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THE MAXIMAL OPERATOR SPACE OF A NORMED SPACE

by VERN I. PAULSEN*
(Received 27th June 1994)

We obtain some new results about the maximal operator space structure which can be put on a normed
space. These results are used to prove some dilation results for contractive linear maps from a normed space
into B(H). Finally, we prove CB(MIN(X), MAX(Y))=T%(X,Y) and apply this result to prove some new
Grothendieck-type inequalities and some new estimates on spans of “free” unitaries.

1991 Mathematics subject classification: 46105, 46MOS.

1. Introduction

Given any (complex) vector space X, let M, (X) denote the vector space of nxn
matrices with entries from X. If B(H) denotes the bounded linear operators on a Hilbert
space H then M, (B(H)) is endowed with a natural norm via the identification,
M (B(H))=B(H®---@H) (n copies). If X is any subspace of B(H) then the inclusion
M, (X)c M, (B(H)) endows M, (X) with a norm. These are generally called a matrix-
norm on X. Subspaces of B(H) are called operator spaces to indicate that they are more
than normed spaces, but normed spaces with a distinguished family of norms on the
spaces, M, (X).

If X is only a normed space, then any linear isometry ¢: X — B(H) for some H endows
each M (X) with a norm, i.e. makes X an operator space. Generally, for a normed space
X the norms on M,(X) thus obtained are not unique. In [3] it was noted that among
all such matrix norms there is a minimal and maximal family. These are operator space
structures on X which satisfy

”(xij)”MlN < ||(¢(Xu))” < “(xij)”MAx

for any isometry ¢: X — B(H) for all n and for all (x;;) in M, (X). We write MIN(X) and
MAX(X) to denote X endowed with these matrix-norms.
In [10] we introduced the o constant of a normed space X, defined by

“(X)=SUP{“(xij)”MAx: ”(xij)“MlN = 1}
where the supremum is over all n and (x;;) in M, (X). Thus, «(X) =1 always and a(X)=1
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precisely when every isometric embedding of X into B(H) induces the same matrix norm
structure on X. In [10] we also proved that «(X)>1 for any normed space X of
dimension greater than or equal to 5 and that a(X) is infinite whenever X is infinite
dimensional.

Currently, there is a rapidly evolving local theory of finite dimensional operator
spaces which has many parallels with the local theory of Banach spaces. It is clear that
the operator spaces MIN(X) and MAX(X) together with the measure a(X) of how
different these spaces can be plays a role in this theory.

In this paper we give a new formula for the matrix-norm on MAX(X). Originally this
matrix-norm was defined extrinsically, by taking a supremum over all isometric
representations of X as a space of operators. Our new formula has the advantage of
being intrinsic, depending only on X and it is expressed as an infimum, so that interplay
between the two definitions allows for better estimates. This result also allows for a
dilation theoretic characterization of the MAX norm.

We then turn our attention to MAX(/}) where ¢} denotes the n-dimensional
£ ,-space. This operator space is completely isometrically isomorphic to the span of
1,u,,...,u,_, in the universal C*-algebra of the free group on n—1 generators, C*(F,_,)
where, u,,...,u,-, denote the canonical generators of F,_,. Using this representation

we are able to prove via dilation techniques that «(¢7)<./n— 1. While this estimate is
only a slight improvement on our estimates in [10] we believe that it is significant
because we have been unable to obtain this sharper estimate via Banach space methods.
In [13] a “smallest” C*-algebra generated by an operator space was introduced, in
analogy with Arveson and Hamana’s boundary C*-algebra of an operator system. For
MAX(/%) this algebra is C*(F,-,), and for this reason we believe that the above
estimate might be sharp.

Finally, for any Banach spaces X and Y we are able to prove that CB(MIN(X),
MAX(Y)) is equal to the space I'#(X,Y) of maps T from X to Y which have a
factorization through Hilbert space T=A4B, B: X —>H,A: H-Y such that the 2-summing
norms, m,(B) and n,(4*) are both finite. In fact we prove that $y$(T)<||T||., <y3(T)
where k is a universal constant, \/§§k§2 and y3(T)=inf{n,(B)n,(A*)} where the
infimum is taken over all factorizations through Hilbert space. This result was obtained
with Pisier and has also been obtained independently by M. Junge with a larger
constant, who together with Pisier [7] have applied it to obtain their proof that the
minimal and maximal C*-tensor norms on B(H)® B(H) are different. The main
advantage of the proof that we present here is that it gives a sharp characterization of
the value k, namely,

k=1lim nfa(£7)

n-+ 00

and shows the importance of this ratio in the local “metric” theory of operator spaces.
Finally, applying some results from [3] we show that the above result implies some

equivalences between tensor norms in the operator space category which are natural

generalizations of Grothendieck’s result on the equivalance of the Hilbertian and
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rojective norms for tensor products of £ ®-spaces. These give rise to a new estimate on
_ g
“free” unitaries.

