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LOGARITHMIC FORMS ON AFFINE ARRANGEMENTS

HIROAKI TERAO1 AND SERGEY YUZVINSKY2

1. Introduction

Let V be an affine of dimension / over some field K. An arrangement d is a fi-

nite collection of affine hyperplanes in V. We call d an /-arrangement when we

want to emphasize the dimension of V. We use [6] as a general reference. Choose

an arbitrary point of V and fix it throughout this paper. We will use it as the ori-

gin. If d is central, i.e., U = ΓΊ H&d H Φ 0 , then it is convenient to choose the ori-

gin from U. Let S be the coordinate ring of V and identity 5 with the polynomial

ring K[xv . . . , # , ] , where xv . . . , xι are affine coordinates of V. For an integer

p, 0 <p < /, consider the module of logarithmic differential p-forms ΩP(d) (see

2.1 for definition). We usually simply write ΩP = ΩP(d) in this paper. It is a

finitely generated 5-module. Put Ω = 0 if p < 0 or p > /. Now fix a

homogeneous polynomial / ^ 5 of a positive degree and define a coboundary oper-

ator df Λ on Ω = ®pΩ by taking the exterior product with df. Then we have a

cochain complex, which is also denoted by Ω : Ω — (Ω , df A). In this paper,

we study its cohomology groups HP(Ω*).

Let L be the set of all nonempty intersections of hyperplanes from d. Intro-

duce a partial order to L by reverse inclusion. The poset L is called the intersec-

tion poset of d. Let μ denote the Mόbius function on L. The characteristic polynomial

of d is

(1.1) λ(d,t) = Σμ(V,X)tdimX.
XGL

Our main results are the Theorems 1-5 below.

THEOREM 1 (Theorem 7.1). Suppose f e 5, d e g / = r > 0, satisfies a certain

genericity condition with respect to d. Then
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(1) the cohomology groups HP(Ω*) are finite dimensional for all p,

(2) the Euler characteristic ( = the alternating sum of dimensions of cohomology

groups) of the complex Ω is equal to χ{dy 1 — r).

A motivation to study these cohomology groups comes from the study of

twisted de Rham complex Ω v = (Ω , Vf), where the connection map Vf is defined

by

Vf = d + Σ λj — L Λ + df Λ,

where d is the usual exterior differentiation and λj ^ K. In the case of complex

field the complex Ωv is closely related to the (irregular singular) hypergeometric

integrals

efiu)U(u, λy x)du1 Λ - - Λ dut

studied in [1] [2]. Theorems 1 and 2 can be regarded as a generalization of results

in [4, Proposition 5.10, Theorem 10.3], in which arrangements are assumed to be

in general position.

THEOREM 2 (Theorem 7.9). Suppose / , d e g / = r > 0, satisfies a certain gener-

icity condition with respect to d. Then

(1) the cohomology groups H (Ωv) are finite dimensional for all p,

(2) the Euler characteristic of the complex Ωv is equal to χ(d, 1 — r).

The outline of the paper is as follows. In order to prove Theorem 2 out of

Theorem 1, we compare the two complexes Ω and Ωv. In Section 2, for this pur-

pose, we introduce an increasing filtration Ω^q (q ^ Z) to each Ω so that the

JS'i-terms of the respective spectral sequences of the filtered complexes iΩ<q} and

{(Ωv)<q) coincide.

In Section 3, we define the cone cd of d. Note that cd is a central arrange-

ment which is easier to handle than an affine arrangement. We introduce an im-

portant short exact sequence (3.4) involving ΩP(cd).

In Section 4, we introduce the other important short exact sequence (4.1) in-

volving GrqΩ
P(d) = ΩP^q/ΩP^q_lf which enables us, together with the short exact

sequence in Section 3, to compare Ω (cd) and Ω (d).

We prove, as a by-product, in Section 5, the following affine generalization of

Solomon-Terao's formula for χ(st, t) [9] [6, 4.136].
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THEOREM 3 (Theorem 5.3).

lim Σ dim(GrqΩ
P(d))x9~P{t(x - 1) - 1}' = χW, ί).

X-* 1 P,Q

In Section 6, we compare the cohomology groups H (Ω (cd)) and

HP(GrΩ*(d)) by using the short exact sequences introduced in Sections 3 and 4.

We prove

THEOREM 4 (Theorem 6.9.) Suppose / e S , d e g / > 0 , satisfies a certain

genericity condition with respect to d. Then the following conditions are equivalent for

every p

(i) Hp+ι{Ω*{cd)) = 0,

(ii) Hp(GrΩ*(d)) = 0.

