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Viscous Marangoni migration of an inviscid
bubble by surfactant spreading: an exactly
solvable model
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A model is formulated of a two-dimensional migrating, or swimming, inviscid bubble in
a viscous fluid whose unsteady displacement is caused by the spreading over its surface
of an initial distribution of insoluble surfactant. Assuming small capillary and Reynolds
numbers, and a linear equation of state giving the surface tension as a function of surfactant
concentration, the quasi-steady Stokes flow around the bubble is found analytically and
explicit formulas are determined for the time-dependent bubble speed and its final overall
displacement. At infinite surface Péclet number this is done using a complex version of
the method of characteristics to solve a complex partial differential equation of Burgers
type. For a finite non-zero surface Péclet number, the problem is shown to be linearizable
by a complex variant of the classical Cole-Hopf transformation. The formulation allows
general statements to be made on the bubble speed and its total net displacement in terms
of the initial surfactant distribution. A weak finite-time singularity in the surface activity
associated with an isolated clean point on the bubble surface is also identified and studied
in detail.
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1. Introduction

The study of propulsion mechanisms of small objects, organisms, swimmers or particles
at low Reynolds numbers is a highly active area of current research (Nakata et al. 2015;
Zottl & Stark 2016; Suematsu & Nakata 2018; Michelin 2023). One mechanism whereby
self-propulsion can be achieved is by the setting up of a Marangoni stress on an interface.
This commonly involves an object, or ‘Marangoni surfer’ (Lauga & Davis 2011; Wiirger
2014; Crowdy 2020, 2021a; Dietrich et al. 2020), leveraging the benefit of its location at
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an interface between two fluids to release surfactants that cause a surface tension gradient,
and a concomitant Marangoni stress, leading to locomotion. This phenomenon occurs in
natural biological settings (Bush & Hu 2006) and has also been exploited in synthetic
situations (Nakata et al. 2015; Suematsu & Nakata 2018). Several analytical models have
been devised providing a theoretical understanding of this mode of locomotion in the
viscous regime when surface diffusion of surfactant is dominant (Lauga & Davis 2011;
Crowdy 2020, 2021a).

A closely related paradigm is the study of swimming droplets. A recent review (Maass
et al. 2016) gives an overview of microswimmers based on liquid droplets where the
propulsion mechanism does not require the presence of a separate interface or the
imposition of some global external influence such as an imposed temperature gradient
(Young, Goldstein & Block 1959). It is also known that isotropic droplets, with no intrinsic
asymmetry, can move spontaneously due to a nonlinear coupling between the transport of
a solute with self-generated Marangoni flows. Michelin (2023) has surveyed the recent
results in this area. Typically, a droplet becomes active, and consequently self-propelling,
due to a chemical reaction (Schmitt & Stark 2013), micelle-induced solubilization or a
phase transition (Maass et al. 2016).

This paper presents an analytical study of unsteady bubble propulsion referred to here
as viscous Marangoni migration by surfactant spreading. This mode of locomotion is
illustrated in figure 1 where three time snapshots of a swimming bubble are shown.
The model to be analysed is a two-dimensional inviscid bubble embedded in unbounded
viscous fluid where some distribution of insoluble surfactant is set up on the bubble
surface at some initial instant. Mathematically, this is an initial-value problem. How this
initial distribution might be set up is not discussed here but if, as indicated in figure 1,
there is an initial surplus of surfactant molecules on the right-hand side of the bubble the
Marangoni stresses associated with its advective—diffusive spreading around the surface
cause a Stokes flow in the surrounding viscous fluid and a net migration of the bubble
to the right. This is because at zero Reynolds number the bubble must be free of net
force and torque. The challenge is to determine the speed Up(f) of the bubble and its
final net displacement Ax. Although any net locomotion relies on a breaking of symmetry
in the initial surfactant distribution, the mechanism is intrinsically nonlinear because
it depends on the advective—diffusive spreading of surfactant over the bubble surface.
It is also inherently transient, perhaps more accurately described as bubble ‘hopping’
rather than ‘swimming’, because the migration is arrested as soon as the surfactant has
spread to a uniform distribution. Further displacement can be envisaged by a repeat
of this basic protocol, with more hops induced by a renewing of the initial left-right
asymmetric surfactant distribution. Of course, such a strategy might be impeded by
familiar short-lifetime challenges due to the loss of the surface tension gradient unless
suitable surface reaction effects are also at work (Cheng et al. 2019). Such concerns are
beyond the scope of this article.

The proposed basic mechanism is reminiscent of the strategic release of surfactant by
insects, such as Microvelia, at interfaces to propel themselves along (Bush & Hu 2006)
although, in the case of a swimming bubble, it carries its own proprietary interface that
travels with it, more akin to an insect’s plastron. Tsemakh, Lavrenteva & Avinoam (2004)
have studied the swimming of a droplet in a viscous fluid due to Marangoni stresses set up
at its surface due to the uniform secretion of a surface-active substance from a contained
droplet placed off-centre inside the mother droplet. Mass transfer of this substance causes
a surface Marangoni stress on the compound mother droplet that leads to net migration.
Modern embodiments of similar ideas involving compound droplets of this kind but with
different actuation mechanisms have been proposed by Ganesh et al. (2023).
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Figure 1. Three snapshots of the unsteady migration of a single bubble due to an initial distribution of
insoluble surfactant set up at # = 0 which subsequently spreads around the surface. The motion is arrested
when the distribution is uniform. The challenge is to determine the speed of the bubble Up(f) and its net
displacement Ax.

Despite the nonlinear nature of the multiphysics problem in figure 1, the present study
demonstrates that a two-dimensional model of such bubble migration can be solved
in analytical form at any value of the surface Péclet number. The model makes a
number of physically reasonable assumptions: that the Reynolds and capillary numbers
are small, that a linear equation of state determines the surface tension as a function
of the surfactant concentration and that the bubble dynamics is governed by nonlinear
advection—diffusion of the insoluble surfactant on the bubble boundary leading to
unsteady Marangoni stresses that determine a quasi-steady Stokes flow in the surrounding
fluid.

