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Abstract

We define the Radon transform for functions on the set of chambers of affine, locally finite, rank three
buildings. We investigate the problem of the inversion of this transform. Explicit inversion formulas are
exhibited for functions which fulfill required summability conditions.

1991 Mathematics subject classification (Amer. Math. Soc): primary 51E24,44A12.

0. Introduction

An affine building of rank three is a building X whose diagram is one of the following:

6-o o

FIGURE 1.

We denote by <€ the collection of 2-simplices (or chambers) in X and by s/ the
collection of apartments in X. Given a function / on ̂  its Radon transform Rf is the
function on si given by

Rf (A) = ^ / ( c ) for each A € s/,
ceA
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[2] Radon transform on rank 3 affine buildings 67

provided that the series converges absolutely.
In analogy with the setting of K" or of an affine building of rank two ([1,4]) we

study the problem of recovering/ from Rf or in other words of inverting R. It will be
shown that an inversion formula can be obtained by applying to R an integral operator
which is obtained by radializing, with respect to a measure m, defined on srf, a discrete
inversion formula obtained case by case with geometric-combinatoric methods. The
difficulties are related to the complicated geometry of buildings but two known facts
simplify the matter. The first is that each apartment is a retract of the building, hence
much work can be done by means of the combinatorics of the affine Coxeter group of
the building. The second is related to the local geometry of affine buildings : for each
simplex there is a spherical finite building to which we can project the whole affine
building.

The author wishes to thank Professors M. Picardello, E. Casadio Tarabusi, and
T. Steger for their suggestions during the period she was working at her doctoral thesis
at the University of Rome 'La Sapienza'. The author is indebted to T. Steger for his
contribution after the referee's report, which improved the previous version of this
work.

1. Preliminaries

The basic notation is standard and we refer to the books [6,9] and [11] for more
details. We shall assume familiarity with elementary facts about Coxeter groups and
Coxeter complexes (see also [8] and [7]).

In a rank-three affine building X a typical apartment arises from a tiling of the
Euclidean plane. Each chamber can be identified with a triangle having angles it Ik,
n/l, n/m where (k, I, m) = (3, 3, 3), (2,4,4), (2, 3, 6) in the respective cases A2,
B2, G2- (Notice that other authors would call this kind of building 'rank-two'; by rank
we mean the number of vertices of any chamber.) Each vertex of X is labelled with
a type which is an integer in / = {0, 1, 2}, and each chamber has exactly one vertex
of each type. A 1-simplex (or edge) a has cotype i, (that is type / \ {/}), if the set of
labels associated with the vertices of a is / \ {/}). We always suppose X to be thick
(that is each edge is contained in at least three chambers), in which case all edges of
a given cotype i are contained in the same number of chambers <?, + 1.

Any two simplices a, a' in the building are contained in a common apartment.
Furthermore if A and A' are apartments with a common chamber then there exists a
unique isomorphism between A and A' fixing ADA' pointwise, [6, p. 77]. Given two
chambers c and d, a gallery of extremes c and d and length n is a finite sequence
(c = c0, Ci,... , cn = d) where c, and c,-+i> for i = 0 , . . . , n — 1, are adjacent (that
is they have a common edge); if c, ^ ci+l for all i, we say that the gallery is simple.
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There always exists a non-unique shortest such gallery, called minimal; the distance
between two chambers c and c', denoted by d(c, c1), is the length of a minimal gallery
connecting them. More generally the distance between a chamber c and a simplex a
in the building is the minimal length of a gallery (c0, cu ... ,cn) with c0 containing a
and cn = c. A gallery which achieves this minimum is called a stretched gallery from
a to c.

Two chambers c and d which have a common edge of cotype i, i e / , are called
i-adjacent, and denoted by c~c/. As two distinct adjacent chambers are /-adjacent
for a unique i, a simple gallery (c0, c\,... , cn) has a well denned type (/0,... , in-\)
such that cj ~ c / + 1 for j = 0 , . . . , n — 1.

The diagram of the building is the diagram of its (affine) Coxeter group W. Fixing
an apartment A in the building, and a chamber c e A, W is generated by the set 5 of
reflections with respect to the edges of c (or simple reflections). The group W acts (on
the left) on A by simplicial type-preserving automorphism (with c as a fundamental
domain for this action) and its action is simply transitive on the set of chambers (indeed
the stabilizer of c is the trivial subgroup). If for each subset X' of X we denote by
if (X') the set of chambers of X', then it follows that the set If (A) can be identified
with W, via we —>• w. Moreover, if we label by sh i = 0, 1, 2, the reflection with
respect to the edge of c of cotype i, two distinct elements w, w' € W correspond to
/-adjacent chambers if and only if w' — wst. Let l(w), or ls(w) if necessary, denote
the length of w with respect to S. In view of the previous paragraphs, simple galleries
starting at c are in 1-1 correspondence with 5-words. Under this correspondence
minimal galleries correspond to reduced words. Then it follows that the metric spaces
^(A) and W are isometric, where the latter is endowed with the word distance.

A reflection r in W is a conjugate of some s € S. The set Mr of all simplices
in A fixed by r is a subcomplex of dimension one and is called the wall (in A)
determined by r. Each wall partitions If (A) into two parts <t>+ and <&~ (with c e <&+)
interchanged by r. These two parts of "^(A) are called half-apartments determined
by the wall Mr. They form complementary subsets of f(A) and are said to be
opposite to each other. As subsets of W, <t>+ = {w € W : l(rw) > l(w)} and
$>; = W -<t>+ = [w € W : l(rw) < l(w)}. The boundary 3<J>r = <D+ n O7 of <&+

(or of <t>~) is the wall Mr. By the interior of a half-apartment we mean its topological
interior. There are bijective correspondences between the set of reflections, the set of
walls and the set of pairs of opposite half-apartments [9, Proposition 2.6].

