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ON INDUCED OPERATORS 

R. E. BRADLEY 

ABSTRACT. We show that when a positive contraction of type (p, q) is equipped 
with a positive norming function having full support, then it is related in a natural way 
to operators on other Lp spaces. 

1. Introduction. Operator ergodic theory was born of Von Neumann's observation 
that the action of composing functions with a measure preserving transformation defines 
a bounded linear operator on L2. In fact, such an operator is an isometry, simultaneously 
defined on every Banach space Lp, p G [1,00]. It is also a positive operator, by which 
we mean that Tf > 0 a.e. whenever/ > 0 a.e. 

More generally, a linear operator may be defined by composing functions with a mea­
surable non-singular bijection on the underlying measure space. In this case, the com­
posed function must be weighted by the pth root of the Radon-Nikodym derivative of 
the induced measure in order to define a bounded operator on Lp. This is an important 
example of a class of operators which are not necessarily defined on more than one Lp 

space, but which have "cousins" in every Lr, r G [1,00). 
It is natural to ask for sufficient conditions under which a positive Lp operator may 

give rise to operators on Lp spaces of different index. In [B] and [AB], such sufficient 
conditions were given, along with an explicit definition of the related operator: we say u 
is semi-invariant for a positive Lp contraction T if it has full support and || Tu\\ — || u||. 
If /?, r G (1,00) and T is such an operator, then the equation 

Trf=(Tu)r-lT(ul-"f) 

defines a positive contraction of Lr. Furthermore, this induced operator is independent 
of the choice of semi-invariant function u. 

The utility of this construction has been demonstrated by its use in giving a common 
generalisation to a theorem of Rota [R] and a theorem of Akcoglu and Sucheston [AS4]. 

In Section 3 of this paper, we investigate further properties of induced operators. In 
Section 2, the construction is carried out in the case where T is an operator between Lp 

spaces of different index; that is, operators of strong type (p, q) where q bears no special 
relation to p. Specifically, 
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THEOREM. Suppose T: LP(X) —• Lq(Y) is a positive linear operator of type (p,q), 
with p,q G [1, oo). Suppose that u is a norming function for T and that u and v — Tu 
both have full support. If I < s < r < oo, then the equation 

q p 

defines a positive bounded linear operator of type (r, s) with || TrJ\ = || T\\ * || u\\p 

In Section 3, we will see that if/? = q, then the induced operator is independent of the 
choice of u if and only if r = s. There are open questions in the case p / q, although we 
show in Section 5 that there is an important special class of type (/?, q) operators which 
have only one norming function, up to scalar multiplicity. 

In Section 4 we prove a more general version of the alternating sequence theorem in 
[AB], and provide a survey of related results in this area of research. 

Many of the results in Sections 2-4 appeared in the author's doctoral thesis, research 
which was supervised by M. A. Akcoglu and supported in part by the Department of 
Mathematics at the University of Toronto. Thanks are also due to C. H. Kan, who read a 
draft of the thesis, and E. J. Barbeau, who pointed out Theorem 3.4(c). 

2. Existence of induced operators. 

DEFINITIONS 2.1. Throughout this paper, X = (X, J,\x) and Y = (T, Ç,v) al­
ways denote a -finite measure spaces. Let !M(X) be the vector space of ^F-measurable 
complex-valued functions defined on X. Let M +(X) and fW (X) denote the subsets of 
9ti(X) consisting of functions whose ranges are subsets of R+ = [0, oo) and R = 
[0, oo] respectively. When p G [1, oo), LP(X) is the Banach space of functions in fW(X) 
such that J \\f\\pdx < oo. L^ is the space of essentially bounded functions. We use the 
usual Lp norms. L^(X) — !M+(X) D LP(X) for every p G [l,oo]. All of the relations 
between the functions in these classes are in the /x-a.e. sense, even when this is not made 
explicit. 

— -+ 
With the convention 0 • oo = 0, functions in 9d (X) may be multiplied point wise. Note 

that this convention implies oo° = 1. In particular,/0 = 1 — lx for any/ G M (X), 
where 1A is the characteristic function of the set A. The support of a function/ G fM(X) 
is{xeX\f(x)^0}. 

Whenever a real number/? G (1, oo) is understood, the symbol p' always stands for 
the real number pip—1)_1. Following the usual convention, when/? = lwe take/?' = oo 
and vice versa. 