Analytical solutions are possible because of a theoretical connection, elucidated here,
between Marangoni dynamics and a complex form of the Burgers equation (Crowdy
2021b,c). The latter is a nonlinear partial differential equation familiar to fluid dynamicists
in its real version by virtue of its appearance in models of one-dimensional compressible
gas dynamics (Whitham 1999). Indeed, the formulation here is a generalization, to the
radial bubble geometry, of work by Crowdy (2021b,c) who showed that, under the same
modelling assumptions just listed, insoluble surfactant dynamics on the surface of a
half-plane region of viscous fluid can be described by a complex Burgers equation at
arbitrary surface Péclet number. Although the mathematical details are different, the
main theoretical ramifications of that prior work carry over to the bubble geometry.
Arguably the most significant implication is that the nonlinear swimming bubble
problem of interest here can be linearized at any non-zero surface Péclet number by
a complex-valued variant of the classical Cole-Hopf transformation (Whitham 1999;
Crowdy 2021b,c¢).

Although the model is limited in its physical relevance in being two-dimensional,
its amenability to closed-form analytical solution renders it valuable in exemplifying
fundamental physical mechanisms in mathematical form. Several theoretical studies on
two-dimensional swimming droplets have similarly been of value in providing insights
into basic effects (Hu et al. 2019; Li 2022).
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2. Bubble migration by surfactant spreading

A circular, two-dimensional, inviscid, incompressible bubble of radius R is initially
centred on the x axis in an (x, y) plane and is surrounded by unbounded fluid of viscosity .
The bubble has constant pressure pp. It is assumed that, at ¢ = 0, there is some mechanism
that instantaneously sets up an initial concentration I"(s, 0) = I'y(s) of surfactant on the
bubble boundary, taken to be symmetric about the diameter along the x axis, where s is
arclength in the boundary tangent direction taken clockwise around the bubble boundary.
The assumption of symmetry about the x axis is not necessary, but it simplifies the analysis
and statement of the main results. All that follows can be generalized if this assumption is
relaxed.

The surfactant is assumed to be insoluble to the bulk fluid but can be advected around the
bubble surface and diffuses along it with surface diffusion coefficient Ds. The surfactant
affects the local surface tension o (s, f) according to the linear equation of state

o(s,t) =0, — BI'(s,1), 2.1

where o, is the clean-flow surface tension and 8 = RT, where T is absolute temperature,
assumed to be constant, and R is the gas constant. A capillary number, to be introduced
later, based on the clean-flow surface tension o, is assumed small so that the bubble can
be taken to remain circular and undeformed at leading order. An initial concentration
of surfactant such as that shown in figure 1 will spread around the bubble causing a
time-dependent Marangoni stress on its boundary. As a result, the bubble is expected
to move in the x direction with some time-dependent speed Upg(t). Since the motion is
arrested when the surfactant distribution has spread out to become uniform, the bubble will
ultimately, at large times, be displaced by some finite distance Ax from its starting point.
The aim of this paper is to determine the bubble speed Up(#) and total bubble displacement
Ax as a function of the initial surfactant concentration profile.

It is natural to move to a bubble-fixed frame of reference co-travelling with the bubble
at each instant with speed Up () that is unknown a priori. Assuming a Reynolds number
based on Upg, R and p is sufficiently small, the fluid velocity u = (u, v) outside the bubble
in this frame can be taken to satisfy the incompressible quasi-steady Stokes equations

—Vp+uViu=0, V-u=0, (2.2a,b)

where p(x, y, t) is the fluid pressure. The unit tangent ¢ and normal n vectors are indicated
in figure 2; note that ¢ is directed clockwise around the boundary while » points into the
viscous fluid from the bubble. A kinematic condition on the bubble boundary is

u-n=0. (2.3)

This states that the boundary must be a streamline in the co-travelling frame. The stress
balance on the bubble boundary is

fog do

—(p —pB)ni + 2pejn; = i Eti’ 2.4)

where n; and #; denote the ith components of n and ¢, respectively, and ¢;; is the usual
fluid rate-of-strain tensor. The second term on the right-hand side of (2.4) represents
the Marangoni stress caused by the varying surface tension. The surface tension o (s, f)
is given by (2.1) where I'(s, ) satisfies the surfactant evolution equation which, in a
frame of reference co-moving with the fixed-shape bubble, is (Wong, Rumschitzki &
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Surfactant concentration

/ I(s, 1)
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Figure 2. A circular bubble of radius R in a complex z = x + iy plane. If z is a point on the bubble boundary
the complex analogue of the unit normal vector n is z/R and the complex analogue of the unit tangent vector ¢
is —i(z/R). The arclength s increases in the direction of ¢.

Maldarelli 1996)

ar(s,t) (L (s,HU(s, 1) I*I (s, 1)
+ =Dy——5—,
ot ds ds2
where U(s, t) is the surface slip velocity in the tangential direction. On integrating (2.5)

around the entire bubble boundary it follows that the average surfactant concentration over
the interface, denoted by ([p), is a constant of the motion, namely

(2.5)

1 R R

1
=— Ip(s)ds = — r d 2.6
R ) 0(s)ds 7R ) (s, 1) ds, (2.6)

(I'o)
where it is convenient to take s = 0 to correspond to the front of the bubble at x = R on
the positive x axis. The condition on the fluid velocity in the far field is

u— (—Ug(),0) as|x| > oo, 2.7)

where the condition that the bubble is free of net force determines Up(t). The assumed
reflectional symmetry of the initial surfactant concentration about the x axis through the
bubble centre is expected to be dynamically preserved and ensures zero net torque on it.

Unless surface diffusion of surfactant is dominant, this multiphysics problem constitutes
a nonlinear system where the surface advection—diffusion of the surfactant determines the
instantaneous Stokes flow in the bulk which, in turn, feeds back to affect the surfactant
advection on the moving bubble.

3. Complex variable formulation

The flow generated by the surfactant evolution will be found using a complex
variable formulation of two-dimensional, quasi-steady Stokes flow of which an appendix
of Crowdy (2020) gives a brief derivation. On taking the curl of the Stokes
equations (2.2) and introducing a streamfunction i associated with the incompressible
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two-dimensional flow,

0 a
P LAY 3.1)
ay ax
it can be shown that y satisfies the biharmonic equation in the fluid region, namely
9% 92
Vi =0, Vi=_—5+ —. 3.2a,b
v o T 5y (3.2a,b)

On letting z = x 4+ iy this partial differential equation can be written as

oty
— =0, 3.3
072072 33)
which can be integrated (Crowdy 2020) leading to a general representation of a real-valued
biharmonic streamfunction given by

Y =v(z2z,t) =Imzf(z, 1) + g(z, O], 34

where Im[-] denotes the imaginary part of the complex quantity in square brackets and
f(z,t) and g(z,t) are complex potentials, also known as Goursat functions. In general,
all singularities of these analytic functions must be inside the bubble, or at infinity, and
not in the viscous fluid. Moreover, a logarithmic singularity of f(z, ) inside the bubble
can be identified with a Stokeslet singularity implying a non-zero net force on the bubble
while a logarithmic singularity of g(z, ¢) inside the bubble can be identified with a rotlet
singularity implying a non-zero net torque on it. Since, in the present problem, the bubble
is free of net force and torque, both f(z, ) and g(z, ¢) will be analytic and single-valued in
the viscous fluid region. This is explained in more detail in what follows.

