
Bull. Aust. Math. Soc. 83 (2011), 11–21
doi:10.1017/S0004972710001875

ON THE STRUCTURE OF COMAXIMAL GRAPHS OF
COMMUTATIVE RINGS WITH IDENTITY

SLAVKO M. MOCONJA ˛ and ZORAN Z. PETROVIĆ
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Abstract

In this paper we investigate the center, radius and girth of comaximal graphs of commutative rings.
We also provide some counterexamples to the results concerning the relation between isomorphisms
of comaximal graphs and the rings in question. In addition, we investigate the relation between the
comaximal graph of a ring and its subrings of a certain type.
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1. Introduction

In [2] Beck introduced zero-divisor graphs of commutative rings with identity. This
concept was later extended to the case of noncommutative rings (see [6]). On the other
hand, the concept of the comaximal graph for commutative rings with identity was
introduced in [7] (without in fact being given a name) and in [3] further properties of
these graphs were established.

Let us first record a few notions from graph theory which will be used in this
paper. For a graph 0, we denote by E(0) and V (0) the set of all edges and vertices,
respectively. We recall that a graph is connected if there exists a path connecting any
two distinct vertices. The distance between two distinct vertices a and b, denoted by
d(a, b), is the length of the shortest path connecting them (if such a path does not
exist, then d(a, b)=∞). The diameter of a graph 0, denoted by diam(0), is equal to

sup{d(a, b) | a, b ∈ V (0)}.

The girth of a graph 0, denoted by g(0), is the length of the shortest cycle in 0. The
eccentricity of a vertex a is defined as a sup{d(a, x) : x ∈ V (0)}. If the diameter of
a graph is finite, it is interesting to see what is the smallest eccentricity of a vertex
in 0. This is called the radius of the graph, and the vertices of 0 with this smallest
eccentricity form the center of the graph.
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The coloring of a graph is an assignment of colors to vertices of the graph in such
a way that adjacent vertices are assigned different colors. A graph is n-colorable if it
is possible to give such a coloring with n colors. The chromatic number of a graph 0,
denoted by χ(0), is the smallest n such that the graph 0 is n-colorable. If such an n
does not exist (which means that it is not possible to color this graph with only finitely
many colors), one puts χ(0)=∞.

A subset S ⊆ V (0) is a clique if the subgraph generated by this set is complete.
Finally, let us define a blow-up of a graph (see [4]—we give a more general

definition). Let 0 be a graph and (κx )x∈V (0) be a collection of nonzero cardinals.
We denote by 0((κx )x∈V (0)) the graph which we get from 0 by replacing any vertex x
of 0 by a set Vx of cardinality κx and any edge {x, y} ∈ E(0) by a complete bipartite
graph whose vertex classes are Vx and Vy . Note that two blow-ups 0((κx )x∈V (0)) and
0((κ ′x )x∈V (0)) of the same graph 0 are isomorphic if κx = κ

′
x for all x ∈ V (0).

Let R be a commutative ring with identity. The comaximal graph 0(R) is defined
as follows:

V (0(R))= R, E(0(R))= {{a, b} ∈ [R]2 : Ra + Rb = R},

where, for a set X , we denote by [X ]2 the set of all two-element subsets of X . Let us
denote by 01(R) the subgraph spanned by units, by 02(R) the subgraph spanned by
all other elements (see [3]), and by 0′2(R) the subgraph of 02(R) spanned by elements
not belonging to the Jacobson radical J(R).

In [7] the main result is that χ(0(R)) is finite if and only if the ring R itself is finite.
In [3] the authors showed that the subgraph 0′2(R) is always connected, with diameter
at most 3, that it is a complete bipartite graph if and only if it contains exactly two
maximal ideals (if it contains n maximal ideals then it is n-partite), gave the necessary
and sufficient conditions for a diameter of this graph to be 2, and showed that for some
types of rings the fact that 0(R)∼= 0(S) implies that R ∼= S.

The organization of this paper is as follows. In the second section, with the
exception of the simple lemma at the beginning, we discuss the case of semilocal
rings (rings with finitely many maximal ideals, not necessarily Noetherian). We are
able to give the complete description of comaximal graphs in this case (see [3]). As a
byproduct we show that the comaximal graph of semilocal rings is n-colorable if and
only if it contains n maximal ideals.