Suppose/?, r G [1, oo). When/ G L+(X) then/r G L+r(X). For a general/ G LP(X) and 
an x G X, we use/^(jc) as shorthand for sgn(/(x))|/(jc)| s where sgn(z) is the complex 
number of unit modulus having the same argument as z. Observe that if/ G LP(X), then 
/ P - 1 e V(X) and \\fP-% = \\f\\£K _+ 

By a monotone operator from 9A. (X) to 9vi (Y), we mean a mapping 

T: <M (X)-*M (Y) 
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which is linear with respect to scalars in R + and is order continuous, in the sense that 
Tfn | Tf i/-a.e. whenever/„ \ f /x-a.e. (the arrows indicate monotone non-decreasing 
pointwise convergence in R+). 

Given such a T, there exists a unique monotone operator 

r:âT(F)->^T(A0, 
called the adjoint of 7, such that 

Jxf.rgd, = JYTf.gd, 

for every/ G 94 (X) and g G f̂ f (F). The proof is an easy consequence of the Radon-
Nikodym theorem; see [AB]. 

Suppose/?, q E [1, oo]. A monotone operator T on 94 (X) is said to be of type (p, q) 
(or, more properly, of strong type (p, q)) if there is an M G R + such that || Tf\\q < M\\f\\p. 
The infimum of all values of M satisfying this inequality is the (p, q) norm of T and is 
denoted ||r||p^. When H^H^ < 1, we say that T is a type (p,q) contraction. When 
p — q, the norm is denoted simply || T\\p, and T may be called a monotone Lp operator 
or Lp contraction. 

We note that T is a monotone operator of type (p, q) if and only if T* is a monotone 
operator of type (q\pf) and that, whenever either of these conditions hold, then || T\\p^q = 
|| T*\\q',p>. This follows the defining property of T* and the fact that 

\\T\\p,q = suV jTf-gdv, 

the supremum being taken relative to functions of unit norm in 94 (X) and 94 (Y) (see 
[E], p. 143). 

If T: LP(X) —y Lq(Y) is a bounded linear operator in the usual sense, we say that T 
is positive if TLp~(X) Ç L*(Y). It is easy to see that its restriction of such an operator to 

Lp(X) can be extended uniquely to a monotone operator on 94 (X). The next lemma is 
something of a converse. 

LEMMA 2.2. If T is a monotone operator on 94 (X) of type (p, q), then its restriction 
to Lp(X) may be extended uniquely to a bounded linear operator of type (p, q). 

PROOF. The result follows from Lemma 2.2 of [AS4], although if one is concerned 
only with real-valued Lp spaces, then the result follows by considering the usual decom­
position of functions into their positive and negative parts. In either case, we note that 
the norm of T when viewed as an Lp operator has the same value as when it is thought 
of as a monotone operator on 94 (X). m 

THEOREM 2.3. Let Tbea monotone operator from 94 {X)to94 (Y) such that Tl < 
1 and 7*1 < 1. Suppose either thatp = q G [1, oo] or that 1 < q < p < oo andX is a 
finite measure space. Then T is a monotone operator of type (p, q) with 

imu<(MX))". 
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PROOF. (This result is well-known for the case p — q.) If / G L^JJC) and a is 
its essential supremum, then Tf < a I, since T maps the positive function a 1 — / to a 
positive function. Thus T is a type (oo, oo) contraction. 

Let t = p/q and let/ G £+(*)• ^ ^ 

JTfdv = JjTldLi 

<ffldp. 

If /? = q, observe that this means that ||7jf||i < \\f\\\. Therefore, T is a type (1,1) 
contraction. By the Riesz-Thorin theorem (also called the Riesz interpolation theorem, 
see, e.g., [E], p. 151), T is a contraction of Lp. 

\ïp > q, observe that 1 G Lr(X) for every r G [1, oo], and that t' = p(p — q)~l. By 
the Holder inequality, 

' / '^SIWUI*. h 
In other words, 

II r/||,<(/iW)" 11/11,. 
Thus, T has type (t, 1 ), and we may apply the Riesz-Thorin theorem to conclude that 

T is a type (p, q) operator with the desired norm. • 

DEFINITION 2.4. Suppose T is a monotone operator from fW (AT) to fW (Y) of type 
(/?, g). We say that u ^ 0 is a (/?, g) norming function for T if 

iir«n, = imiM.|i«iu 
When the indices (/?, g) are understood, we may refer to u simply as a norming function 

forT. 

LEMMA 2.5. Ifp, q G [1, oo), then u is a norming function for a monotone operator 

Tfrom ^C(X) to ~^t{Y) of type (p, q), if and only if 

(2.6) r(r i ir ! = (|| r||^. || iiii;-^"1. 
If either of these conditions holds, then {Tu)q~~x is a norming function for T*. 

REMARK. The case p = q appears in [AS2] as Lemma 2.2. The reflexive case, i.e., 
p,q> 1, is in [K2] as Lemma 2.10. 

PROOF. The converse follows by a straightforward computation. For the implica­
tion, we first suppose that || T\\Ptq = 1. 

