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THE DISTRIBUTION OF WASTED SPACES IN
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Abstract

We consider the M/M/oo queue with m primary servers and infinitely many secondary
servers. All the servers are numbered and ordered. An arriving customer takes the lowest
available server. We define the wasted spaces as the difference between the highest
numbered occupied server and the total number of occupied servers. Letting p = Ao/u
be the ratio of arrival to service rates, we study the probability distribution of the wasted
spaces asymptotically for p — co. We also give some numerical results and the tail
behavior for p = O(1).
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1. Introduction

We consider the following stochastic model. Near a restaurant there are m primary parking
spaces. They are numbered and ordered; the one with rank 1 is closest to the restaurant.
Suppose that across the street there are a large number of additional spaces, which we take to be
infinite. These are also numbered and ordered. We assume the following: (i) customers arrive
according to a Poisson process with rate Ag, (ii) the amount of time that a customer occupies
a given parking space is exponentially distributed with mean 1/u, and (iii) each arriving car
parks in the lowest-numbered available space.

This model has many applications, including dynamic storage allocation and the fragmen-
tation of computer memory. In the context of queueing theory it is referred to as an M/M/oo
queue with ranked servers. It has been studied by many authors including Kosten [8]; Coffman
et al. [5], and Newell [9]. In particular, Coffman et al. solved for the steady-state probability
distribution of the highest ranked occupied server (max S, if we define S to be the set of occupied
servers) using generating functions. However, the solution is given in the form of an alternating
sum and it is not easy to understand the solution’s qualitative behavior.

Here we are interested in the probability distribution of the wasted spaces W, which are
defined as the difference between the number of largest occupied spaces (max S) and the total
number of occupied spaces (|.S]). Coffman and Leighton [2] gave an approximation for the mean
wasted space using a simple probabilistic proof, and Aldous [1] used more refined probabilistic
arguments to obtain a better approximation. In [1] the mean wasted space was shown to be
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E[W] ~ /2ploglog p, p — oo, and the distribution of max S follows a double exponential
(or extreme value) distribution in this limit. More recently, Knessl obtained detailed asymptotic
results for p — oo, first [6] for the distribution of max S, and later [7] for the joint distribution
of the numbers of occupied primary and secondary servers.

In [11] we showed that the solution for the joint distribution can be obtained using more
elementary methods, by solving the basic difference equation using separation of variables. In
this paper we obtain the probability distribution of the wasted spaces using the results in [7]
and evaluating asymptotically certain sums and integrals.

Related work includes Preater [10], who gave a new probabilistic derivation for the distribu-
tion of max S, by reducing the problem to the solution of a random difference equation. Similar
models with various service disciplines and storage policies have been studied in [3] and [4].
In [4] precise estimates were given for the mean wasted spaces in ranked server M/M/1 models
under the first-in—first-out (FIFO) and processor sharing (PS) service disciplines. In [3] some
alternate storage policies were considered, where an arrival does not necessarily take the lowest
ranked server. These lead to more tractable mathematical models, which provide upper and
lower bounds for the more difficult FIFO and PS M/M/1 models.

The paper is organized as follows. In Section 2 we summarize the main results. The deriva-
tions are sketched in Section 3. In Section 4 we include numerical studies and comparisons.

2. Summary of results

We let Ni(¢) and N;(¢) respectively denote the number of primary and secondary servers
occupied at time ¢. The joint steady-state distribution function is

a(k,r) =x(k,rsm) = lim Pr(N1(1) =k, Na) =7r],  0<k<m,r=0.
—> 00

Let p = Ao/ be the traffic intensity. In [7] and [11] we obtained the integral representation

nlk,r) = _'pkme Tz 4 r) Gr(2)

- ———dg, 2.1
rlk! 2mi Jp, GGz —1)
where Gy is the polynomial
Gi(z) = Gi(z; p)
B Xk: <k>p_L I'(L-2)
=0 L ['(—z)
k' 1
= —-— [ a0 (2.2)
pr2mi Je

Here I'(+) is the gamma function, the contour C is a small loop about the origin in the complex
t-plane, and the contour Br is the vertical Bromwich contour in the z-plane. We can take Br to
be the imaginary axis for r > 1 and, for r = 0, we replace Br by Br, which goes along the
imaginary axis with an indentation to the right of z = 0.

The probability distribution of wasted space W can be written in terms of 7 as

Pr[W =01 =) 7(j.0: ). 2.3)
j=0
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Pr[W=L]=Z(7T(j,0;L+j)—JT(j,0;L+j—1)), L>1 2.4
j=0

We also have the alternate forms

PriW < L1=) 7(j.0; L+ ) (2.5)
j=0
and
© /i
Pr[W > L] = Z(’#e—f’ —7(j,0; L+ j)>. (2.6)
=

The last expression will be useful in estimating the right tail of the distribution. In some cases
7 will be very close to a Poisson distribution and it will prove essential to estimate carefully
the summand in (2.6), which measures the deviation from this distribution.

Using the integral representation in (2.1) and the asymptotic results in [7], we obtain
asymptotic results for the probability distribution of wasted spaces, as summarized below.

Theorem 2.1. For p — 0o and ) = /2 loglog p, the distribution of wasted spaces, Pr[W =
L], has the following asymptotic behaviors.

(i) For L =0,
V2
Pr[W = 0] ~ . 2.7
'l ] Jplog py/loglog p @7
(ii) For L = \/pA(1 =U)and -1 < U <1,
o 1 TW+1D _l 2.0
Pr[W = L] NeET; —(AA)U p|: 2A U }, (2.8)

where A = 1/(23/27).
(iii) For L = \/p(21 4+ Ay) and A, = O(1),

log1 A «/V2 2
PrW = L]~ —2 08P exp[—)\A* — —}/ expl:——i| dE. (2.9)
2r/2plog p 4 o0 2

(iv) For L = p*¢ and ¢ = 0O(1),

Pr[W = L] ~ L exp §—3 /00 e’ du | exp —1p1/3§2 (2.10)
8/ pl/0 3 Ry 1 . .

(V) ForL=vpandv = O(1),

Pr[W = L] ~

1 24v—+4+)2 p2\ T4
1 + — eP‘P(U)7
4/mp  JA4+v2 -2

p(v) = -2+Vv2+ —vlog<‘ll+—+;)
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We can simplify (2.8) in two special cases. If L = ,/o(A + Ay) with Ay = O(1),
corresponding to U = O(A~!), we obtain the Gaussian limit law:

1 A2 L
Pr[W=L]~ exp[——1i|, A = — —/2loglog p.
J2mp 2 P
If, on the other hand, U — 1 with 1 — U = A’/A? = O(172), from (2.8) we obtain
Pr[W = L] ~ 2 e A = L\/Zloglog,o (2.12)
Jplogpy/2Toglogp ~ N/2

On this scale, the distribution grows exponentially. Note that (2.7) is a special case of (2.8)
(with U = 1) and (2.12) (with A’ = 0), but we wanted to explicitly display the probability of
having zero wasted space.