2. The MAX operator space

Let X be a normed space and for each n define a norm on M ,(X) via,

[lxi)llwax =sup{[[(d(X;))||: 6: X~ B(H), [|¢]| < 1}.

We let MAX(X) denote X together with this family of matrix-norms. It is easily seen
(by considering the direct sum of a sufficiently large family of such ¢’s) that MAX(X)
can be embedded completely isometrically as a subspace of B(H) for some H. This also
follows from Ruan’s theorem [12]. Clearly the MAX norms dominate any other matrix-
norm on X which has the property that they can be realized completely isometrically as
a subspace of some B(H), i.e., which satisfy Ruan’s axioms [12]. Similarly, if we set

”(xij)”MlN=5uP{”(f(xij))”3f€X*,”f”§ 1}

and let MIN(X) denote X together with this family of matrix-norms, then MIN(X) can
be represented completely isometrically as a space of operators (in fact MIN(X)< C(XT)
completely isometrically) and every other family of matrix norms with the property that
they can be realized completely isometrically as a subspace of some B(H) dominate
these norms. See [10] for more details.

The above definition of the MAX norms are extrinsic and our first theorem gives an
intrinsic characterization of these norms. We remark that it is well-known and easily
checked that,

[|Ceiplvm = sup | Zawpxisl|: £ 42 £ 1, X > < 1}

Theorem 2.1. Let X be a normed space. Then for any n and any (x;;) in M, (X),
|lxip)llmax=1nf{|| 4| ||B||} where the infimum is taken over all pairs of scalar matrices
A=(a;;), B=(b;;) of sizes nxk and kxn for which there exist y,,...,y, in X satisfying,
|1, 12i<k and x;;=Y%-, ayy.b,;.

Proof. Let |||(x;)||| denote this infimum. If ¢:X—B(H) is any contractive linear
map A, B,{y,,...,y} are as above then,

¢(Y1) 0
(d(x;)=A -, B
0 ()

and hence [|(x;;)|lwax <l |(x:)] Il
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To complete the proof of the theorem it will be enough to show that X together with
the matrix norms ||| ||| satisfy Ruan’s axioms for an operator space [12].

Clearly, if C, D are matrices of scalars then |||C(x;)D|||<||C|||||(x:;)|||P]- Thus, it
remains to show that if X =(x;;) is in M,(X) and X' =(x};) is in M, (X), then

I =)

Write X=AYB and X'=A4"Y'B’ where 4,B, A" and B’ are matrices of scalars and Y and
Y’ are diagonal matrices with entries from X which are all of norm less than 1. By
scaling we may assume that we have chosen such a representation satisfying ||4||=
IBI<IX[1"+e [[4 | =[IBl<[[|X]||"*+& for any £>0. Hence

(6 x)-6 %) )6 »)

from which it follows that

& e

Note: In matrix notation we have that

<max{||| X|

4 |

X|

I8

l

x|} +e. O

(x,'j)=A B.
Va

If X has a basis {e,,...,e,} and (x;;) is in M, (X) with x;;=Yi_, ale, then we write

1

(x..j)=kz A, ®e, where A,=(a}).

Let G={(4,,....4,)eC"||Y Zel|S1} and let G*={(u,,...,u,)eC"Y Ju; <1, YAeG}
denote the polar. We write X =(C", G) and X*=(C", G*). Clearly X* is the dual of X
with the dot product pairing.

Proposition 2.2. Let X be a finite dimensional normed space with basis {e,,...,e,} and
let G be as above, ie. X=(C"G). The following are equivalent for any matrix
(xij)=zz=l A ® e, in M, (X)

(@) ”(xij)”MAX(X)<1'
(b) for some r there exists rxr diagonal matrices D,=diag(d,,,....d,,), k=1,...,n
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mxr matrices B and C* with ||B||||C||<1 such that A,=BD,C and (d,j,...,d,)eG for
j=1...,r

(¢) There exists a Hilbert space H, commuting normal operators N, k=1,....,n on H
and B,C*: H—C™ with ||B||||C|| <1 such that A,=BN,C and o(N,,...,N,)<=G.

(d) Same as (c¢) but with 6(N,,...,N,)S E(G) where E(G) denotes any set whose
absolute convex hull is G.

(e |37, 4, ®Bj||<1 for any {B,,...,B,} satisfying |Yi-,uB||<1 for all
(uy,...,u,)€G*,

Proof. To see the equivalence of (a) and (b) let y;=);_,d,e, and apply the
Theorem 2.1. The equivalence of (a) and (e) was proven in [10].