In Section 7 we prove Theorem 1 using Theorem 3. Then, we "approximate"

the cohomology groups HP(ΩV) by HP(Ω ) by using a spectral sequence argu-

ment and obtain Theorem 2. Theorems 2 and 4 imply immediately

THEOREM 5 (Theorem 7.10). If Hp{Ω*(cd)) = 0 (p Φ I + 1), then HP(Ω*)

= 0 (p Φ ΐ) and dim Hι(Ω?) = \ χ (d, 1 - r) \ for every f of degree r > 0 which

satisfies a certain genericity condition with respect to d.

This theorem can be applied to (1) arrangements in general position (Corol-

lary 7.11), (2) arrangements whose cones are free (Corollary 7.12), and (3)

2-arrangements (Corollary 7.13).

2. The module Ω of logarithmic forms and its filtration

Fix an affine arrangement d in an affine /-space V over a field K. Let S be

the affine coordinate ring of V and p an integer. We first define the module of

logarithmic differential p-forms Ω — Ω (d). For each H ^ d choose % ^ S so

that H= ker(aH). Let

Q = Q(d) = Π aH
H<Ξd

a defining polynomial for d. Let Ω [V\ denote the 5-module of all global regular

( = polynomial) p-ίorms on V and ΩP(V) the module of all global rational ^-forms

on V.
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DEFINITION 2.1. The module Ωp = ΩP(d) of logarithmic p-forms with poles

along d is defined as

Ωp = Ωp(d) = (ω e β*(V) | Qω e β'[V] and Q(dω) e β' + 1 [V]}.

Put β* = 0 if /> < 0 or p > I

Remark. The module of logarithmic ^-forms was first introduced by K. Saito

[8] for an arbitrary hypersurface germ in C . It has been used for the study of

central arrangements of hyperplanes [10] [13] [11].

In [6], Ω (d) is defined only for central arrangements. However, many results

in there remain true for affine arrangements. In fact, in many cases, one can give

practically the same proofs. The following two Propositions, which are two of such

examples, will be used later.

PROPOSITION 2.2. For each ω €= Ω (V), the following two conditions are equiva-

lent:

(1) ω e ΩP,

(2) Qω^ ΩPVV\ and Q(daH/aH) Λ ω e ΩP+1[V\ for all H ^ d.

Proof. Same as Proposition 4.69 in [6]. EH

PROPOSITION 2.3. Let £?* = @ PΩ
P. The S-module Ω* is closed under exterior

product:

Ωp x Ωq^Ωp+q.

Proof Same as Propos i t ion 4 .79 in [6]. CH

It is easy to see that Ω is finitely generated S-module containing Ω \V\.

Also Ω\d) = S and Ωι(d) = (l/Q)Ωι[V\. When d is not central, the

5-modules Ω are not naturally graded but we can introduce a natural increasing

filtration on them. Let β G ΩP[V\. If each coefficient of β is a polynomial of de-

gree at most q — p then we say that the total degree of β is < q and write tdegβ

^ q. Let a) €= Ω . It follows from the definition that co can be written in the form

ω = β/Q where β ^ β^tV]. Let n = deg Q =\d\. We may formally consider

the degree of \/Q as — n and say that the total degree tdegω < q if tdegβ < q

+ n. For example, if / = 1, Q = x(x — 1), and ω = dx/x(x — 1), then tdegω

< q for q > — 1.
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DEFINITION 2.4. Total degree introduces on increasing filtration on ΩP for

^ e Z b y

Ω<q = Ωp<q(d) = {ω e Ωp I tdegω < q).

Define K-vector spaces for q ^ Z by

If d is central, then Ω is a graded by the total degree, i.e., there exists a de-

composition

Ω — \d Ωq

with

Ωp = θ Ωί.

The space ΩP — ΩP(d) is called the homogeneous part of ΩP of tdegree q.

DEFINITION 2.5. Let/ ^ 5. Define maps

dfΛ:Ωp-+Ωp+1

by sending ω ̂  Ω to df A ω. This map is well-defined because of Proposition

2.3. We obtain the cochain complex

ΛfΛ J.
 dfA ^ . , dfΛ

DEFINITION 2.6. Suppose / e S i s a polynomial of degree r ( > 0). Let q e Z.

The cochain complex ί2 has a subcomplex β ^ 9 = Ω<q{d) which is defined by

+Dr ^<q U *

Then this provides an increasing filtration of the cochain complex Ω . For each

q ^ Z, define the complex

If sέ is central and / is a homogeneous polynomial of degree r ( > 0), then the

cochain complex .Q has a subcomplex Ωq — Ωq {sέ) which is defined by
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Then

Ω*<q = Θ Ω*.
q'<Q

Next consider a slightly different cochain complex Ωv.

DEFINITION 2.7. Let λH ^ K for each H ^ d. Define maps Vf : ΩP

Vf(ω) = dω + Σ λH—A ω + df A ω, ω ^ Ω\

iswhere d is the exterior differentiation. This map is well-defined because Ω is

closed with respect to exterior product and exterior differential. We obtain the

cochain complex

Observe that while df A is an S-linear operator, Vf is only K-linear.