There is an obvious action of W on the set of walls of an apartment and then an
action of W on the set of half-apartments. For each we W the number of positive
half-apartments that w maps to negative one is equal to the length of w [8, Proposition
5.6]. By definition two walls are parallel if their distance (that is the distance from any
point of one to the nearest point of the other) is bounded. A necessary and sufficient
condition for two walls 3<I>r and d<S>, to be parallel is that the element rt has infinite
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order [6, p. 142]. As there exists a bijective correspondence between the set / of types
of X and the set 5 of generators of W (via i —> st) sometimes in the sequel for each
reflection r = shsh • • • sk we will write 4>̂ ,2...,4 for Of. A wall or a half-apartment in
X is by definition a wall or a half-apartment in some apartment of X .

Let us call a chamber subcomplex X' of X convex if any minimal gallery between
two chambers of X' lies entirely in X'. The convex hull of any subset X', which we
denote by conv X', is by definition the intersection of all convex chamber subcomplexes
containing X'.

Let a be any simplex in X and set srfa = [A e &/ : a e A}. Denote by lk{a) the
set of all simplices in X containing a (with the inclusion order relation induced by that
of X). It turns out that lk(o) is a spherical (finite) building whose set of apartments is
equal to {A (1 lk(o) : A e s^a}. If a has type / \J (J c /) and if Wj is the subgroup
of W which is generated by Sj, j € J then the finite Coxeter group Wa of lk(a) is
equal to Wj. In terms of diagrams this has the following interpretation. Let us recall
that the diagram M of X has a vertex for each i e I. We pass from M to the diagram
Mj of lk(a) by removing from M all vertices which belong to / \ / [11, Proposition
3.12].

Since lk(p) is spherical, its diameter (that is sup {d(c, c') : c, d € *& (lk(a))}),
which we denote by diam//fc(cr), is finite. Let us call two chambers c, d opposite
if d(c, d) = diam/&(<7). As the distance between two chambers in any building is
equal to their distance in any apartment containing both, two chambers are opposite
if and only if they are opposite in some apartment of lk(a). Moreover two opposite
chambers are contained in one and only one apartment, namely conv{c, c'}.

The following facts are important and useful tools in the applications.

THEOREM 1.1. Let A be an apartment and c a chamber in A. Then there exists a
unique mapping pcA : X —> A such that for all apartments A' containing c, the map
PCA \A' is the isomorphism fixing ADA' pointwise.

PROOF. See for example [6, p. 86]. •

The map pCiA is called the retraction of X onto A with center c. Let /x be the
isometry from A to W with fi(c) = 1 (the identity element) and define the mapping
8C : <€ - • W by Sc(d) = n (pcA (d)). For each d 6 ^ the group element Sc(d) retains
information about the relative position of d with respect to c: its length is equal to
the distance between c and d, and the reduced decompositions of 8c(d) are related
to minimal paths from c to d. The following proposition shows the properties of the
function 8C and is proved in [12, Section 3].

PROPOSITION 1.2. For any chamber c the following facts hold:
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(i) if j €l,ifd and d' are two distinct, j -adjacent chambers and if8c(d) = w
then 8c(d') 6 {w, WSJ}. Moreover if 1(WSJ) = l(w) + 1 then 8c(d') = wSj;

(ii) ifSc(d) = w then for any j € / there exists a chamber d' distinct from d and
j -adjacent to it such that 8c(d') — WSj. Ifl(wsj) = l(w) — 1 then there is a unique
such d'.

2. Measure on the space of apartments

Let Ao be the Coxeter complex of W (that is the representative of the isomorphism
class of the set of apartments of X) . Given any subset of chambers C C Ao we define a
map k : C —>• X to be an isometry if it preserves the labelling and the distance between
any two chambers. Denote by A the set of isometries k : Ao -> X. Note that each
apartment in X is an isometric image k(A0) of Ao into X . Moreover each isometry k
is uniquely determined by its image k(A0) together with its value on a fixed chamber
c0, because if k' is another such isometry, then k~lk' is an isometry of Ao fixing c0

and is therefore the identity of W. We endow A with the open compact topology: a
fundamental neighborhood for A € A consists of the set of maps k' which agree with
k on a fixed finite set of chambers. This topology makes A a locally compact, totally
disconnected, Hausdorff and separable space. We remark that the group W acts on A
via k i->- k o w, and that the map A —> si defined by k \-> k(A0), gives a bijective
correspondence between the set of W-orbits W\A and si'.

Let c0 be a fixed chamber in Ao and Cn, for n > 0, be the compact convex set
consisting of the convex hull of c0 and the set of chambers which are at distance n
from c0, (Co = c0). Let us denote by An the set of isometries of Cn into X . Let
\J/ € An and Kn^ = [k € A : A.|c, = f}- We remark that the family {^n>}neN ^,eAn

forms a basis for the open-compact topology on A. Moreover for each n we get

A = U K".*

where the union is disjoint.
We denote by ^ the a-algebra generated by the sets Knxl/, n e N and i/c € An and

by CC(A) the space of continuous, compactly supported functions on A.

PROPOSITION 2.1. If a measure m exists, which is positive, finite on compact sets
and regular on ^ and such that the following conditions are satisfied

(i) m(ATo,*) = l,
(ii) for each n, m(Knxj,) does not depends on i/r,

then it is unique.
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PROOF. Let m\ and m2 be positive measures satisfying the hypothesis, and let
us define on CC(A) the functional Fh i = 1,2, by Ft(f) = fAf (X)dnii(X). We
will prove that F{ = F2. We start by proving that Fyf = F2f when / is a finite
linear combination of characteristic functions of sets Kn^. To this end we note
that for each \js and for each n the set Ko^ can be covered by a finite number of
subsets KniXj,t,..., Kn,j,pn. Moreover this covering forms a partition of Ko^. Since
(ii) holds, pn does not depend on i/r and from (i) it follows that mt{Kn ^;) = l/pn

for j = 1 , . . . , pn. As the sets Ko^, cover A, we can find a finite number of them
covering the support of/. Without loss of generality we can suppose that the support
of/ is contained in Ko,^, for some \j/. Then there exists n, depending on / , such
that/ = YlP"=i biXKn* • Then one can easily verify that F\f = F2f. Since each
continuous compactly supported function is the uniform limit of a sequence of finite
linear combination of characteristic functions of sets Knxll, we conclude that Fx and F2

define the same functional on CC(A). Finally the Riesz representation lemma implies
that mi = m2. •

LEMMA 2.2. Let c and d be chambers of Ao. Each isometry ty : {c, d] —> X
extends uniquely to an isometry ty : conv(c, c') -*• X.