In the third section we tackle the case of rings with infinitely many maximal ideals.
We show that in this case comaximal graph contains an infinite clique and therefore
cannot be finitely colorable. Conjointly with results from the previous section we get
a generalization of the main result of [7]. We also discuss the center and radius of
this graph. In particular, we show that the radius is equal to 2 for Dedekind domains.
At the end of this section, we also give a result concerning the ring derived from its
comaximal graph.

In the short fourth section we discuss a counterexample related to the results of
Section 4 in [3].
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The fifth section is dedicated to the relation between the comaximal graph of a ring
and its subrings which are closed with respect to taking the inverse.

Some of the results from this paper were announced in [5].

2. Semilocal rings

For x ∈ R, let us denote by M(x) the set of all maximal ideals containing the
element x . Directly from the definition, we can give a simple characterization.

LEMMA 2.1. The elements a and b are adjacent in the comaximal graph if and only
if there does not exist a maximal ideal that contains both of them, that is,

{a, b} ∈ E(0(R))⇐⇒ M(a) ∩ M(b)= ∅.

PROOF. If a, b ∈m, where m is some maximal ideal, then Ra + Rb ⊆m, hence a
and b are not adjacent. On the other hand, if a and b are not adjacent, then Ra + Rb
is a proper ideal of R, hence is contained in some maximal ideal m, and therefore
M(a) ∩ M(b) 6= ∅. 2

It is clear that any element in U(R) (invertible elements of R) is adjacent to any
other element of R. Also, any element in J(R) is not adjacent to any other element
from R \U(R). Therefore, it is of great interest to investigate 0′2(R).

Let us denote by Max(R) the set of all maximal ideals of the ring R (all the rings
are commutative with identity and 1 6= 0). In this section we assume that our ring R is
semilocal, so

Max(R)= {m1, . . . ,mn}

for some n ∈ N. Let S ⊆ {1, . . . , n} denotes any subset of the set of indices of
maximal ideals. We denote by MS (M S) the intersection (union) of all maximal ideals
whose indices belong to S:

MS =
⋂
i∈S

mi , M S
=

⋃
i∈S

mi .

LEMMA 2.2. MS ⊆ MT if and only if S ⊇ T .

PROOF. Of course, one part of this equivalence is trivial. We only prove the nontrivial
part. So, let us assume that MS ⊆ MT . If t ∈ T , then MS ⊆ MT ⊆mt and it follows
that ms ⊆mt for some s ∈ S (for this and similar other results concerning basic
properties of commutative rings the reader may, for example, consult [1]). Since these
are maximal ideals, we must have ms =mt and it follows that t ∈ S. Therefore, T ⊆ S
and we are done. 2

PROPOSITION 2.3. Let the notation be as above. The sets

VS = MS ∩ (M
Sc
)c,

for S ⊆ {1, . . . , n}, form a decomposition of R by nonempty sets.
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PROOF. It is clear that the union of the sets in question is equal to R and that different
ones are disjoint. What we really need to prove is that all the sets in question are
actually nonempty. So, assume to the contrary that VS = ∅ for some S ⊆ {1, . . . , n}.
Then

MS ⊆ M Sc
.

Since we are dealing with maximal ideals, we conclude that MS ⊆m j for some j 6∈ S,
which is impossible by Lemma 2.2. 2

The previous proposition allows us to give a complete description of 0(R) in the
case where Max(R) is finite. Namely, the sets VS consist of elements which belong
exactly to maximal ideals with indices in S. In addition, any element of VS is connected
by an edge to any element of VT if and only if S ∩ T = ∅. Therefore, it is convenient
to think not only of the graph 0(R) but also of the auxiliary graph Gn whose vertices
are subsets of the set {1, . . . , n} and where two vertices are joined by an edge if
and only if the sets in question are disjoint. We get the graph 0(R) from the auxiliary
graph Gn by replacing any vertex of that graph by a nonempty set, while preserving the
previously connected vertices. For 0′2(R) the auxiliary graph G′n is a subgraph of Gn
spanned by proper nonempty subsets. For example, in the case where we have exactly
two maximal ideals our auxiliary graph G′2 for 0′2(R) reduces to two vertices and one
edge. Therefore it is clear that the main graph is a complete bipartite graph. If we have
exactly three maximal ideals we get for G′3 six vertices and six edges forming a triangle
with an additional edge attached to every vertex of that triangle and therefore the main
graph is 3-partite, but cannot be complete 3-partite. The same holds for arbitrary n.

