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D-SPACES AND RESOLUTION

ZINEDDINE BOUDHRAA

ABSTRACT. A space X is a D-space if, for every neighborhood assignment f there
is a closed discrete set D such that

S
f (D) = X. In this paper we give some necessary

conditions and some sufficient conditions for a resolution of a topological space to be
a D-space. In particular, if a space X is resolved at each x 2 X into a D-space Yx by
continuous mappings fx: X � fxg ! Yx, then the resolution is a D-space if and only ifS
fxg ð Bd(Yx) is a D-space.

1. Introduction. Unless explicitly stated, no separation axioms are assumed. A
neighborhood assignment for a space (XÒT ) is a function f : X ! T such that x 2 f (x).
A space X is a D-space if, for every neighborhood assignment f there is a closed discrete
set D such that

S
f (D) = X, [3]. As noted in [1], the property of being a D-space is a

delicate covering property; for instance, it is not known whether each Lindelöf T1 space
is a D-space.

A fundamental operation in the construction of topological spaces is resolution. It
will be shown that the resolution of a D-space X at each x 2 X into a compact space Yx

is always a D-space.
The main result of this article is Theorem 2.8 where we establish a necessary and

sufficient condition for a resolution of an arbitrary topological space X to be a D-space.

2. Resolutions of D-spaces. All spaces considered in this section are T1. Suppose
that X is a topological space and fYx : x 2 Xg are topological spaces and, for each x 2 X,
fx: X � fxg ! Yx is a continuous mapping. For each open set Ux � X such that x 2 Ux

and each open set W � Yx we let

Ux 
 W = (fxg ð Wx) [
[n

fx0g ð Yx0 : x0 2 Ux \ f�1
x (W)

o


The collection fUx
W : x 2 Xg is a basis for some topology on Z =
Sn
fxgðYx : x 2 X

o
.

We call Z the resolution of X at each x 2 X into Yx by the mapping fx.

LEMMA 2.1. Let Z be a resolution of X and V be an open cover of Z. Let x0 2 X
and suppose that Yx0 is compact. Then there is an open set Ux0 such that x0 2 Ux0 and
Ux0 
 Yx0 is covered by finitely many elements of V .

For a proof, see the fundamental theorem of resolutions [3].

THEOREM 2.2. If X is a D-space and each Yx is compact, then the resolution Z of X
is a D-space.
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PROOF. Let F: Z ! TZ be a neighborhood assignment for Z. For each (xÒ yx) in
fxgð Yx choose a basic neighborhood Ux 
Wyx of (xÒ yx) such that Ux 
Wyx � F(xÒ yx).
By compactness

U1
x 
 Wy1

x
Ò    ÒUnx 
 Wynx

x
cover fxg ð Yx

Let Vx = \n
i=1Ui

x. By an argument similar to the proof of Lemma 2.1 we have

Vx 
 Yx =
[n

fx0g ð Yx0 : x0 2 Vx

o
�

nx[
i=1

Ui
x 
 Wyi

x
�

nx[
i=1

F(xÒ yi
x)

Define G: X ! TX by G(x) = Vx and let DX be a closed discrete set such that X =
S

G(DX),
that is X =

S
fVx : x 2 DXg.

Let DZ = f(xÒ yi
x) : i = 1Ò    Ò nxÒ x 2 DXg. If (xÒ y) is in Z, then there is x0 2 DX such

that x 2 Vx0 and hence

(xÒ y) 2 Vx0 
 Yx0 �
nx0[
i=1

F(x0Ò y
i
x0

) �
[

F(DZ)

that is, Z =
S

F(DZ) and it remains to prove that DZ is a closed discrete set. For this
purpose, we show that DZ has no cluster points.

Let (xÒ y) be a point in Z. First we assume (xÒ y) = (xÒ yi
x) 2 DZ. Then x belongs to the

closed discrete set DX. Let H be an open set in X such that H \ DX = fxg and choose a
neighborhood W of yi

x so that yj
x 62 W for i 6= j. Then

�
H\ f�1

x (W)
�
\DX = fxg\ f�1

x (W) =

;. It follows that
Sn
fx0g ð Yx0 : x0 2 H \ f�1

x (W)
o
\ DZ = ; and

(H 
 W) \ DZ = (fxg ð W) \DZ = f(xÒ yi
x)g

That is (xÒ y) = (xÒ yi
x) is not a cluster point of DZ.

If (xÒ y) 2 Z � DZ, then either x 62 DX and hence

(xÒ y) 2 (X � DX)
 Yx =
[n

fx0g ð Yx0 : x0 2 X � DX

o
� Z � DZÒ

or x 2 DX and y 6= yi
x for i = 1Ò    Ò nx. In this case we choose a neighborhood W̃ of y

so that W̃ \ fy1
x Ò    Ò y

nx
n g = ; and a neighborhood H of x so that DX \ H = fxg. Then

(H 
 W̃) \ DZ = ; and again (xÒ y) is not a cluster point of DZ.