\Tu\\« = fu(r(Tu)«-l)dvL 

< II « y r (7«)«-%< 

^i^yi^nr1 

= 11 «III 
= 117-11,'. 
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where the third line follows by Holder's Inequality. Thus, we have equality in Holder's 
Inequality, so T*(Tu)q~l is equal to aup~\ for some real number a . It follows that a = 
|| u\\p~p. (2.6) now follows by considering Tj || T\\Pj. 

To see that (Tu)q~l is a norming function for T*, observe that 

||r(7«r1||/, = ||r|p«|iri«i|ir1 

= imuamuiMipr1 

= \\r\\^\\(Tu)r%. 
THEOREM 2.7. Let Tbe a monotone operator from 94 (X) to 94 (Y). Suppose u G 

94 +(X) and v — Tu have full support. Suppose that 1 < q < p < oo and, ifp ^ q, that 
u G Lp(X). If there is a X G R + such that 

(2.8) r(Tu)q-x <Xqup~\ 
p--\ 

then T is a monotone operator of type (/?, q) with || T\\p,q < A || u\\p
q . 

REMARK. This was observed by Kan ([Kl], Remark 4). We include a short proof to 
emphasize the role played by u in re-distributing the measure /x and to make this paper 
more self-contained. The case p — q is a well-known. 

PROOF. If A = 0 , then T = 0, since for any/ G 94+(X), 

J Tf(Tu)q~l dv = JfT(Tu)q-1 d\i 

Xq jfif'1 dp = 0. 

If A > 0 and v — Tu then one may show that v is finite z/-a.e., for example by the 
techniques in [AS1], p. 391. 

Let d[i' = upd[i and dv' = (v/X)qdv. Let X' = ( X ^ / i ' ) and Y' = (F, Q,v'). 
Define an operator 

R: ~9Ït(X) -> ~Ôt(Y) 

by 

Rf=-T(ufl 
v 

for/ G 94 (X'). The adjoint ofR is easily computed. When g G 94 (Yf), we have 

R*g = T(vq~xz) 
g XquP~l K 8)' 

Rl = 1 and R*l = 1, so by Theorem (2.3), R is a type (p,q) operator with norm 

C = || iiU/-1. This means that if/ G ~94*(X'\ then 

2 
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Iff G ^t(X), let/! = f-, where/! G ~M*(X'). Hence 

j{Tffdv = j{T{ufx))
qdv 

= \« j(Rf{fdv' 

= (\Oq[JfPdn 

= (AC 11/11,)*. 

Thus II7/II, <(AC)||/IU as desired. 

LEMMA 2.9. Suppose that T is a monotone operator on 94 (X) and that u G 94* (X) 
and v — Tu both have full support. Suppose that there is a X G R+ such that inequality 
(2.8) is satisfied, where p,q G [l,oo). Suppose 1 < s < r < oo. If r ^ s, then suppose 
also that u G LZ(X). Then the formula 

Sf=v'-lT{ux-t'f), 

forf G 94 {dp,), defines a monotone operator of type (r,s) from 94 {d\i) to 94 (dv) 

wir t l lSlU^AÎHii ' '** - ' * P 

PROOF. S*\ 94 (Y) —• 94 (X) is easily computed: if g G fW (F), then 

Let u — ur, then Sw = v*. Thus 

s\say-{ = ul-p^r(vq-1) 
<XqUP-" 

= A ^ - 1 . 

The hypotheses of Theorem 2.7 are satisfied for the function w, the indices r and s and 
the constant À *. Thus, 5 is a monotone operator of type (r, 5) and because 

ll"l|rV = H ^ , 

the norm of S has the stated upper bound. • 

THEOREM 2.10. Suppose T:L%(X) —• L%(Y) is a positive bounded linear operator 
of type (p, q), withp, q G [1,00). Suppose that u is a norming function for T and that u 
and v — Tu both have full support. Suppose 1 < s < r < 00. Then the equation 

Tu,J = v*-lT(ul-*f) 
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defines a positive bounded linear operator of type (r, s). Furthermore, u~? is a norming 
1 1 — 2. 

function for Tu^s> and \\ Tu^s\\r,s = || T\\p\q \\u\\j r. 

PROOF. The restriction of T to Lp(X) may be extended to a monotone operator on 

9A (X). From this it easily follows that the equation for Tu^s also defines a monotone 

operator on M (X). By Lemma 2.2 it suffices to show that TUJtS has type (r,s) and the 

above norm when viewed as a monotone operator on 9A (X). 