Using this description we are able to prove the following theorem.

THEOREM 2.4. Let |Max(R)| = n. Then the following statements hold.

(1) The graph 0(R) (0′2(R)) is a blow-up of the graph Gn (G′n).
(2) If n ≥ 2 and R 6∼= Z2 × F, for a field F, the radius of the graph 0′2(R) is 2 and

the center consists of elements belonging to exactly one maximal ideal.
(3) If R ∼= Z2 × F, for a field F, the graph 0′2(R) is acyclic. For n = 2 and

R 6∼= Z2 × F the girth of 0′2(R) is 4, and for n ≥ 3 the girth of this graph is 3.
(4) χ(0′2(R))= n.

PROOF. (1) It is clear from the previous discussion that the graph 0(R) (0′2(R)) is
a blow-up of the graph Gn (G′n). Namely, since all the sets VS (for S ⊆ {1, . . . , n})
are nonempty (V{1,...,n} = J(R), V∅ = U(R)), and an element from VS is adjacent to an
element from VT if and only if S ∩ T = ∅, we see that the claim is true.

Before proceeding further, let us remark that, for x ∈ VS and y ∈ VT , the following
statements hold:

(a) d(x, y)= 1⇐⇒ S ∩ T = ∅;
(b) d(x, y)= 2⇐⇒ S ∩ T 6= ∅ and S ∪ T 6= {1, . . . , n};
(c) d(x, y)= 3⇐⇒ S ∩ T 6= ∅ and S ∪ T = {1, . . . , n}.
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(2) If there exists an element a such that d(a, b)= 1 for all b 6= a, we see that
n = 2 and V{1} or V{2} is a singleton. This means that R ∼= Z2 × F (see [3]). So, let
a ∈ V{i}, be an arbitrary element which is contained only in the maximal ideal mi ,
and b any other element which is noninvertible and not in J(R) (say, b ∈ VT ). If i 6∈ T
then a and b are adjacent; if i ∈ T , then d(a, b)= 2 (the distance cannot be 3 since
{i} ∪ T = T 6= {1, . . . , n}). If a ∈ VS , where S has at least two elements, say i and j ,
we see that, for any b ∈ V{ j}c , d(a, b)= 3 and the eccentricity of a is greater than 2.
Therefore, the radius is 2 and the center is the union

⋃
i∈{1,...,n} V{i}.

(3) If n = 2 our graph 0′2(R) is a complete bipartite graph, and therefore the girth
is 4 if both parts have more than one element. If one of these parts has one element we
conclude that R ∼= Z2 × F , and in this case our graph is acyclic. If n ≥ 3, the graph
contains a triangle.

(4) Actually, in [7] the authors showed that χ(0(R))= n + m where n is the
number of maximal ideals and m is the number of invertible elements of a finite ring R.
Basically the same method they used allows us to conclude that χ(0′2(R))= n, for
any ring with exactly n maximal ideals. First of all, it is clear that χ(0′2(R))= χ(G

′
n).

Therefore, one only needs to see what is the chromatic number of G′n . Since this
graph contains Kn (complete graph with n vertices), the chromatic number must be
at least n. And actually, there is a coloring with n colors: we use color 1 to color all
proper subsets containing 1, color 2 to color all proper subsets which contain 2 but not
1, color 3 to color all proper subsets which contain 3 but not 1 and 2, and so on. 2

3. Infinitely many maximal ideals

We assume now that Max(R) is infinite.

PROPOSITION 3.1. There exists an element a ∈ R \ (J(R) ∪ U(R)), such that M(a)c

is infinite.