DEFINITION 2.3. Let Z be a resolution of X at each point x 2 X into Yx by the mapping
fx. Let Bd(fxg ð Yx) be the boundary of fxg ð Yx in Z, and let ôx: fxg ð Yx ! Yx be the
projection map. The subset Bd(Yx) = ôx

�
Bd(fxg ð Yx)

�
is called the boundary of Yx.

Therefore, y 2 Bd(Yx) if and only if for every neighborhood Ux of x and for every
neighborhood Wy of y, we have Ux \ f�1

x (Wy) 6= ; [3].

LEMMA 2.4. Let Z be a resolution for X. Suppose that for each x 2 X either
Bd(Yx) = fbxg or Bd(Yx) = ;. Let Ω be the set of x 2 X for which the boundary is not
empty. Suppose that for every neighborhood Ux of x and every neighborhood Wbx of bx,�
Ux \ f�1

x (Wbx )
�
[ fxg is an open set. Then Ω is homeomorphic to a closed subspace of

Z.
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PROOF. Let ΩZ = f(xÒ bx) : x 2 Ωg. Let (xÒ yx) 2 Z � ΩZ. Either x 62 Ω, hence
Bd(Yx) = ;, or x 2 Ω and yx 6= bx. In either case there are neighborhoods Ux and Wyx

such that Ux \ f�1
x (Wyx ) = ;. Thus (xÒ y) 2 Ux 
 Wyx = fxg ð Wyx � Z � ΩZ.

The restriction f of the projection ô: Z ! X to ΩZ is a continuous bijective map onto
Ω with inverse

f�1(x): Ω ! ΩZÒ x 7! (xÒ bx)

Let G = (Ux 
 Wy) \ΩZ be a basic open set. Then

f (G) =
(

(Ux \ f�1
x (Wy) \ Ω) [ fxg if bx 2 Wy (hence x 2 Ω)

Ux \ f�1
x (Wy) \ Ω if bx 62 Wy

in either case f (G) is open in Ω.

COROLLARY 2.5. If for each resolved point x, Bd(Yx) = fbxg and for every neigh-
borhoods Ux and Wbx of x and bx the set

�
Ux \ f�1

x (Wbx )
�
[ fxg is open, then X is

homeomorphic to a closed subspace of Z. In particular, if Z is a D-space then X is a
D-space.

COROLLARY 2.6. Assume that we resolve only isolated points of X. If Z is a D-space
then X is a D-space.

PROOF. Let IX be the set of isolated points of X; then Bd(Yx) is empty whenever x is
in IX. Thus X � IX = Ω is a D-space. The result follows from the following proposition.

PROPOSITION 2.7. If X = X1 [ X2, with X1 and X2 D-spaces and X1 closed, then X is
a D-space.

With less effort, one can show that the resolution of a Lindelöf space X into compact
spaces is always Lindelöf; the proof is a simple application of Lemma 2.1. However,
there is no analogue to the following result for Lindelöf spaces.

THEOREM 2.8. The resolution Z of a space X at each point x into a space Yx is a
D-space if and only if

Sn
fxgðBd(Yx)

o
is a D-space and for each x 2 X, Yx is a D-space.

PROOF. Let Ω = fx 2 X : Bd(Yx) 6= ;g and let F: Z ! TZ be a neighborhood
assignment for Z. For each x 2 Ω and bx 2 Bd(Yx) we choose a basic neighborhood
Ux 
 Wbx such that (xÒ bx) 2 Ux 
 Wbx � F(xÒ bx). Let A =

Sn
fxg ð Bd(Yx)

o
. Define

ΓA: A ! TA by ΓA(xÒ bx) = (Ux
Wbx )\A. Since A is a D-space, there is a closed discrete
set D̄A � A such that A =

S
fΓA(d̄) : d̄ 2 D̄Ag. We note that D̄A is indeed closed in Z

since A is a closed subset. To simplify our notation, we let
í =

S
ff�1

d (Wbd ) \Ud : (dÒ bd) 2 D̄Ag,
W̃d =

S
fWbd : (dÒ bd) 2 D̄Ag, and

ô: Z ! X be the projection map.
Thus Z �

S
fUd 
 Wbd : (dÒ bd) 2 D̄Ag is equal to

[
n
fdg ð (Yd � W̃) : d 2 ô(D̄A)� í

o
[
[n

fx0g ð Yx0 : x0 2 X �
�
í [ ô(D̄A)

�o

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For each d 2 ô(D̄A)� í we let Bd = fdg ð (Yd � W̃d). Define

