1) −

∫
∆(y )FYt (dy ` G = 0),

where∆(y ) = E (Yt+1 ` G = 0,Yt = y ) − y .

The quantity ∆(y ) = E (Yt+1 ` G = 0,Yt = y ) − y = E (Yt+1 − Yt ` G = 0,Yt = y ) equals
the expectation of the change in the outcome conditioning on the lagged outcome in the control
group. Lemma 1 suggests that the relative magnitude of µ̃0,DID and µ̃0,LDV depends on (a) the
expectation of the before–a�er di�erenceYt+1 −Yt conditional onYt in the control group, and (b)
thedi�erencebetween thedistributionof thebeforeoutcomeYt in the treatedandcontrol groups.
Both are important characteristics of the underlying data generating process, whichmeasures (a)
the dependence of the outcome on the lagged outcome and (b) the dependence of the treatment
assignment on the lagged outcome, respectively. In particular, ifYt ⊥⊥ G or equivalently FYt (y `

G = 1) = FYt (y ` G = 0), then µ̃0,LDV = µ̃0,DID.
To reach themain conclusion, we introduce two additional conditions regarding the quantities

in Lemma 1. The first is a stationarity condition on the outcome.

CONDITION 1 (Stationarity). ∂E (Yt+1 ` G = 0,Yt = y )/∂y < 1 for all y .

In a linear model for E (Yt+1 ` G = 0,Yt = y ), Condition 1 requires that, in the control group,
the regression coe�icient of the outcomeYt+1 on the lagged outcomeYt is smaller than 1; this is
also invoked by Angrist and Pischke (2009). Its sample version is β̂ < 1 or β̂ ′ < 1 as in Section 3.1.
In general, Condition 1 ensures that the time series of the outcomes would not grow infinitely as
time, which is reasonable in most applications.
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The second condition describes the treatment assignment mechanism with respect to the
lagged outcome, with two opposite versions.

CONDITION 2 (Stochastic Monotonicity). (a) FYt (y ` G = 1) ≥ FYt (y ` G = 0) for all y ; (b)
FYt (y ` G = 1) ≤ FYt (y ` G = 0) for all y .

Condition 2(a) implies that the treated group has smaller lagged outcome compared to the
control group, and Condition 2(b) implies the opposite relationship. In the case of linear models,
Condition 2(a) or (b) reduces to the average lagged outcome in the treated group is smaller or
larger than that in the control group, respectively.
Because they only involve observed variables, Conditions 1 and 2 are testable empirically.

Specifically, to check Condition 1, we can estimate the derivative of the conditionalmean function
E (Yt+1 ` G = 0,Yt = y ); to check Condition 2, we can visually compare the empirical cumulative
probability distributions of the outcomes in the treatment and control groups. These conditions
hold in many applications, e.g., in the examples in Section 4. In contrast, Assumptions 1 and 2 are
in general untestable.
Under Conditions 1 and 2, we have the following results on the bracketing relationship on τ̃DID

and τ̃LDV in a nonparametric setting; see the Appendix for the proof.

THEOREM 1. If Conditions 1and2(a)hold, then µ̃0,DID ≤ µ̃0,LDV, and thus τ̃DID ≥ τ̃LDV and γ̃DID ≥ γ̃LDV;
if Conditions 1 and 2(b) hold, then µ̃0,DID ≥ µ̃0,LDV, and thus τ̃DID ≤ τ̃LDV and γ̃DID ≤ γ̃LDV.

Theorem 1 is a result on the relative magnitude between the two quantities τ̃DID and τ̃LDV (and
between γ̃DID and γ̃LDV). On the one hand, Theorem 1 holds without requiring either Assumption 1
or 2. Specifically, under Stationarity and Stochastic Monotonicity (a), τ̃DID is larger than or equal
to τ̃LDV. Both of them can be biased for the true causal e�ect τATT: if τ̃DID ≥ τ̃LDV ≥ τATT, then τ̃DID
overestimates τATT more than τ̃LDV; if τATT ≥ τ̃DID ≥ τ̃LDV, then τ̃LDV underestimate τATT more than
τ̃DID; if τ̃DID ≥ τATT ≥ τ̃LDV, then τ̃DID and τ̃LDV are the upper and lower bounds on τATT. Analogous
arguments apply under Stationarity and Stochastic Monotonicity (b). On the other hand, only
under Assumption 1 or 2, the quantities τ̃DID and τ̃LDV have the interpretation as the nonparametric
identification formulas of the causal estimand τATT. We stress that the bracket (τ̃DID, τ̃LDV) provides
bounds for the true e�ect τATT if either Assumption 1 or 2 holds; however, it does not answer the
question about whether the true e�ect falls inside or, if outside, which side of the bracket when
neither Assumption 1 nor 2 holds. The relationship under such a scenario is dependent on the
specific true data generating model.
For discrete outcomes, Equation (10) reduces to µ̃0,LDV =