PROOF. Otherwise, any two elements in R \ (J(R) ∪ U(R))would be in all but finitely
many maximal ideals, and since there are infinitely many maximal ideals, they would
both belong to some maximal ideal, which contradicts the fact that 0′2(R) is connected
(see [3, Theorem 3.1]). 2

PROPOSITION 3.2. Let R be a ring with infinitely many maximal ideals. Further, let
a ∈ R \ (J(R) ∪ U(R)) be an element such that M(a)c is infinite. Then, there exists an
element b ∈ R \ (J(R) ∪ U(R)), such that Ra + Rb = R and M(ab)c is infinite.

PROOF. Let m1 and m2 be two maximal ideals that do not contain a. Let x be
an element in m2 \m1. Then the element ax does not belong to m1, hence there
exists an element y ∈m1, such that Rax + Ry = R, and therefore Ra + Ry = R,
y ∈ R \ (J(R) ∪ U(R)), and ay /∈m2 (the last holds since Rx + Ry = R, so y /∈m2).

If there are infinitely many maximal ideals not containing ay, we are done (take
b = y). Otherwise, since ay /∈m2, there exists z ∈m2 such that Ray + Rz = R. Hence
ay and z cannot belong to the same maximal ideal, and therefore z is contained in only
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finitely many maximal ideals. Now we have Ra + Rz = R, z ∈ R \ (J(R) ∪ U(R))
and, since there are infinitely many maximal ideals not containing a and z is
contained in finitely many maximal ideals, there are infinitely many maximal ideals
not containing az. We conclude the proof by taking b = z. 2

THEOREM 3.3. The graph 0′2(R) contains an infinite clique if and only if R has
infinitely many maximal ideals.

PROOF. Let 0′2(R) contain an infinite clique. Then, clearly, R cannot have finitely
many maximal ideals; otherwise if R had at most n maximal ideals, we could find in
any n + 1 elements of that clique two belonging to the same maximal ideal.

Let R be a ring with infinitely many maximal ideals. Let a0 ∈ R \ (J(R) ∪ U(R)),
such that the set M(a0)

c is infinite. Let b0 = a0 and let a1 be an element in R \
(J(R) ∪ U(R)) such that Rb0 + Ra1 = R and M(b0a1)

c is infinite. Take b1 = b0a1.
Proceeding in this way, we get elements a0, a1, a2, . . . and b0, b1, b2, . . . such that
bn =

∏n
i=0 an , and Rbn + Ran+1 = R, which shows that the elements a0, a1, a2, . . .

make an infinite clique in 0′2(R). 2

COROLLARY 3.4. If R has infinitely many maximal ideals, then the girth of 0′2(R)
is 3.

PROOF. Any three elements in an infinite clique make a cycle. 2

In [3, Proposition 2.3] the authors claim that 0′2(R) is n-partite if R has n maximal
ideals. Also, they claim that if 0′2(R) is n-partite, then R has at most n maximal
ideals, and if 0′2(R) is not (n − 1)-partite, then R has exactly n maximal ideals.
Unfortunately, the proof of this fact is incorrect (the chosen elements xi may also
belong to some other maximal ideals, and therefore some of them might not be
connected as claimed). This proof may easily be corrected in the case where the ring
R contains only finitely many maximal ideals, but such a proof does not go through in
the case of infinitely many ideals. From this we can conclude, under the assumption
that R has finitely many maximal ideals, that the chromatic number of 0′2(R) is n if
and only if R has n maximal ideals. Theorem 3.3 completes this result.

COROLLARY 3.5. If R has infinitely many maximal ideals, then 0′2(R) is not n-partite
and not n-colorable, for any n ∈ N.

PROOF. For the proof just take an infinite clique in 0′2(R). It cannot be finitely
partitioned and is not finitely colorable. 2

Now let us discuss the radius of the graph 0′2(R) when R has infinitely many
maximal ideals. The following proposition gives some simple properties of the center.

PROPOSITION 3.6. If an element a belongs to the center, then⋃
m∈M(a)

m
∖ ⋃

m′ /∈M(a)

m′
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is a subset of the center. If a does not belong to the center, then
⋂

m∈M(a) m is disjoint
with the center.