DEFINITION 2.8. Let / ^ S have degree r (> 0) and let q ^ Z. Then we can

idefine an increasing filtration of the cochain complex Ωv in the same manner as

in the case of Ω in Definition 2.6. In other words, subcomplexes (Ωv)<q =

(Ωγ)<qU) are defined by

V-U op Λo ί + 1 -^U V-Unι

For each q ^ Z, define the complex

QrqΩv = GrqΩv(stf) = (Ωv)^

The following observation is easy but important:

LEMMA 2.9.

Proo/. Note that cί/ Λ is the part of the highest degree in the definition of Vf

because / > 0. The result is now obvious from definition. CH

Remark. This shows that the spectral sequences of these two filtered com-

plexes share the same 2?!-term. If the both spectral sequences degenerate at
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P /n*\1^-term, then we have H (Ω ) — H (Ωv),

3. Splitting of Ω for central arrangements

Only in this section, let d denote a central (/ + 1)-arrangement in V. Let x0,

xlf..mfxι be linear coordinates for V.

First we need to recall the S-module D(d) dual to Ω\d) (see [6, 4.1]). Let

Der κ (S) be the (free) S-module of all derivations of S over K. Then

D(d) = {θ e D e r κ ( S ) | 0(Q) e QS}.

While D(d) can be defined in the same way for all arrangements in the case of

central arrangement D{d) has a very important element ΘE, called the Euler de-

rivation and defined by

Let \ < p < I. There exists an S-bilinear map (called interior product)

x £

with the following properties (see [6, 4.73, 4.74])

(1) <0, α)j Λ ω2> = <0, α^) Λ ω2 -\- (— 1) ω x Λ <0, α)2>,

(2) <0, d/> = 0(/)

for all 0 e ΰ U ) , / e S, ωx e β* W), and ω 2 e flβW). We will often use the

properties (1) and (2) without reference.

Now assume that d contains the hyperplane Ho = ker(x0) and let p be an in-

teger. Define two S-module homomorphisms

0 /-\P f\P — 1 i s ΛΛP /^iP~^~l

p : Ω —• Ω , a n d op : Ω —• Ω

via ^^(ω) = (— 1)P~1(ΘE, ω) and δp(ω) — (— 1 ) ^ — - Λ ω. We will often omit
XQ

the indexes from the notation.

The following equalities can be checked easily ((3.2) is sometimes called H.

Cartan's homotopy formula):

(3.1) φ2 = 0,δ2 = 0,

(3.2) φδ + δφ = iάΩP.
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The equalities (3.1) and (3.2) imply in particular that the following sequence is

split exact

(3.3) 0 -* KP -> Ωp -> Kp+1 -> 0

where KP = kerίδ^) and the splitting can be given by the restriction of φp+ί to

κp+1.
Clearly both mappings φ and δ preserve the (total degree) grading Ω =

Θ qΩ
P where ΩP is the homogeneous part of tdegree q of ΩP{d). Thus KP =

®qK
P is a homogeneous submodule of ΩP and (3.3) produces for every q the exact

sequence of linear spaces

(3.4) O-+K;-+ΩP

1-^K;+I->O.

Now fix a homogeneous polynomial / ^ 5 of degree r (r > 0) and consider the

chί

mn

(Ω , df Λ) and (3.3) generates the exact sequence

cochain complex Ω = (Ω , df Λ) defined in the previous section. Clearly δ

commutes with df Λ whence K = (K , df Λ) is a subcomplex of Ω =

(3.5) > HP(K*) — # ' ( / ? * ) -> HP(Ω*) — HP+1(K*) -> HP+1(K*)

PROPOSITION 3.1. For every >̂ Λ« connecting homomorphism γ : H (K ) —•

HP(K*) in (3.5) is tfw action o// = ( - l)p~ιrf σn the S-nwdule HP(K*).

Proof. Let ω ^ KP, df Λ ω = 0, and [ω] is the class of ω in HP(K*).

Since 0 splits the homomorphism δ : β —* ϋΓ one can view ^([α)]) as the class

of df Λ φ(ω). Now we have

dfΛφ(ω) = (- lΫ^dfΛ <ΘE, ώ> = (- 1) '" 1 «^, df Λ ω> + <ΘE, df>ω)

= (-l)p-1θE(f)ω=fω

which completes the proof. D

Finally let / ^ S be a homogeneous polynomial of degree r. Recall that df Λ

is homogeneous of degree + r with respect to the grading by total degree and that

the complex Ω is the direct sum of the complexes Ωq where Ωq consists of the

linear spaces Ωq+{p_ι)r. Similarly K = ®qKq and (3.5) generates for every q the

analogous exact sequence of the cohomology spaces of complexes Ωq and Kq :

(3.6) • H*(K*J - H"(<) - > H*(Ω*) - Hp+ι(K*) - H*+1 (K*+ι) -»•••.
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4. Restriction of forms to affine arrangement

In the rest of the paper d is an affine /-arrangement in an affine space V

over a field K. Let xv . . . ,xt be affine coordinates. Let cV be an affine (I + 1) -

space with coordinates x0, xv . . ., xt. Regard V as an affine hyperplane of cV de-

fined by x0 = 1. Let S° = K[x0, xlf..., xt] be the coordinate ring of cV.

