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ON THE REPRESENTATION OF MODULES BY 
SHEAVES OF FACTOR MODULES 

BY 

J. LAMBEK 
In memory of Jean-Marie Maranda 

Throughout this paper we consider associative rings with unity elements. In §1 
various results on the representation of rings by rings of sections of special rings 
are compared. In particular, it is shown that results enunciated by Dauns and 
Hofmann, Koh, and the present author may all be deduced from one statement, the 
proof of which appears in §3. 

In §2 some of the usual commutative ideal theory is extended to "symmetric" 
ideals in noncommutative rings. These are ideals A for which rsteA implies 
rts e A. 

In §3 we study modules MR with the property that m~10={r e R \ mr=0} is a 
symmetric ideal for each me M. We show that such a module may be represented 
by the module of sections of a sheaf whose stalks are factor modules of MR. The 
argument is adapted from [6, Appendix 1], which was itself an adaptation from 
Grothendieck [4, Theorem 1.3.7], 

1. Variations on a theme. A classical result by G. Birkhoff [1] asserts the follow­
ing. 

(A) Every ring R is a subdirect product of subdirectly irreducible rings. 
Actually he obtained such a result not just for rings, but for the objects of any 

algebraic category. Here we shall only be interested in rings and, later, in modules. 
To explain Birkhoff's theorem, we recall that a ring is called subdirectly irreducible 

if it has a smallest nonzero ideal. Let {0P\Pe 11} be the family of all those ideals 
Op for which i?/0P is subdirectly irreducible. (For the sake of comparison with other 
results, we make use of the index set II.) 

The intersection of this family is zero. In other words, if TTP : R ->• R/0P is the 
canonical surjection, and if f(P)=7rP(r) for all r e R and P e II, then the canonical 
mapping 

Pen 

is one-to-one. Note that f may be viewed as a function from II to the disjoint 
union of the sets R/0P. 

For commutative rings a much sharper theorem was proved by Grothendieck 
[4, Theorem 1.3.7]. 
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(B) Every commutative ring is isomorphic to the ring of sections of a sheaf of 
local rings. 

We shall explain what this means by and by. At the moment let us only point 
out that the local rings which appear as stalks of this sheaf are not factor rings of 
the represented ring R9 although they are epimorphic images in the category of 
rings. 

In [6, Appendix 1] a simplified version of (B) was presented. For the purpose of 
stating this in a neat form here, let us call a commutative ring R prime-torsion free 
if it contains a prime ideal P which contains all zero-divisors of R. We note that if 
P is a minimal prime ideal then R is usually called "primary". 

(C) Every commutative ring is isomorphic to the ring of sections of a sheaf of 
prime-torsion free rings. 

We shall now explain what this means with some indication of a proof. 
Let n be the set of all prime ideals of the commutative ring i?, and for each 

P e II put 
0P = {reR\3séPrs = 0}. 

Then again the canonical mapping r -> f is one-to-one. In fact, this would be true 
even if II was restricted to consist of maximal ideals only. However, we can say 
much more. 

Take the Stone-Zariski topology on II. It is also possible to topologize the dis­
joint union 

P e n 

in such a way that the stalks i?/0P are discrete and the functions r : II -> 2 are 
continuous. In particular, when f vanishes at a point, then it also vanishes on a 
neighborhood of that point. For reasons that need not concern us here, 2 is called 
a "sheaf". 

A continuous function/: II -> 2 such tha t / (P) e R/0P for all P e U is called a 
section. Not only are the r sections, but every section has this form. 

It seems desirable to generalize (B) and (C) to noncommutative rings. Similar 
results for noncommutative rings have been obtained by Dauns and Hofmann, 
Pierce, Koh, and the present author. We shall present and unify some of these 
results now. 

A ring is called biregular if every principal two-sided ideal is generated by a 
central idempotent. Dauns and Hofmann [2] proved the following. 

(D) Every biregular ring is isomorphic to the ring of sections of a sheaf of 
simple rings. 

On the other hand, in [6, Appendix 1] the following result is stated as an exercise. 
(E) Every ring is isomorphic to the ring of sections of a sheaf of rings of the 

form R/Op, where P ranges over the prime ideals of the center C of R and 

Op = {reR\ 3ceC-Prc = 0}. 

https://doi.org/10.4153/CMB-1971-065-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1971-065-1


1971] REPRESENTATION OF MODULES 361 

Clearly 0P is a proper ideal of R. We shall take this opportunity to deduce (D) 
from (E) by showing that 0P is a maximal ideal when R is biregular. 