In (2.7)—~(2.9) the probability i is, up to some logarithmic factors, roughly O (p~!'/?). Note
that exp[—A2U?/2] = (log p)~ U We can view 0 < U < 1 in (2.8) as the left tail of the
distribution and —1 < U < 0 as the ‘near-right’ tail. In (2.10) and (2.11) the distribution is
exponentially small in p'/3 and p, respectively, and we call these the right tail and the far-
right tail. It can be easily shown that (2.8) and (2.9) match in the intermediate limit where
U] —land Ay = —A — AU — —o0, that (2.9) and (2.10) match as A, — +ocand ¢ — 0
(¢ = p~ 21+ A,)), and that (2.10) matches to (2.11) as { — oo and v — 0(v = p~1/3¢).

We will also show that, for a fixed p and L — oo, we have
oLt

-2
L ’, (2.13)

Pr[W =L] ~Pr[W > L] ~

This gives the tail behavior for moderate traffic intensities. In Section 3 we will also establish
the asymptotic matching of (2.13) as p — oo with (2.11)asv = L/p — o0.

3. Derivations

Knessl [6], [7] gave detailed asymptotic results for G (z) and  (k, r; m) for p — oo and all
possible ranges of k, r, and m. Here we use these results, settingr = 0,k = j,andm = L+ j,
to asymptotically evaluate the sums in (2.3)—(2.6). We will ultimately get different expansions
for four different ranges of L, which will lead to Theorem 2.1. When using (2.3)—(2.6), we
need to determine where the summands (e.g. 7 (j, 0; j) in (2.3)) are maximal as functions of
j for p — oo. This will also depend on the size of L with respect to p. We first consider the
case in which L = 0.

When L = 0, (2.1) and (2.3) combine to give the integral representation.

T@e
PriW = 01= Zz;n/B G(z—l)

3 T@p !
sz /B 6,0 dz. (3.1

The contour Br/,_ is obtained by shifting Br to the left by one unit in the complex z-plane.
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Using the asymptotic results for Gy in [6] and evaluating the integral(s) in (3.1) for p — o0
and various ranges of j, we find that the summand is concentrated where j = o + O(,/p).
Then approximating the sum over j by an integral over a = (j — p)/,/p we obtain

00 2
Pr[W = 0] ~ / exp[—%}pm/z% do. (3.2)

Here A(w) = —(d/dz) D;(—0)|;=z0(«)> Where Dy is the parabolic cylinder function of index z
and z = zo(«) is the smallest positive root of D, (—a).

The integral in (3.2) still contains the large parameter p and the integrand varies algebraically
with p (we note that, away from the range j = p + O(,/p), the summand in (3.1) is exponen-
tially small). We can therefore further simplify (3.2). Since zg > 0, the factor p—20/2 is largest
where zq is smallest, and this occurs for « — oo. In this limit the maximal root of D, (—a)
satisfies

o o?
zO(a)NEexp 5| o — 0.

For o — 00, we have the asymptotic expansion

2 2
D,(—a) ~ (—a)* exp[—%} + l:{i_Z) exp[%}azl, o — 00.

The expansion for zo(«) follows from the above, as I'(—z) ~ —1/z for z — 0. Then it follows
that A(a) ~ (V27 /o) exp[a2/4] and (3.2) becomes

* o? z00
Pr[W = 0] ~ —exp| —— | exp| ——— | d«
—oo A27p 2 2

0o a 0[2 aZ
~/ exp| —— | exp| —Aab exp| —— | | de, 6 =logp, (3.3)
—o00 A 27p 2 2

where A = 1/(2+/2m). Setting

log(+/210g0) + w
= /2log6 )
* gt + TTog 0

and using do = dw/+/21og8, (3.3) becomes

Pr[W = 0] ~ “?exp[—Ae ] dw. (3.4)

2 o0
—_— A
0./2plogb /,oo ¢

The integral is equal to 1 and we thus obtain (2.7), since & = log p. It is interesting to note that
the integrand in (3.4) is a double exponential, which occurs as a limiting distribution of max §
(see [1] and [6]).

For L > 1, we rewrite (2.4) as

Pr[W = L] ZZ(JT(j,O;L-i-j) —n(j+1,0,L+j)—m(0,0;L—1). 3.5)
Jj=0
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It proves easier to estimate the summand in (3.5), rather than the summand in (2.4). From (2.1)
we obtain the following integral representation:

7(j,0: L+j)—n(+1,0;L+))

_ L+ D! ﬁ/ P T(@)(Gj(2) — (p/(G + D)G j+1(2))
J' 27t Jpr, Gr+j(@GLyj(z—1)

dz.  (3.6)

Now we scale L = A,/p = O(,/p). By using results in [7] we conclude that the right-hand
side of (3.6) is again concentrated in the range j = p + O(,/p) and that the integral can be
approximated by parabolic cylinder functions. But, when L = O(,/p), A = L/./p appears
explicitly in the arguments of these functions and, thus, affects the location of the minimal root.
From [7] we obtain, again setting « = (j — 0)/./P,

7(j,0, L+ j)—7n(j+ 1,0, L+j)
(L+j) 1 [ A? oﬂ}
~ exp

= Jr Ao - —

il ptyp 2 4
5 T'(20)p~%/2((20//P) Dzp—1(—) + (1 — p/(j + 1)) Dy (—))
Dz()fl(_a — A)(—=(d/dz) D;(—a — A)'Z:ZQ((X,A)) .

Now zp = zo(«, A) is the smallest positive root of the parabolic cylinder function D, (—a — A).
Using Stirling’s formula in the form

(L + j)! A? _
T eteMew| | =ptayh L= AP,

and also noting that 1 — p/(j + 1) ~ a/,/p, we obtain

priw = £~ 3 S/ TG00 0 oDy () + Dy (—a)
j=0 1Y DZO—I(_a - A)(_(d/dZ)Dz(_a _ A)|z:ZO(a’A)) .