Clearly (b) implies (c) by setting N,=D,. To see that (c) implies (a), let K be a Hilbert
space and let ¢: X —B(K) be contractive. Set ¢(e)=B; so that ||} 4,;B|<1 for all
(Ay5-..,4,) €G. We will show that (¢(x,-j))=ZAk® B, has norm less than one, since ¢
was arbitrary this will prove that ||(x;)|luax < 1-

To this end note that Y} 4, ®B,=B®1() N,® B)C®1 and from C*-algebra
theory,

Y N, ® B, ||=sup{||4Bi||:(41,.... A)€a(N,,...,N )} <.
k=1

Clearly, (d) implies (c). Finally to see (c) implies (d), consider span {z,,...,z,} € C(G)
and M=span{z,,...,z,) S C(E(G)). Since these spaces are completely isometrically
isomorphic any commuting normals (N,,...,N,) with ¢(N,...,N,)=G give rise to a
completely contractive map ¢ on M by setting ¢(z;)=N,;. Applying the generalized
Stinespring dilation theorem [9, Theorem 7.4] to this map allows us to write
N;=Xn(z)Y where n:C(E(G)—B(K) is a =*-homomorphism and |X||||Y|=1
Obviously, (n(z,),...,7(z,)) is a commuting n-tuple of normals with spectrum in E(G).
Hence any n-tuple satisfying (c) can be replaced by one satisfying (d). ]

Remark. One can also deduce Proposition 2.2 from Blecher’s result that MIN(X)* =
MAX(X*) completely isometrically [2].

Also, in the case |[(x;;)|luaxax=1 in (c) and (d) one has ||B||||C}|=1 while in (b) the
best that can be said is that for every ¢>0 one has B, and C, with ||B||||C.||<1+e.

The above result leads to another characterization of the a constant.

Corollary 2.3. Let X =(C",G) be as above. There is a constant o such that for any k if
Ay,...,A, are any k x k matrices satisfying ||} 4;A;||<1 for all (Ay,...,2,)€ G then there
exist diagonal matrices D,,...,D, (of possibly larger size) and matrices B,C satisfying,
A;=BD,C fori=1,...,n,||B|||C|| <, and &(D,,...,D,) = G*. Moreover, the least positive
constant satisfying this inequality is a(X).

Proof. The condition, ||Y. 4;4,|[<1 for all (4,,...,4,)eG is equivalent to requiring
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that |3 4; ® e;|lminixy<1. Hence, |Y A4; ® efluaxxny<a(X*) and the A’s have the
desired representation by Proposition 2.2. Moreover, by Proposition 2.2 any A;’s which
have such a representation with a fixed constant a satisfy “Z A,-®e,-||M,N(x.,<a. Hence,
the least positive a is a(X*)=a(X) by [10, Proposition 2.4]. O

Corollary 24. The constant (") is the least positive constant o such that if
A,,..., A, are any contractions then there will exists n commuting unitaries U,..., U, and
operators B, C satisfying | B||||C|| <« and 4,=BU,C for k=1,...,n.

Proof. The result follows as in the proof of Corollary 2.3 applying also the remark
following Proposition 2.2. 0

In Section 3 we prove that, a(£/?)=a(f,) < /n—1.

We note that if FSX is a subspace and x;eF then the norm of ||(x;)|| in
M, (MAX(F)) can be larger than in M (MAX(X)). However Theorem 2.1 implies that
the MAX operator space structure is “local” in the following sense.

Coro"ary 2-5. Let x,'jEX, i,j=1,...,n then ||(x,~j)|M"(MAx(X))=inf{”(x"j)”M"(MAx(’:)):

x;€F and F< X, finite dimensional }.

3. A representation of MAX(Z})

Let F, denote the free group on n generators g,,...,8, let C*(F,) denote the full
group C*-algebra of F, and let U,,...,U, denote the unitaries in C*(F,) that are the
images of g,...,g,. Recall that C*(F,) is characterized by the universal property that if
V,..., V, are any unitaries on a Hilbert space H, then there exists a *-homomorphism
n: C*(F,)—>B(H) with n(U;)=V,, i=1,...,n. It is known (see for example [13]) that
MAX(Z}) is completely isometrically isomorphic to span{U,,...,U,} = C*(F,) via the
map which sends the canonical basis vectors e¢; to U,, i=1,...,n. To see this one notes
that ¢:¢)—B(H) is contractive if and only if ||¢(e)||S1 and then takes the non-
commuting unitary dilation of the {¢(e;)}. For this reason further knowledge about
MAX(¢}) is of some independent interest because it yields knowledge about free
unitaries. We gather these results in this section,

Theorem 3.1. Let U,,...,U, be generators of C*(F,) and let A,,...,A, be in M,,.
Then ||Yr-, A.®@ U< if and only if for some ¢ there exist mx¢ scalar matrices
C,,...,C, and { x m scalar matrices D, ..., D, satisfying A,=C.D,, k=1,...,n and

I CLCEIIY DEDA| < 1.