PROOF. Let us suppose that a belongs to the center. It is clear that for any
b ∈

⋃
m∈M(a) m \

⋃
m/∈M(a) m, the inclusion M(b)⊆ M(a) holds. Therefore if a is

adjacent to an element c, then so is b. The case where a does not belong to the center
follows from the previous one. 2

THEOREM 3.7. Let S ⊂Max(R) be such that⋂
m∈S

m
∖ ⋃

m′ 6∈S

m′ 6= ∅, (∗)

while, for every T ⊂ S, ⋂
m∈T

m
∖ ⋃

m′ 6∈T

m′ = ∅.

Then every element a such that M(a)= S has eccentricity 2. Therefore, if such an S
exists then the radius of 0′2(R) is 2 and any element a such that M(a)= S belongs to
the center.

PROOF. Let M(a)= S and suppose that b ∈ R \ (J(R) ∪ U(R)) is an element not
adjacent to a. Then M(a) ∩ M(b) 6= ∅. If ab /∈ J(R), then ab /∈m, for some maximal
ideal m, and hence Rab +m= R, so there exists c ∈m such that Rab + Rc = R,
and therefore we have a path a − c − b, hence d(a, b)= 2. If ab ∈ J(R), then
Max(R) \ M(b)⊂ M(a). If the set S is a singleton, this cannot happen and we are
done. Otherwise, since b /∈ J(R), there is a maximal ideal from M(a) not containing b,
say b /∈m0. But then Rb +m0 = R, so there exists d ∈m0 such that Rb + Rd = R.
Since M(d) ∩ M(b)= ∅, we conclude that M(d)⊂ M(a)= S and

d ∈
⋂

m∈M(d)

m
∖ ⋃

m′ 6∈M(d)

m′.

This contradiction concludes the proof. 2

COROLLARY 3.8. If there exists an element a such that M(a) is finite, then the radius
of the graph 0′2(R) is 2.

PROOF. Let S ⊆ M(a) be minimal among the nonempty subsets of M(a) that satisfy
property (∗) from Theorem 3.7. Since M(a) is finite, such a subset always exists and
we are done. 2

REMARK. From this corollary we can conclude that the radius of our graph is equal
to 2 for all rings in which every element is contained in only finitely many maximal
ideals—for example, in Dedekind domains.
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PROPOSITION 3.9. For any element a ∈ R \ (J(R) ∪ U(R)) with eccentricity 2,
M(a)c is infinite.

PROOF. Assume, to the contrary, that Max(R) \ M(a)= {m1, . . . ,mn}. Let m−1 and
m0 be two different maximal ideals in M(a). We know that

⋂n
i=0 mn ⊇ J(R). If⋂n

i=0 mn = J(R), then
⋂n

i=0 mn ⊆m−1, and therefore for some 0≤ k ≤ n, mk ⊆m−1,
which is a contradiction. Hence, there exists b ∈

⋂n
i=0 mn \J(R). Since a, b ∈m0, a

and b are not adjacent, hence d(a, b)= 2. Therefore, we have a path a − c − b. Since
a and c are adjacent, we conclude that M(c)⊆ {m1, . . . ,mn}, but then b and c cannot
be adjacent, which is a contradiction. 2

THEOREM 3.10. If R is a ring with infinitely many maximal ideals, such that J(R) is
prime, then for every element in R \ (J(R) ∪ U(R)) there are infinitely many maximal
ideals not containing it.

PROOF. By [3, Proposition 3.3], the diameter of 0′2(R) is 2. Hence, Proposition 3.9
implies the proof. 2

4. On isomorphisms of rings and graphs

In the Section 4 of [3] the authors pose the question concerning the possibility that
the existence of an isomorphism between comaximal graphs of certain rings implies
the existence of an isomorphism of the rings themselves. Of course, it is not possible
for this to hold in general and the authors provide examples illustrating this. They also
prove that in some cases of finite rings 0(R)∼= 0(S) implies R ∼= S. In addition, they
claim in their Proposition 4.7 that if 0(R)∼= 0(S) then R/ J(R)∼= S/ J(S). In the case
where the rings R and S are finite, this result indeed follows from their Theorem 4.4,
but in general this is not true and we provide an example showing this.