Suppose r$0P, then rc=0 => ceP, for all ceC. Now (r) = (e), where e is a 
central idempotent, hence r(l — e) = 0, and s o l - e e P . Thus e £P , but (1 — e)e=0, 
hence 1 — e e 0P. Therefore 1 G 0 P + (e)=0P + (r), and so 0P is maximal, as was to be 
proved. 

Actually Dauns and Hofmann did not require their rings to have unity elements. 
However (E) may easily be adapted to rings without unity by considering only 
sections with compact support. 

Recently Koh [5] obtained the following result. 
(F) Every ring R without (nonzero) nilpotent elements is isomorphic to the 

ring of all sections of the sheaf of rings R/0P, where P ranges over all prime ideals 
of R9 and 

Op^lreRlr^O^P}. 

Since the class of rings without nilpotent elements does not include all commuta­
tive rings, we propose to consider a generalization. Let us call a ring R symmetric 
if, for all r9s9te R9 

rst = 0 => rts = 0. 

We assert the following. 
(G) Every symmetric ring R is isomorphic to the ring of sections of a sheaf of 

rings of the form R/0P, where P and 0P are as above. 
We shall deduce (F) from (G) by showing that every ring R without nilpotent 

elements is symmetric. 
First, take the special case r = l , then from ^ = 0 one deduces (ts)2=09 hence 

ts=0. 
Next, take any reR9 and suppose that rst=Q. From the special case we get 

(st)r=09 hence strt=0. Again from the special case we obtain (rt)(st)=09 and 
again t (rts) = 0, so that trtsr=0. Once more from the special case we have (rtsr)t=0, 
hence (rts)2=09 hence rts=0. 

We should point out that the class of symmetric rings includes other rings than 
commutative rings and rings without nilpotent elements. For example, R x S is 
symmetric when R is the ring of integer quaternions and S is the ring of integers 
modulo 4. 

Clearly both (E) and (G) are special cases of the following, which will be estab­
lished in §3. 

(H) Let R be a ring, C a subring of R such that res=0 => rsc=0 for all r9se R and 
ceC. Then R is isomorphic to the ring of sections of a sheaf of rings JR/0P, where P 
ranges over the prime ideals of C and 0P is as in (E). 

The obvious implications and the implications derived so far are summarized in 
the following diagram: 
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(H) 

/ \ 
(E) (G) 

/ \ / \ 
(D) (C) (F) 

2. Symmetric ideals. Let R be any associative ring with 1. We shall call the right 
ideal A symmetric if 

(*) rst e A => rts e A 

for all r,s,te R. 

PROPOSITION 1. Let Abe a symmetric right ideal of R. Then the following state-
ment s are true: 

(1) A is an ideal 
(2) For each ue R, the right ideal u~1A={ve R\ uv e A} is also symmetric. 
(3) If r1r2». .rne A then, for any permutation p of the set {1, 2,..., n}9 also 

rp(l)rp(2) • • • rp(n) e A. 

Proof. (1) Suppose se A and te R, then st e A, hence ts e A, by (*). 
(2) Suppose rst eu'1 A, then urst e A. By (*), (ur)ts e A, hence rts eu'1 A. 
(3) It suffices to show that 

rstuv e A => rutsv e A ; 

for any permutation is a product of transpositions. From rstuv e A, we obtain by 
successive applications of (*) that r(uv)(st), (ru)t(vs), and (rut)sv all belong to A. 

According to McCoy [9], an ideal P of R is called prime if it is proper, that is, 
1<£P, and if 

r $ P & s $ P => 3t rts $ P, 

for all r,seR. When P is a symmetric ideal, this condition simplifies to 

r$P&s$P=>rs$P, 

as in the commutative case. Indeed, if rs e P, then rst e P, hence rts ePby (*). 
A subset A of R is called multiplicative if it is closed under finite products. In 

particular, this definition is supposed to imply that 1 e A. For any subset A of R 
we write 

A - M = U S"1^ = {reR\3ôeA8reA}. 
ôeA 

PROPOSITION 2. Let A be a multiplicative subset of R, A a symmetric ideal not 
meeting A. Then the set of all proper symmetric ideals B containing A such that 
A'1B^B contains maximal elements and these are prime ideals. 
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Proof. First we check that A~M is closed under addition. Suppose rx and 
r2 e A~M, then there exist S{eA such that 8ft eA. Then §1^82 and S2r2&i eA. 
Using the symmetry of A, we deduce that 8182r1 and 8±82r2

 G A, hence 8182(r1 + r2) 
eA, so that r1 + r2eA~1A. 