PROOF. We need to show that for each minimal gallery joining c and d there is a
unique minimal gallery of the same (reduced) type joining ir'(c) and ir'{d). Since
\js' send minimal galleries to minimal galleries and is type preserving it is sufficient to
prove that if there is a gallery of a given reduced type joining two given chambers this
is unique. But this last statement is a well known property of buildings, [12, Section
3]. •

The following Proposition will allow us to prove the existence of m. For simplicity
in all this section we suppose that our convex sets contain at least one chamber.

PROPOSITION 2.3. Let C c C be a non-empty, finite and convex subsets of Ao.
Each isometry ij/ : C —> X extends in a finite number of ways N(C, C) to an isometry
rjf' : C -*• X. Moreover N(C, C) does not depend on rjs.

PROOF. By Zorn's lemma it suffices to extend the domain of iff to a strictly larger
convex subset of chambers. We can find a chamber d e C and i e I such that d' g C
where d' denotes the chamber of Ao distinct from and /-adjacent to d. Let a be any
chamber in X distinct from and /-adjacent to tfr(d). We extend ifr by letting \/s' = \j/
on C and i/'(d') = a. From Lemma 2.2 it follows that \jf' is uniquely determined on
C = conv(C, d'). Moreover N(C, C") = qt and then it does not depend on r/r. •

We define the measure m by setting
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and since for each isometry \fr : c0 —> X and for each n > 1 we have the equality

{A. e A :

where the union is disjoint, we set

1
v "•"" yv(co,c)

Let now C be a compact convex set and i^ : C —>• X be an isometry. We set

COROLLARY 2.4. The measure m(KCj),) of the compact set Kc,^ does not depend
on \jf.

PROOF. There exists n such that C c Cn. Then the assertion follows from the

equality {X e A : X\c = f} = \J •-«. Kn r . •
*'\c=*

REMARK 2.5. Note that if c0 e C then m(Kc,^) = l/N(c0, C).

LEMMA 2.6. The measure m is invariant with respect to W.

PROOF. Let w e W and c = wc0. Let C be a finite convex set containing c0 and c
and \j/ : C —> X be an isometry. We get

We will prove that the quotient N(c, C)/N(c0, C) is equal to 1. Clearly it does
not depend on C, so we can choose C = conv(c0, c). If ( i i , . . . , in) is the type of a
minimal gallery joining c0 and c then the number of ways to extend an isometry of {c0}
into X to an isometry of C into X is equal to the number of galleries of type (i\,... , id)
starting at i/(c0). This number is equal to qh • • • qid and is the same as the number of
galleries of type ( i d , . . . , i\) starting at i/r (c). So condition (i) of Proposition 2.1 holds
with c0 replaced by c. Moreover by Corollary 2.4 it follows that m satisfies condition
(ii) of Proposition 2.1 with Cn replaced by w Cn. Then the W-invariance of m follows
because m is uniquely determined by (i) and (ii). •

LEMMA 2.7. W acts properly on A.

PROOF. One can easily verify that for every k e A the stabilizer Wk of X in W is
finite (indeed it is trivial) and X has a neighborhood U such that wUH U = 0 for all
w e W \ Wk. Since W is discrete this is exactly the definition of proper action. •
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The fact that W acts properly on A implies that W\ A is a locally compact, separable,
Hausdorff topological space. In the following proposition we state, without proof,
a classical result about disintegration of measures known since about 1950 (see for
example [5, Section 3]). The formulation given here has been communicated to me
by Professor Tim Steger [10].

PROPOSITION 2.8. Let A be a locally compact, separable, Hausdorff topological
space. Let m be a regular and positive measure on A. Suppose that we have a group
W which acts properly on A and preserving m. Then there exists a unique regular
and positive measure mQ on W\A such that for each f € CC(A) we get

(2.1) I f(X)dm(X)= [ lYf(wk))dmQ(Wk).
AeA JWkeW\A \w€w I

REMARK 2.9. Let it : A —>• W\ A be the natural projection, and K c A be an open
compact set such that n\K is injective. If/ is the characteristic function of K then
Hwewf (w^) a s a function defined on W\A is the characteristic function of ir(K).
Then equality (2.1) gives

m{K) = mQ{n(K)).

Let now C C Ao be a non-empty, finite, convex set, r// : C -*• X be an isometry
and K = Kc,^. If we identify W\A with &/ we have

n(K) = {A ea? : f(C) e A].

Since C contains at least one chamber the restriction of n on K is injective and then

mQ({A e st: f(C) 6 A)) = m(K).

Generally if C is a finite convex set in some apartment of X we can find a finite
convex set C C Ao and an isometry \j/ : C ->• X such that \jr(C) = C". So we can
compute the measure of srfc = {A € srf : C" € A] for each finite convex set C c X.