For each g G S define the homogenization of £ as

gh = x*eg g g(x, /x0, ...,xι / x 0 )

where deg g is the degree of g. Clearly g e Sc and is homogeneous of the degree

g. If s G. Sc then we put ε(s) = s (x0 = 1). Clearly ε: Sc-+ S is a ring homo-

morphism and ε(g ) = g for every g ^ S. There is a unique ε-homomorphίsm of

the Sc-module j/fcV) to the 5-module ΩP(V) that maps dxiχ Λ Λ <£rtp to itself

if none of the indexes ii is 0 and to 0 otherwise. We denote this homomorphism

also by ε.

DEFINITION 4.1. Let d = {i^,.. ., Hn} and Q = Π?=1 a{ be a defining polyno-

mial for d. The cone cd of ^ is defined as the central arrangement in cV given by

the polynomial Q° = x0Q = ^oll^α,-.

The goal of this section is to relate the modules of logarithmic forms on cd

and d. For that we put Ω — Ω (cd) and use the notation of the previous sec-

tion for the differentials and submodules of Ω .

DEFINITION 4.2. Let ω e Kp+1. Call the restriction of ω to d the form

p(ω) = εφ(ω).

PROPOSITION 4.3. (i) p(ω) e ΩP(d) for every ω G if*+1.

(ii) p : if —> β id) is an ε-homomorphism of an S -module to an S-module.

(iii) The homomorphism p is surjective.

(iv) kerp= (xQ-l)Kp+1.

Proof (i) Let ω e KP+1. Clearly Qp(ω) G ^ [ V ] . Now let i e {1, . . . , » } .

Since 0(ω) G ΩP(cd) we know, by Proposition 2.2, that α* divides dα* Λ

Qcφ(ω). Applying ε to the coefficients of the latter form we see that a{ divides

dctf Λ Qp(ω) which proves the statement again by Proposition 2.2.

(ii) Clear by definition of p.
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(iii) Let

η = Σ ^ 7 ^ dxiχ Λ Λ dxip e ΩP{d).

Denote by m the maximal degree of the polynomials /7 where / = (ilf. . ., ip) and

define / 7 as the homogeneous polynomial from 5 of degree m such that ε(/ 7) = /7.

Now put

dx0 fj
ω = Λ 2a — j dXj

xo i Q

where dXj = dxiχ A Λ dx{ .

Our goal is to prove that ω e ΩP+ι(cd). Clearly Qcω e β*+1[cV] and dx0 A

ω = 0. Let ί ^ {1,. . ., w}. We know, by Proposition 2.2, that a{ divides the form

da{ A Qη, i.e., a{ divides every coefficient gj of dXj = dxh A Λ dxjp+i in this

form. This implies that a{ divides gj. Notice that gj is a linear combination over

K of the coefficients fι of Qr}. Let us compare gj with the respective coefficient q}

of dx0 A dxji Λ Λ dxj in the form da{ A Qcω. Notice that both gj and qj

are homogeneous polynomials having the same images under ε and deg(#7) ^

deg(g>). Thus q} = J:0V/ for some non-negative integer s. This implies that α, di-

vides da* A Qcω and ω ^ ΩP+ι(cd) by Proposition 2.2.

To complete the proof one should notice that δ(ω) = 0 by construction and

check that p(ω) = ± η.

(iv) Clearly (x0 - 1)KP+1 c ker(p). Suppose that >? e iΓ ί + 1 and p(ry) = 0.

Represent 0(ry) = rfx0 Λ η1 + η2 where ηx and η2 are forms without dx0 and such

that Qcr}i G β [cV] (ί = 1,2). Since /θ(ry) = 0 we have by definition of p that

V2 ~ (̂ 0 "~ 1)^3 where again Q η3 ^ Ω [cV\. On the other hand we have η —

δφ(η) + φδiη) = δφ(η) = δη2 = (x0 — ϊ)δr)3. One checks easily that <5τy3 e

i^ which completes the proof. Π

Remark. 4.4. For any 77 G ΩP(d) represent it as in the proof of (iii). Let q =

rn — n + p. Then we have tdeg7? < # and the proof of (iii) shows that there exists

ω e ίΓ^+1 such that p(ω) = η.