Proof. We have ||} A, ® eulmaxer, =113 A ® Uy Let (x;)=Y A, ® e, be in M,,(£}).
By Theorem 2.1 there exist matrices of scalars S=(s;,) and T=(t,;) which are m xr and
r x m, respectively, and vectors y; in £} with ||y||<1, 1 S/<r such that ||S||<1, ||T||<1
and x;=Y"%_, s,y !, Write y,=Y%_,a, e and choose scalars B, ,,7,, such that
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|°‘t.k|”2=|ﬁz.k|=|)’z.k| and B, (y¢.x =2 We then have that X.-,-=Z£'=1(ZE=1 SiBayentsj)en
Let E, be the diagonal matrix whose diagonal entries are B,,,...,B8. let F, be the
diagonal matrix whose diagonal entries are y,,,...,7,, and set C,=SE;, D,=F,T. We
have that 4,=C,D, and ||} C,C¥||=|3 SE.EFS*||<||3 EEF||S1 since Y ELE} is a
diagonal matrix whose i-th diagonal entry is ||y,|| Similarly, ||} Dk*Dk||§ 1. O

Remark. We mention an alternate way to prove the above result via the tensor
product machinery. It is well-known that MIN(/) can be represented completely
isometrically as the diagonal matrices in M,. Thus, the adjoint of this inclusion gives a
complete quotient map q: M*—>MIN(Z*)*=MAX(¢}). Chasing through these identifica-
tions one recovers the above result.

Corollary 3.2. If A,,..., A, are matrices such that ||3.7-, LA||<1 for all |A|<1, then
there exist matrices C,,...,C, and D,,...,D, such that A,=C,D,, k=1,...,n and
> C.CH|IX DED,|| < (£ })2. Moreover, a(£}) is the least positive constant satisfying this
inequality.

Proof. The hypotheses are equivalent to assuming that ||Z Ai®eil|MlN([}l)<l- Hence
| 4 ® eillmaxi:, <x(£}) and this constant is the least constant satisfying this condition
for all n. The result follows as in the proof of Corollary 2.3 substituting Theorem 3.1
where Proposition 2.2 applied before. O

We now turn our attention to the problem of estimating a(£}). In [10, Theorem 2.16]
it was shown n/2§a(f,‘l)§\/i—1. Note that if A4,,...,4, are matrices satisfying the
hypotheses of Corollary 3.2 and we set C,=4,, D, =1 then A,=C,D, and ||¥. D¥D,||=n
while one can easily see by using the fact that ||} e A4,|| <1 and integrating around the
n torus that ||3 C,C¥||<n. Thus, applying Corollary 3.2 we have a new proof that
104 ,})gﬁ. We shall now obtain a slight improvement of that estimate by obtaining
another characterization of a(Z}).

As we remarked earlier MAX(Z)) embeds completely isometrically in C*(F,) by
sending e; to U, This representation is not best in some sense which we will make
precise in a moment. Note that multiplication by U¥ is a complete isometry and hence
sending e; to U¥U, induces a new completely isometric represntation of MAX(Z2). Also,
I=UtU, V\=UYU,,...,V,_ =UtU, can be easily seen to generate C*(F,_,) by using
the universal properties. Zhang [14] shows that this representation is minimal in the
sense that if ¢:MAX(¢,)—B(H) is any complete isometry, then the C*-algebra
C*({d(e)*d(ej):i, j=1,...,n}) has C*(F,_,) as a quotient via the map which sends
dle)*P(e))>VE V1€ C*(F,-,) where V=1

In a similar fashion we can embed MIN(Z}) completely isometrically into C(T"" ') by
sending e, to the constant function 1 and ¢;,, to the i-th coordinate function z;. Thus,
MAX(Z,) generates the universal C*-algebra for n—1 noncommuting unitaries while
MIN(/,) generates the universal C*-algebra for n— 1 commuting unitaries.
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Theorem 3.3. The number a(/))) is the least positive constant « such that if V,,...,V,_,
are any unitaries on a Hilbert space H, then there exist commuting unitaries Wy,..., W, _,
on a Hilbert space K and operators AeB(K,H), BeB(H,K) satisfying: AB=1Iy,
Vi=AW,B, k=1,...,n—1, and || A|||| B|| S e.