REMARK 2.10. For each affine building X, from the definition of mQ it follows
immediately that if c is any chamber in X then mo(£/c) = 1. More generally let a be
any simplex in X and E be any apartment in lk(a). We can identify ^(Ao) with W and
then there exists an isometry ty such that E — if(Wa) and mo{^E) — i/N(l, Wa).
If wa denotes the longest element in Wa, (that is the unique element which is opposite
to 1), then Wa = conv(l, wa). We recall that the reduced expressions for wa are in
bijective correspondence with the minimal galleries joining 1 with wa. If sh • • • sil(w)

is a reduced expression for wa then there exists one (and only one ) gallery of type
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O'I. • • •. '/(uv)) joining 1 with wa and this implies that N(l, Wa) = qh • • • qil(Wa). For
each set S'a c {A D /fc(or) : A e ^ ) let . < = {A € s4a : A n /Jfc(a) e <f;} c ^ f f .
As ^ ' = U £ 6 ^ ^ £ , then, denoting by | • | the cardinality of a given set, we get

(2.2) • m e « I C '

Note that if a has corank two and Ik {a) has parameters {qs, q,} then N (1, Wa) is equal
t 0 qwu,.)+i)/2qw^.)-im i f / ( u v ) i s o d d a n d t 0 (9jgi)'(».)/2 if Z(u)J is even. Indeed, if

. . . st st is the longest word in Wa this follows because there exists exactly one gallery
of type (..., s, t, s, t) joining any two opposite chambers. Note also that, as there
exists one (and only one) of type (.. . , t, s, t, s) joining the same chambers, then if
l(wa) is odd, exchanging the role of qs and q, we have that qs = q, (that is a rank-two
spherical building is necessarily homogeneous if its diameter is odd).

3. Inversion of the Radon transform

We define a strip y in a given apartment as the intersection a D a' of two half-
apartments a and a' such that a contains the opposite of a'.

Let y be a strip and let 3a U da' its boundary. Each wall / not parallel to 3a
(equivalently to 3a') splits y in two subsets B and B' such that ^(B) n ^(B') = 0
and ^(B) U #(B') = #(•5?). We say that B and B' are the opposite half-strips
originating from 3/ n y . Let B and £' be opposite half-strips and denote by BB'
the strip y such that y = B U B'. Similar conventions will hold for unions of
half-apartments and so on

If g is a complex-valued function defined on ^ set tyg(y) = ^T,cey g(c) for each
strip y , whenever the right-hand side is meaningful.

LEMMA 3.1. Let y be a strip in X. Then there exist half-apartments a, fi, y, 8,
with interiors disjoint from y and from each other, such that ayy, pyS, afi, yS
are apartments; if g 6 L1 {^{A))for each apartment A e £?, then

(3.1) 2Vg(y) = Rg(ayY) + Rg(pyS) - Rgf (a/3) - Rg(yS).

PROOF. Let y = a' D a". We can take for a the opposite of a' and for S the
opposite of a". Then the existence of /5 and y is guaranteed by the hypothesis that X
is thick. We have Rg(ayy) = £ c e a g{c) + £ c €^ , g(c) + ̂ ^ g{c), and so forth,
so the right-hand side of (3.1) yields 2 ^ c 6 ^ g ( c ) which is equal to the left-hand
side. •

Case I: X with diagram of type A2
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LEMMA 3.2. Let c be any chamber in X and denote by ait i = 0, 1, 2, its edges.
Then there exist half-strips Bijt i,j = 0, 1, 2 and j # i with interiors disjoint from
c and disjoint from each other, such that By originates from CT, and BjjC is a strip
originating from ay and such that B^cBji and BijiBij1, for j { ^ j 2 are strips. If
g € V (V(A)) for each A € Jtf then

(3.2) J ^ u J
i<j '/./1 #2

PROOF. We can suppose that a, has cotype i. Let A be any apartment containing
c and let 3O, be the wall in A corresponding to a,-. Let xt be the vertex of c of type
/ and note that the subgroup of W which stabilizes *, in A is generated by v and
s^ where J* = i ± 1 mod 3. Since the element siSi+si-si+ has infinite order then
9<J>/+I_1+ is the (unique) wall in A containing x, and parallel to 3<J>,. Consider the
strips y,; = <t>+ n <t>++,-/+ and let S,'+,_ = ^ D <J>,"+ and B,-,+ = ^ n Of_ and note that
since c — p | / e / <£* then ^ = 5l'+._cB,-,+ . Let n,+ be any half-apartment in X whose
interior is disjoint from O^. and 4>~+ and such that 311,+ = 34>,+. Hence n,+ U 4>^
and n,+ U <&~+ are apartments.

Consider the map pcAln,+u*+
+

 : ^ i + ^ ®t+ ~* ^- ^ i s ^e unique isomorphism
of n,+ U ^ onto A fixing cB,-,+ . Denote by Bi+i- the half-strip in n,+ such that
its image under pcJi is the half-strip 5,'+,-. Then Bi+i-cBii+ is a strip in n,+ U «t^
isomorphic and isometric to S^t which we denote by 5f[.

Lety = i~ and note that the reflection s,+ maps £•+,- onto ^ D <J>;
+- = Bj+j-c.

Consider the isomorphism of n,+ U <I>̂ . onto A which is equal to the identity on
<t>̂ . and is equal to s,+ o pcA on n,+ . It maps fi,+,-B;-;+ isometrically onto «5y.
Then fi1-+j-B/--y-+ is a strip in n,+ U <I>j; whose interior is disjoint from c and which
we denote by &". Considering the strips y[ and J7", i = 0, 1, 2, as we have that
* « ( ^ ' ) = Erfeflj+I- 8(d) + g(c) + T.d£B,-i+ *(<*). and so forth, we get that the right
hand side of (3.2) is equal to the left hand-side and this proves the assertion. (In Figure
2 the half-strips 5,-+,- are dashed to mean that they do not lie in the same apartment
containing the half-strips Sj-,+.) •

Let a(c) be the right-hand side of (3.2). Then, for each c e ^ , Lemma 3.1 allows
an expression of a(c) and then of g(c) in terms of Rg. So g is uniquely determined
byflg.