It can be shown (Crowdy 2020) that p(x, y, 1), the vorticity w = —V24¢ and the fluid
rate-of-strain tensor e;; are related to f(z, 7) and g(z, t) through the relations

(3.5)

4f'(z, 1) = % —io, u—iv=—f )+ +g t)’}
enn +ien =zf"(z, ) + &'z, 1),

where overbars denote complex conjugation and the prime notation denotes partial
differentiation with respect to z. There is an additive degree of freedom in the choice
of f(z, 1) and g'(z, 1) since if f(z, f) is changed to f(z, 1) + c(f) and g/(z, f) is changed to
gz n+ ¢(t), where ¢(?) is a complex function of time, then the complex velocity field
u — iv given in (3.5) is unaltered. This degree of freedom is eliminated shortly.

The complex form of the fluid stress at the boundary, or —pn; + 2ue;n;, is (Crowdy
2020)

—2Mi%» H(z,z,0) =f(z,0) +2f'(z, 1) + &'z, ). (3.6a,b)

Since there is no net force on the bubble then integration of the fluid stress (3.6) with
respect to arclength around its boundary must give zero. This means that H(z, z, f) must be
single-valued around the bubble. The single-valuedness of f(z, t) around the bubble then
follows on noticing, from (3.5) and (3.6), that H(z, z, t) = 2f(z, t) + (u + iv) and bearing
in mind that u + iv is necessarily single-valued around the bubble.
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On rearrangement, the stress condition (2.4) on the bubble boundary can be written as

fog do
—pn; + 2uejin; = = Et,' — pBh;, 3.7
which will now be written in complex form. For this, note that the complex form of the

unit tangent vector is

dz iz
S 3.8
ds R 38)
and the complex form of the unit normal vector is
dz z
1— = —. 39
1ds R (3-9)
Consequently, the complex variable statement of (3.7) is
5 0H o dz 0dodz .dz iadz+80 iz .dz
22— = =i— - —— — i—= ——+ —— —ppi—
’ as R ds 0dsds Py ds Rds 0dsR pe ds
i d(o2) .dz
— — ppi—, 3.10
R 0s Pt ds (3.10)
where (3.6), (3.8) and (3.9) have been used. This can be integrated with respect to s to give
_ (o4
_2/’LH(Za <5 t) = % — DPBZ, (311)

where an additive function of time has been set to zero without loss of generality by
exploiting the aforementioned additive degree of freedom in the choice of f(z, ) and
g'(z, 1). On use of the equation of state (2.1), (3.11) implies that

H(z,z,1) Bl 1 oc
= — - —=). 3.12
z wR T (p B R) (3.12)
The next step is to introduce the decompositions
N R (z, t
flz,t) = Z—Zz +f(@z 0, g&n= —#, (3.13a,b)

where py is a real constant and f(z, 1) is analytic and single-valued in the fluid region
|z] > R except for a simple pole at infinity, i.e.

P~ ﬁ%z + Us(t)+0(1/2), (3.14)

as |z| — oo where p(¢) is real-valued. The first term of f(z, ) in (3.13) encodes the
hydrostatic pressure py of a clean bubble and the additional term f(z, ) will describe the
quasi-steady Stokes flow generated by the surfactant effects. The quantity p(r) represents
the modification to the far-field fluid pressure due to the presence of the surfactant and it is
easy to check from (3.5) and (2.7) that the constant term in the far-field asymptotics (3.14)
is the bubble speed Up(#). An important feature of the choice (3.13) is that it satisfies
the streamline condition (2.3) on the bubble surface for any f (z, t). This is because, on
lzZl =R,

.
M} o Gas)
Z

Y(z,z,0) = Im[zf(z, 1) + g(z, )] = Im [Z (Z—Zz +£(z, t)) -

where the fact that 7 = R?/z on the bubble boundary has been used. The bubble boundary
is therefore a streamline.
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On substitution of the decompositions (3.13) into the definition of H(z, z, ) given in
(3.6) it follows that, on |z| = R,

H(z,z,1) = p—Hz +f(z, 1+ p—Hz +zf/(z, fH — R? (]@) + R? (f(z;))

4u 4u z
N 7 , 1
=t fen+R? (f ad )), (3.16)
21 z

where the fact that z = R?/Z on |z| = R has been used. On division by z, this becomes

Azz0 _pr oHpe [f @ t)} = L1 | Re[h(z 1), (3.17)
z 2u < 2u
where
I t) = 2f(z, l)' (3.18)
Z

The function h(z, t) is analytic and single-valued in the fluid region, properties it inherits
from f(z,t) in view of its definition (3.18) and the far-field behaviour (3.14). Two
expressions for H/z have now been derived in (3.12) and (3.17). Setting them equal leads
to

PH B 1 o
P2 4 Relh( 0l =2 + = (pp— ). 3.19
o [A(z, )] wR 2 PE— 75 (3.19)

It turns out that the boundary slip velocity U(s, t) can also be conveniently expressed in
terms of h(z, 7). To see this, note that on |z| = R, where 7 = R2 /z, it follows from (3.5)
and (3.13) that

fz, 0

u—iv=—f@z. 0+ (1 =—f@n+ Rzz—z' (3.20)

JieR) fz 0
—R? - +R? 2

Using the fact that if a = a, +iay and b = by + iby are the complex analogues of the
vectors a = (ay, ay) and b = (by, by) then the complex analogue of the dot product a - b

is Re[ab] then the boundary slip velocity U(s, ) can be written, in complex form, as

iz ((a—  _.f@D
UGs.f)=1-u=Re {—ﬁ (—f(z, )+ RZZ—Z)}

CRel _in f(z,o_(f(z,r)) RIm f(zJ)_(f(zZ,t)) o

Z Z Z

where the complex form of the unit tangent (3.8) has been used. Therefore, on the
boundary,

U0 _ [f(z, )

= : } = Im[h(z, 1)]. (3.22)
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4. A complex partial differential equation of Burgers type
A velocity scale associated with the presence of the surfactant is

B{I0)

2u
It is natural to non-dimensionalize lengths using the bubble radius R, surfactant
concentrations using ([Ip), velocities induced by the presence of the surfactant using