Because ofLemma 2.5, we may apply Lemma 2.9 with A = || 711/̂ 11 w|l/ toconclude 
that TUirji has type (r, s) with norm no greater than the stated one. To finish the proof, one 
makes a straightforward computation to show that this norm is actually achieved by u r. 
This requires equality in (2.8). • 

REMARK. We have assumed that both u and v have full support. This is not essen­
tial in the case of v, as long as we define the value of Tu^sf to be zero outside of the 
support of v when q < s. On the other hand, we need the condition on u in order to 
re-distribute the measure fi.lfT does not use the entire space X, then we may relax the 
condition on the support of u accordingly. To be precise: if u is a norming function such 
that Tf — 0 whenever u-f — 0, then all of the results in this section are valid with minor 
modifications. See [B]. 

3. Uniqueness in the case p — q. For the remainder of this paper, all operators 
under consideration are the usual bounded linear operators on Lp spaces. 

DEFINITIONS 3.1. WesaynX —> X is non-singular if /x(r -1£) = 0 whenever \iE — 
0. An automorphism of a measure space X is an invertible mapping r such that both r 
and r - 1 are measurable and non-singluar. Thus, the Radon-Nikodym derivative 

_ JQxor- 1 ) 
d\i 

exists and is positive almost everywhere. When p = 1, we say that r is a measure-
preserving transformation (this term is also widely used for maps which need not be 
invertible). If p G [1, oo), we define the Lp isometry induced by r by the equation 

Qpf=p'(f0T-ll 

for/ G Lp. 
Classical ergodic theory is concerned with the study of measure-preserving transfor­

mations and the operators they induce. 1 is an invariant function for each Qp in this case, 
and every function in LP(X) is a norming function. Furthermore, Qr = Qp for every 
r G [1, oo). The set of positive Lp contractions with positive norming functions broadly 
generalises this extensively-studied class of operators. 

The class of isometries induced by automorphisms is also properly included in the 
class of positive contractions with positive norming functions. It is a natural example of 
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a class of operators which do not necessarily contract more than one Lp space each, but 
where there is an Lr operator associated with every Qp in a natural way: multiplication by 

i _ i 
p r p. An operator in this class does not necessarily have invariant functions, but once 
again every function is norming. 

DEFINITION 3.2. If T is a positive Lp contraction we say u G Lp is semi-invariant for 
Tifu and v = Tu both have full support and || u\\ = || v\\. 

In the case p — q and r = s of Theorem 2.10, the operator Tu^s is independent of 
the choice of norming function u with full support. Thus, we may suppress two of the 
subscripts. This gives the following; for a proof see [AB] or [B]. 

THEOREM 3.3. Suppose p,r £ [1, oo), p > 1, and T is a positive Lp contraction 
with a semi-invariant function u. Let v = Tu. Then the mapping Tr defined by 

Trf=VPr-lT(ul~Erf) 

is a positive contraction ofLr with semi-invariant function u~?. Furthermore, Tr is inde­
pendent of the choice ofu. Tr is called the Lr operator induced by T. 

The proof of uniqueness hinges on the fact that if u\ and «2 are both norming functions 
for T with full support, then for any a G R + the set 

17 / r- v l M2(-y) . \ 
Ea = {x E A —— > a } 

1 I u\{x) J 

is a reducing set for T. That is, if the support off is in Ea and the support of g is disjoint 
from Ea, then Tf • Tg = 0. We note that/? > 1 is needed for the proof to work. 

THEOREM 3.4. Suppose T is a positive contraction ofLp with p G (1, oo) and that u 
is semi-invariant for T.Ifr£ (1, oo) and s G [1, oo) then 

(a) Tp = T, 
(b) (Try = ( r v , and 
(c) (Tr)s = Ts. 

PROOF. Part (a) is obvious and part (c) follows by a routine computation, using the 
fact that u~' is semi-invariant for Tr. For part (b), observe that v^ 1 is semi-invariant for 
T* and that r(vP_ 1) = up~\ where v = Tu. This follows from (2.5). Thus when g S L , , 

(rv = u^r{v-^g). 
On the other hand, if/ € Lr and g €L^ then 

jf[(Tr)*g]dii = j[Trf]gdv 

= j[v^T{u^f)]gdv 

= Jf{u^r(V
lr-lg)}dn. 
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THEOREM 3.5. Suppose r is an automorphism ofX andp, r G [1, oo). Then (Qp)r = 

Q, 

PROOF. First suppose X is a probability space. Any function with full support is 
semi-invariant for Qp and, in view of (3.3), any of them for the construction, u = 1 is 
the most convenient. In this case 

u r = \ and v — pr p. 