COROLLARY 4.5. Consider the structure of Sc-module on S given by ε. Then for

every p, Proposition 4.3 defines the isomorphism of the following S-modules

U \s&) — K v9oc o . LJ
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We will also need a graded version of Proposition 4.3. Recall the increasing

filtration in 2.4 c ΩP<q(d) c Ω<q+ι(d) <= c ΩP(d) where ΩP<q(d) =

{ω ^ ΩP(d)\tάeg(ώ) < q). Also recall the associated graded module

GrΩp(d) = ®qGrqΩ
p(d) where GrqΩ

p(d) = Ωp<q(d)/Ωp<q_M)•

Now fix p €= {0, 1,. . . , /} and # ^ Z and denote by π the standard projection

ΩP^q(d) ~+GrqΩ
P(d). Clearly the restriction of p defines a linear map KP+1 —»

ΩP<q(d) that we still denote by p. Put σ = πp : KP+1 -> G r ^ '

PROPOSITION 4.6. The following sequence is exact

(4.1) 0 - <_+/ - < + 1 - Gr.fi'W) - 0.

Proo/. The surjectively of σ follows from Remark 4.4. It suffices to prove

that ker σ — x0K
P^. Clearly x0K

P^ c ker σ. Let η ^ ker σ, i.e.,

Then by the surjectivity of σ and Proposition 4.3 (iv) there exist

q' < q,η' <Ξ KP,+\ and η" e KP+ι such that η - η' = (x0 — l)η". If 77 x is the

h o m o g e n e o u s c o m p o n e n t of η" of m a x i m a l d e g r e e t h e n η = xQηx w h i c h c o m p l e t e s

t h e proof. EH

5. A formula for the characteristic polynomials of affine arrangements

Use the same notation as in the previous section. Let p and q be integers. By

(3.4), we have

(5.1) dim Ωp(cd) = dim Kp+1 + dim Kp.

Also, by (4.1), we have

(5.2) dim GxqΩ
p(d) = dim Kp+1 - dim κ£.

Since Ω (cd) is doubly graded, we can naturally define the Poincare series

PoinCO (cd) x, y) in two variables by

Poin(β*(c^) x, y) = Σ (dim Ωp(cd))χgyP.
P,Q

Similarly we can define PoinCff x, y) and Poin(Gr.£? (d) x, y);

Poin(K*;x, y) = Σ (dimKp)x9yp

f

( 5 . 3 ) *>*
Poin(Grfl*Gtf) x, y) = Σ (di
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PROPOSITION 5.1.

Poin(Grfl*W);j?, y) = (1 - x){\ + y)~ιΈόai(Ω*(cd) x, y).

Proof. By (5.1) we have

;x,y) = (l + y'^VoinίK* x, y).

By (5.2) we have

Poin(Grfl*W) ;x,y) = (y'1 ~ xy~ι)Vo\iί{K* ;x,y). D

The following result is essentially due to Solomon-Terao [9] [6, Proposition

4.133, Theorem 4.136]:

( fίΛ yλ 1 \

Ω*(cd) x, — Y J has no

pole at x = 1,

(2) W(cd;l, t) =χ(csέ, t). D

Remark. In [6], the results are stated in terms of pdegree instead of tdegree.

This is why they appear slightly different.

The following result is the affine generalization of Theorem 5.2. It contains

Theorem 3 in the Introduction.

THEOREM 5.3. (1) W(*t;x, t) : = Poin(Grβ*Gtf) x, ~ * ~~ 1 ) has

pole at x — 1,

(2) Ψ{d;l,t)=χ{d, t).

Proof. Set y — x~l(t(l — x) — 1) in Proposition 5.1. Then we have

Ψ(d x, t) = Poin(Gr£*(si) x, x~\t(l - x) - 1))

no

y τ x, χ-\t{\ - x)- 1))

= x(t- l)~ιΨ(cd;x, t).

Since χicd, t) = (t - l)χ{si, t) (e.g., [6, Proposition 2.51, Definition 2.52])

Theorem 5.2 completes the proof. D
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6. Relations between cohomolog y of affine arrangement and its cone

Use the same notation as the previous section. Fix a polynomial / ^ S of de-

gree r > 0. Let/ £ S be the homogenization of/ As in (3.3), the exterior multi-

plication by df defines a complexes (K , df A) — K for the cone cd. Also

the exterior multiplication by df defines another complex (Ω (d)fdfA) =

Ω (d) as in 2.5. The goal of this section is to relate the cohomology of these com-

plexes.

PROPOSITION 6.1. The homomorphisms p define a homomorphism of the complexes

K —• Ω (d) that decreases dimension by 1.