Up and time using R/Up. The hydrostatic pressure py and bubble pressure pp are
non-dimensionalized using o./R. The bubble boundary is now |z| =1 and it can be

parametrized by z = e, where s is the non-dimensional arclength. Noting that f (z, 1)
has the dimension of a Veloc1ty, the non-dimensional version of (3.22) is

U(s, 1) = Im[h(z, 1)], (4.2)

Uy =

4.1)

where a quantity decorated with a tilde denotes its non-dimensional counterpart. Equation
(3.19) becomes

O¢ . Uo ~ Oc . :3<FO> ~
— Re[h(z, )] = 1 r 4.3
2,LLRPH+ R elh(z, 1] TR 3R 4.3)
or
- 2uly 2uly ~
P+ Re[i(z, )] = pp — 1 + =L F, (4.4)

c O¢
if (4.1) is used. The capillary number, which was mentioned earlier, can now be introduced
as

2uU
Ca =120 4.5)
Oc¢
and taken to be small, i.e. Ca < 1. In terms of it, (4.4) becomes
pu + CaRe[h(z, )] =pg — 1 + CaT. (4.6)
Hence, at leading order, the Laplace—Young balance holds:
pB—pH =1, 4.7

where the constant right-hand side encodes the constant curvature of the interface and, at
first order in Ca, it follows from (4.6) that

Re[h(z, )] =TI (4.8)

A consequence of (4.8) is that the average of the real part of iz(z, t) around the bubble
boundary is unity since, by the choice of scaling, this is the value of the surface average of
the non-dimensionalized surfactant concentration.

Henceforth, the tildes on any non-dimensionalized quantities will be dropped. Together,
(4.2) and (4.8) imply that

h(z,t) =I'(s,t) +1U(s,t) on|z| = 1. 4.9)

Equation (4.9) is important: it is the radial geometry analogue of a similar relation obtained
in Crowdy (2021b,c) for a half-plane geometry for which the boundary of the viscous fluid
region is an infinite straight line. A subsequent trivial, but important, observation is that

h(z,£)> = I'(s, %> = U(s, ) + 2i (s, HU(s, 1) on |z| = 1, (4.10)
where (4.9) has simply been squared.
1000 A7-9


https://doi.org/10.1017/jfm.2024.973

https://doi.org/10.1017/jfm.2024.973 Published online by Cambridge University Press

D.G. Crowdy

It is expedient now to return to the surfactant evolution equation (2.5) which, on use of
(4.9) and (4.10), takes the non-dimensionalized form

|:8h(z, H 9 ( ih(z, t)z) 1 8%h(z, 1)
Re — =) - —
ot as 2

"~ Pe, 9s2
where the surface Péclet number is

} =0 onlz =1, A.11)

UR
Peg, = D (4.12)

N

By the chain rule, since z = ¢~ on the bubble boundary,

0 dz 0 0 @.13)
— = —— = —iz—, .
s dsdz oz

hence (4.11) can be written as

oz, 1) D 1 8 [ ohz0
R ~ th(z f =2 —0. 414
e[ g M T T s <Z oz (@19

The quantity in square brackets in (4.14) is analytic and single-valued in |z| > 1 except
possibly at infinity. However, the problem under current consideration is such that

hiz,H) ~14+0(1/z), K1)~ 0(1/7), (4.15a,b)

where the first term in the far-field behaviour of /(z, ) ensures that the surface average of
the real part of h(z, f) is unity, a requirement just noted. This is because, being analytic
and single-valued in |z] > 1, h(z, t) has a convergent Laurent series there and only the
constant term in this series will contribute to the average of Re[/A(z, )] around the bubble
boundary. The behaviour (4.15) means that the function in square brackets in (4.14) is
analytic and single-valued for |z| > 1, including as |z| — oo where it decays like 1/z.
Given that, according to (4.14), this function also has vanishing real part on |z| =1 it
follows by analytic continuation off the boundary circle |z] = 1 that
oh(z, t) oh(z, 1) 1 0 (Zah(z, t)) 0

—zh(z, 1) P

S 4.16
ot 0z Peszaz (4.16)

everywhere in |z| > 1.

Equation (4.16) is a key result of this paper. It is the radial geometry analogue of
a complex Burgers equation obtained for the half-plane geometry in Crowdy (2021b,c)
where, in that case, the relevant lower-analytic function k(z, f) had a different functional
connection to f(z, t). The reduction of the swimming bubble problem to this complex
partial differential equation of Burgers type (4.16) has significant theoretical ramifications
to be explored next.

5. Bubble migration as Pe; — oo: method of characteristics

The case of infinite surface Péclet number is studied first. On taking the limit Pe; — oo,
implying negligible surface diffusion, the governing equation (4.16) reduces to

dh(z, 1) ohz 1)
o e = =

This can be solved by a complex method of characteristics in the spirit of similar
calculations carried out for the half-plane geometry in Crowdy (2021b,c). Equation (5.1)
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0. (6.1



https://doi.org/10.1017/jfm.2024.973

https://doi.org/10.1017/jfm.2024.973 Published online by Cambridge University Press

Transient bubble motion by surfactant spreading

implies that

dh
pri 0 or h(z,t) =H(Z) (5.2a,b)
on complex characteristics defined by
dz .
@ = —zh(z,t) withz=Zatr=0. (5.3)

The variable Z can be thought of as labelling the characteristics; the function H(Z)
is determined by initial conditions: i(z, 0) = h(Z, 0) = H(Z). Equations (5.2) and (5.3)
together imply that

d

d_f — —tH(Z) withz=Zatt=0 (5.4)
implying

dlgtgz —_HZ) or z= 7 e HD1 (5.5a,b)

after an integration is performed and initial conditions imposed. An implicit form of the
general solution to the problem, parametrized by the complex variable Z, is therefore

h(z,t) = H(Z), z=2Ze HO1 (5.6)

For a given H(Z) formulas (5.6) give an implicit parametric representation of the solution
for arbitrary initial data from which the time-evolving solution can easily be extracted
numerically by a nonlinear solver. The swimming bubble problem at infinite surface Péclet
number is therefore integrable in this sense.

The next subsection showcases a particular class of initial conditions for which this
implicit solution (5.6) can be rendered explicit in terms of the Lambert W-function (Olver
et al. 2020).