Case II: X with diagram of type C2

Let c be any chamber in X and let x0 be its vertex with the property that lk(x0) is
isomorphic to a spherical building with diagram of type A\ x A \. Suppose that x0 has
type 0, and denote by a0 the edge of c opposite to *0-

LEMMA 3.3. Let d be a chamber distinct from c and 0-adjacent to it. Let o\ and
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FIGURE 2.

a2, (respectively a[ and a^), be the edges ofc (respectively d) ofcotype 1 and 2. Then
there exist half-strips Bx, Bx, B2, B2, with interiors disjoint from c, d and from each
other, such that B\, Bx originate from ax and B2, B2 originate from a'v and such that
Bxcc'B2, Bxcc'B2, BXBX, B2B2 are strips; if g e L1 (^(A)) for each A e a/ then

(3.3) 2(g(c) + g(d)) = tyg(Bxcc'B2) + ^g(Bxcc'B2) - Vg(BxBx) - ^>g(B2B2).

PROOF. We can argue as in the proof of Lemma 3.2. The details are left to the
interested reader. D

Denote by a(c, d) the right-hand side of (3.3) and let c" be a chamber O-adjacent
to c and different from c and d. Lemma 3.3 applied to c, c" and then to d, c" allows
an expression of g(c) in terms of ^ . Indeed

(3.4) Ag(c) = a(c, d) + a(c, c") - a(d, c").

Finally, for each c € c€. Lemma 3.1 allows us to express the right hand side of
(3.4) by a finite linear combination of values of Rg.

Case III: X with diagram of type G2.
Label the vertices of X in such a way that the type 0 (respectively 1,2) corresponds

to the vertices v such that lk(v) has diagram of type A2 (respectively lk(v) has diagram
of type Ax x A^Jk(v) has diagram of type G2). Note that the affine Coxeter group
W(A2) of type A2 is a subgroup (of index six) of the affine Coxeter group W(G2) of
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type G2 associated to X. So the set of walls, and then the set of half-apartments of any
apartment of X contains the set of walls, (respectively the set of half-apartments) of
the complex associated to W(A2). (From the tiling induced by W(G2) we can recover
the tiling induced by W(A2) considering pairs of distinct 0-adjacent chambers.)

Let c and d be any two distinct 0-adjacent chambers and let ox and a2 (respectively
a\ and o{) the edges of c (respectively d) of cotype 1 and 2. Set l\ = O\, l2 — o[ and
/3 = a2 u o2, then arguing as in the case of a building of type A2 we get the following
lemma.

LEMMA 3.4. Define c and c' as above. Then there exist half-strips By, i, j = 1, 2, 3
and] 7̂  i with interiors disjoint from c, d and from each other, such that Btj originates
from /, and B^cd is a strip originating from lj and such that B^cdBj, and BijlBij2

are strips: if g € V (^{A)) for each A 6 srf then

(3.5)

Consider now another distinct chamber c" 0-adjacent to c Then Lemma 3.4 applied
to c, c" and then to d, c" allows an expression of g(c) + g(c") and of g(d) + g(d')
in terms of *I>. Proceeding as in the case of a building of type C2 we can recover the
value of g in c in terms of Rg.

We have just proved the following proposition.

PROPOSITION 3.5. Let X be any rank three affine building. The operator R is
injective on the space of functions that are summable on the set of chambers of each
apartment ofX.

4. Inversion formulas

From now on, given any chamber c in X we will denote by J40 a fixed apartment
containing c and by p the retraction of X on Ao with center c. Given a chamber d and
a simplex a of X we will denote by proj,, d (projection of d on a) the unique chamber
of lk{a) nearest to d, (that is, the first element of any stretched gallery from a to d),
[9, Corollary 3.9].

PROPOSITION 4.1. Let a c candA e K- Then

= (J
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PROOF. For each chamber d e A D lk(a) let Ld be the convex subcomplex
proj; V ) n <«?(A) ([11, Proposition 2.32]). Note that

= | J Ld,
d€Anlk(o)

where the union is disjoint. We will show that

p(Ld) = 1

From this our assertion will follow. Note that, as the retraction p maps every
stretched gallery starting from a, onto a stretched gallery with same origin, one has
that

p{Ld) £pro£l p(d)nV(A0).

To prove that equality holds we argue as follows. Letting pdA the retraction on
A with center d, then the set Ld U {c} is isometric to Ld U {pdA{c)} C A and this
implies ([9, Theorem 3.6]) that there exists an apartment A' containing Ld and c. Let
cp : A' —*• Ao be the unique isomorphism fixing A' n Ao; then the image of Ld under
<p is equal to proj~' cp(d) Pi ̂ f(A0). Therefore, as cp and p agree pointwise on Ld, we
have proved the proposition. •

Let A be any apartment in X. As A is the collection of its chambers, the 'position'
of A with respect to c is completely known if for each chamber d e A we know the
value at d of the function 8C or, equivalently, if we look at the image of A under p.
In view of [11, Proposition 2.32], the content of Proposition 4.1 is that to know the
image of A under p it is sufficient to know the image of A D lk{a) under the restriction
of p to lk(a).

If <t> c Ao is a convex chamber subcomplex, we set

sf* = {A e . e / : p(A) = <t}.

In particular <J> can be O+ or <t>~ for some reflection r in W. In the sequel, to simplify
the notation, we will write <l>r for &J.

We will radialize with respect to mQ the discrete inversion formulas of Section 3.
To this end it will be necessary to derive case by case the measure of suitable subsets
of s/. We now prove some technical lemmas.