∑
y E (Yt+1 ` G = 0,Yt = y )pr(Yt =

y ` G = 1), and the stationary condition becomes E (Yt+1 ` G = 0,Yt = y + 1) − E (Yt+1 `

G = 0,Yt = y ) < 1 for all values of y . For the case of binary outcome, the stationary condition
always holds because 0 ≤ E (Yt+1 ` G = 0,Yt = y ) ≤ 1 for y = 0, 1. Therefore, we only need
to check the sign of the empirical counterpart of pr(Yt = 0 ` G = 1) − pr(Yt = 0 ` G = 0).
Specifically, if pr(Yt = 0 ` G = 1) ≥ pr(Yt = 0 ` G = 0), then τ̃DID ≥ τ̃LDV and γ̃DID ≥ γ̃LDV; if
pr(Yt = 0 ` G = 1) ≤ pr(Yt = 0 ` G = 0), then τ̃DID ≤ τ̃LDV and γ̃DID ≤ γ̃LDV.

3.3 Semiparametric Bracketing Relationship
Under the parallel trends Assumption 1, Abadie (2005) proposed a semiparametric inverse
probability weighting estimator for τATT based on the following identification formula of µ0:

µ̃ ′0,DID = E

{
GYt +

e(1 −G )(Yt+1 −Yt )
1 − e

} /
pr(G = 1), (11)

where the propensity score is defined as e = pr(G = 1). Abadie (2005)’s estimator based on
µ̃0,DID shares the same form as the inverse probability weighting estimator for the ATT in the
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Figure 1. Card and Krueger (1994) study. Le�: linear and quadratic fitted lines of E (Yt+1 ` G = 0,Yt ). Right:
empirical distribution functions FYt (y ` G = g ) (g = 0, 1) satisfy Stochastic Monotonicity.

cross-sectional setting, but replaces the outcome in the treatment group by the before–a�er
di�erenceYt+1 −Yt . Similarly, under Assumption 2, we can construct a semiparametric estimator
based on

µ̃ ′0,LDV = E

{
e(Yt )

1 − e(Yt )
(1 −G )Yt+1

} /
pr(G = 1), (12)

where the propensity score is defined as e(Yt ) = pr(G = 1 `Yt ).
Because (11) and (12) are alternative identification formulas for µ0, we can show that

(µ̃0,DID, µ̃0,LDV) = (µ̃ ′0,DID, µ̃
′
0,LDV) and thus have the following corollary of Theorem 1.

COROLLARY 1. Theorem 1 holds if (µ̃0,DID, µ̃0,LDV) are replaced by (µ̃ ′0,DID, µ̃
′
0,LDV).

Corollary 1 shows that the bracketing relationship between τ̃DID and τ̃LDV does not depend on
the forms of identification formulas and estimators.

4 Examples
4.1 MinimumWages and Employment

We reanalyze part of the classic Card and Krueger (1994) study on the e�ect of a minimum
wage increase on employment. Data were collected on the employment information at fast food
restaurants in New Jersey and Pennsylvania before and a�er a minimum wage increase in New
Jersey in 1992. The outcome is the number of full-time-equivalent employees at each restaurant.
The di�erence-in-di�erences estimate is τ̂DID = 2.446, and the lagged-dependent-variable

adjustment estimates are τ̂LDV = 0.302 and τ̂ ′LDV = 0.865 with coe�icients of the lag outcome
β̂ = 0.288 < 1 and β̂ ′ = 0.475 < 1. Meanwhile, because the sample means satisfy Ȳ1,t − Ȳ0,t =
17.289−20.299 < 0, our theoretical result predicts that τ̂DID > τ̂LDV(or τ̂ ′LDV), which exactlymatches
the relative magnitude of the empirical estimates above. In addition, if we adopt a quadratic
specification of E (Yt+1 ` G = 0,Yt ), the lagged-dependent-variable regression estimate becomes
τ̂LDV = 0.275, which is also smaller than τ̂DID. This is again coherent with our theory because
StationarityandStochasticMonotonicityhold,depicted inFigure 1. In this example, thedi�erences
between τ̂DID and τ̂LDV(or τ̂ ′LDV) are significant at level 0.05.