Proof. Regarding MAX(#}) as a subspace of C*(F,_,) as above we have that there
is a *-homomorphism sending ¢; to V;_, with V,=1,. Since the ¢b-norm of the identity
map from MIN(Z}) to MAX(£)) is a(¢ ), we see that the map from MIN(Z}) into B(H)
which sends e; to ¥;_, has ch-norm at most «(7}). Regarding MIN(Z}) as above as a
subspace of C(T"!) and applying the generalized Stinespring theorem [9, Theorem 7.4]
yields a unital *-homomorphism n: C(T"~')—>B(K), operators A and B as above such
that V;=An(z;)B,I1y=An(1)B=AB, with |A|[[|B|| equal to the ch-norm of the map
which is at most a(£}).

To see that a(/}) is sharp, let V,,..., V,_, be the generators of C*(F,_ ). O

Corollary 3.4. We have that a(/ ) =a(f ,})g\/ n—1.

Proof. Let V,,...,V,_, be unitary operators on the Hilbert space H and let
K=H""Y. Define B.H-K via Bh=h® V;h® - ®V,_,h and A:K-H via
Ah @ ®h,_,)=h, so that AB=1y, |A||=1,||B]|=/n—1.

Let S: K— K denote the cyclic backwards shift S(h,®---®h,_,)=h,® - ®h,_, ®h,
and define commuting unitaries W,,...,W,_, on K by Wi(h,® - h,_)=Vih,® @D
Vih,_,, and W,=8*"!, k=2,...,n—1. Then AW,B=1V, as desired and so by Theorem

33, a(f)s/n—1. d

Combining this estimate with those obtained in [10] we have that

JhREa(fH) = /n~1forn22.

4. The space CB(MIN(X), MAX(Y))

Let X and Y be any Banach spaces, since MIN(X) is the smallest operator space
structure on X and MAX(Y) is the largest operator space structure on Y any map
which is completely bounded from MIN(X) to MAX(Y) will automatically be com-
pletely bounded from X to Y for any other operator space structures on X and Y. That
is, CB(MIN(X),MAX(Y)) is the set of maps from X to Y which are completely
bounded independent of the particular operator space structures that X and Y are
assigned. In this section we prove that CB(MIN(X),MAX(Y))=I%(X,Y) and then
apply this result to obtain some equivalences of tensor product norms which are
analogous to Grothendieck’s results. Recall [11, p. 28] that T:X—Y belongs to
I'%(X,Y) if there exists a Hilbert space H and maps A: X—H, B:H—Y with A and B*
2-summing and T=BA. For T in I'$(X,Y) we set y3(T)=inf{n,(A)n,(B*): T=BA}
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where 7,(-) denotes the 2-summing norm and the infimum is taken over all factoriza-
tions of T through a Hilbert space.
We define a universal constant via

k=sup{n/a(¢2):n=1,2,...}.

By [10, Theorem 2.16], we have ﬁ§k§2. It is not hard to show that
a2 ) s ae2)
n

and so the sequence of numbers k,=n/a(/2) is non-decreasing with k=lim,_ k,.

Moreover, k2=ﬁ and for n> 2 exact values of k, (respectively a(#2)) are now known.
The goal of this section is to prove:

Theorem 4.1. Let X and Y be Banach spaces, then CB(MIN(X), MAX(Y))=T%(X,Y),
with 173(T)<||T||.s S 73(T). Moreover, the constant k is the smallest constant that works
Jor all Banach spaces.

Before beginning the proof we make a few remarks. First recall [11, Proposition 1.9]
that for maps betweeen Hilbert spaces the 2-summing norm agrees with the Hilbert—
Schmidt norm and hence the y%-norm is the trace norm.

Mimicking the proof of [8, Proposition 3.1] it readily follows that:

Lemma 4.2. Let Te CB(MIN(¢2), MAX(¢2)), then k,!||T||, || T|l.s||\T
||l is the trace norm.

|;, where

Proof. Let T=UDV be the singular value decomposition of T with U,V unitary
and D a positive diagonal matrix with diagonal entries, d,,...,d,. Consider the
commuting diagram,

MIN(/2) —I» MAX(/2)

vl Tv
MIN(/}) —2> MAX(¢?)