LEMMA 4.2. Let (X,#/) be a spherical building with diagram of type A,, with
S — {s} and parameter qs. Then

(4.1) | ^ | = ^i^il.
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PROOF. As X is a rank-one building, each apartment consists of a pair of distinct,
5-adjacent chambers. Moreover <J>S = [s}. Then the requested number of apartments
is equal to the number of unordered pairs {ck,d\) of distinct chambers such that
Sc(do) = 8c(d\) = s, and this number turns out be equal the right-hand side of
(4.1). •

REMARK 4.3. Let X be any building. Denote by T(w0,... , wn) = r , , n (ui0 , . . . ,
wn), wk e W for 0 < k < n, the collection of simple galleries (do,... , dn) of reduced
type (i ' i , . . . , in), such that 8c(dk) = wk for all 0 < k < n. For each d e ^ such
that Sc(d) = in*, denote by a(wk, ik+u wk+i) the number of distinct chambers d'
i*+i-adjacent to d such that Sc(d') = wk+1. Then an easy induction shows that

, . . . , Wn)\ =

where

I i if n is odd, Wj = u;n_; for ally and ( i ' i , . . . , ia) = ( / „ , . . . , J'I);

1 otherwise.

Recall that wk+i € (wt, u;t5,t} and note that from Proposition 1.2 it follows imme-
diately that

a(wk, ik+i,wk+x) =

1 if wk+i = wksit and l(wksik) — l(wk) — 1;

qh+l if tut+1 = u ^ i , and / ( I O ^ / J = l(wk) + 1;

9it+1 - 1 if

REMARK 4.4. Note that if w = sit • • • si( is a reduced expression for w e W then
\8~l (w) | is the same as the number of minimal galleries of type (I'I , . . . , //) starting at

c.

LEMMA 4.5. Let (X, srf) be a spherical building with diagram of type A2, with
S — [s, /} and parameter q. Then the sets stf*"', (note that sts = tst), ^ * ' " n * ' and
^*"*n*' are not empty and the following equalities hold:

(4.2)

(4.3) (g - 1) g
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PROOF. Let (do, ... ,dn) any simple gallery of reduced type and length n = diamX
and denote by y'(do,dn) = (d$,d[,... , d'n_v dn) the unique gallery which exhausts
conv{do, dn). Starting with a chamber do such that 8c(do) 6 O w e first construct all
galleries (do,..., dn), (for n = 3), such that 8c(dt) e <J>, 1 < / < n, then we look at
the image under <5f of conv{do, dn).

Let <t> = <t>irs and choose do such that <5c(do) = st. Then as any apartment in X
contains exactly one gallery of type (s, t, s) and exactly one gallery of type (t, s, t),
we can suppose, without loss of generality, that (do , . . . , d3) has type (t, s, t). Then
starting from do and applying Proposition 1.2 repeatedly, we see that for such a
gallery to have its term d, such that 8c(dj) e 4>s,j = [st, sts, ts}, 1 < i < 3, only
the following two possibilities can occur: either (do,... , d3) e T(st, st, sts, ts),
or (do, . . . , di) 6 F(st, st, sts, sts). If (do, ... , d3) e T(st, st, sts, ts) then, being
d[yd0 and l(8c(do)s) = /(<5c(do)) + 1, we have that 8c(d[) = sts. While, being
d'2^.di and l(8c(d3)s) = l(8c(d2)) - 1 we get 8c(d'2) = t or 8c(d'2) = 8c(d3). In
the first case it cannot be d[^d'2. Then necessarily 8c(d'2) = ts. Note that in this
case 8C maps conv{do> dy\ onto <t>j,j (see Figure 3(a)). Analogously if (d0,... ,d3)e
F(st, st, sts, sts) one can prove that necessarily 8c(d[) = 8c(d'2) = sts and in this
case 8C maps convfdo, d3} onto {sr, sts} = <t>s D O^j. (see Figure 3(b))

As each apartment in £/*'" and in ^<t>'"n*1 contains a chamber cfc such that 8c(d0) =
s? in this way we can construct all apartments in £/*"• and in ^*«»n*'. Note that
the correspondence between Frsl(st, st, sts, ts) (respectively V,^,(st, st, sts, sts))
and £/*•" (respectively ^/*s"n*s) is 2-1. In fact each apartment in sf*"* (respec-
tively in ^ * - n * > ) contains two distinct galleries in Y,s,(st, st, sts, ts) (respectively
in r,s ,(st, st, sts, sts)): indeed (do,d\,d2,d^) and (dx, d0, d\, d'2). Therefore by
Remark 4.3 we get (4.2) and part of (4.3).

Let now d^ be such that 8c(d0) = ts, and suppose that y(do, d3) has type (s, t,s).
This case can be considered as being symmetric to the preceding case, so we obtain
again apartments in ^*"* by choosing dx such that 8c(d\) = ts and d3 such that
8c(di) = st. We obtain apartments in ^*«" n * ' by choosing d\ as above and d3 such
that 8c(d2) — 8c(d3) — sts. This completes the proof of (4.3). •

LEMMA 4.6. Let (X, srf) be a spherical building with diagram of type B2, with
S = [s, t] and parameters qs, q,. Then the sets &/*"' and ^*»" n * ' are not empty and
we have

(4.4) | * | = ( M f ) .

If q, > 2 then the set £*"*•""*' is the union of two disjoint subset (^*!"n<1>')' and
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(a) (b)

FIGURE 3.

(4.5)

(4.6)

same formulas hold exchanging the roles of s and t.

PROOF. We argue as in the proof of Lemma 4.5 and use the same notation: starting
from any w e W (the dihedral group of order eight), such that l(stsw) < l(w)
(respectively l(stsw) < l(w) and l{tw) < l{w)) we first construct all simple galleries
{do,... , dn), for n = 4, such that Sc(do) = w and that for 0 < / < 4, <5c(d,) satisfies
the same inequality or inequalities.