4.2 Electoral Returns to Beneficial Policy
We reanalyze theBechtel andHainmueller (2011) studyonelectoral returns tobeneficial policy.We
focus on the short-term electoral returns by analyzing the causal e�ect of disaster relief aid due
to the 2002 Elbe flooding in Germany. The before period is 1998 and the a�er period is 2002. The
units of analysis are electoral districts, the treatment is the indicator whether a district is a�ected
by the flood, and the outcome is the vote share that the Social Democratic Party attains in that
district.
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Figure 2. Bechtel and Hainmueller (2011) study. Le�: linear fitted lines of E (Yt+1 ` G = 0,Yt ). Right: empirical
distribution functions FYt (y ` G = g ) (g = 0, 1) satisfy Stochastic Monotonicity.

Table 1. Crash counts in the 1986 road sites in Pennsylvania (3+ means 3 or more crashes).

(a) Control groupG = 0 (b) Treated groupG = 1

Yt+1 Yt+1

0 1 2 3+ Total 0 1 2 3+ Total

Yt

0 789 238 57 18 1102

Yt

0 183 39 7 3 232
1 235 95 40 15 385 1 40 22 5 2 69
2 61 37 11 6 115 2 16 4 0 1 21
3+ 26 21 4 2 53 3+ 2 6 0 1 9
Total 1111 391 112 41 1655 Total 241 71 12 7 331

The di�erence-in-di�erences estimate is τ̂DID = 7.144, and the lagged-outcome adjustment
estimates are τ̂LDV = 7.160 and τ̂ ′LDV = 7.121with coe�icients of the lag outcome β̂ = 1.002 > 1 and
β̂ ′ = 0.997 < 1. The relativemagnitudesmatchour theory in Section 3.1. However, these estimates
are almost identical because the coe�icients ofYt are extremely close to 1. In this example, even
though the empirical distributions of FYt (y ` G = 1) and FYt (y ` G = 0) di�er significantly as
Figure 2 shows, the analysis is not sensitive to the choice between the di�erence-in-di�erences
and lagged-dependent-variable adjustment estimates.

4.3 A Tra�ic Safety Intervention on Crashes
Outside the political science literature, the before–a�er treatment–control design is the state-of-
the-art method in tra�ic safety evaluations (Hauer 1997), where count outcomes are common.
Here we provide an example of evaluating the e�ects of rumble strips on vehicle crashes. Crash
counts were collected on n = 1986 road segments in Pennsylvania before (year 2008) and a�er
(year2012) the rumble stripswere installed in331 segmentsbetweenyear2008 to2012. Thecontrol
group consists of 1655 sites matched to the treated sites on covariates including past accident
counts, road characteristics, tra�ic volume. Table 1 presents the crash counts classified byYt and
Yt+1 for control and treatment groups, respectively.
We first examine thedichotomizedoutcomeofwhether therehasbeenat least one crash in that

site. As noted a�er Theorem 1, Condition 1 automatically holds for a binary outcome.We can verify
that Condition 2(a) holds because the empiricalmeans suggest p̂r(Yt = 0 ` G = 1)− p̂r(Yt = 0 ` G =

0) = 232/331 − 1102/1655 = 0.701 − 0.666 > 0. Therefore, applying Theorem 1, we predict that
τ̃DID > τ̃LDV and γ̃DID > γ̃LDV. Nowwe calculate the nonparametric estimate of µ0 under ignorability
to be µ̂0,LDV =

∑
y=0,1 Ê (Yt+1 ` G = 0,Yt = y )p̂r(Yt = y ` G = 1) = 0.324, and under parallel trends

to be µ̂0,DID = 0.294. Therefore, the empirical estimates suggest τ̂DID > τ̂LDV and γ̂DID > γ̂LDV, which
matches the theoretical prediction.
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We then examine the original count outcome in Table 1. The sample means Ê (Yt+1 ` G =

0,Yt = y ) are 0.374, 0.572, 0.670, 0.660 for y = 0, 1, 2, 3+, respectively. Therefore, Condition 1
holds for all y . We can also verify that Condition 2(a) holds because the sample probabilities are
p̂r(Yt ≤ y ` G = 1) = 0.700, 0.909, 0.973 and p̂r(Yt ≤ y ` G = 0) = 0.666, 0.898, 0.968 for y = 0, 1, 2,
respectively. Therefore, applying Theorem 1, we predict that τ̃DID > τ̃LDV and γ̃DID > γ̃LDV. Now
we calculate the nonparametric estimate of µ0 under ignorability to be µ̂0,LDV = 0.438, and under
parallel trends to be µ̂0,DID = 0.395. Therefore, the empirical estimates suggest τ̂DID > τ̂LDV and
γ̂DID > γ̂LDV, which matches the theoretical prediction.
In this example, thedi�erencesbetween the γ̂DID’s and the γ̂LDV’s arenot significant at level0.05.