Here we ignored (0, 0; L — 1) in (3.5), since it is exponentially small (in fact, it is equal to
e~ ). Again, approximating the sum by an integral over « and using the identity

20Dzy—1(—a) + a Dy (—a) = —Dyy41(—0),

we are led to

Pe[W = L] ~ /OO exp[—a? /4] T'(z0)p~*/*(=Dzy41(—a))

d
w VP Dyi(—a— A)(—(d/d2)Do(—a — Moz "(‘3 )

Note that, when A = 0, (3.7) reduces to (3.2). Again, in view of the factor ,0’10/ 2 we can
simplify the integrand further and obtain a more explicit result.
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Setting B = « + A we now have zo(8) ~ (8/~/27) exp[—p?/2] and
V2r [ﬂz} =

Dyy—1(=p) ~ I

——¢X 3.8
—z0+ 1) P .8

4
— A 2
D.yi1(—B 4+ A) ~ (A — B)o+! exp[_¥]

V2 (B—A)? -2
M vE— exp[ 2 }(,3 -NTTE (39

2
\/;_nexp[%]. (3.10)

For zg — 0, we furthermore use I'(—z9 — 1) = I'(—z0)/(—z0 — 1) ~ —T'(—z0) ~ 1/z0
and I'(zg) = '(zo + 1)/z0 ~ 1/z0, so that the first term on the right-hand side of (3.9) is
asymptotically larger than the second term. Thus, using (3.8)—(3.10), (3.7) simplifies to

d
—d—ZDz(—ﬁ) | z=z0(8) ™

00 _ 2
Pr[W = L] ~ ﬁ p 2B — A) exp[—%] dg. (3.11)

Note that this approximation assumes that A = O (1) and that 8 is large. We now evaluate
(3.11) in various limits and show that the major contribution indeed comes from large values
of B.

We replace zg in (3.11) by its asymptotic expansion zg ~ (8/+/27) exp[—p2/2], and set

B=xr+o, A=x(1-U), and A= .2loglogp =,/2logé.

Then, in terms of ¢ and U, (3.11) becomes

oo 2
Pr[W =L]~ ﬁ (o +21U) exp[—@} exp[—Ake_)‘Q] do. 3.12)

For A — 00, the maximum of the integrand occurs when —1o = log((AU + 0)/(AA?)). If
we scale o as o = —(1/A) log(U/(AX)) + v/X, (3.12) becomes

2772 U roo
expl:—)\zl]i|<%> f exp[—U (v + e ")]dv. (3.13)

—00

U
Pr[W =L]~
[ ] T
The integral evaluates to U ~UD(U). We thus obtain (2.8) for U > 0 if we write UT'(U) =
I'(U + 1). We can show that this expression remains valid for —1 < U < 0, using an initial
integration by parts in (3.11). However, the approximation in (2.8) leads to a singularity as

U | —1, which corresponds to L increasing past 21./p = 2,/p~/2loglog p. Thus, there
is a transition in the asymptotic behavior when the wasted space is approximately rwice its
(asymptotic) mean value.

To study this transition, we return to (3.11) and replace ,o_ZO/ Zin (3.11) by

2
exp[—AQﬂ exp[—%ﬂ,

and then integrate by parts using

— A 2 — A 2
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Then we let A = 21 + A, with A, = O(1), and let 8 = A + x with x = O(1). Thus, we
obtain

2
(A +x)? = 1)exp|:— <x - ﬁ) - %(2/\ + A*)ﬂ

A6 /"O
V2o oo 2

2
X exp|:—A(A + x) exp|:—)»x — %:H dx.

As A — o0, the last exponential factor behaves as a step function, since

x? I, x>0
—A(x —Ax — — ’ ’
exp|: ( +x)exp|: X 5 :H — 0. x<0.

Using 60 exp[—A2] = 1/ log p, the above integral asymptotically simplifies to

AX2 A2 [ A2
mexp —)\,A*—T ) exp| — )C—? dx.

From the above we obtain (2.9) if we change the integration variable x to %(A* — \/ZE ).

Next we consider the case in which L = O(p). The previous results applied where (roughly)
L = O0(,/p), and, on these scales, Pr[W = L] is (roughly) O(1/,/p). But now we are going
into the right tail of the distribution, where we can expect the probabilities to be very small. It
proves useful to use form (2.6) for Pr[W > L]. Knessl [7] estimated 7 (k, 7; m) when r = 0,
k=pX,and m = pXp. For Xg > 1 and X < 1, Knessl obtained

je_p \/Y
D RGO L+ )~
2ipy/Xo (1— X)(Xo— 1)
W(X, Xo) = -2+ X + Xo — X log X — X log Xo. (3.14)

explpW (X, Xo)],

Here we replace j by pX and L + j by pXg. Using (3.14) in (2.6) leads to

1 j 1 j L+j
P L]~ P vl = — /. 1
W= L jz_(:)znp L+j(1—j/p)((L+j>/p—1>exp[p (p’ o ﬂ G-19

The sum in (3.15) can be estimated by the discrete Laplace method, with the main contribution
coming from where W(j/p, (L + j)/p) is maximal in j, which occurs when j (L + j) = p?
or

. v v2 L
Jj=pl, where ¢o=—-—=+4+,/1+— and v=—.
2 4 P
We take v to be O(1). We can estimate (3.15) by approximating the summand for j =
P&« + O(/p) and approximating the sum by an integral. But, a quicker derivation is obtained
by using Stirling’s formula in reverse, in the form(s)
jefp

_ j
e"’(ﬁ) ~v2ﬂjp —,
j J!

) L+j L+ja—p
e Pelti (L) ~/2r (L + j)u.
L+ L+ )
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We use the above in (3.15) to obtain

& X L+2je=2p
P L 3.16
S ) 2 T (310

Here we also froze the factor (1 — j/p)((L + j)/p — 1) at the maximum. The sum in (3.16)
can be recognized as a modified Bessel function, since

o Y2l
—L
Y ——— =vtrey).
IN(L+D)!
=0
‘We thus obtain
Pr[W > L] ~ b e 2P 11 (2p). (3.17)

=2+ —1)
For L and p simultaneously large, with L/p = v = O(1), we have

v 1/4
IL(2p>~2—_( —) eP? ),

2
I/I(v)=\/v2+4—ulog<,/1+”z+§). (3.18)

Using (3.18) in (3.17), defining C = /1 + 4/v2, and noting that £, = v(C — 1)/2, we
obtain

N NG v
Pr[W > L] b7 0C 2T exp[p(vC - vlog(E(C + 1)) — 2>i|, (3.19)

where C = /1 + 4/v2. We define ¢ (v) and f(v) by

o) =vC — vlog(@) -2

=-2+V2+ —vlog<11—+1+2>

o) — V2 (C =D
4T (€ —2)J/C’

and note that ¢ (v) = ¥ (v) — 2. Then we can write

Pr(W=L]=Pr[W>L—1]—Pr[W > L]
~ f(v — >ep¢(v 1P _ £(v)er?™
P

~ f(v)e/@(v)(e*(ﬁ’(v) -1
~Pr[W > L](e=®™ —1).

Since ¢'(v) = —log(y/1 + v2/4 4 v/2), we obtain (2.11).
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Next we show that (2.9) cannot asymptotically match to (2.11). If we let v — 0 in (2.11)
and use ¢ (v) ~ —v? /4, we obtain

_ g SXpl=evi/AL /P _L_?
Pr[W = L] e = Lz exp[ 1 | (3.20)

However, if we let Ay — oo in (2.9) and then set A, = L/,/p — 2, we obtain

Pr[W = L] ~

log plogl L?
OENOBT0EP o [——] (3.21)

2./7p 4p

While the exponential factors in (3.20) and (3.21) agree, the algebraic factors do not. This
indicates that another scale is needed, which will correspond to L — 24.,/p > O(,/p) and
L K O(p).