Γd: Bd ! TBd Ò (dÒ y) 7! Bd \ F(dÒ y)

and let Sd � Bd be a closed discrete set such that Bd =
S
fΓd(s) : s 2 Sdg. Finally, we let

S̃ =
S
fSd : d 2 ô(D̄A)� íg. Clearly,

B =
[
fBd : d 2 ô(D̄A)� íg �

[
fF(s) : s 2 S̃g

Thus it remains to cover the subset of Z given by

T =
[n

fx0g ð Yx0 : x0 2 X �
�
í [ ô(D̄A)

�o


For this purpose we note that

X �
�
í [ ô(D̄A)

�
� X � Ω = fx 2 X : Bd(Yx) = ;g

For each a 2 X �
�
í [ ô(D̄A)

�
we define

Γa: fag ð Ya ! TfagðYa
by (aÒ y) 7! F(aÒ y) \ fag ð Ya

Let Ra be a closed discrete subset of fag ð Ya such that

fag ð Ya =
[
fΓa(r) : r 2 Rag

Put R̃ =
Sn

Ra : a 2 X �
�
í [ ô(D̄A)

�o
. Clearly, T ² [fF(r) : r 2 R̃g.

Let D = D̄A [ S̃ [ R̃. We shall prove that D has no cluster points, hence D is a closed
discrete set with Z =

S
F(D).

Let (xÒ y) be an arbitrary point in Z. We divide the proof into two cases.

CASE 1. x 62 í [ ô(D̄A).
In this case x 2 X�

�
í [ ô(D̄A)

�
and hence (xÒ y) 2 T. As we noted before, x must be

in X�Ω and hence Bd(Yx) is empty. Therefore there are open sets Gx and Vy containing x
and y such that Gx\ f�1

x (Vy) = ;. In other words, (xÒ y) 2 Gx
Vy = fxgðVy. Since each
element of D̄A [ S̃ is of the form (dÒ ã) for some d 2 Ω, the open neighborhood Gx 
 Vy

does not intersect D̄A [ S̃. Thus Gx 
Vy intersects at most R̃. Since Gx 
Vy � fxgð Yx,
we have (Gx 
Vy)\ R̃ = (Gx 
Vy)\Rx. But Rx has no cluster points in Z, hence there is
an open set H containing (xÒ y) such that H\ (Gx
Vy)\Rx is at most f(xÒ y)g. It follows
that (xÒ y) is not a cluster point of D.

CASE 2. x 2 í [ ô(D̄A).
If x is in í then x 2 f�1

d (Wbd ) \ Ud for some (dÒ bd) 2 D̄A, thus

(xÒ y) 2 Ud 
 Wbd = fdg ð Wbd [
[
ffx0g ð Yx0 : x0 2 f�1

d (Wbd ) \ Ubdg

From the definitions of B and T we obtain, (Ud 
 Wbd ) \ (B [ T) = ;. Since S̃ � B and
R̃ � T we have (Ud 
Wbd )\ (S̃[ R̃) = ;. Therefore (Ud 
Wbd )\D = (Ud 
Wbd )\ D̄A.
Now the result follows from the fact that D̄A is a closed discrete subset of Z.
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Therefore we may assume x = d 2 ô(D̄A)� í. Let us divide the rest of the proof into
two sub-cases.

(i) y 2 Bd(Yd): then (xÒ y) 2 A and (xÒ y) = (dÒ y) 2 Ud0 
 Wbd0
. But if d 6= d0 then

(dÒ y) 2
Sn
fx0g ð Yx0 : x0 2 Ud0 \ f�1

d0 (Wbd0
)
o

and hence x 2 Ud0 \ f�1
d0 (Wbd0

) � í which
contradicts x 2 ô(D̄A) � í. Therefore (xÒ y) = (dÒ y) 2 Ud 
 Wbd and the rest of the
argument is exactly the same as the one used in the previous paragraph.

(ii) y 62 Bd(Yd): we choose a neighborhood of (xÒ y) = (dÒ y) of the form (Gd 
 Vy) =
fdg ð Vy � fdg ð Yd i.e., Gd \ f�1

d (Vy) = ;.
The open neighborhood (Gd
Vy) does not intersect D̄A for: if (ãÒ å) 2 D̄A\(Gd
Vy),

then ã = d and å = bd for some bd 2 Bd(Yd) and Gd \ f�1
d (Vy) would be non empty

since bd 2 Vy.
The neighborhood (Gd 
 Vy) does not intersect R̃ for: if (dÒ ç) 2 (Gd 
 Vy) \ R̃, then

(dÒ ç) 2 R̃ � T would imply d 2 X �
�
í [ ô(D̄A)

�
.

Therefore (Gd 
 Vy) \D = (Gd 
 Vy) \ S̃ = (Gd 
 Vy) \ Sd, and the final conclusion
follows from the fact that Sd is a closed discrete subset of Z.