Thus, 
(Qp)rf=pr(fOT-l\ 

as desired. The argument in the infinite measure case is not much more difficult, in view 
of the fact that every subset of X is a reducing set for Qp. m 

REMARKS. 1) Something better may be proved: if T = EQPE for a conditional ex­
pectation operator Zs, then Tr = EQrE, see [AB]. This is of independent interest, as 
operators of the form EQE are central in reducing the proof of the pointwise ergodic 
theorem (PET) for positive Lp contractions (see [A]) to the PET for positive isometries 
(see [I]). 

2) Taken together, Theorems 3.3-3.5 argue eloquently that induced operators are nat­
ural and intrinsic objects in the case p — q and r — s. On the other hand, if p = q and 
s < r, then operator Tu^s depends on the choice of u. Indeed, \\u\\p affects the operator 
norm in this case, but uniqueness fails even if we limit ourselves to unit vectors. Con­
sider, for example, the case where T is the operator Qp induced by an automorphism r 
on a probability space, and M is a non-constant function with full support and unit norm. 
Then for/ G Lr 

Tu,rJ=vP*-lT(ul-Prf) 

whereas 
Tt,r,s = p( —}7V. 

We conclude this section with an observation about the possibility of defining induced 
operators using a function u with full support satisfying the weaker condition 

(3.6) r(Tuf-x ^XW1 

rather than being a norming function. Of course, this is only of interest in the case where 
the left-hand side is not a scalar multiple of the right, for otherwise we would simply 
adjust the constant. Equality in (3.6) is used in this paper only in (2.10) to show that u^ 
is norming and hence that Tu^s actually achieves the stated upper bound on its norm. 
Thus, existence of induced operator follows from this weaker assumption on u. Equality 
in (3.6) is also used in the uniqueness portion of (3.3), and we will demonstrate by means 
of a counterexample that this use is essential. 
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In doing so, we also show that a bistochastic operator (i.e., one satisfying 71 = 7*1 — 
1) need not have a semi-invariant function in the infinite measure case. Clearly, 1 is semi-
invariant in the finite measure case. 

DEFINITION 3.7. Let X be two-sided sequence space over the complex numbers, with 
counting measure. If x G X, then x is a two-sided infinite tuple of complex numbers where 
je/ and (x)i both denote the /th co-ordinate of JC, for each / G Z. The integral of x is simply 

Let lp = Lp(X) for/? G [1, oo] and let H be the "half-shift" operator from !M (X) to 

94. (X) given by 

(Hx)t = 
2 ' 

for JC G X and / G Z. This is the average of the identity and the shift operator. It follows 
that 

(Hx)t-——, 

for x G X and / G Z. Furthermore, / / l = H*\ = 1. Thus / / is an £p contraction for every 
pe [l,oo]. 

PROPOSITION 3.8. Ifp G (1, oo), f/ien there is no norming function for H in 1+. Thus, 
a bistochastic operator need not have a norming function. 

PROOF. Suppose \\Hx\\% = \\x\\$. Then 

!— — OOV ^ J i=—C 

00 Z+J^ 

t——oov ^ y i=— oo ^ 

If a, fc G R + a n d p > l,then(a + ^y < 2P~ 1(op + ^ ) , with equality if and only if a = b. 
Thus *| = x, for every ij G Z. But then ||JC||P = 0 or oo, which is a contradiction. • 

PROPOSITION 3.9. Supposep G (l,oo), andlet(u{)t = 2~'/| and (u2)i = 2, • * *•. 
77ien My G ipforj = 1 , 2 , an J 

The proof is an easy computation. 

PROPOSITION 3.10. Suppose p, r G (1, oo), and/? ^ r. Let H, u\ and ui be as defined 
above, and let Vj — Hujforj = 1,2. If 

SjX = vr Hut, r x) 

forj = 1 , 2 am/ JC G fW (d/x ), then S\ ^ 52. 

PROOF. One may verify that for y = 1 , 2 , 

3" - 1 2-" [2 1 - ? JC / +JC / + I ] i f i > 0, 
» " i , £ - i 2 - f r + 2 l _ f ^ i i f / < a 
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However 

(S{x)o= -l-j (2 1 _ ^o+xi ) 

whereas 

£ 

(S2x)0 = - f - ) r ( x 0 + 2 1 - ^ 1 ) . • 

4. An application. 

THEOREM 4.1. Suppose 1 < p < oo am/ 1 < r < oo. Suppose that (Tn)^ is a 
sequence of positive contractions where 

Tn : Lp(Xn-\ )—+ Lp (Xn ) 

for each n > 1, where (Xn)^0 is a sequence ofa-finite Lebesgue spaces. If every Tn has 
a semi-invariant function then 

(4.2) lim(ri)---(T*)r(Tn---Tlffr 
n—KX> 

exists almost everywhere, for every f G LP(XQ). 