5.1. A special class of initial conditions
Suppose that

HZ) =1+ g |B] <1, (5.7)
where B is a real constant. It follows that, on the bubble surface,
h(e™,0) = 1+ Be" = 1 + Bcoss + iBsins = I'(s, 0) +iU(s, 0) (5.8)
so the corresponding initial surfactant distribution can be read off as
I'o(s) =1+ Bcoss. (5.9)

This is non-negative everywhere on the bubble boundary because of the stipulation that
|B| < 1.If 0 < B < 1 the maximum value 1 + B of the surfactant concentration is at the
front of the bubble where z = 1, the minimum value 1 — B is at the rear of the bubble. In
this case, according to (2.1), the surface tension at the front of the bubble is less than that
at its rear and the bubble is expected to move to the right with some speed Up(¢) to be
determined next. Being an even function of s, this initial surfactant concentration (5.9) is
symmetric about the axis through the bubble centre, as required.
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With the choice (5.7) it follows from the general solution (5.6) that
B : —t—Bt/Z
hiz,t)y =H(Z) =1+ Z with z=Ze (5.10)

or, on rearrangement of the second equation,

t t
Z_eer/Z _ (& E eBlZ — 1. (5.11)
z Bt z

For any given ¢ and z, the equation

Bte™!
zeZ =28 (5.12)
z
must be solved for the unknown variable Z = Bt/Z. Therefore,
Bt Bte™!
zz—zw< ¢ > (5.13)
Z Z

where W is the (zero branch of the) Lambert W-function (Olver et al. 2020). The analytic
functions f(z, ¢) and g(z, t) associated with the quasi-steady Stokes flow generated around
the bubble by the spreading surfactant can then be given explicitly in terms of this special
function. Indeed,

, » ,
hen =280 _nzy =1+ %W (Bte ) ;o 8= JED 5 14a)
Z Z

Z

On substitution into (3.4) the streamfunction for the flow is

_ 1 1 Bte™
¥v(z,z,t) =Im |:§(ZZ -1 <1 + ;W( - ))i| . (5.15)

Furthermore, on setting z = e~ the surfactant concentration and slip velocity are given
as explicit functions of s and ¢ by

1 Bte™! 1 Bte™!
I'(s,t) =Re |:1+;W< >:|, U(s,t):Im[;W( o ):| (5.16a,b)

e—lS —15

Figure 3 shows the evolution of the surfactant concentration I'(s, ¢) and slip velocity
U(s, t) for Peg = 0o over the bubble boundary for B = 0.9 in the initial condition (5.7)
as computed from (5.16). The graphs show that as the surfactant spreads over the surface
the Marangoni-stress-induced surface slip dies away until, at large times, it vanishes and
the bubble motion is arrested.
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Figure 3. Evolution of (a) the surfactant concentration I"(s, f) and (b) slip velocity U(s, t) for Peg = oo over
the bubble boundary for B = 0.9 in the initial condition (5.7) as computed from (5.16). As the surfactant spreads
over the surface the Marangoni-stress-induced surface slip dies away.

The bubble velocity Up(¢) can be extracted as follows. Suppose that

= HED MO 03072 aszo (5.17)
Z 4

h(z, 1)
Hence, using the non-dimensional versions of (3.5), (3.13) and (3.20):

LB JED L MO oam, s
Z z 2

u—iv=—fz 0+ 1

which, by (2.7), leads to the identification

Up(t) = @ (5.19)
But since
h(z,n) =1+ g with z = Ze "7B1/Z, (5.20)
then for large z,
2~ vons) (5.21)

and hence
—t

+0(1/7%), (5.22)

Mot =1+2~1+
Z7 - Z

from which it follows, on comparing with (5.17), that k() = Be™'. From (5.19), the
bubble velocity is therefore

Be™!
Up(t) = > (5.23)
The total bubble displacement Ax due to the spreading of surfactant is
o0 ) B e—t B
M:/ wmm:/ dr = —. (5.24)
0 0 2 2
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Consequently, after the surface activity illustrated in the graphs of figure 3 and any further
activity as t — 00, the bubble will have displaced to the right by a distance B/2 = 0.45.

5.2. Formation of a weak singularity at finite time

The case B =1 is of special interest because, for this initial condition, the rear of the
bubble is initially clean, i.e. Ip(Em) =0, as is evident from (5.9). This turns out to
have interesting consequences. Crowdy (20215b) has studied a similar circumstance of an
isolated clean point existing in the initial surfactant distribution on the infinite free surface
bounding a half-plane fluid layer and identified the formation of a weak singularity at
finite time, 7, say. During the ‘waiting time’ 0 < ¢ < t,, before the singularity formation,
the isolated clean point remains clean. At ¢ = ¢, there is an instantaneous blow-up of the
first derivatives 01 (s, t)/ds and U (s, t)/ds at the clean point, but these do not lead to
termination of the solution. Rather, the singularity is glancing and both 917 (s, t)/ds and
aU(s, t)/ds return to finite values for ¢ > ¢, with the clean point now being contaminated
with surfactant. Since the discovery of this weak singularity in Crowdy (2021b), other
authors have investigated similar phenomena in other circumstances but still in the
semi-infinite fluid-layer geometry (Bickel & Detcheverry 2022; Temprano-Coleto & Stone
2024).

The formation of an analogous weak singularity also occurs in the bubble geometry for
the initial condition (5.7) when B =1 as is now shown. By the symmetry of this initial
condition about the x axis the slip velocity at the rear of the bubble is necessarily zero at
all times, i.e. U(%m, ) = 0, but let the surfactant concentration there be denoted by I.(¢),
ie.

(1) =I'(£m, 1), (5.25)

It follows from (4.9) that
h(—1,1) = I(p). (5.26)

Crowdy (2021b) showed the existence of a finite-time weak singularity associated with
an isolated clean point on the boundary of a half-plane fluid region by considering
the dynamics of square-root branch-point singularities of (the relevant) h(z, f) in the
unphysical region of the complex plane. He showed that such a square-root branch-point
reached the physical boundary in finite time (indeed, at the singularity formation time)
but did not cause termination of the solution by entering the fluid region (where it is
not allowed) but immediately turned around and re-entered the unphysical region of the
complex plane thereby allowing a smooth continuation in time of the solution. For the
bubble geometry, it is more convenient to demonstrate the weak singularity formation by
returning to the implicit form of the solution given by (5.10) with B = 1. It follows that

W=1,0=HZ) =1+ % =) with—1 =Zze 1+1/2), (5.27)

Hence,
L =1+ % =1 - UH/2D — 1 _etIH) (5.28)
which constitutes a nonlinear equation determining I(f). A trivial solution is I(f) =0

which corresponds to the rear of the bubble being clean. However, to explore the possibility
of other solutions to this nonlinear equation for I'.(¢) it is useful to plot, as functions of

1000 A7-14


https://doi.org/10.1017/jfm.2024.973

https://doi.org/10.1017/jfm.2024.973 Published online by Cambridge University Press

Transient bubble motion by surfactant spreading

2.0
18] y="r 1
1.6 - 1
14+ 1
12 1
y 10} t=2 il
0.8 ; -
t
0.6 7

04+ / 1

02

Figure 4. The two graphs (5.29) for different values of the parameter 7. Admissible solutions for I5.(¢)
correspond to intersections of any blue graph of y =1 —e~/* with the black graph y = I';. From the
geometry of these graphs the clean-point solution I} = 0 is the only admissible solution until # > 7, = 1 when
contamination of the rear of the bubble occurs.