For the converse, we observe that both fxg ð Yx and
Sn
fxg ð Bd(Yx)

o
are closed in

Z; hence they are D-spaces.
Resolutions of each point into an arbitrary space by constant mappings are important

and they are the source of several famous spaces [3].

COROLLARY 2.9. Let Z be a resolution for X by constant mappings. Then Z is a
D-space if and only if X is a D-space and for each x, Yx is a D-space.

PROOF. Suppose that fx(y) = bx. If IX is the set of isolated points of X, then by
Lemma 2.4

X � IX ' f(xÒ bx) : x 2 X � IXg =
[
fxg ð Bd(Yx)

The result follows from Proposition 2.7 and Theorem 2.8.

COROLLARY 2.10. Assume that we resolve only isolated points of X. Then Z is a
D-space if and only if X is a D-space and for each x, Yx is a D-space.

PROOF. The resolution is independent of the mapping fx since we resolve only isolated
points.

EXAMPLE. The resolution of a Lindelöf space X at each point x into a Lindelöf space
Yx need not be Lindelöf even if

S
fxg ð Bd(Yx) is Lindelöf.

Let X = (0Ò 1) regarded as a subspace of the Sorgenfrey line. We observe that a
resolution Z is discrete if and only if each Yx is discrete and has empty boundary.
For each x 2 X, choose an integer nx large enough so that (x � 1

nx
Ò x + 1

nx
) ² X. Let

Yx = fx + 1
nx+i : i = 0Ò 1Ò   g.

Let I0 = (0Ò x � 1
nx

) [ [x + 1
nx
Ò 1), and for k ½ 1 we let

Ik =
�
x �

1
nx + k � 1

Ò x �
1

nx + k

�
[
�
x +

1
nx + k

Ò x +
1

nx + k � 1

�

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Therefore we have a sequence fIkg of pair wise disjoint open sets with [Ik = X � fxg.

Define fx: X�fxg ! Yx by fx(Ik) = x+ 1
nx+k . Clearly fx is continuous. Let y = x+ 1

nx+k 2

Yx. Choose èk small enough so that Ik\[x�èkÒ x+èk) = ;. Thus f�1
x (fyg)\[x�èkÒ x+èk) = ;

and y 62 Bd(Yx). By the above remark Z is discrete.

We note that, if Z is Lindelöf then the set of x 2 X for which the boundary is empty
need not be countable:

Let X be the set of ordinals � °1, the first uncountable ordinal, and let Y°1 be a one
point space. For each x 6= °1 we let fx: X � x ! X � x be the identity map. Clearly Z is
Lindelöf and the boundary is not empty only if x = °1.

We say that a subset Y of a space X is countably located in X if every subset F of Y
that is closed in X is countable [2].

PROPOSITION 2.11. Let Ω be the set of x in X for which the boundary is not empty,
and assume that for each x 2 Ω the space Yx is compact. The resolution Z of X is Lindelöf
if and only if

1. Each Yx is Lindelöf
2.

S
fxg ð Bd(Yx) is Lindelöf

3. (X � Ω) is countably located in X.

PROOF. If Z is Lindelöf, then certainly
S
fxg ð Bd(Yx) and fxg ð Yx are Lindelöf.

Suppose that (X � Ω) is not countably located in X. There is an uncountable closed set
F in X such that Ω ² X � F. For each x 2 Ω, let Ux be a neighborhood of x such that
Ux ² X � F. Let U1 = fUx 
 Yx : x 2 Ωg. The set T = (X �

S
Ux) is uncountable and

Z �
[
fUx 
 Yx : x 2 Ωg =

[n
fx0g ð Yx0 : x0 2 T

o


Since T � (X � Ω), we can choose for each x 2 T and each yx 2 Yx neighborhoods Vyx
x

and Wyx such that Vyx
x \ f�1

x (Wyx ) = ;. Let Ux = fVyx
x 
Wyxg. Clearly U1 [fUx : x 2 Tg

is an open cover of Z which has no countable subcover.

Let U be an cover for Z. For each x 2 Ω, there is a neighborhood Ux of x such that
Ux 
 Yx is covered by finitely many elements of U. Since

S
fxg ð Bd(Yx) is Lindelöf,

the open cover fUx 
 Yx : x 2 Ωg has a countable subcover fUxi 
 Yxi : i = 1Ò   g.
Therefore,

S
fxg ð Bd(Yx) is covered by countably many elements of U and, at most, it

remains to cover [²
fx0g ð Yx0 : x0 2 X �

[
Uxi

¦


Since X�Ω is countably located, (X�
S

Uxi ) is countable. Thus, for each x 2 (X�
S

Uxi )
we cover fxg ð Yx by countably many elements of U. It follows that Z is Lindelöf.
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