Since || Ul =V l=/1U"{ls=|V ~*|ls=1., we have that || T}||.,=]|D||., and also ||T}||,=
|D||; =tr(D). Let S denote the cyclic shift of order n and note that D+SDS™ "'+ +
S"~1DS!~"=tr(D)I,. Hence, a(¢2)-tr(D)=||tr(D)M || S||Dl|cs+ - +(|S" ' DS" ~"||es = || D||.s
and we have k;'tr(D)<||D||,. On the other hand D=d,E,,+ - +d,E,, and hence
IDls S d\||Esilles + - + dul| Enalles = tr(D) since || E;if]p=1. O

Considering the identity map shows that the above inequality is sharp. Note that the
above result proves Theorem 4.1 for the special case where X and Y are finite
dimensional Hilbert spaces, since as remarked earlier ||T||,=y%(T) in that case.
Moreover it shows that k is the smallest constant which satisfies the above inequality
for all finite dimensional Hilbert spaces.
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Also, we remark that it follows directly from the definitions that for a map A: X->H
into a Hilbert space, the 2-summing norm 7,(A4) and the completely bounded norm of A4
viewed as a map from MIN(X) to either H,,, or H_ .. all coincide (see also [5]).
Thus, using the operator space dualities, (H,o)* =H oyumn» MAX(Y)*=MIN(Y*) we
have also that for a map B:H—Y, n,(B*) and the completely bounded norms of B
viewed as a map from H,, or H ,uma iInto MAX(Y) all coincide.

Finally, if E and F are any operator spaces with dim(E)=n then CB(E,F)=
B(E,F)=F®---@®F (n copies) and CB(E,F)*=F*®---® F*=B(F, E) coincide as sets.
Following [6] we define the OS-integral norm on B(F,E) via ||R||s.g=sup{|tr(RT)):
| T|lcse. ry<1}- 1t then follows trivially that CB(E,F)* can be identified with B(F,E)
endowed with the integral norm.

Lemma 4.3. Let 1, MAX(¢2)—>MIN((2) denote the identity map, then

”In“I(MAX([,Z.). MIN(2) = k,.

Proof. If T:MIN(/2)->MAX(72) then by Lemma 4.2,
s0 |1,/ Sk,. To see equality, let T=a(/2)"'1,.

tr(TY) || T||, £ka|| T|» and
d

Lemma 44. Let E,, E,, F, and F, be operator spaces with E, and E, (finite
dimensional and assume

F, & E,

al 1B

F, %> E,,
commutes.

Then ||R|ly | 4]lcs||S]hl| Bllcs
Proof. Note that

”R”l =sup{|tr(BSA4 T)| ”T“Cms.‘rl)é 1}
=sup{|tr(SATB)|:|| T|lcaee,.r, <1}
Ssup{|tr(SV)[:|[Vllesies. o < [| Al Blles
= 1Sllsll 4les | B]ls- O

Proof of Theorem 4.1. Let Tel'%(X,Y) and write T=BA with B and 4 2-summing
A:X—H, B:H-Y. Regarding A and B as maps from MIN{X) to H,,, and to MAX(Y),
respectively, we see that TeCB(MIN(X), MAX(Y)) and |T|,=|A||elBlle=
n,(A)n,(B*). Thus, [¥(X, Y)< CB(MIN(X), MAX(Y)) with || T||., <y3(T

To prove the other containment and inequality we first assume that X is finite
dimensional. From [11, Corollary 2.9 and the Remark on p. 28] we know that
(CHX,Y)*=T,(Y,X) where for R:Y—X, y,(R)=inf{||4||||B||} and the infimum is
taken over all factorizations of R through Hilbert space. By the above remarks we know
that CB(MIN(X),MAX(Y))*=B(Y, X) with the OS-integral norm. Thus proving that
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#HT)Z||T||l, is equivalent to proving that ||R||;maxa. My Sky2(R) for all
ReB(Y, X).
Let R=AB where B: Y /2, A:/2- X we have

MAX(Y) —X. MIN(X)

Bl T4
MAX(¢})y —I= MIN(¢2)

and hence |[R],, || Alll| 12| Blles < K[| 4]| | B]) from which [|R]|}; < ky,(R) follows.

Now to prove the inequality for a general X let FSX be a finite dimensional
subspace and let T, denote the restriction of T to F. Since MIN(F)=MIN(X)
completely isometrically, it follows that a map T:X—Y is completely bounded from
MIN(X) to MAX(Y) if and only if sup{|| T¢||csmmer). maxcry: dim(F) < + oo} is finite and
that this supremum is ||T||csomncn.maxay: Thus, [|T]|camime, maxern ZEsup{y3(Tr):
dim(F)< + oc}.

It remains to show that if T: XY satisfies y%(T;) <C for every finite dimensional
F < X, then necessarily Tel'3(X,Y) and y3(T)< C. This follows from arguments similar
to those given in the proof of [11, Proposition 2.3] and is certainly known. However,
for the sake of completeness and to illustrate some of the interplay between cb-maps
and these purely Banach space concepts we give an alternate proof of this fact, using
c¢b-techniques.