Proof. It suffices to prove that p commutes with the differentials. Let co G

KP+1. Notice that ε(ω) = 0. Using this we have

p(dfc A ω) = εφ(dfc A ω) = ε((- l)P+ίθE(fc)ω + dfc A φ(ω))

= ε(dfc) A p(ω) = df A p(ώ)

that proves the statement. Π

COROLLARY 6.2. We have the short exact sequence of complexes

(6.1) O-^K**^1 K*-^> β*G#)->0. D

COROLLARY 6.3. We have the following exact sequence of modules

(6-2)

COROLLARY 6.4. Consider the complex Ω (cd) = (Ω (cd), df A) and sup-

pose thatHP+1(Ω*(cd)) = 0 for some p. Then HP(Ω*(d)) = 0.

Proof. Put H — H (K ) for every i. It follows from (3.5) and Proposition

3.1 that the action of fh on HP+1 is surjective. Since HP+1 is a graded module and

fh is homogeneous of positive degree this implies that HP+1 = 0. Since HP+2 is

also a graded module and xQ has a positive degree the action of xQ — 1 on H is

injective. Now the result follows from the exact sequence (6.2). •
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The rest of the section concerns cohomology of a complex containing more

subtle information about Ω (d).

Fix an integer q and recall the complex Gr9 (d) = Gr^ from Definition 2.6.

Denote by Gr the direct sum of the complexes Gτq for all q. Then it follows from

Proposition 6.1 that the differentials commute wih σ whence (4.1) defines the

short exact sequence of complexes

(6.4) 0 — K*^>K*^Gr*^0.

The sequence (6.4) induces the exact sequence of cohomology

(6.5) HP+1(K*) - HP+1(K*) - H'iGτ*) - HP+2(K*) - HP+2(K*) - .

Now we need certain information about the annihilator Ann(HP) of the

Sc-module H* = HP(K*). Define

D0(cd) = « e D{cd) I θ(x0) = 0}.

PROPOSITION 6.5. Let θ e D0(cd). Then θ{fh) e AnnCff*) for every p.

Proof. Let ω ̂  K and df Λ ω = 0. Then we have

0 = <0, dfh A ω> = θ(fh)ω - dfh A <θ, ω>.

Since θ e D ( ^ ) then η = <ί, ω> e ΩP~ι{cd). To prove the result it suffices to

check that η ̂  i ^ " 1 , i.e., dx0 Λ η = 0. We have

d,r0 Λ <0, ω> = θ(xo)ω — (θ> dx0 A ω)

that is 0 since θ(xQ) = 0 and ω e ίΓ*. D

It suffices for our purposes to use only a particular case of Proposition 6.5.

For any X ^ L(cd)\{0) put % = Π ^ ^ α # . Besides for any nonzero vector

a ^ cV denote by da the derivation of Sc that is the differentiation in the direc-

tion of a.

COROLLARY 6.6. For any nonzero X ^ L(cd) and nonzero vector a ̂  X Π Ho

we have πxdaf
h ^ Ann HP.

Proof. Due to Proposition 6.5 it suffices to check that πxda ^ D0(cd). The

check is straightforward. Q
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DEFINITION 6.7. A polynomial / is d-transverse if for every X ^ L(cd) the

restriction of its homogenization / to X has no critical points outside the origin.

Note that this is a generic condition for / with a fixed positive degree.

LEMMA 6.8. Suppose that f is d-transverse. Let D0(cd)fh = {θ(fh) \ θ e

D0(cd)} and Sc

+ = {g e Sh \ g(0,..., 0) = 0}.

(1) Let If be the ideal of S generated by f and D0(cd) f . Then the radical of

If is equal to S+.

(2) Let Ix be the ideal of S generated by XQ and DQ(cd) f . Then the radical of

Ix is equal to S+.

Proof (1): We can assume that the field K is algebraically closed by passing

to its algebraic closure if necessary. Let I= If and V(I) the set of zeros of /. By

the Nullstellensatz it is enough to show that V{I) is contained in {0}. Take arbit-

rary v G V(I) and find the maximal X ^ L(cd) such that v ^ X. Suppose X Φ

0. Then due to Corollary 6.6, τtxdaf ^ / for every vector β ^ I Π Ho. Since

πx(v) Φ 0 we have daf (v) = 0. Since / is ^-transverse, the restriction of/ to

X cannot have a critical point at υ. This is a contradiction.

(2) The proof is similar. •

Now we are ready to prove one of the main results of the paper. The follow-

ing theorem is Theorem 4 in the Introduction.

THEOREM 6.9. Let f be d-transverse. Then the following conditions are equiva-

lent for every p

(i) HP+ι(Ω*(cd)) = 0,

(ii) #*(Gr*) = 0.

Proof Consider the exact sequences (3.5) (taking into consideration Proposi-

tion 3.1) and (6.5). Since HP+l{K*) is a graded 5c-module and both fh and x0 are

homogeneous of positive degrees, each of the conditions (i) and (ii) implies that

HP+1(K*) = 0. Put Z= U / e A s s ( F ) / where H= HP+2(K*). It suffices to prove

that / ^ Z if and only if x0 ^ Z.