The proof is deferred until the end of this section. By a-finite Lebesgue space, we 
mean a space X where X is a complete metric space, J is the Borel a -algebra, and p is 
a -finite. We note that the case Xn = X0 for every n > 1 appears in [AB]. What follows 
is a survey of related results. The proofs of the following theorems appear in [BC], [R], 
[St] and [AS4] respectively. 

THEOREM 4.3 (BURKHOLDER AND CHOW 1961 ). IfE\ and E2 are conditional expec­

tation operators over a probability space and T2n-\ — E\, T2n = E2for every n > 1. 
Then 

lim Tn-Ttf 
n—KX> 

exists almost everywhere for every f G L2. 

THEOREM 4.4 (ROTA 1962). If{Tn)^x is a sequence of positive bistochastic oper­
ators over a probability space, then 

lim 77.. rjn-.TJ 
n—>oo 

exists almost everywhere for every f G Lp, when 1 < p < 00. 

THEOREM 4.5 (STEIN 1961). If T is a self-adjoint positive contraction on L2, then 

lim T2nf 
n—KX) 
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exists almost everywhere for every f € L2. 

THEOREM 4.6 (AKCOGLU AND SUCHESTON 1988). If{Tn)%Lx is a sequence of posi­
tive contractions ofLp of a a-finite measure space, where 1 < p < 00, then 

\imT*x---T*n{Tn-.-Tyff-1 

n—>oo 

exists almost everywhere for every f G Lp. 

The following implications hold: 

(4.1) —-> (4.4) — (4.3) 

\ / 
(4.6) — (4.5) 

The theorem of Burkholder and Chow appears to assert the convergence of T1 for the 
operator T — E2E\ ; it is more useful to think of T as E\E2E\ . As a case in point, we note 
that the convergence of (E3E2E\)n, where all Ets are conditional expection operators, 
remains open almost 30 years later, although the method of proof of Burkholder and 
Chow implies the convergence of {E\E2E^E2E\)n. 

The theorems of Rota and of Stein provide deeper but different insights into the phe­
nomenon described in Burkholder and Chow's theorem, both relying on the fact that 
conditional expectation operators are positive, self-adjoint and idempotent. (4.3) follows 
immediately from Rota's theorem with the Tns defined in the same way for both. Stein's 
theorem, as originally stated, asserts the convergence of T1 when the L2 contraction T 
is positive, self-adjoint and non-negative definite, properties enjoyed by E\E2E\ and by 
the square of any positive self-adjoint contraction of L2. 

The theorem of Akcoglu and Sucheston clearly implies Stein's theorem as stated. It 
also implies the conclusion of Rota's theorem when p = 2, but apparently not for all p, 
and so offers only a partial resolution of the Rota/Stein dichotomy. 

It is easy to see that Theorem (4.1) implies Rota's theorem: 1 is semi-invariant for 
each T*n and (7^)r = T*n for each r, so Rota's theorem is the case r — p in (4.1). It 
is not immediately apparent that (4.1) also implies the theorem of Akcoglu and Suche­
ston, since its hypothesis requires the existence of semi-invariant functions. However, 
(T%)pi = T*n by Theorem 3.4(a), so semi-invariant functions are not really needed for the 
statement of (4.1) in the case r — p'. The only place where existence of semi-invariant 
functions is used in the proof of (4.1), other than for the definition of (7^)r, is to scale 
the infinite measure spaces Xn to probability spaces without destroying the existence of 
semi-invariant functions (see the proof of (4.1) below). This may be done instead by the 
standard rescaling of a a-finite measure when one wishes only to capture the theorem of 
Akcoglu and Sucheston. 

We state another theorem relevant to this line of research, see [S]. The proof incorpo­
rates techniques of Doob [D]. It appears to be the last major contribution to the alternating 
sequence problem until 1987, when the norm convergence version of the Akcoglu and 
Sucheston theorem was published [AS3]. 
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THEOREM4.7 (STARR 1966). Suppose ( Tn)^{ isasequence of positive contractions 
where 

Tn: Lp{Xn-\) —* Lp(Xn) 

for each n > 1, where (Xn)^0 is a sequence of a-finite measure spaces. IfTnl < 1 and 
T*n\ < 1 for every n > 1, then 

lim Tl-TlTn-Txf 
n—>oo 

exists almost everywhere, for every f G Lp, 1 < p < oo. 

Starr's theorem generalizes Rota's theorem in three ways: the operators map between 
Lp spaces over different measure spaces, those measure spaces may be a-finite, and bis-
tochastic operators have been replaced by L\ — L^ operators. The first of these improve­
ments is incorporated in (4.1 ), but we have seen that even a bistochastic operator need not 
have a semi-invariant function. On the other hand, the hypothesis 71 < 1 and 7*1 < 1 
implies T*(Tiy~l < lp~l. Thus, we may construct induced operators for operators of 
the type considered by Starr, although they may depend on the choice of function satis­
fying (3.6). As long as we agree only to use 1 in the construction (7^)^, then, we may 
deduce Starr's theorem from (4.1) with r — p. 