To identify the new scale and obtain the corresponding expansion of Pr[W = L], we first
re-examine some of the results in [7]. There Knessl showed that, for r = 0,m = p + O(/p),
and k = p + O(/p),

_T(0) Dy(~a) exp[—a’/4] o2/

k, 0; 3.22
T S B D B o 22
where
o= k—p p="" p
N 7

and zo(B) is the minimum positive root of D,(—f), as before. In [7] Knessl also showed that,
for Xo =m/p > 1,

v s [l £
— 7 (k,0;m) ~ exp| —— | du
Kl 2m(Xo— Wv/Xo \Jw P12
x explp(—1+ X9 — Xolog Xo)]. (3.23)

If we expand (3.22) for 8 — o0, noting that zg — 0 with

B B> V2r  [B?
S T e |
2

2
Dyy(=a) ~ Do(—a) = exp[—%], Dyy—1(=B) ~ D_1(—=B) ~ «/Eexp[%],

and p~%0/2 ~ 1 — %zo log p, the right-hand side of (3.22) becomes

e G Bl S R

exp| —— ————exp|——| |, — 00, — — I.

e L2 2o P2 ,

Expanding the right-hand side of (3.23) for Xo — 1 and noting that Xo — 1 = 8/, /p yields

L[ “1q p ™ 3.24
ﬂ(/a exp[—71| u)exp[—7:|, B — o0, ;—> . (3.24)
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Now
ple™  expl—a?/2]
k! rp
so if (3.22) and (3.23) were to asymptotically match, (3.24) would need to agree with
1 2 2
il ng exp - exp —'8— ) B — oo, Z5 1, (3.25)
. /p 2 2 0

which is clearly not the case. However, comparing (3.24) and (3.25), we see that the expressions
are roughly of comparable magnitude when 8/./p = OB~ or B = O(p'/*). This suggests
the scale for the intermediate expansion that is needed between (3.22) (where 8 = O(1)) and
(3.23) (where 8 = O({/p)).

We start with the approximation

b F@D(—2) ., \expl—a®/4]
b 2m</3r+ D 1(=p)D-(—h)" dz) o o

which can be shown to hold for large 8 as long as 8 = o(,/p). Note that (3.22) is obtained
by locating the pole of the integrand in (3.26) in the right-hand half-plane that is closest to the
origin, and shifting Br to the right, past this pole. We can also close Br in the left-hand
half-plane, and write the integral as a residue series. In the left-hand half-plane there are poles
atz =0, —1, -2, ..., where I'(z) is singular. We thus obtain the alternate form

ee]

: D_j(—) P2 (=1)1\ expl—a?/4]
(e O (gDzl(—ﬂ)Dz(—ﬂ) T ) 7p

_ expl=e?/2] (/ ’ exp[_f] du)l
= SB[ gl -
o D_(~a)  plP(— 1)’)eXP o? /4]
, 3.27
+(Z§ D1 (—PD(—p) I N G20

where in the last expression we isolated the term with / = 0. Next we use

2
D_(—B) ~ B~ exp[ﬁ } Vo I=1, B — oo,

(I—=nr
B 2
ﬁw exp[—%] du ~ \/§<1 eX[i[/_,Bﬂ/Z])’ B — oo,
with which we can rewrite (3.27) in the form
L expl—a?/2]
7w (k,0; m) NerT;
_ exp[—p°/2] exp[—a?/2]
2rB P
— (V) expl—a? /4] exp[—$7/2]
+ (; i (-D I = 1! D_l(—ot)> 7o . (3.28)
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Now we let
D
o=7 =0,
and represent D_;(—«) as the integral
2 4 00 2
D () = SR o expl = v, 11 (3.29)
-0 J_, 2

Using (3.29) in (3.28) and evaluating explicitly the sum over /, we obtain

exp[—a?/2] o expl=p/2] [ expl—v?/2]
W N(k, O, m) 27‘[[3 Y 1+ <>('U T 05) dv. (330)

Note that the first term on the right-hand side of (3.28) becomes negligible compared to the sum.
This is the expression between (3.22) and (3.23) that we sought. As <> — 0 (corresponding to
B > p'/4), the right-hand side of (3.30) becomes the same as (3.24), which shows that (3.23)
and (3.30) match. For <> — oo, we have

/‘X’ exp[—v?/2] o ~ log<>ex [_01_2} logp,B_2 [_0‘_2:| (3.31)
o T+ Ot ) o P2 PN WS .

Using (3.30) and (3.31), we see that the result agrees with (3.25), which shows that (3.22) and
(3.30) match.
Now we use the new asymptotic result (3.30) to obtain (2.10) in Theorem 2.1. We replace

aby (j—p)//pand Bby (L +j—p)/./p,anduse A = L/,/p, to obtain

2\ expl—(L + j — p)?/2p)1/p
Pr[W>L]~Z LT —p)

X exp| —=|v———— dv
o 1+Ov 2 Nz
VPexpl—w?/21 T 1 2
/ T [— (w+ A) ]

X/OO e"? exp[—v?/2]
o 1+vypw+A)~?

j=0

dvdw. (3.32)

Here we set & = p>/2(L + j — p)~2 and approximated the sum over j by an integral. We
can simplify the double integral in (3.32) as follows, which will also identify the appropriate
scaling of L. We note that the various exponential factors in the integrand in (3.32) combine to
give

— e exp[_vg} exp[—%} eXp[— (w + %)2}
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Scaling w = —%A + y leads to

2 2 v
exp[—y~]exp[—v~/2]e?”
Pr[W > L] o exp[——]/ / Yt A2

—vA/2

% €
14+v/p(y +A/2)72

Furthermore, scaling v to be small, with v = zzr,o’l/ 6 and L large, with L = ,02/ 3{ (thus,
A = p'/or = 0(p'/9)), we see that

dvdy. (3.33)

AN 2
v\/ﬁ(y + E) ~4wc? and vLp ' =vA = we.

1/6

Then we can approximate y + %A by % p'/¢ and also have exp[—v?/2]e” ~ 1. Thus, from

(3.33), we obtain

1/6 @{/2 1
Pr[W>L]~—</ / exr;[erAW ; dzzrdy) exp[—zpl/%z] (3.34)

Upon evaluating the integral over y, and rewriting the integral over @ by using the substitution
@ = —1¢2 +2¢7u, from (3.34) we obtain

Pr(W > L] ~ L ey L2 3.35
r[>]4ﬁ§/§3/8uueXp——p §+§ (3.35)

To obtain Pr[W = L], we note that replacing L by L — 1 corresponds to replacing { by
¢ — p~2/3, and the dominant exponential factor in (3.35) has the asymptotic difference

1 _ 1
exp| =302 (¢ = p7 | —exp| =20
4 4
1 ¢
~ exp|:_£_lp1/3§.2i| (exp[—2p1/3] — 1)
L ysa| &
~ exp|:—4 ¢ 2,01/3
We thus obtain (2.10).