EXAMPLE 4.1. Let us denote by Z(p,q) the following subring of Q:

Z(p,q) =
{

a

b
: p 6 | b, q 6 | b

}
,

for prime numbers p and q (p 6= q). This ring has exactly two maximal ideals: one
generated by p and the other generated by q . The Jacobson radical J(Z(p,q)) is the
ideal generated by pq and Z(p,q)/ J(Z(p,q))∼= Zpq . Since the ring Z(p,q) has exactly
two maximal ideals the structure of 0(Z(p,q)) (0′2(Z(p,q))) is very simple—it is a blow-
up of G2 (G′2) in which all cardinals are ℵ0.

In particular, this is true for any other set {r, s} of prime numbers r and s such
that r 6= s. Therefore 0(Z(p,q))∼= 0(Z(r,s)) (0′2(Z(p,q))∼= 0

′

2(Z(r,s))) for all prime
numbers p, q, r, s (p 6= q, r 6= s) but the quotient rings Zpq ∼= Zrs are isomorphic
only if Z(p,q) ∼= Z(r,s). If {p, q} 6= {r, s} the graphs 0′2(Zpq) and 0′2(Zrs) are not
isomorphic either: they are both complete bipartite graphs but the sizes of the parts
do not match.
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5. On a connection between comaximal graph of a subring and a group of units
in a subring

Let S be a subring of a commutative ring with identity R (so 1 ∈ S). If x ∈ U(S)
then x ∈ S is invertible in R, that is, U(R) ∩ S ⊇ U(S), while the other inclusion need
not hold.

In [8] the authors investigate the assumptions for rings (not necessarily
commutative) on which the equality

U(R) ∩ S = U(S) (5.1)

holds. For example, it does hold in the case where R is a Noetherian S-module
(see [8]).

Let S be a subring of a ring R. We investigate the question whether

E(0(R)) ∩ [S]2 = E(0(S)) (5.2)

holds. If we assume that for a, b ∈ S, {a, b} /∈ E(0(R)), then we have that there is a
maximal ideal m � R containing both a and b. But then a, b ∈m ∩ S � S, and there
is a maximal ideal n � S containing m ∩ S, so we get that {a, b} /∈ E(0(S)). From
this observation we see that E(0(R)) ∩ [S]2 ⊇ E(0(S)) always holds, and it is easy
to see that the other inclusion need not be true.

PROPOSITION 5.1. Let S be a subring of a ring R. If E(0(R)) ∩ [S]2 = E(0(S)) is
true then U(R) ∩ S = U(S) is true.

PROOF. Let a ∈ S be invertible in R. Then {a, 0} ∈ E(0(R)) and by the condition
{a, 0} ∈ E(0(S)). Hence a ∈ U(S). 2

Even if U(R) ∩ S = U(S) it may happen that E(0(R)) ∩ [S]2 6= E(0(S)).

EXAMPLE 5.2. Let R be an integral domain. Let us observe the ring R[X, Y ] and
its subring R[XY, Y ]. Since U(R[X, Y ])= U(R[XY, Y ])= U(R), it is true that
U(R[X, Y ]) ∩ R[XY, Y ] = U(R[XY, Y ]). The elements 1+ XY and Y ∈ R[XY, Y ]
are adjacent in 0(R[X, Y ]), since (1+ XY )+ (−X)Y = 1. We wish to prove that
1+ XY and Y are not adjacent in 0(R[XY, Y ]).

Let us assume that f (XY, Y )(1+ XY )+ g(XY, Y )Y = 1. We may write

f (XY, Y )= f0(Y )+ f1(Y )XY + · · · + fn(Y )(XY )n

and
g(XY, Y )= g0(Y )+ g1(Y )XY + · · · + gm(Y )(XY )m .

We thus obtain

f0(Y )+ ( f0(Y )+ f1(Y ))XY + · · · + ( fn−1(Y )+ fn(Y ))(XY )n

+ fn(Y )(XY )n+1
+ g0(Y )Y + g1(Y )Y XY + · · · + gm(Y )Y (XY )m = 1.
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Comparing the terms which do not contain X , we may conclude that f0(Y )= 1+
Y f̄0(Y ) and g0(Y )=− f̄0(Y ), for some f̄0(Y ). Now we get

(1+ Y f̄0(Y )+ f1(Y ))XY + · · · + ( fn−1(Y )+ fn(Y ))(XY )n

+ fn(Y )(XY )n+1
+ g1(Y )Y XY + · · · + gm(Y )Y (XY )m = 0.