Thus A~ M is a right ideal. Being the union of symmetric ideals, it is also sym­
metric, hence an ideal by Proposition 1. Moreover A~1(A~1A)^A~1A, A^A~1A, 
and 1 £ A'1 A, hence the set of all ideals B under consideration is nonempty. By 
Zorn's lemma, this set is easily seen to contain at least one maximal element P. 
We claim that P is prime. 

Indeed, suppose s$P. Then s-1P is a proper symmetric ideal containing P. 
Moreover, for any 8 e A, we shall prove that 8~1s~1P^s~1P. For if r e S - 1 ^ " ^ , 
then s8reP, hence 8sreP, hence sreP, that is, res'^. Thus A - ^ y ^ P ç ^ P , 
and so ^ - 1 P is in the set under consideration. By maximality of P, s'^^P. This 
means that for any t$ P also st $ P, hence P is prime, as was to be proved. 

PROPOSITION 3. Let A be a proper symmetric ideal. Then the following three sets 
are equal: 

(a) the intersection of all prime ideals containing A, 
(b) the intersection of all symmetric prime ideals containing A, 
(c) the set of all r e Rfor which there is a natural number n such that rn e A. 
We call this set the radical of A. 

Proof. Since clearly (a)^(b), we shall prove that (b)Q(c)^(a). 
(b)^(c). Assume that, for all natural numbers n, rn $ A. Then the multiplicative 

set A={1, r, r 2 , . . .} does not meet A. By Proposition 2, there exists a symmetric 
prime ideal P containing A such that A ^ P ç P . It follows that r$P, for otherwise 
I G A - ^ Ç P . 

(c)ç(a). Suppose P is a prime ideal containing A and r$P. Then there exists 
t-L e R such that rtxr $ P. Continuing in this manner, we obtain a sequence of 
elements tl9t2,... such that 

rtxrt2r.. .rtn-ir$P 

for each natural number n> 1. Therefore 

rtxrt2r.. .rtn-xr <£ A, 

hence 

rnt1t2.. .tn-xf A9 

since A is symmetric. Thus rn $ A for each n. 

3. Symmetric modules. Given any right ideal P of R and any right P-module 
MR, we put 

(1) TP(M) = {meM\ V^W-KarH» £ s^P}. 
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This is of interest because it is the torsion submodule of MR relative to the largest 
torsion theory for which RR/P is torsion free [7, §0]. 

We call MR symmetric if 

mrs = 0 => msr = 0, 

for all me M and r9se R. Then ra"1*) is an ideal and r'^m'1^) contains m_ 10. 
Formula (1) then simplifies to 

(2) TP(M) = {m e M \ V ^ m - H ) £ s^P}. 

Assuming that P is a prime ideal, this simplifies even further to 

(3) TP(M) = {meM\ m'Hi $ P}. 

In the special case MR=RR9 TP(M) is usually called the "P-component of 0" and 
denoted 0P. 

The set II of prime ideals of R is topologized as usual by declaring as open sets 
all sets of the form 

T(A) = {PeTL\A$P}9 

where A is any ideal of R. Then II becomes a compact topological space. 
We let 

2 = 0 M/TP(M) 
P e n 

be the disjoint union of the sets M/TP(M). Strictly speaking, an element of 2 is 
a pair (P, x)9 where PeU and x e M/TP(M). If TTP : M -» M/TP(M) is the canonical 
surjection, we define 

m(P) = (P, 7TP(m)), 

for each me M9 thus m : II -> S. 
We note that the mapping m -> m is one-to-one. For if m(P) = 0 for all prime 

ideals P, then, according to (3), m~10 is not contained in any prime ideal, hence 
1 e m"10, that is, m = 0. Thus we have represented MR as a subdirect product of 
the modules M/TP(M). 