To this end let R_=E,, - B(#?) denote an infinite dimensional row space. For each
finite dimensional F < X we have a factorization

MIN(F) -I£. MAX(Y)

8| T Af
such that ||Bg||= »=7,(A%) < C. Since MIN(F)<MIN(X), completely
isometrically, and R, is an injective operator space, there exists Bp: MIN(X)—- R, which
extends By and has ||Bj||.,=|Bg|l.,=1. Since the unit ball of CB(MIN(X),R,) is
compact in the BW-topology (see [9, Chapter 5]) there exists B: MIN(X)—-R_,, ||B||c,,_
which is the limit of some subnet {Br:A€A} of the net {By: Fe &} where § denotes the
directed set of finite dimensional subspaces.

The closed subspace R=B(X)~ of R, is easily scen to be a Hilbert row operator
space. Define A4:B(X)->MAX(Y) via A(Bx)=Tx. Given x;e€X,i, j=1,...,n let F=
span{x;;:i, j=1,...,n} then there exists A, such that for 1,, FEF, and hence,
“ B“u) |M,.(MAX(Y))—”(T’CU) mamax ry = |[(AF;(Br.x:;)) ”M,.(MAX(Y)) C”(BF (x.,))l Ma(Ro fOT
all 22 4,. Hence, ||(4(Bx;))||< C||(B(x))|, and so A extends to a completely bounded
map on R with CZHAHC,,—nz(A*) Thus, we have that T=AB is a factorization of T
with n,(B)n,(A*) £ C. This completes the proof of the theorem. a

In the following ®,, ®, and ® denote the Haagerup, operator space projective, and
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spatial tensor products, respectively (see [3] for definitions, unfortunately with different
notation).

Corollary 4.5. Let X and Y be any Banach spaces and let ue X ® Y, then

” u”MIN(X) ORMINT) = ”“”Mm(x@ MIN(Y)

< k”“”MlN(X)@;. MIN(Y)
and

”“”MAX(Y)@MAX(Y) = [lullwaxcn @wmaxn

=< k”“"MAxmg MAX(Y)

Proof. Given ue X ® Y let T, MAX(X)*->MAX(Y) be the associated finite rank
operator and recall MAX(X)* = MIN(X*).

By (3, Corollary 5.2], ||7;||CB(MIN(X‘),MAX(Y))=”u”MAX(X)@MAX(Y)é“u”MAX(X)@;.MAX(Y)'

While by Theorem 4.1, ||7:a||CB(MIN(X‘),MAX(Y))g%?;(n)=%||“”MAX(X)®;.MAX(Y) by [1,
Theorem 3.1].

The other set of inequalities comes for X and Y finite dimensional by dualizing the
above set and using the facts that the dual norm of the spatial is the operator space
projective for finite dimensional spaces by [3, Theorem 5.6] while the Haagerup norm is
self-dual [5]. To pass to X and Y infinite dimensional one use that MIN(-), and the
Haagerup tensor behave injectively while the projective tensor behaves projectively. [

We are grateful to D. Blecher for pointing out the following fact.

Corollary 4.6. Let H and K be Hilbert-spaces then

”u”MIN(H)gMIN(K) < ||u”M|N(H)§ MIN(K)
< k““”MlN(H)@MlN(K)
and
||u||MAX(H)§MAx(x) =< ”“”MAX(H)@MAX(K)

= k”“"MAx(u)@MAx(m-
Consequently, all operator space tensor norms on these spaces are equivalent.

Proof. The first inequalities come from observing that ||u|lmineneming=
|ullmineen @ minxy- To see this recall that if T,: MIN(H)*~MIN(K) then by [3, Theorem
11], ||u|lminceny @nminey = inf{ || A||cs )| Bl|eo: T, = AB, B: MIN(H)* > H g, A: R,—»MIN(K)}
where Hy denotes a row Hilbert space. We may let B be the identity map and A=T,,.
Then since MIN(H)*=MAX(H),||B||.,=||B||=1 while since MIN(K) is a min space,
[|Alles =l 41l = | T llcaommane. minn = |4l @ -
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Hence,
||u||MlN(H)®h MIN(K) < ”“”MIN(H)@ MIN(K)

from which equality follows.
The remaining inequalities come by duality as in Corollary 4.5. O

I do not know if the inequalities in Corollary 4.5 or 4.6 are true at the matrix level.

Remark 4.6. Recall that Grothendieck’s inequality says that when X and Y are
¢™-spaces, then ||u||xg,r §||u||x®y, where ® and ®, denotes the projective Banach
space and Hilbertian tensor products, respectively. Since by [1] X ®y Y=MIN(X)
®,MIN(Y), isometrically for all spaces X and Y, Corollary 4.5 can be seen as an
analogue of Grothendieck’s inequality where the Banach space projective tensor norm
has been replaced by the smaller operator space projective norm. However at the same
time we’ve gained since in Corollary 4.5 X and Y no longer neeed be £ *-spaces.