I > 0, graphs of the two functions
y=TI, y=1-—¢' (5.29a,b)

and viewing ¢ as a parameter. This is done in figure 4 where the graph y = I, shown in
black, is independent of ¢ and four instances of the graph y =1 —e~"/7, for r = 0.5, 1,
1.5, 2 are shown in blue. According to (5.28) solutions for I.(f) occur where any blue
graph intersects the black graph. The gradient dy/dI of any graph of y =1 —e /" is
monotonic decreasing with its maximum value occurring at I, = 0. It is easy to see that
t =t, = 1 represents the critical case where the gradient of y=1—e /" at I, = 0 is
unity, the same as the gradient of the black curve y = I, there. For ¢ > ¢, = 1 the blue
curves have a larger gradient than the black curve at I, = 0 and it is clear geometrically
from figure 4 that all blue graphs then curve down and have a single intersection point with
the black curve at some value of I, > 0: the value of I', = I',(¢) at this intersection point
for ¢ > t, is the surfactant concentration at the rear of the bubble after the weak singularity
has occurred at t = ¢, = 1. It is easy to show using local expansions that, just after the
singularity formation time, a good leading-order approximation of I'.(¢) is furnished by

2(t—1)
(1)~ — 0<r—1xkIl. (5.30)
Figure 5 features graphs of I'(s, t) and U(s, t) as functions of s, as computed from (5.16),
both before and after r = 7, = 1. These clearly show the instantaneous blow-up, and
subsequent resolution, of the first derivatives 1" (£7, 1)/ds and dU(%m, 1)/9ds at the
rear of the bubble att =1, = 1.

This weak singularity formation in the surface variables does not affect any of the earlier
deductions about the bubble speed Upg(f) or net displacement Ax. Therefore, after the
surface activity illustrated in figure 5 and any further activity as ¢t — oo, this bubble will

have displaced to the right by a distance Ax = B/2 = 0.5 in accordance with (5.24).
1000 A7-15
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Figure 5. Formation of a weak singularity due to an isolated clean point at the rear of the bubble (at s = £)
when B = 1 in the initial condition (5.7). Plots of (a) I"(s, t) and (b) U(s, 1) as a function of s at Pe; = oo for
t=0,0.25,0.5,0.75 and ¢ = t, = 1 where the weak singularity occurs. The rear of the bubble remains clean,
i.e. I, = 0, throughout the interval 0 < ¢ < t,. (c,d) The continuation past the singularity for t = ¢, = 1, 1.5,
2, 2.5 and ¢t = 3 where the rear of the bubble has become contaminated, i.e. I, > 0 for ¢t > ¢, = 1.

6. Bubble migration for 0 < Pe; < co: a Cole-Hopf-type linearization

While the method of characteristics provides an implicit parametric representation of the
general solution when Pe; is infinite, for 0 < Peg; < oo the nonlinear problem turns out to
be linearizable by a complex variant of the classical Cole-Hopf transformation (Whitham
1999). To see this, it is useful to view Ah(z, f) as a function of a new independent variable
Z as follows:

H(Z,t) =h(z,t) Z=logz. (6.1)
Since zd/dz = 9/0 Z then (4.16) becomes

H(Z,0) _ 1 PH(Z, 1)

Z.t _,
+HE.D 0Z Pe, 022

_OH(Z,1) 62)
ot

which differs from a standard complex Burgers equation for H(Z, ) only in the sign of

the first term. Assuming the principal branch of the complex logarithm the domain of

analyticity of H(Z, t) is now the right semi-strip Re[Z] > 0, —t < Im[Z] < & in the

complex Z plane and admissible solutions must be 2mi-periodic as functions of Z in

order that i(z, t) is a single-valued function in the fluid. A subsequent change of dependent
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variable embodied in

2 dlog®(Z,1)
ZHh=1———7—7—-, 6.3
H(Z, 0 Pe, 5z (6.3)

where the second term on the right-hand side is assumed to decay as z — oo, turns (6.2)
into

AP (Z,1) N IP(Z,0) 1 3D(Z,1)
at dZ  Pey, 022

after an integration with respect to Z and where an additive function of time has been
set equal to zero. The latter choice is made without loss of generality in the sense that
any other choice simply rescales @ (Z, ) by a function of time which has no effect on the
logarithmic Z-derivative determining H(Z, ¢) in (6.3) and, as such, does not affect the
physical flow.

Equation (6.3) is a complex variant of the classical Cole-Hopf transformation (Whitham
1999) differing from it not only because it involves complex-valued functions and
variables, but also in the appearance of the first unity term in (6.3). This results in the
modified form (6.4) of the classical heat equation; the latter equation is the linear partial
differential equation arising after carrying out a standard Cole—Hopf transformation on
the real Burgers equation. The important observation is that, even if it is not the usual
heat equation, (6.4) is still nevertheless a linear partial differential equation, albeit a
complex-valued one.

In view of its linear character it is natural to seek separable solutions of (6.4) having the
form

6.4)

D(Z,1) = ZAn(t) e "2, (6.5)

n>0

this being a general representation of a 2mi-periodic function that is analytic in the right
semi-strip and decaying as Re[Z] — oco. These properties are necessary to ensure that
‘H(Z,t) as given by (6.3) gives rise, according to (6.1), to a function h(z, f) with the
required properties. Substitution of (6.5) into (6.4) leads to the linear system

dA, n
=-nl1+—J)A > 0. 6.6
dr " ( + Pes> no = (66)

The solutions of these ordinary differential equations are
An() = Agge”"HP! > 0, 6.7)

where the data {A,0 = A,(0)|n > 0} are determined by initial conditions. The solution for
@ (Z, 1) follows as

@(Z, l,) — ZAHO e—n(n-i—l/Pes)t e—l’lZ (68)

n>0
giving
Z nAnO e—n(n—i—l/PeS)t e—nZ

2 n>1
ZH=14+——= 6.9
Hz.n + Pe; ZAnO e n(n+1/Peg)t o—nZ (6.9)
n>0
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or, on back substitution into (6.3) and from (6.1),

Z nAno efn(n+1/Pes)t/Zn

2
hz ) =1+ —"=! . (6.10)
Peg § :AnO e—n(n+1/Pes)t/Zn

n>0

This is an explicit solution for arbitrary initial data and for any finite non-zero value of Pe;.