When we divide by Y , this equation becomes

(1+ Y f̄0(Y )+ f1(Y ))X + · · · + ( fn−1(Y )+ fn(Y ))X
nY n−1

+ fn(Y )X
n+1Y n

+ g1(Y )XY + · · · + gm(Y )(XY )m = 0.

The coefficient on the term Xn+1Y n is the constant term from fn(Y ) and is zero.
Further, by observing the coefficients on XnY n−1, . . . , X2Y , we conclude that all
constant terms in the polynomials fn−1(Y ), . . . , f1(Y ) are zero. Finally, we get that
the coefficient on X is 1, so that term never cancels, which is not possible. We thus
conclude that 1+ XY and Y are not adjacent in 0(R[XY, Y ]).

The next proposition shows that equality (5.2) holds in the case where R is a
semilocal ring.

PROPOSITION 5.3. Let S be a subring of a semilocal ring R. Then E(0(R)) ∩ [S]2 =
E(0(S)) if and only if U(R) ∩ S = U(S).

PROOF. We only need to prove that U(R) ∩ S = U(S) implies that E(0(R)) ∩ [S]2 =
E(0(S)). Let Max(R)= {m1, . . . ,mn}. Note that R = U(R) ∪m1 ∪ · · · ∪mn , so

S = R ∩ S = (U(R) ∩ S) ∪ (m1 ∩ S) ∪ · · · ∪ (mn ∩ S)

= U(S) ∪ (m1 ∩ S) ∪ · · · ∪ (mn ∩ S).

If n � S is a maximal ideal, then n⊆ (m1 ∩ S) ∪ · · · ∪ (mn ∩ S), and since all mi ∩ S
are prime (they are contractions of prime ideals mi in R), we conclude that n⊆mi ∩ S,
for some i . Since n is maximal, we have that n=mi ∩ S (we use here some elementary
facts about commutative rings, which can be found, for example, in [1]). Let us
now assume that for a, b ∈ S, {a, b} ∈ E(0(R)). Then there are no maximal ideals
in R containing both a and b. If we assume that there exists a maximal ideal in S
containing a and b, say n, we have n=mi ∩ S, for some i and a, b ∈ n⊆mi , which
is a contradiction. Thus {a, b} ∈ E(0(S)). 2

REMARK 5.4. Let us observe that the same argument will work in the case where S
has finitely many prime ideals.

The condition that R is semilocal is not necessary, as the following example shows.

EXAMPLE 5.5. Let R again be an integral domain, and let us observe the ring
R[X ] and R as its subring. The condition U(R[X ]) ∩ R = U(R) is satisfied since
U(R[X ])= U(R). Assume that elements a, b ∈ R are adjacent in 0(R[X ]), that is,
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that there exist polynomials f (X), g(X) ∈ R[X ] such that a f (X)+ bg(X)= 1. If
f0, g0 ∈ R are constant terms of these polynomials, then we have a f0 + bg0 = 1,
which means that a and b are adjacent in 0(R). So it is true that E(0(R[X ])) ∩ [S]2 =
E(0(R)) although the ring R[X ]may also contain infinitely many maximal ideals and
its subring R infinitely many prime ideals.
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[5] Z. Z. Petrović and S. M. Moconja, ‘On graphs associated to rings’, Novi Sad J. Math. 38(3) (2008),

33–38.
[6] S. Redmond, ‘The zero-divisor graph of a non-commutative ring’, Internat. J. Commutative Rings

1(4) (2002), 203–211.
[7] P. D. Sharma and S. M. Bhatwadekar, ‘A note on graphical representation of rings’, J. Algebra 176

(1995), 124–127.
[8] J. Szigeti and L. van Wyk, ‘Subrings which are closed with respect to taking the inverse’, J. Algebra

318 (2007), 1068–1076.

SLAVKO M. MOCONJA, University of Belgrade, Faculty of Mathematics,
Studentski trg 16, Belgrade 11000, Serbia
e-mail: slavko@matf.bg.ac.rs
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