Let w = tst (this choice is convenient as w e <t>sls D 4>,), and suppose that
(do,... ,d4) has type (t, s, t, s). Then applying at each step Proposition 1.2 and
denoting by w_ the longest element stst = tsts in W, one can verify that only the
following four cases occur:

(1) (do,... , d4) e risJS(tst, tst, w, sts, st)
(2) (do,... ,d4)€ r,sts(tst, tst, w, w, tst)
(3) (do, . . . ,d4) € r,^,,s(tst, tst, w, sts, sts)
(4) (do d4) € r,,s<liS(tst, tst, w_, w, w)

and that, respectively, for y'(do, d4) we get:

(1') / (db , d4) e Vs_USJ(tst, w, sts, st, st)
(2') y'(do, d4) e r,.,.,,,(tst, w, w, tst, tst)
(J) y'(do, d4) € Ts,w(tst, w, w, w, sts)
(4') either y'(do, d4) e Ts.,,Sil(tst, w, sts, sts, w) or y'(do, d4) e rstsl(tst, u>, w, w,

w).

As $>sls = [tst, u;, sts, st}, only case (1) leads to apartments in £?*•'•, and (4.4)
follows as the correspondence between this set and the set of galleries as in (1) is a
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1-2 correspondence.

If (do,... , d4) is as in (2) then Sc maps conv{do, d4} onto {tst, w) = <i>, n <J>i(s.
Denote by (^*"> n*') ' the set of apartments like conv{<i0, d4] and note that there is a
4-1 correspondence between V, s ls(tst, tst, u;, u>, tst) and (.c/*1"™')'- From this we
obtain (4.5).

Suppose now that (do,... , d4) is as in (3). In this case 8C maps convfcfo, d4) onto
{tst, w, sts} = <t>SIJ n O m . If we denote by (^*-»n*"')' the set of apartments that we
obtain from such galleries, then we get | ( ^* ' " n *" ' ) ' | = |I\,.,,,,s(tst, tst, u;, sts, sts)\,
as each apartment in (^*»'n*»') ' contains only one gallery in r,srs(tst, tst, w_, sts,
sts).

Finally suppose that (do,... , d4) is as in (4). In this case the image under 8C of
conv{do, d4] is not uniquely determined by (do,... , d4), the two cases in (4') being
possible. In the first case a careful look at the whole set of chambers shows that
conv{<io, d4] e (.g/**"0*'")'. Note also that in no other case, except the one already
examined, does 8C map conv{^, d4} onto <J>iM n <&„,. So (^*"'n*" ') ' = ^* ' " n *« ' . In
the second case we have again that 8C maps conv{do, d4) onto <t>, n 4>j(J, but, as the
cardinality of the fiber 8~l (w) H conv{^o, d4] is different from the other case, the set of
apartments that we obtain is disjoint from (j/*'"n*') '- Denote by (£i?'*>»n*')" this new
set of apartments. As each apartment in (^<t>'»n*')" contains two galleries as in (4)
while each apartment in ^•<t><»n*»' contains only one such gallery, then (4.6) follows
from the equality

2|(^*'"n*')"l = \r,^,.s(tst,tst,w,w,w)\ - \T,,SJ,s{tst,tst,w,sts,sts)\.

To conclude our proof note that, by symmetry, we obtain formulas like (4.4), (4.5)

and (4.6) by exchanging the roles of s and t. •

REMARK 4.7. If A is a fixed apartment in any building X with c e 'tf(A) as funda-
mental chamber and if {<!>;},-e/ is the set of negative half-apartments in A corresponding
to the set of simple reflections, then writing d e p) I 6 / <t\ is the same as stating that d
is opposite to c [9, Theorem 2.16].

Let now X be a spherical building which is the direct product [9, p. 33] X | X - - x X n

and let A = A ] x • • • x An and c = (ci, c2,.. • , cn) as above. Moreover, for 1 < k < n
let lk be the set of types of Xk and {4>,,},(£/l the corresponding set of negative half-
apartments in Ak. As for a chamber d = (di,... ,dn) one has that d(c, d) = diamX
if and only if d(ck, dk) = diamX* for 1 < k < n, then the following equality holds

REMARK4.8. By Proposition 4.1, writing {A C\lk(o) : A e srf*\ is the same as
writing {A n lk(a) : A e j2/*nw
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In the sequel we will simply write m for mQ.

COROLLARY 4.9. Let X an affine building with diagram of type A2 and parameter
q. For each i,j = 0, 1, 2 such that i < j the following equalities hold:

(4.7)

(4.8)

(a — I)2

PROOF. First note that if a = 9O n c then .«/* = •£*£? for each CT' C a. Then, as
a, = 94>, PI c and as lk{at) is a building of rank one (and diameter one), (4.7) follows
from (2.2) and from Lemma 4.2. Analogously, for each fixed i, j , if x is the vertex
of c of type / \ [i,j] then lk(x) is of type A2 and 9<J>,, 9<J>;, 9<&/,-,• are the three walls
containing JC . Therefore (4.8), (4.9) follow easily respectively from (4.2), (4.3) and
from (2.2). •

COROLLARY 4.10. Let X be an affine building with diagram of type B2 and suppose

that the vertex ofc labelled by x0 is such that lk(x0) has diagram of type A\ x A , . If

i G / \ {0}, then the following formulas hold:

(a • — \)

(4.10) in(.ef*') = q>

(4.11) m(fi/*m) =

(4.12)

(4.13)

(9/

(q.

(qo

2

2

4

1)

I)2

1)(<7. - !)(?> - 2 )

Moreover

(4.14) m(^* ' n * 2 ) = ,
4

(4 15) m(^*0l°n*020) =:
4

PROOF. TO prove (4.10) we argue as in the proof of (4.7). Fix i e I \ {0} and let
j € / \ {0, z}. As lk(xj) is of type fi2 then (4.11), (4.12), (4.13) follow respectively
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from (4.4), (4.5), (4.6), with s0 = s and j,- = t. To prove (4.14) note that {s,},=i,2 is
the set of simple reflections in WXo. Then s/*'n^ = ^/woi anci

= \{A n lk(x0) : A e \ - l

As lk(x0) is the direct product of two spherical buildings of rank one then (4.14)
follows from Remark 4.7 and from Lemma 4.2 (with 5 = st).