5 Discussion
We established a model-free bracketing relationship between the di�erence-in-di�erences and
lagged-dependent-variable adjustment estimators in the canonical two-period two-group setting.
In practice, we cannot use the data to validate the assumptions that justify these approaches.
Therefore, a practical suggestion is to report results from both approaches and ideally to conduct
sensitivity analyses allowing for violations of these assumptions.
Several directions are worth investigating. First, in the setting withK + 1 time periods, wemay

consider a model that incorporates both Model (7) and (8): E (Yi ,T ` Xi ,Yi ,T −1,Gi ) = αi + λT +

βYi ,T −1 + τGi + θ
TXi for T = t + 1, . . . , t + K . However, Nickell (1981) and Angrist and Pischke

(2009, Section 5.3) pointed out that identification and estimation under this model require much
stronger assumptions. It is of interest to extend the bracketing relationship to this setting. Second,
we focused on the average treatment e�ect on the treated; we can extend the result to other types
(e.g. categorical and ordinal) of outcomes for which the averages are less interpretable (Lu, Ding,
and Dasgupta 2018).

Appendix Proofs
Proof of Proposition 1. First, the ordinary least squares fit Ê (Yt+1 ` G = 0,Yt = y ) = α̂ + β̂Yt
using the control units must satisfy α̂ = Ȳ0,t+1 − β̂Ȳ0,t . Therefore,

τ̂LDV = Ȳ1,t+1−µ̂0,LDV = Ȳ1,t+1−α̂−β̂Ȳ1,t = Ȳ1,t+1−(Ȳ0,t+1−β̂Ȳ0,t )−β̂Ȳ1,t = (Ȳ1,t+1−Ȳ0,t+1)−β̂ (Ȳ1,t−Ȳ0,t ).

Second, the coe�icient τ̂ ′LDV in the ordinary least squares fit Ê (Yt+1 ` G ,Yt ) = α̂+τ̂
′
LDVG + β̂ ′Yt

using all units equals the di�erence-in-means ofYi ,t+1 − α̂ − β̂ ′Yi t in the treated and control
groups. Therefore,

τ̂ ′LDV = (Ȳ1,t+1 − α̂ − β̂
′Ȳ1,t ) − (Ȳ0,t+1 − α̂ − β̂ ′Ȳ0,t ) = (Ȳ1,t+1 − Ȳ0,t+1) − β̂ ′(Ȳ1,t − Ȳ0,t ).

Proof of Lemma 1. The conclusion follows from the law of total probability. We can write
µ̃0,LDV − µ̃0,DID as

−E (Yt+1 ` G = 0) + E (Yt ` G = 0) − E (Yt ` G = 1)

+

∫
E (Yt+1 ` G = 0,Yt = y )FYt (dy ` G = 1)

= −

∫
E (Yt+1 ` G = 0,Yt = y )FYt (dy ` G = 0)

+

∫
yFYt (dy ` G = 0) −

∫
yFYt (dy ` G = 1)

+

∫
E (Yt+1 ` G = 0,Yt = y )FYt (dy ` G = 1)
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=

∫
{E (Yt+1 ` G = 0,Yt = y ) − y}FYt (dy ` G = 1)

−

∫
{E (Yt+1 ` G = 0,Yt = y ) − y}FYt (dy ` G = 0). �

Proof of Theorem 1. The proof relies on a lemma on stochastic ordering in Shaked and
Shanthikumar (2007). Specifically, for two random variables A and B , pr(A ≤ x ) ≥ pr(B ≤ x )
for all x if and only if E {u(A)} ≥ E {u(B )} for all nonincreasing functions u(·).
Under Condition 1, we have ∂∆(y )/∂y = ∂E (Yt+1 ` G = 0,Yt = y )/∂y − 1 < 0, i.e.,

∆(y ) is a nonincreasing function of y . Therefore, combining Lemma 1, Condition 2(1) implies
µ̃0,DID ≤ µ̃0,LDV, and Condition 2(2) implies µ̃0,DID ≥ µ̃0,LDV. �
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