Consider now the initial conditions (5.7) for which the Pe; = 0o solution has been found
in § 5.1 in terms of Lambert-W functions. It is of interest to examine how surface diffusion
affects this solution. For this it is necessary to pick

2 dlog®(Z,0) _z Pe;BeZ /2
_ =TT =Y B D(Z,0) = elesBe /2, 6.11
Pe, 5z e or &(Z,0)=e (6.11)
from which it follows that
Pe,B\" 1
Ano = — n>0. (6.12)
2 n!

Substitution of these coefficients into (6.10) gives the solution for A(z, f). The speed of the
bubble Up(t) follows from the large-z asymptotics of (6.10). As z — oo,

2 Ajge(IH1/Pe

h(z,0) ~ 14+ — " 1+ 0(1/7%) (6.13)
Peg Z
so that, from (5.19),
! —(+1/Peyt _ B _(141/Pegy
Up(t) = —Ape N =—e s (6.14)
Peg 2
and
Ax = / VB eavyperg B (6.15)
0o 2 2(1 + 1/Pey)

As Pe; — 00, the results (6.14) and (6.15) tend, respectively, to (5.23) and (5.24), as
expected. On comparing (5.23) and (6.14) surface diffusion is seen to slow down the
bubble and, on comparing (5.24) and (6.15), to reduce its total displacement.

Figure 6 compares the evolution of the surfactant concentration " (s, t) at finite Pe; = 10
and 1 with the analogous evolution in the case of infinite Pe; for the initial condition (5.7)
with B = 0.5. In the absence of any additional forcing, surface diffusion aids in more
quickly mollifying any surfactant concentration gradients and effectively enhances the rate
of surfactant spreading to the uniform coverage state. As a result, the overall displacement
of the bubble lessens with enhanced surface diffusion, i.e. as Pey decreases, a feature that
is apparent from formula (6.15). The total bubble displacements after the surface activity
shown in figure 6 for Pe; = 0o, 10 and 1 are 0.2500, 0.2273 and 0.1250, respectively.

It is worth pointing out that, by a further simple change of variables, the governing
equation (6.4) can be transformed to the backwards complex heat equation. At first sight,
this may cause concern given the ill-posedness of many problems involving the real-valued
backwards heat equation. However, in this case, as has been seen by explicit construction
of the solution, this complex version is solved within a class of complex-valued analytic
functions for which the evolution problem is well posed.
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Figure 6. The effect of surface diffusion. The graphs compare the evolution of the surfactant concentration
I (s, 1) for Peg = 10 and oo (a) and for Pe; = 1 and oo (b) for the initial condition (5.7) with B = 0.5. The
concentrations for Pe; = 0o are shown as solid blue lines, the finite-Pe; results as dashed red lines.

7. General initial surfactant distributions

The special initial condition (5.9) corresponds to a distribution with a well-defined excess
of surfactant at the front of the bubble that falls off, symmetrically with respect to the x
axis, towards its rear. Can anything be said if the initial surfactant distribution has a more
variegated profile, perhaps with a series of humps and troughs, though still symmetric with
respect to the real axis?

For the case of infinite surface Péclet number the implicit general solution (5.6) encodes
the dynamics, and it is easy to use this as a basis for a numerical computation of the
solution, but it is not generally possible to make this solution explicit as done for the
special initial condition considered in § 5.1. Nevertheless, quantitative statements about the
velocity Up(¢) and total displacement Ax for more general initial surfactant distributions
can still be made. For a more general, sufficiently smooth, initial surfactant distribution
I (s, 0) = Ip(s) that is symmetric about the x axis the associated H(Z) will have, on |Z| =
1, a convergent Laurent series of the form
By B B3 71
Sttt (7.1)
By the assumed symmetry about the real axis, all the series coefficients {B,|n =1, 2, ...}
will be real so that, on taking the real part of (7.1) to find the initial surfactant concentration
it will have a Fourier cosine expansion in s. In particular,

HZ) =1+

1 T
B = —/ I'y(s) cos sds. (7.2)
mJ_

T

It is straightforward to show, by extending the far-field asymptotics of § 5, that the speed
of the bubble Up(¢) and total displacement Ax are

B, e’ A B
b x = _’
2 2
which constitutes a quite general result. In summary, and returning now to dimensional
variables, at infinite surface Péclet number, for any initial surfactant concentration Ij(s),
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symmetric about the x axis, the bubble velocity and its total displacement in the x direction

are given by
__B ™ s BIo)t
Up(t) = IR {./—:m IH(s) cos (ﬁ) ds} exp (_ Wl ) ,

1 TR s
X = Ty {/nR Ih(s) cos (ﬁ) ds} ,

where ([p) is the average surfactant concentration.
Similarly, a straightforward generalization to arbitrary initial conditions of the
calculation given in § 6 for 0 < Pe; < oo leads to

_ B R s B(Io)(1 4 1/Pey)t
Up(t) = m {/HR Io(s) cos (ﬁ) ds} exp (— R > ,

Ax = : {/WRF ~)d
P T 2 (0 + 1/Pey) | oar o0 <05 () s}'

Formulas (7.5) reduce to formulas (7.4) as Pe; — 00, as expected.

It is interesting that the net displacement depends only on the first two coefficients
in a Fourier cosine series of the initial surfactant concentration: the coefficient B; is
the second term in a Fourier cosine series of the initial surfactant concentration, the
first term being the average surfactant concentration over the surface. The net bubble
displacement is proportional to the ratio of these first two Fourier cosine coefficients
with the constant of proportionality being a simple function of the surface Péclet number.
Similar observations on the importance of a small number of early coefficients in
the relevant series expansions determining the overall behaviour have been made in
other problems of low-Reynolds-number locomotion driven by different surface actuation
mechanisms (Crowdy 2013).

(7.4)

(7.5)

8. From inviscid bubbles to viscous droplets

The analysis of this paper generalizes easily to the two-fluid scenario where the inviscid
bubble is replaced by a droplet of viscous fluid of different viscosity. The key steps are the
same as for the two-fluid generalization carried out by Crowdy, Curran & Papageorgiou
(2023) of the earlier single-fluid analysis of Crowdy (2021b,c) in the half-plane fluid
geometry so they will only be sketched out here.