PROOF OF THEOREM 4.1. We reduce the general case to the case Xn = Xo for n > 1, 
the proof of which appears in [AB]. 

In the proof in [AB], the pointwise convergence of the sequence (4.2) is shown to 
follow from two maximal estimates: given a sequence (Tn)^{ as in the statement of this 
theorem and a function/ G Lp(Xo), let go = f~r and, for n > 1, 

gn = (Ti)r"<K)r(Tn'"Tlf)
Er. 

We say that Estimate A holds for such a sequence of operators if 

|| SUp \gn\\\r< (P'ïïfïïp)' 
n>0 

for every/ G Lp(Xo). We say that Estimate B holds for (Tn)%Z{ if for every s > 0 there 
is a Ô > 0, depending only on e, p and r, such that 

II sup |g„-go | \\r< e\\f\\p 
n>0 

whenever/ G LP{XQ) is such that 

Mp-*™\\v«f\\p<&\\f\\p-
n>0 

It is then demonstrated that if Estimates A and B hold for every such sequence of oper­
ators, then for every/ G Lp(Xo)9 gn converges a.e. That is, the sequence (4.2) converges 
a.e. 
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It is further shown that if the Estimates A or B fail, then they fail at some finite stage 
where the operators can be assumed to be of a very simple sort. Finally, it is shown that 
these estimates always hold for finite sequences of such operators, using the martingale 
inequality and a dilation argument similar to the one in [A]. To deduce the present the­
orem, we need only show that if Estimates A or B fail for a finite string of gns with 
different measure spaces Xn, then A or B fails for a sequence (T,

n)^zl where the Xns all 
coincide. This is done in two steps, with the intermediate stage being the case where the 
measure spaces Xn are all probability spaces. We give the argument for Estimate A; the 
argument for Estimate B is similar, and uses the same operators Tk and spaces X'k. 

Suppose, then, that ( Tn)^zl is a sequence for which Estimate A fails. Then there is an 
/ G LP(XQ) and an n > 1 such that || max0<£<n |g*| ||r > (p'||/| |p)', with gk as defined 
above. 

Let Xk = (Xjc, 7k, Hk) for each 0 < k < n. Let uk-\ G Lp(Xk-\ ) be semi-invariant for 
Tk and suppose, without loss of generality, that \\uk\\p — 1 for each k,0<k<n. For 
each such k, let d\i'k — ifk d\ik. Let X'k = (Xk, J-k, fif

k). Let 

rt:M*i-i)-M*i) 

be given by 

7jf = - r ( * W ) 
Uk 

fo r / e Lp(X
f
k_x). Observe tha t / G Lp(X'k__x) if and only if uk-if' G Lp(Xk-\) and that 

1 is semi-invariant for each T'k. 
For each g G Lp>(Xk), 

(rkfg = ul
ki>;rk(u»k-

l
g). 

Furthermore, (TkUkl)
p~luk~'p is a semi-invariant function for (r[)*, whose image is 1. 

Thus, for every g G Lr(Xk), we have 

as may be seen by an awkward but entirely routine computation. 
Let/' = f- G Lp(X

f
Q) and define g'k from/ and ( Tn)£Ll in a manner entirely analogous 

to the definition of gk from/ and ( Tn)^v It follows that 

and so 
I ' I l i l 

max \gk\ = — max \gk\. 
o<k<n ..r 0<k<n 

UQ 

Hence 
II mfx \g'k\ \\rXo = II max | ^ | | | ^ 0 . 

0<k<n U 0<A:<n 
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Furthermore, 

ii/'iu = II/IU. 
so 

\\mgWk\\\r>tf\\f\\Pf. 
0<k<n 

Thus ( T[,— ,Vn) forms the initial portion of a sequence ( 7^)/^1 defined over prob­
ability spaces for which Estimate A fails. 

Now suppose that ( Tn ) ^ { is a sequence defined over probability spaces for which Es­
timate A fails. Again, there is an/ G LP(XQ) and an n > 1 such that || maxo<jK« \gk \ \\r > 

(p'WfWp)'-
Let X = XQ x • • • x Xn. For each k, 0 < & < n, we identify each function/ G Lp(Xk) 

with a function/7 G LP(X) which depends only on the kth coordinate. We identify Tk with 
an operator on LP(X) which maps/' (where/ G L p ^ - i ) ) to (7^//. 

More formally, for each i, j , where 0 < / j < «, define 

13 1{0,X} otherwise. 