REMARK. Let MR be a symmetric module and meM. If m vanishes at P then 
it vanishes on an open neighborhood of P. 

Proof. Suppose m(P)=09 then meTP(M)9 that is, m'^^P, according to (3). 
Here m_ 10 is an ideal, and so P belongs to the open set r(m"10). Take any 
P ' e r(m~10) and reverse this argument. It follows that m(P / )=0. 

This remark suggests that we can topologize S in such a way that the mappings 
m become continuous while the stalks M/TP(M) remain discrete. 

We introduce a topology on S by taking as basic open sets the sets 

m(T(A)) = {m(P) \ A çfc P}, 
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where m is any element of M and A is any ideal of R. We note that 

*i(r04i)) n m2(r(,42)) = m1{Y{A1 nA2n m'H))), 

where m=m1—m2, as is checked by a straightforward calculation. 
An easy computation also shows that 

ml\m2{Y{A)) = T(A n m"1*)), 

where m=m1—m2, hence the m are continuous. For reasons that we shall not go 
into, 2 is called a "sheaf". We note that the stalks of 2 are discrete. 

To describe the stalks of this sheaf we shall call a symmetric module MB prime-
torsion free if there is a prime ideal P of R such that TP(M)=0, that is, such that P 
contains all annihilators of nonzero elements of M. 

LEMMA 1. //"Af̂  is a symmetric module andP is a prime ideal ofR, then M/TP(M) 
is symmetric and prime-torsion free. 

Proof, To see that MjTP(M) is symmetric, suppose that mrs e TP(M), that is, 
{mrs)~x0^:P. This means that, for some t$P, rstem'1®, hence srtem"^, 
since m"10 is a symmetric ideal. Reversing the argument, we infer that msr e TP(M). 

To see that M/TP(M) is prime-torsion free, assume that mr e TP(M) but m $ 
TP(M). Then mrs=0, for some s $P. We claim that re P. Otherwise there exists 
t such that rts$P. Since m_ 10 is a symmetric ideal, we have mrts=0, hence 
m e TP(M), a contradiction. (This can also be deduced from the fact that TP(M) 
is the torsion submodule of MR for the largest torsion theory for which R/P is 
torsion free.) 

LEMMA 2. IfMR is a symmetric module, m is any element ofM, and A is any ideal 
ofR9 then m vanishes on the open set T(A) if and only if 

Proof, m vanishes on T(A) if and only if 

MpeuA^P^m-^^P, 

that is to say, A is contained in the radical of ra^O. By Proposition 3, this is 
equivalent to saying that for each a e A there is a natural number n such that 
anem-10. 

THEOREM 1. A module is symmetric if and only if it is isomorphic to the module of 
sections of a sheaf of prime-torsion free symmetric modules. 

Proof. Let MB be a symmetric module. As we have seen, to each element 

m G M there corresponds a unique section m of the sheaf 2 = Q P e n M/TP(M). Now 

let / b e any section of 2, we shall prove tha t /=m for some me M. 
For each P e II, f{P) is a pair (P, xP)9 where xP e MjTP{M\ say xP = 7rP(mP), 
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mP e M. Thus/— mP vanishes at P. Since the stalk M/TP(M) is discrete, the set 
whose only element is (P, 0) is open, hence/— mP vanishes on a basic open set 

T(rP) = {P'e n \rP$P% 

where rP e R. 
By compactness of II, the neighborhoods of a finite collection of prime ideals 

Pl9..., Pk already cover II. We replace the subscript Pi by the subscript i. Thus 
f—Wi vanishes on Tfa), and so m̂ —wy vanishes on 

r(/>) n r(r,) = rfoUr,), 

which certainly contains IX^r,). 
By Lemma 2, we have 

(mi-mutou1*1'* = 0 

for some natural number «(/, j) . Let n be the maximum of the n(ij), then 

(i) (^-/WyWyj = 0 

in view of the fact that MB is symmetric. 
Observing that a prime ideal contains the principal ideal (r,) = ifrji? if and only if 

it contains (rt)
n, we deduce that 

n = Û roo = Û r((rO») = r ( i (rA 

Therefore 1 e J? = 2?=i W", and so 

00 1 = 2 * . 
i = l 

where st is a sum of elements of the form 

toritlri • • • r%tn • 

From (i) and the fact that MR is symmetric, we obtain 

(mi-m^tor^ri... rttnr^ = 0. 