Grothendieck’s inequality implies that when X and Y are /®-spaces X ® Y and
MIN(X) ® MIN(Y) have equivalent norms. Conversely, this fact together with Coroll-
ary 4.5 imply Grothendieck’s inequality. Thus an independent proof of this last
equivalence of norms would yield a new proof of Grothendieck’s inequality. It is unclear
which of these two inequalities is most closely related to Grothendieck’s inequality, or
whether they parse it.

To put this more clearly, identify a typical element u=) a;e;®e; of £ ® ¢/ with
the nxm matrix (a; ;). If we let B,, B, and B; denote the unit balls in /> ®7.°,
MIN(/*) ® MIN(£2) and MIN(Z”) ®, MIN(£2)=¢® ®,£2, respectively, then it can
be shown that

B, =convh{(a;8;): I“i| =1 |ﬁ,| <ty
B,={(KA4:;® Cox, )| Al s t|Cll= 1 x| LIyl £ 1,

By= {(<xi’)’j>)3 ”X.“ < l,l ,Vj” <1}

where the vectors x;,y; are vectors in some Hilbert space, the operators A4;,C; are
operators on Hilbert spaces H and K, respectively, with x,ye H ® K. We have that
B, < B, = B,, Grothendieck’s inequality implies that B;<K.-B, where K. is the
complex Grothendieck constant, while Corollary 4.5 implies that B;<k- B,. Hence, we
know that there exists a constant ¢ such that B,<cB, independent of n and m. Qur
question is whether or not the existence of such a constant ¢ is less deep than the
original Grothendieck inequality.

Corollary 4.7. Let U,,...,U,V,,...,V, be unitaries on the Hilbert space H which
generate C*(F,, . ,), then for any scalars a;;,

1E %:;UiVillaan S k(|2 25U ® Villan o ay-
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Proof. Recall that MAX(¢})=span{U,,...,U,}, MAX(/})=span{V,,...,V,} com-
pletely isometrically. By [4, Theorem 3.1], and the injectivity of the Haagerup tensor
norm, MAX(/)) ®,MAX(Z,)=span{U,;* V;} = C*(F,) « C*(F,). Since C*(F,.,) is the
quotient of C*(F,)* C*(F,) obtained by amalgamating along the identity, the result
follows from Corollary 4.5. O

Remark 48. Let T:/}—/], say T=(t;) and assume T is factored as T=AB,
B:£7 (%, A:£5—-¢. The identification of MIN(/]) with the span of n commuting
unitaries and the inequality ||T||,,<y%(T) implies that for any n unitaries {U,,...,U,}
there exists a dilation of the following form:

Y ,;Ui=XZ;Y, j=1,...,n,
i=1

where {Z,,...,Z,} are commuting unitaries and || X|| || Y|| S n,(B)x,(4%).

It seems likely that one should be able to use the matrices A and B to construct such
a dilation explicitly but we have been unable to see how to do this.

We close this paper with a final formula for the constants k,,.

Theorem 4.9. Let k,=nja(¢?2) then

Y e®e;

i=

k =

n

=inf{||x| ||||: ;= <{(4: ® B)x,y>}

MIN(/2)® MIN(£2)

where A,,...,A,€ B(H), B,,...,B,e B(K) with H and K Hilbert spaces are operators
satisfying

IX4AlSLIEABIST for all ¥|2* <1,
and x,ye H® K.

Proof. Recall MAX(£2), MIN(¢2))=CB(MIN(¢2), MAX(¢2))* and by [3] the iden-
tification of ue MAX(¢2) @ MAX(/}) with T,e CB(MIN(£]), MAX(¢2)) is an isometry.
When T,=1, then u=)7_, ¢; ® e;,, Hence by Lemma 4.3 and [3],

n

Zei®ei

ku=”ln”CB(MIN(I,z,),MAX(lﬁ))‘= ~
i=

(MAX(lﬁ)gMAX(Jz,))‘

ie,-@e,.

MIN(£2) @ MIN(£2).

Now by the characterization in [6] of the projective operator cross-norm, we have
that
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Il“l'MlN(t,’.)§MlN(t,1,) = inf{”y” “x” u=y(4 ® B)x}

where y is a row vector, x is a column vector, 4e M, (MIN(¢2)) Be M, (MIN(¢?2)) with
[|4]|=1, ||B]£1. Using the canonical basis we may write

A=ZA,~®€,-, B=ZBJ®eJ

where each A; is a scalar rxr matrix and each B; is a scalar ¢xt matrix. When
u=Z?=l e,- ® e,- we haVC that y(A‘ ® B])x=6”
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