Suppose the outer fluid viscosity, which has been denoted throughout this paper by u, is
now called p4 with the generally different viscosity of the droplet fluid in |z| < 1 denoted
by w_. It is natural to define corresponding Goursat functions fi (z,1) and g1 (z, t) in the
two viscous fluid regions, and two corresponding functions

2f Z,t
hiGn = 2E&D. @.1)
Z
As done earlier, the functional relationships
R2fi(z, 1)
g+(z, 1) = T 8.2)

are imposed. The requirement that the tangential fluid velocities at the boundary of the
droplet where the two fluids meet must be continuous turns out to furnish the following
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functional relationship:
hi(z, 1) = —h—(R*/z,1), 8.3)

where g(z, ) = q(z, t) denotes the usual Schwarz conjugate of an analytic function ¢g(z, f).
The relation (8.3) means that there is a reflectional symmetry between the inner and outer
Stokes flow solutions in this circular geometry. A similar observation was made by Crowdy
et al. (2023) for the two fluids in neighbouring half-planes meeting at the flat interface
between them. At small capillary number, there is still a leading-order Laplace—Young
balance of normal fluid stresses on the boundary while the tangential stress condition now
involves boundary tractions from both fluids balancing the Marangoni stress due to the
surfactant. Ultimately, the principal modification to the analysis here is to replace p by
(14 + p—) and replace the characteristic velocity scaling Uy given in (4.1) by

B
2(ug + p-)
This clearly reduces to (4.1) when u_ = 0.

8.4)

9. Discussion

A simple model of viscous Marangoni migration of a two-dimensional bubble by
surfactant spreading has been proposed and shown to be exactly solvable mathematically
at all non-zero values of the surface Péclet number, including when surface diffusion
is completely absent, or Pe; = co. The work can be viewed as complementing a body
of theoretical work on viscous Marangoni propulsion in the diffusion-dominated regime
when the surface Péclet number vanishes and the problem becomes intrinsically linear
(Lauga & Davis 2011; Crowdy 2020, 2021a). Surprisingly, as has been shown here, if
surface advection is included the now apparently nonlinear problem can, in fact, also be
linearized. While the formulation is valid for any Pe; > 0 note that since both the Reynolds
number and capillary number depend on the size of Uy, care must be taken to ensure
the theory herein is only applied in circumstances where this velocity is such that the
assumptions of low Reynolds and capillary numbers can safely be made.

The results here rely on a complex variable formulation of the Stokes flow problem
characterized by a coupled analytical description of the surfactant and flow dynamics
in terms of a single-valued analytic function A(z, ¢) that is shown to satisfy a complex
partial differential equation of Burgers type. At finite non-zero surface Péclet number,
this reformulation is combined with further changes of variable generalizing the classical
Cole-Hopf transformation revealing that this nonlinear problem is linearizable at any finite
non-zero surface Péclet number. The governing linear complex partial differential equation
is (6.4). This linearization is expected to have significant theoretical and numerical
ramifications beyond those already set out here. Useful general formulas (7.4) and (7.5)
show precisely how details of the initial surfactant distribution govern the bubble speed
and its net displacement after long times. It is reasonable to conjecture that similar
formulas might hold for a three-dimensional spherical bubble although that suggestion
requires further investigation since none of the mathematical techniques used here carry
over to that case.

In addition to characterizing the migration properties of the bubble due to surfactant
spreading, the surface activity has also been fully resolved. Of particular note is the
formation of a weak singularity: it is the analogue of a similar singularity first observed
by Crowdy (20215) in the half-plane fluid geometry and is associated with an isolated
clean point on the free surface. Up to a well-defined finite (‘waiting’) time 7, this clean
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point remains free of surfactant but, at t = ¢,, the quantities d/"/ds and dU/ds become
infinite simultaneously at this clean point and resolve back to finite values for > #, and the
formerly clean point is now contaminated with surfactant. This interesting singularity is
designated weak because, while certain derivative quantities exhibit instantaneous blow-up
at t,, the flow itself remains finite and continues to exist beyond .. Bickel & Detcheverry
(2022) and Temprano-Coleto & Stone (2024) have recently used the complex Burgers
equation formulation of Crowdy (2021b,c) to study such singularity formation in more
detail by studying other solution types such as similarity solutions. Since the real Burgers
equation is the paradigmatic nonlinear equation exhibiting shock formation in the absence
of any (viscous) regularization, and since it is also known that there are circumstances in
which ‘surfactant shocks’ can occur in Marangoni flows (Jensen & Grotberg 1992), it is
natural to ask if any phenomena akin to shock formation are observable within the viscous
Marangoni regime shown here to be describable by a complex-valued Burgers-type partial
differential equation. Crowdy (20215b) briefly discussed this issue from the perspective of
the more general question of well-posedness of solutions of the complex Burgers equation
and suggested, based on empirical observations, that the physical requirement that " > 0
on the interface, which is specific to the Marangoni flow application, may preclude the
formation of any finite-time singularities such as shocks. In very recent work, and by
making associations with the more general literature on transport equations involving
Hilbert transforms, Temprano-Coleto & Stone (2024) have offered evidence to support
this suggestion. It should be noted that surfactant shock formation has been observed in
quite different geometrical set-ups involving thin fluid layers (Jensen & Grotberg 1992)
which is not a characteristic of the radial bubble geometry of the present paper, or in
the previous work of Crowdy (2021b,c) where a mathematical description in terms of a
complex Burgers equation was shown to be relevant to infinitely deep viscous fluid layers.

The availability of analytical solutions is valuable when adding in other effects
perturbatively by assuming they are small. A few obvious extensions to the work here
are to include the effect of weak inertia (small but non-zero Reynolds number), weak
deformability of the bubble and weak solubility of the surfactant to the bulk.

Finally, since the connection of Marangoni dynamics to the complex Burgers equation
was unveiled in the half-plane fluid geometry by Crowdy (2021b,c), several further
theoretical advances have been made in the semi-infinite geometry (Bickel & Detcheverry
2022; Crowdy et al. 2023; Temprano-Coleto & Stone 2024). The present paper extends
these new theoretical developments in a different direction, namely to the radial bubble
geometry. It is likely that this new formulation will similarly pave the way for other
advances in understanding Marangoni flows involving bubbles and droplets. Among
additional physical effects that are amenable to a similar formulation are thermocapillarity
(Young et al. 1959), reaction effects (Crowdy 2021b) and solubility of the surfactant
(Crowdy et al. 2023) and progress in these directions will be reported elsewhere.
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