By summation, this yields 

(iii) (mi — m^sf1- = 0. 

Now put 

k 

m = 2 "W> 
i = 1 
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then 

k 

i = l 
k 

= 2 " w ? > by (&)> 
i = l 

= m/?, by (ii). 

Therefore m—rfij vanishes on r(r ;), by Lemma 2. But so does/—my, hence also 
f—m. Since the r(ry) cover II, it follows tha t /=m, as was to be shown. 

In the converse direction, let there be given a sheaf of symmetric prime-torsion 
free modules. The sections of a sheaf of modules also form a module, as is well 
known. In the present situation we have a submodule of a direct product of sym­
metric modules, hence also a symmetric module. The proof of the theorem is now 
complete. 

It is easily seen that the right module RR is symmetric if and only if the left 
module RR is. We may as well call R a symmetric ring in that case. Moreover RR is 
then prime-torsion free if and only if RR is, hence we may as well call the ring 
prime-torsion free. When JR is commutative this reduces to the concept introduced 
i n § l . 

COROLLARY 1. A ring is symmetric if and only if it is isomorphic to the ring of 
sections of a sheaf of prime-torsion free symmetric rings. 

Proof. It need only be pointed out that TP(R) is an ideal, hence R/TP(R) is a 
ring. It is symmetric and prime-torsion free as an i£-module by the theorem. An 
easy calculation shows that it is also prime-torsion free for the prime ideal P/TP(R), 
hence as a ring. 

Actually TP(R) = 0P, the ideal which appeared in (F) and (G) of §1. Thus (G) 
follows from Corollary 1. It may also be easily shown [8] that TP(R) is the annihi-
lator of the injective hull of RR/P. 

Better is the following result, which finally implies (H). Given a ring M and a 
homomorphism R-> M9 one often calls M an extension ofR. We shall say that such 
an extension is right symmetric if 

mrm' = 0 => mm'r = 0, 

for all m9m' e M and r e R. In particular, taking m' e R, we see that MR is a sym­
metric module. 

COROLLARY 2. A ring extension M of R is right symmetric if and only if it is 
isomorphic to the ring of sections of a sheaf of right symmetric extensions of R which 
are prime-torsion free R-modules. 

Proof. It suffices to show that M/TP(M) is an extension of R which is right 
symmetric. Since MR is a symmetric module, TP(M) is a submodule. Moreover, it is 
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clearly a left ideal. To see that it is a right ideal, assume m e TP(M), then mr=0 
for some r $P. Hence, for any m' e M, also mrm'=0, and so mm'r=0, by right 
symmetry, whence mm' e TP{M). Thus TP(M) is an ideal, and R -> M -> MjTP{M) 
is an extension of i?. 

To show that this extension is right symmetric, assume mrm' e TP(M), that is, 
mrm's — 0 for some s $P. Since M is a right symmetric extension of R, mm'rs = 0 
and, for the same reason, mm'sr=0. Therefore mm'r e TP(M), and our argument 
is complete. 

REFERENCES 

1. G. Birkhoff, Subdirect unions in universal algebra, Bull. Amer. Math. Soc. 31 (1935), 
433-454. 

2. J. Dauns and K. H. Hofmann, The representation of a biregular ring by sheaves, Math. Z. 
91 (1966), 103-123. 

3. , Representation of rings by sections, Memoirs Amer. Math. Soc. 83, 1968. 
4. A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique I, I.H.E.S. Pub­

lications math. 4 Paris, 1960. 
5. K. Koh, On functional representations of a ring without nilpotent elements, Canad. Math. 

Bull., (3) 14 (1971), 349-352. 
6. J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, 1966. 
7. , Torsion theories, additive semantics, and rings of quotients, Springer Lecture Notes 

in Mathematics 177, 1971. 
8. , Bicommutators of nice injectives, J. Algebra (to appear). 
9. N. H. McCoy, Prime ideals in general rings, Amer. J. Math. 71 (1949), 823-833. 
10. R. S. Pierce, Modules over commutative regular rings, Memoirs Amer. Math. Soc. 70 

(1967). 

MCGILL UNIVERSITY, 

MONTREAL, QUEBEC 

https://doi.org/10.4153/CMB-1971-065-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1971-065-1