Let & range through { 0 , . . . , « } . Let <Dk = $)& x • • • x <Dkn and Ek = £(• | £>*) be the 
associated conditional expectation operator. Let 

Sp* = if € L P ® I /(*o, • • •, xn) = f(y0,..., yn) whenever xk = yk}. 

Then Ek is a mapping of LP{X) onto 5/?,* for each p. Let 

^M- Lp(Xk) —• 5p,ife 

be given by (Pp,kf)(xo,... „xn) = f(xk). We observe that the finiteness of [ik is needed 
in order to assert that PPikf G LP(X). Clearly Pp^ is a bijection; in fact, it is an invertible 
isometry. Furthermore, P* k = P~,\ for every p and k. When/ G Lp(Xk),f also denotes 
Pp,*/". If g G 5 ^ , then g = / ' for some/ G ^(AT*). 

Now let k range through { 1, . . . ,«}. Define 

rk:Lp(X)-^Lp(X) 

by 
7^ = EkPp,kTkP~k_xEk-\. 

A simple induction shows that if/ G 5̂ ,o> then 

rk"-r]f = ppJCTk--'T]f. 

We have 
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a well-defined Zy(X)-operator. Since u'k_x is semi-invariant for Tf
k, (T^u^f l is semi-

invariant for (7p*, with image (u^Y'1. Thus for g' G Sr,k, 

( c n r ) / = Pr,k-d(rk)rg]. 
A simple induction using this fact shows that when g E Lr{Xk), then 

((7y
I)*)r • • • ((71)*)/ = Pr,0(7T)r • • • (lî)rg. 

If/ is the function for which Estimate A fails, then ||/||^^0 = H/'Hp,*. We also have 

and consequently 

max \gk\ = max \gk\ 
0<k<n 0<k<n 

| max \g'k\ Wrj = || max |g*| H^o-
0<k<n 0<k<n 

So (Tf
v...,T'n) forms the initial part of a sequence (Tf

n)^zl defined over the same 
measure space X for which Estimate A fails. 

This completes the proof. • 

5. An open question. When p ^ q, the induced operator in Theorem 2.10 depends 
on || «Up, the norm of the norming function, unless ^ = | . It would be interesting to know 
if TUtrtS is independent of the choice of u when ^ = f. The method of proof in [AB] for 
the case p — q does not seem to apply in this case. 

If independence does hold, then the argument used in Section 3 would imply that Tu^s 

depends on the choice of u when 7 7̂  f, even when only norming functions of unit norm 
are considered. This would entirely solve the question of which indices /?, q, r, s give rise 
to type (r, s) operators which are dependent only on the operator and not on the shape of 
the norming function. 

There is a special class of type (p, q) operators which have only one norming function, 
up to scalar multiplicity; we close with a brief study of them. 

DEFINITION 5.1. Let 1 < q < p < 00, and suppose r is an automorphism of a 
a -finite measure space X. Let p and Qp be as defined in (3.1). Suppose that h G L\(X) 

p-q 

has full support. Let w = / i « . Define Wh,p,q: LP(X) —> Lq(X) by 

Wh,af = WQ/ 

for/ G Lp. 

PROPOSITION 5.2. Whj,,q is an operator of type (p, q) with 

l l^MIU=l|A| |". 

Up to scalar multiple, the only norming function for Wh,p,q is 

_ i 1 _ i 1 

Qp hp=(por) p(hor)p. 
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PROOF. 

\\WKPJ\\q
q = jh^iQJfd» 

<||^||AI|(Ô/)1|, 
p-q 

= 11*11,' 11/11/, 
as desired. The second line follows from Holder's inequality, and so we have equality if 
and only if h is a scalar multiple of (QpfY. m 

REMARKS. 1) This is the type (p,q) analog to Lp isometries induced by automor­
phisms, a rich example for studying the case p — q. When/? ^ q, there are no non-trivial 
isometries of type (p,q) induced by point transformations; see [B]. Briefly put, the re­
quirements of linearity and isometry are incompatible, even in the 2 point space. Even 
when T is the identity, the mapping Qq fails to map Lp functions to Lq functions in the 
infinite measure case. Thus, a weighted isometry is needed. Furthermore, the weight 
function must be in L JL_ for a useful application of Holder's inequality, since we may 
not asssume any power of an Lp function/ other than the/7th is integrable. 

2) It is easy to verify that for any 1 < r < s < oo, Wh,r,s = (Whj,,q)u,r,s where 
w = Qplh~p. 

3) If /x o r - 1 is finite, then one may take h = p. Wp^qf = p*(/*or_1), as expected. 
In particular, the identity is a type (/?, q) operator if and only if either q — porq < p and 
X is a finite measure space. 
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