Suppose / e Ass(H) and fh e /. By Proposition 6.5, D0(cd)fh £ /. Since

/ G / , / is a prime ideal containing If in Lemma 6.8 (i). Thus / contains S+ and,

in particular, x0.

Now suppose I ^ Ass(H) and x0 G /. Using reasoning similar to the above
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and applying Lemma 6.8 (ii) we conclude that / contains Sc

+ and, in particular, / .

7. Results on H*(Ω*) and Hp(Ωy)

Use the same notation as the previous section.

The following theorem contains Theorem 1 in the Introduction. Recall the de-

finition (1.1) of the characteristic polynomial χ W , t).

THEOREM 7.1. Suppose/ ^ S, deg / = r > 0, is d-transverse. Then

(1) the cohomology groups H (Ω ) and H (Gr ) are finite dimensional for all p,

(2) the Euler characteristics ( = the alternating sum of dimensions of cohomology

groups) of the complexes Ω and Gr are both equal to χ(d, 1 — r).

Proof (1): We only need to show that //^(Gr*) is finite dimensional. Thanks

to the exact sequence (6.5) it is enough to prove that the kernel and the cokernel

of the multiplication map of x0 : H (K ) —• H (K ) are both finite dimensional.

Recall HP(K*) is annihilated by D0(cd)fh by Proposition 6.5. Thus both the ker-

nel and the cokernel are annihilated by x0 and D0{cd)f . By Lemma 6.8, the

radical of the ideal generated by x0 and D0(cs4)f contains S+. This shows (1).

(2): Let EP

r'
q be the spectral sequence associated with the filtered complex

{£<,}. Then El'q = HP+9(Gτ*p) = 0 except for finitely many pairs (p, q) by (1).

So we have

Σ ( - l ) 'dimff'(Gr*) = Σ ( - l)P+Q dim E['9 = Σ ( - l)P+9 dim Ep'9

P P,Q P,Q

= Σ ( - \Ϋ+q dim EPJ = Σ ( - 1)' dim HP(Ω*).
P,Q P

Therefore it is enough to prove the statement for Gr . Recall Poin(Grί? (d) :x, y)

from (5.3) and set y= — x . Then we get

Poin(Grβ*(d) : x, - x~r) = Σ (dim GrqΩ
p)x9{- x~r)p

P,Q

= Σ xm~r' Σ ( - l)'(dim Grm+(p_ι)rΩ
p)

m P

m~rl= Σxm~rlΣ(-
m p

On the other hand, recall
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Ψ(d ;x,t)= Poin(Gr,Q*id) : x,
x

from Theorem 5.3. Set t = (1 - χι r) (1 - x) l in Ψ(d x, i) and take the limit

of x~* 1. Then, applying Theorem 5.3, we have

χ(d,l- r)=limΨ(d;x, (1 -χι~r)(l ~x)~ι) =limPoin(Grfl*(rf) :x, -x~r)
X~*l X— 1

- Σdim#'(Gr*). π

The following condition (for central arrangements) was introduced, without

name, in [7, Definition 5.4]:

DEFINITION 7.2. Let pd denote the projective dimension over S. If

p d f l ' W ) <pίorO<p<l,

then we say that d is

The following result is well-known (e.g., see [7, Theorem 5.8]):

THEOREM 7.3. Let S — C[xv x2,..., x^\ be a polynomial ring. Let

be a cochain complex of finite S-modules. Suppose that each coboundary map d is

S- linear. Assume that each cohomology group H (Ή ) is finite dimensional over C. If

a nonnegative integer q satisfies

pd ^ <l+p- q for all p,

thenH9(%') =0. D

THEOREM 7.4. If d is tame, then we have HP(Ω*) = 0 (p Φ ΐ) and dimi/'CQ*)

— \ χ{d, \ — r) \ for every d-transverse polynomial f of degree r > 0.

Proof Since the cohomology groups HP(Ω*(d)) are finite dimensional and

the differential df Λ is S-linear, we can apply Theorem 7.3 to conclude

HP(Ω*) =0(pΦ I). Apply Theorem 7.1. D

DEFINITION 7.5. The affine arrangement is called free if the S-module

Ω (d) is a free S-module.
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Remark. In [6], the definition of free arrangement is given only for central

arrangements. We can show that an affine arrangement d is free if and only if its

localization dx ' = {H ^ d \ X £Ξ H} is a (central) free arrangement for all X ^

L(d). We can also show that ΩP(d) = ΛP

sΩ\d) for all p if d is free.