As the final step, we verify the asymptotic matching between (2.10) and the other scales.
For { — o0, we use fzoo u~le " du ~ z7'e™ with z = ¢3/8 in (3.35), thus obtaining

2 1 1 2 1 pv2
Pr[W > L] ~ —p!/° = ——p B = —— —— . 3.36
r[W > L] ﬁp 2 CXP[ 1P ¢ p 02 e (3.36)
Here we also used ¢ = p'/3v. Now consider (3.19). As v — 0, we have
2 2 v? 4
C~—, vC—-2~—, and ¢W)=——+00").
1% 4 4

Thus, (3.19) as v — 0 becomes the same as (3.36), which verifies the matching between the
ranges L = O(p2/3) and L = O(p). If, on the other hand, ¢ — 0 then

00 LU 3 1
/ ¢ du ~ —log<§—) ~ —logp,
§'3/8 u 8 2
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where we used ¢ = (24 4+ Ay)p /6. Thus, for ¢ — 0, (3.35) becomes

Pr[W = L] ~ 187 LA, 42002 (3.37)
(W > L]~ exp| —— . .
A m P T
Now exp[—kz] = (log ,o)_2 and the expansion of (2.9) as A, — oo is
loglog p Ai
Pr[lW=L]~———— —AA ——=. 3.38
W=~ s mplegp TP exp[ 3 (3.38)

To compute Pr[W = L] from (3.37), we note that replacing L by L — 1 corresponds to replacing
Ay by Ay — 1/,/p and, thus, backward differencing the negative of (3.37) asymptotically
corresponds to multiplying by exp[A/./p] — 1~ A/,/p. Also, 12 = 2loglog p and, hence,
A//p times (3.37) is the same as the expression in (3.38), so that (2.9) and (2.10) indeed match.

We examine very large values of L, which have L >> O (p). The argument leading to (3.19)
assumed that the summand in (3.15) had an interior maximum at j = p¢&, but ¢, — 0 (with
zx = O(1/v)) as v — oo. We re-examine (3.15) with the scaling L = p’t = 0(p?).
Approximating the summand in (3.15) for L/p — oo and j/L — 0 and again using Stirling’s
formula in reverse leads to

ol (S e ]
Pr[W > L] T (Z (j—1)!7>' (3.39)

Jj=1

Here we also used (L + j)! ~ L! L/ and ,02/L = 1/7. Note that (3.39) is similar to (3.16),
except that the factor ¢, in (3.16) must be replaced by j/p and taken inside the summation. For
¢y — 0, we have (1 — &)(v + &« — 1) ~ v = L/p. Evaluating the sum in (3.39) we conclude
that, for L = O(p?),
L
PHW > L] ~ ——e20el/7, (3.40)
(zL)L!

where L! can be further approximated by the Stirling formula. But, for v — oo, we have

1 1
PP = exp|:,o (—vlogv +v—-2+-+ 0<—2))}
v v
L 2
~ (%) ele2r exp[%} (3.41)

and C — 1 ~ 2/v? with which

fv) ~ LV—S/Z. (3.42)
J2mp
Combining (3.41) and (3.42) in (3.19) we obtain (3.40), with L! approximated by Stirling’s
formula. This shows that (3.19), and hence (2.11), remains valid for L = O(pz) (e v =
O(p)). In fact, it remains true for arbitrarily large L, since then Pr[W > L] is asymptotically
given by the j = 1 term in the sum in (3.39).
Finally, consider p fixed and L — co. We have (0, 0; L) = e~ " and, for j > 1, the results
in [7] show that
Io.je_p 1 6—2;0 ,OL+2/

-7 (j,0; L+ j)~ — .
i G DGO L @)

(3.43)
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Using (3.43) in (2.6), we see that the term with j = 1 is asymptotically dominant and we obtain

e 2 plt
PrflW>L]~——«— L — o0, p=0().
L (L+1
But the above is equivalent to (2.13), as now
Pr[W > L] ~Pr[W =L +1].

This completes the analysis.

4. Numerical results

In this section we compare the asymptotic results from Theorem 2.1 with the exact values.
To obtain the exact value of Pr[W = L], we use the sum for G (z) in (2.2) to rewrite (2.1) as

L+ 1
J! 27i

J .

- 7\ =2
r

X/I;V+p (Z)IZ<I> F( Z)

0
L+j
L+j\ Tl-2)
(X ()

L+j . -1
L+j\ Td—z+1
XZ( ! )p F(—z+1)> dz.

=0

7w(j,0; L+ j)=

We can close Bry in the left-hand half-plane where the gamma function has singularities at

z=0,—1,-2,-3,... and write the integral as a residue series:
L+ ) _
7n(j,0; L+ j) = (J—,J)P L

. Yo (o~ +n =)
X,;)( P) ZL_B, (L+j) -1 L+/ (L+]) —l(l—i—n)'

The term with n = 0 must be interpreted as a limiting case of the terms with n > 0. Isolating
this term leads to

7(j,0; L+ j)
L+ )
_ j!J) oL
L+j . -1
L+

(2 (7))

=0
] o (oA 4n—1)! )
n 4.1
;( ) LT () o101 n — DU (FH) 01 4 ) 4.1)
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We used MAPLE® to evaluate the sum in (4.1). The sum is an alternating sum and the
calculation must be done using many digits of precision, especially for larger values of p. We
used (4.1) in (2.5) and summed over j to obtain Pr[W < L], and then computed Pr[W = L]
from Pr[W < L] —Pr[W < L —1].

We denote the asymptotic results in (2.8), (2.9), (2.10), and (2.11) by

L=00p),
L= 0(p*?),

L ~2x/p,
and L = O(p),

respectively. Tables 1-4 display the numerical and asymptotic results for p = 40, 60, 80, and
100, respectively. We see that, for small L, L = O(A,/p) gives the best approximation, that
there is a middle range of L, where L = O (p*/?) is optimal, and that, for sufficiently large L,
L = O(p) gives the best approximation.

TaBLE 1: Numerical and asymptotic results for p = 40.

L  Exactvalue L=00/p) L~2x/p L=0(p*"? L=0(p)
0 6533x1072  5306x 1072 2396 x 1073 - -
1 7.124x1072  5828x 1072 3.176 x 1073 2.460 x 1073 -
2 7522x 1072 6285x 1072 4.112x 1073 7.401 x 1073 -
3 7723x1072  6.658 x 1072 5200 x 1073 1.328 x 1072 -
4 7732x1072  6931x1072 6422x 1073  1917x 1072  7.870 x 10!
5 7.566x 1072 7.094 x 1072 7748 x 1073 2.445x 1072  5.914 x 107!
6 7249x1072  7.145x 1072 9.131x 1073 2870 x 1072  4.571 x 10!
7 6.809%x 1072  7.088x 1072 1.051x1072 3.170 x 1072 3.590 x 107!
8 6279%1072 6931x1072 1.183x 1072 3337x 1072 2.842 x 107!
9 5689x1072 668 x 1072 1301 x 1072 3378 x 1072  2.257 x 107!
10 5.070x 1072  6.382x 1072 1.398x 1072  3.306x 1072  1.793 x 10!
11 4445x 1072  6.030 x 1072 1.469 x 1072 3.141 x 1072 1.420 x 107!
12 3.838x102  5656x1072 1508 x 1072 2906 x 102 1.121 x 10!
13 3265x1072  5285x1072 1515x1072  2.625x 1072  8.795 x 1072
15 2262x1072  4.655x 1072 1430 x 1072 2.007 x 1072 5.310 x 1072
20 7.120 x 1073 - 8471 x 1073 7392 x 1073 1.301 x 1072
25 1.624 x 1073 - 3.003x 1073 1.821x 1073  2.510 x 1073
30 2720 x 1074 - 6.642 x 1074 3.138 x 1074 3.743 x 1074
35 3.379 x 1073 - 9.635x 107> 3.867 x 1075 4.286 x 1073
40  3.142 x 107 - 9611 x107% 3451x107°% 3763 x 107
45 2207 x 1077 - 6.825 x 1077 2.245x 1077 2.539 x 1077
50 1.182 x 1078 - 3515x 1078 1.068 x 1078 1.321 x 10~8
51 6.376 x 107° - 1.870 x 1078 5.595x 10~°  7.096 x 10~°
52 3.404 x 107° - 9.824x107° 2.895x107° 3772 x107°
60 1.557 x 10711 - 3.634 x 10711 9526 x 10712 1.679 x 10~ !
70 7.661 x 10715 - 1.076 x 10714 2.464 x 10°15  8.092 x 10~13
80 1.495 x 10718 - 9.124 x 10719 1.850 x 1071  1.559 x 10~!8
90 1.223 x 10722 - 2217 x 1072 4.024 x 10724 1.264 x 10722
100 4.414 x 10727 - 1.544 x 10728 2533 x 1072  4.537 x 1077
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In Table 5 we show where the transitions occur for the various p. For each p, we give the value

of
AP = /py/2loglogp

and indicate the range of L where a given asymptotic approximation is optimal. Note that the
approximation in (2.9), where L ~ 2A,/p, is never optimal. For each p, the first transition

TaBLE 2: Numerical and asymptotic results for p = 60.

L  Exactvalue L=0@0/p) L~2x/p L=0(p* L=0(p)
0 4.812x1072 3756 x 1072 1.847 x 1073 - -
1 5253x1072  4.125x 1072 2346 x 1073 1.464 x 1073 -
2 5607 x 1072 4473 x 1072 2933 x 1073  4.545 x 1073 -
3 5.867x1072  4791x 1072 3611x1073 8421 x 1073 -
4 6.028x1072 5070 x 1072 4.375x 1073  1.260 x 1072 -
5 6.092x1072  5300x 1072 5218x 1073  1.671 x 1072 7712 x 107!
6 6.061 x1072 5477 x1072 6.126x 1073  2.048 x 1072  6.113 x 107!
7 5944 %1072 5596 x 1072 7.082x 1073 2371 x 1072 4.942 x 107!
8 5749 x 1072  5.656x 1072 8.060 x 1073 2.628 x 1072 4.045 x 107!
9 5488x 1072 5828x1072 9.031x103 2810x 1072  3.336 x 10!
10 5174 x 1072 5600 x 1072 9.965x 1073 2918 x 1072 2.762 x 10~
11 4820x 1072 5493 x 1072  1.083 x 1072 2954 x 1072  2.291 x 107!
12 4438x 1072 5341 x 1072 1.159x 1072 2923 x 1072 1.900 x 10!
13 4.041 x 1072 5.152x 1072 1221 x 1072 2.834x 1072 1.574 x 10~!
14 3.640 x 1072 4.935x 1072 1267 x 1072 2.699 x 1072 1.300 x 10!
15 3244 x 1072 4700 x 1072 1.295x 1072 2526 x 1072 1.071 x 10~!
16 2862 x 1072 4459 x 1072 1305x 1072 2328 x 1072  8.790 x 1072
20 1569 x 1072 5.828x 1072 1.158x 1072  1.458x 1072  3.800 x 1072
25 5995 x 1073 6.994x 1072 7201 x1073 6170 x 1073 1.171 x 1072
30 1.833x 1073 - 3.174 x 1073 2.000 x 1073 3.063 x 1073
35 4527 x 1074 - 1.013 x 1073 5087 x107%  6.733 x 1074
40 9.073 x 107 - 2405 x 1074 1.029 x 1074 1.237 x 1074
45  1.484 x 107 - 4363 x 1075 1.670 x 107> 1.895 x 107
50  1.989 x 107° - 6201 x 107©  2.186x 107  2.417 x 107°
55 2195 x 1077 - 7.029 x 1077 2.315x 1077 2571 x 1077
60 2.003 x 1078 - 6423 x 1078 1989 x 1078 2281 x 1078
65 1.519x107° - 4755 x 107 1.388x 1072  1.692 x 10~°
66 8.869 x 10710 - 2755 % 1072 7.946 x 10710 9.847 x 10~10
67 5.142 x 10710 - 1.583 x 1072 4513 x 10710 5689 x 10~10
68 2.960 x 10710 - 9.019 x 10710 2542 x 10710 3.264 x 10710
70 9.597 x 10~ - 2.856 x 10710 7.868 x 10~ 1.052 x 10710
80 2.254x 10713 - 5513x 10718 1360 x 10713 2412 x 10713
90 2.669 x 10716 - 4.626 x 10716 1.029 x 10716 2.812 x 10716
100 1.637 x 10719 - 1.687 x 10712 3411 x 10720 1.706 x 10~19
110 5.336 x 10723 - 2673 x 1072 4947 x 1072* 5521 x 10723
120 9.484 x 10727 - 1.840 x 10727 3.138 x 10728 9.758 x 10727
130 9.416 x 103! - 5.508 x 10732 8.698 x 10733 9.647 x 103!
140  5.346 x 10~ - 7.165 x 10737 1.053 x 10737 5.459 x 10~33
150 2.000 x 10739 - 4.050 x 107%2 5567 x 10~ 1.808 x 1073
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TaBLE 3: Numerical and asymptotic results for p = 80.