The following is corollary from Theorem 7.4:

COROLLARY 7.6. If an affine I-arrangement d is free, then we have H (Ω ) = 0

(p Φ ΐ) and H (Ω ) = | χ (d, 1 — r) \ for every d-transverse polynomial f of degree

r>0. D

We also have the vanishing of the three lowest cohomology groups for any

affine arrangements:

PROPOSITION 7.7. Let f be an arbitrary d-transverse polynomial of a positive de-

gree. Then

(1) H°(Ω*) =0 if / > 0 ,

(2) H\Ω*) =0 if l> 1,

(3) H2(Ω*) = 0 if l>2.

Proof Same as the proof of Proposition 5.15 in [7]. EH

COROLLARY 7.8. If d is an affine I-arrangement with I < 3, then we have

HP(Ω*) = 0 (p Φ I) and d i m i ^ C G * ) = | χ(d, 1 - r) \ for every d-transverse

polynomial f of degree r > 0. CH

Next we finally get r e s u l t s c o n c e r n i n g the d imens ions of cohomology g r o u p s

of the complex Ωv. T h e following t h e o r e m c o n t a i n s T h e o r e m 2 in the I n t r o d u c t i o n .

THEOREM 7.9. Suppose f ^ S, d e g / = r > 0, is d-transverse. Then

(1) the cohomology groups H (Ωv) and H ( G r ί ? F ) are finite dimensional for all p,

(2) the Euler characteristics ( = the alternating sum of dimensions of cohomology

groups) of the complexes Ωv and GrΩv are both equal to χ(d, 1 — r).

Proof. Recall HP(GrqΩ*(d)) = HP(GrqΩ* (d)) from the Remark to 2.9.

Thus we can prove this by the same method as in the proof of Theorem 7.1. D
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The following theorem is Theorem 5 in the Introduction.

THEOREM 7.10. Let f be an d-transverse polynomial of degree r > 0. If the cone

cd of d satisfies HP(Ω*(cd)) = 0 for all p Φ I + 1, then HP(Ω*) = 0 for all

p Φ I and dim H (Ωv) = | χ (d, 1 — r) \ for every d-transverse polynomial f of de-

gree r > 0.

Proof. Since HP(Ω*(cd)) = 0 for p Φ I + 1, we have HP(GrqΩ*(d)) = 0

for p Φ I, q e Z by Theorem 6.9. Since HP(GrqΩ*(d)) = HP(GrqΩ^(d)) from

the Remark to 2.9, the spectral sequences of filtered complexes (Ω^q} and

{(Ω$) <,} are both ^-degenerate. Therefore dim HP(Ω*) = dim HP(Ω^). G

The following result is one of the main results in [4]:

COROLLARY 7.11. If d is in general position (for the definition, e.g., see [6, De-

finition 5.19]), thenHP(Ω%) = 0 (p Φ I) and

/ * I ^nί ft \ i

dim H (Ωv) = \ χ W , 1 — r) \ = Σ l , . ) q

ί=(Λ I— i'
for every d- transverse polynomial f of degree r > 0.

Proof When d is in general position, its cone cd is a generic arrangement

(for the definition, e.g., see [6, Definition 5.22]). We have HP(Ω*(cd)) = 0 (p Φ I

+ 1) by Proposition 5.12 in [7]. The characteristic polynomial χ(d, t) of d is

directly computed. D

COROLLARY 7.12. If d is an affine I-arrangement such that its cone cd is free

with its exponents (for the definition, e.g., see [6, Definition 4.25]) {1, blf b2, . . . ,

b,} thenHP(Ω*) = 0 (p Φ I) and

dϊmHι(Ω*) = I χ W, 1 - r) I = Π (b{ + q)

for every d-transverse polynomial f of degree r > 0.

Proof Since cd is free, we have HP(Ω*(cd)) = 0 (p Φ I + 1) by Corollary

7.6. Also its characteristic polynomial χ(cd, t) is equal to (t — 1) Π ί = 1 (t — bt).

Therefore χ(d, t) = Π-=1 (t — b{) by [6, Proposition 2.51, Definition 2.52]. Apply

Theorem 7.10. G
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COROLLARY 7.13. If d is a 2-arrangement, thenHP(Ω^)) = 0 {p Φ 2) and

dimH2(Ω*v) = \χ(d,l-r)\

for every d-transverse polynomial f of degree r > 0.

Proof. If / = 2, then cd is a central 3-arrangement. Apply Corollary 7.8 and

Theorem 7.10. O

EXAMPLE 7.14. Let an affine arrangement d be defined by

Q= Ux{U (x{ + 1) Π (x{ - 1) Π (x{ + x,) Π (xt - xf).

Then c#ί is a Coxeter arrangement of type Bι+ι whose exponents are {1,3,5,. . .,

2 / + 1 } . Therefore cd is free (e.g., [6, Theorem 6.60]). By Corollary 7.12,

HP(Ω%) = 0 (p Φ I) and

dimHι(Ω*) = Π (2f+ 1 + ?)

for every ^-transverse polynomial / of degree r > 0.
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