L Exactvalue L=0@0/p) L~2x/p L=0(p*? L=0(p)
0 3.887x1072 2968x 1072 1.537x 1073 - -
1 4232x1072 3249 x 1072 1.901 x 1073 1.009 x 1073 -
2 4530x1072 3521 x 1072 2322x 1073  3.188x 1073 -
3 4773x1072 3780 x 1072 2.804 x 1073 6.015 x 1073 -
4 4958 x 1072  4.021 x 1072 3345x 1073 9.175 x 1073 -
5 5083x1072  4237x 1072 3.945x 1073 1243 x 1072 9.188 x 107!
6 5.148x 1072  4.425x 1072 4597 x 1073 1559 x 1072  7.375 x 10!
7 5152x 1072 4580 x 1072 5294 x 1073 1.850 x 1072 6.050 x 107!
8 5.101x107%2  4.699x 1072 6.025x 1073 2106 x 1072 5.036 x 10!
9 499 x 1072 4781 x 1072 6.779x 1073 2319 x 1072 4.231 x 107!
10 4.845x 1072  4.824x 1072 7.537x 1073 2484 x 1072 3.577 x 10!
11 4.654x 1072  4.829x 1072 8284 x 1073 2598 x 1072  3.036 x 107!
12 4428 x 1072 4798 x 1072 9.000 x 1073 2.663 x 1072 2.582 x 10!
13 4175x 1072 4732x 1072 9.665x 1073 2.680 x 1072 2.197 x 107!
14 3903x 1072  4.636x 1072 1.026x 1072 2653 x 1072  1.869 x 10!
15 3.617x1072 4513 x 1072 1.077x 1072 2588 x 1072  1.588 x 107!
16 3324 x 1072  4367x 1072 1.117x 1072 2489 x 1072  1.347 x 10~!
17 3.030x 1072 4205x 1072 1.146 x 1072 2364 x 1072 1.140 x 107!
18 2740 x 1072 4.032x 1072 1.163x 1072 2218 x 1072  9.624 x 1072
20 2189 x 1072 3.675x 1072 1.157x 1072  1.888x 1072  6.790 x 1072
25 1.097 x 1072 3.041 x 1072 9403 x 1073 1.059 x 1072 2.651 x 1072
30 4.602x 1073 8445 x 1072 5841 x 1073  4.765x 1073 9.238 x 1073
35 1.630 x 1073 - 2.805x 1073 1.762x 1073  2.840 x 1073
40  4.902 x 104 - 1.056 x 1073 5430 x 10~%  7.648 x 1074
45 1256 x 1074 - 3.172 x 107* 1407 x 107*  1.798 x 10~*
50 2.752x 1073 - 7734 x 107°  3.084 x 1075  3.682 x 107
55 5.170 x 107° - 1.558 x 1073 5741 x 107  6.562 x 107°
60 8.352 x 1077 - 2629 x107%  9.102x 1077 1.017 x 107
65 1.163 x 1077 - 3.754 x 1077 1.232x 1077 1.371 x 1077
70 1.401 x 1078 - 4566 x 1078 1424 x 1078 1.609 x 1078
75  1.462 x 107° - 4741 x 1079 1.407 x 1072 1.646 x 107
80 1.325x 10°10 - 4209 x 10719 1,190 x 10710 1.467 x 10710
81 8.063 x 10~ - 2545 x 10710 7130 x 1071 8.900 x 10~!!
82 4.879 x 10711 - 1.529 x 10710 4243 x 10~ 5370 x 101!
83 2.936 x 10! - 9.131 x 10711 2510 x 107! 3.222 x 107!
90 7.193 x 10713 - 2075 x 10712 5344 x 10713 7.770 x 10713
100 2276 x 10~15 - 5475 x 10715 1290 x 10715 2.418 x 10713
110 4264 x 10718 - 7732 x 10718 1.675x 10718 4.476 x 10718
120  4.800 x 10~ - 5.845x 10721 1.170 x 10721 4.995 x 102!
130 3.295 x 1024 - 2365 x 1072 4396 x 1075 3.407 x 107
140 1.400 x 10~%7 - 5.123 x 10728 8.880 x 1072  1.440 x 10~27
150  3.734 x 103! - 5.939 x 10732 9.641 x 10733  3.827 x 1073!
160  6.340 x 1073 - 3.686 x 10730 5.623 x 10737 6478 x 107
170 6.949 x 1073 - 1.224 x 10740 1.761 x 10~ 7.082 x 10=%°
180 4.981 x 10743 - 2176 x 107% 2,962 x 10740 5.066 x 10~
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TaBLE 4: Numerical and asymptotic results for p = 100.

L Exactvalue L=0(yp) L~2\/p L =03 L=0(p)
0 3299x1072  2485x 1072 1334 x 1073 - -
1 3582x1072  2709x 1072 1.618x 1073  7.536 x 10~ -
2 3.834x1072 2930 x 1072 1.944 x 1073 2411 x 1073 -
3 4.052x 1072 3.145x 1072 2314 x 1073 4.605 x 1073 -
4 4232x 1072 3351 x 1072 2.727x 1073 7.112 x 1073 -
5 4371 x 1072 3542 x 1072 3.184 x 1073 9.764 x 1073 -
6 4469 x 1072 3717 x 1072 3.683 x 1073 1.242 x 1072 8.465 x 107!
7 4525x1072  3872x 1072 4220 x 1073 1.498 x 1072 7.006 x 10!
8 4.540 x 1072 4.005 x 1072 4790 x 1073 1.734 x 1072 5.890 x 101
9 4514x1072 4113x 1072 5386 x 1073 1.944 x 1072 5.005 x 10!
10 44511072 4196x 1072 5999 x 1073 2123 x 1072 4.284 x 10~}
11 4353x 1072 4251x 1072  6.620x 1073 2267 x 1072  3.686 x 10~}
12 4224 %1072 4278 x 1072 7.238 x 1073 2374 x 1072 3.182 x 10!
13 4.067 x 1072 4279 x 1072 7.839 x 1073 2.445 x 1072 2.752 x 107!
14 3887x1072  4254x 1072  8413x1073 2480 x 1072 2383 x 107!
15 3.689 x 1072 4204 x 1072 8.945x 1073 2.480 x 1072 2.063 x 101
16 3.476 x 1072 4132x 1072 9424 x 1073 2.450 x 1072 1.786 x 10!
17 3253x 1072 4.039x 1072  9.838x 1073  2392x 1072 1.544 x 101
18 3.024 x 1072 3.930 x 1072 1.018 x 102 2310 x 1072 1332 x 10!
19 2792 x 1072 3.808 x 1072 1.043 x 1072 2.208 x 1072 1.148 x 101
20 2562x 1072 3.675x 1072 1.060 x 1072 2,091 x 1072 9.868 x 1072
21 2335x 1072 3535x 1072 1.067 x 1072 1.961 x 1072 8.462 x 1072
22 2116 x 1072 3392 x 1072 1.064 x 1072 1.823 x 1072 7.237 x 1072
23 1.905 x 1072 3251 x 1072 1.052 x 1072 1.681 x 1072 6.171 x 1072
24 1705 x 1072 3.114x 1072 1.031 x 1072 1.538 x 1072 5.246 x 1072
25 1517 x 1072 2986 x 1072 1.001 x 1072 1.395 x 10~2 4.445 x 1072
30 7.738 x 1073 2718 x 1072 7.592 x 1073 7.688 x 1073 1.842 x 1072
35 3428 x 1073 - 4.652 x 1073 3580 x 1073 6.938 x 1073
40 1325x 1073 - 2323 x 1073 1.429 x 1073 2359 x 1073
45  4485x 1074 - 9.560 x 10~4 4.930 x 1074 7.205 x 1074
50 1328 x 1074 - 3.280 x 10™4 1.481 x 1074 1.972 x 1074
55 3.485x 107 - 9.502 x 1079 3.886 x 1079 4831 x 1075
60  8.058 x 1070 - 2355 x 1079 8.943 x 1076 1.058 x 1075
65  1.646 x 1070 - 5.046 x 1070 1.808 x 1070 2.069 x 1070
70 2979 x 1077 - 9.431 x 1077 3.217 x 1077 3.613 x 1077
75 4782 x 1078 - 1.546 x 1077 5.042 x 1078 5.639 x 1078
80  6.822 x 1079 - 2231 x 1078 6.968 x 1079 7.862 x 1079
85  8.665 x 10710 - 2838 x 1077 8497 x 10710 9799 x 10~10
90  9.812x 1011 - 3.185x 10710 9144 x 10711 1.092 x 10710
93 2515x 10711 - 8.072 x 10711 2261 x 10711 2777 x 10711
94 1.583 x 107! - 5058 x 10711 1405 x 10711 1744 x 10711
95 9.919 x 10712 - 3153 x 1071 8,689 x 10712 1,090 x 107!
96  6.188 x 10712 - 1956 x 10711 5346 x 10712 6.784 x 10712
100 8.962x 10713 - 2755x 10712 7200 x 10713 9743 x 10713
110 5252 x 10715 - 1446 x 10714 3536 x 10715 5614 x 10715
120 1.994 x 10717 - 4.602x 10717 1,044 x 10717 2,105 x 10717
130 4.952x 10720 - 8.884 x 10720 1877 x 10720 5180 x 10720
140 8.119x 10723 - 1.040 x 10722 2,055 x 10723 8.433 x 10723
150 8.874 x 10726 - 7387 x 10726 1369 x 10726 9.166 x 10720
160 6.525 x 1072 - 3.182x 1072 5549 x 10730 6711 x 1072
170 3.259 x 10732 - 8313x 10733 1369 x 10733 3.340 x 10732
180  1.116 x 10735 - 1317 x 10730 2,053 x 10737 1.140 x 10735
190 2.642 x 10739 - 1266 x 10740 1873 x 10741 2.693 x 10739
200 4366 x 10743 - 7380 x 10745 1,039 x 1074 4442 x 10743
210 5.080 x 10747 - 2610 x 1074 3504 x 10750 5161 x 10747
220 4.198 x 10751 - 5596 x 10754 7.180 x 10755 4.259 x 105!
230 2.484 x 1075 - 7279 x 10759 8942 x 10790 2517 x 10755
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TABLE 5.

pA/p L=00yp) L=0p") L=0(p)

40 10.22 0<L<10 11 <L <50 51 <L
60 13.01 0<L<13 14 <L <66 67 <L
80 15.38 0<L<15 16 <L <80 81 <L
100 17.48 0<L<I18 19<L <93 94 < L

TABLE 6.
0 P L where Pr[W = L] is maximal
40 6.32 4
60 7.75 5
80 8.94 7
100 10 8

occurs roughly at A,/p. The second transition (from L = 0(,02/ Hto L = O(p)) occurs
roughly at L = p, but the ratio of this transition point to p decreases slowly, which is consistent
with the fractional power law L = 0(p*/3).

The reason that L ~ 2A,/p is never optimal is as follows. We have 2A,/p = 0?3 when
o ~ 5038 and p?/3 exceeds 21 J/ponlyfor p > 5038. Thus, we would not expect to numerically
resolve these two scales for the moderate values of p considered here. For very large p, however,
it becomes problematic to evaluate the sum in (4.1).

In Table 6 we indicate the value of L where Pr[W = L] is maximal. We note that this value
of L is numerically slightly less than /o, while the asymptotic results predict that Pr[W = L]
should be largest at or near ,/p+/2Toglog p. Apparently, p = 100 is not large enough to see
the effects of the factor »/2Toglog p.

Tables 1-4 show that the asymptotic results for the scales L = 0(p*3)and L = O(p) are
reasonably accurate, but those for L = O(A,/p) and L ~ 21 ,/p lead to much larger errors. For
example, Table 4 shows that, for 0 < L < 18, the approximation for L = O(A,/p) is in error
by about 30% in the worst case. In contrast, when L > 94, the approximation for L = O (p)
has errors of at most 10%, which decreases to about 2% when L = 200 = 2p.

These error trends are consistent with the asymptotic analysis, which showed that, when
L = O(p), the next order term is smaller than the leading term by a factor of p~!. However,
the expansions on the scales L = O(A,/p) and L ~ 2A,/p have error terms that are either
O(1/A) or O(1/1?%), and are thus smaller than the leading term only by a factor of 1/ loglog p.
We revisit the calculations by noting that (3.2) has the error term

1 o0 o1 . ,TGzo+ 1D 1
_ _ = z0/2_ VT 7 -
Pr[W = 0] = N </_ exp|: 2 :|p 0 A@) da> <1 + 0R<\/ﬁ )) 4.2)

Here Or means that the error is ‘roughly’ O(1/,/p), possibly with some logarithmic factors.
It is only upon expanding (4.2) further that we obtain the much larger (O (1/loglog p)) error
terms. Similar comments apply to Pr[W = L] in (3.11). Thus, we would expect that a more
accurate approximation to Pr[W = 0] would result by using (4.2) rather than (2.7), but this is
of course at the expense of having a much more complicated approximation.
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We can recast the integral in (4.2) as follows. We recall that zo(«) satisfies D,(—«) = 0,
and differentiating this with respect to « yields

<3Dz(—a)
0z

>Z6(a) — D] (=) = 0. 4.3)

z=z0(@)

Here D’ is the derivative of the parabolic cylinder function with respect to its argument.
We change variables from o to w = zp(@) in (4.2). In view of (4.3) we have

— Do) (—a) = zp(a) A(a),

and then (4.2) becomes

Pr[W =0] ~ —
W=01~ "2 ), DrCa)

Here a(w) is the inverse function of w = zp(«), so that D,(—a(w)) = 0 and « satisfies:
a > o0asw — 0, > —oc0casw — o0y and o = 0 if w = 1. However, the numerical
evaluation of (4.4) is not trivial, as we must first compute «(w) numerically and then employ
an accurate quadrature scheme that accounts for the concentration of the integrand near w = 0,
which occurs since 6 = log p is large.

00 2
1 Me—ew/2 exp[_w] dw (4.4)
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