To prove (4.15) note that as s0 interchanges <J>0 and <J><J" we have that O0io = s0Qi,
/ = 1, 2. In other words, <J>Oio and 4>O2o are the negative half-apartments which cor-
respond to the simple reflections in s0 WXoso = WSoXo and hence <t>OiO H $020 — [d e
^(A o ) : d(projioJo d, soc) = diam/&(%xo)}- Denote by ck, 1 < k < q0, the generic
chamber in X O-adjacent to c, and let x^ be its vertex of type 0. Then p(ck) = soc
and P(XQ) = soxo. Now we show that for each A e ^*oion*O2o there exists a unique
k e ( 1 , . . . , qo] such that for each d e ^ ( A ) projao d = ck and ** e A. First note
that 4>oio n O020 C $<). In fact if d e <J>oio ^ ^020 then d g <S>Q, otherwise d would
be opposite to soc, contradicting the fact that X is affine [11, Theorem 2.36]. Hence,
if A e iG/*oi<>n*o2o? for e ach d € ^ ( A ) then projCT d = ck for some k, (otherwise
projao d — c and p(d) e proj^1 cfl Ao = Oj) . Moreover if d and d' are two distinct
chambers in A such that projCTo d ^ projCTo d', then for the convexity of apartments we
have that aQ e A and then p(A) = ct>0 which strictly contains <5Oio H <t>o2o.

As the retraction p preserves /-adjacency and the distance from c it follows that

{A G £/xt : Vd e ^(A) <i(proj^ d, ck) = d iam/A:^) ! = ^*0 1°n*0 2 0 ,
( 0 0 J -r0

and

where the union is disjoint.
Moreover for each 1 < k < q0

and we get (4.15) by taking the sum over k. •

Let now X be a building with diagram of type A2. We introduce the bounded
operator M : L°°(£/) —> L00^) which we obtain by radializing with respect to m the
inversion formula which follows from the application of Lemma 3.1 to the right-hand
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side of (3.2): for each <p e L° ° (^ ) we set

M(pic)=

85

3(q -
+f )]}<p(A)dm(A).

Formulas (4.7), (4.8), (4.9) show indeed that M<p e L°°<&) and that

LEMMA 4.11. Let X be a building with diagram of type A2 and let d e if. If
p(d) € <t and i, y e I, i < j then

(4.16) (q - 1)

(9 - I)2

- l)2

= Ao;

= 4> i y / ;

= $, n
(,-,• o r 4> = >; n Oy, , p{d) <£

>; n 4>y,-, p(d) e ,- n

PROOF. If <I> = AO then, as srfAa = &/c, the assertion follows immediately from
the definition of m. In the other cases let a = 34> n c. As p(d) e 4> if and only if
p(proj(J) e O, we can argue by induction on the length of a minimal gallery from a
to d. This suffices to prove the assertion for d e "€ (lk(a)).

Denote by n(a, 4>, d) the number of apartments in [A dlk(a) : A e .e^*} con-
taining d, and let we Wa be such that (5c(d) = w. Then as for each E e
{ADlk(a) :A 6^*}

(a, * , d) =
: A

\S~l(w)\

we have

n(a, <J>, d)

7K) \S;l(w)\

As X is homogeneous we have that {S'^w)] = qd(c'd). Then, case by case, by
Corollary 4.9, to complete the proof we have to look only for the value of ^(w) n
if (£)!• If <t> = <t>,, then a = CT,. The assertion follows as 8C maps each of the
two chambers, of each apartment in {A n lk(a) : A e stf*"}, onto {s,} = 4>, n Wa..
If $ = 4>y,, $y, n <J>, or 4>y, D <!>;, then o is equal to the vertex x of c of type
/ \ [i, j}. In each of these cases for each we Wx D <t we can recover the value of
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\8~l(w) n (tf(E)\ from the discussion in the proof of Lemma 4.5 where we have to put
s = Sj and t = sj. Note only that writing p(d) e <t>, n <t>; is another way of stating
that Sc(d) = SjSjSj = SjSjSj. •

PROPOSITION 4.12. Let X be a building with diagram of type A2 and let g 6
Ll (^(A)) for each A e / Then

(4.17) MRg = g.

PROOF. For fixed c in ^ we will prove (4.17) at c. If d is any chamber in X denote
by ld the Dirac function in d. As d ranges in <€, the set {ld} is a basis for the space of
functions that are summable on each apartment of X . Then for the linearity of MR it
will be sufficient to prove that for each d e tf, (4.17) holds when g = ld.

If d = cthen we use (4.16) with <J> = Ao to prove that each side of (4.17) is equal to
1. Let now d be any chamber distinct from c, then, up to considering its image under
the retraction pcM, we can suppose that d e 'Jf(Ao). Therefore d e <&k for some
k e I. Note that from [11, Proposition 2.32] this holds if and only if projCTj d = skc.
Then, denoting by xk- and xk+ the vertices of c respectively of type k — 1 mod 3 and
k + 1 mod 3, as ak = (xk-,xk+) and as proj^ ± is contained in the convex hull of ak

and d, we have that for d e <i>k only the following cases are possible:

(1) projXj d = projfft d = projXt+ d ;
(2) proj,4_ d = projCTt d ^ proj,(+ d ;
(3) projX4. d ^ proj^ d = proj,t+ d;
(4) proj,(_ d ^ projff4 d and proj,t+ d ^ projCTt d.

As sk interchanges O t and $jj\ then applying again [11, Proposition 2.32] we obtain
that

prqj"!.(skC) = jt4>++ n sk<&t = O++ t n <J>*

and

If d satisfies the equalities in (1) then d e proj~|_(stC) n proj~^(s*C) and then
d = skc = n,-€/Si<I>t. Hence we can use (4.16) with <t> = Ao and <$> = <&k to prove
that each side of (4.17) vanishes. If d satisfies (2), then being d e skQ>k

b+ n sk<&k

and d g SkQ>t- ^ **** w e n a v e t n a t ^ e ^t*^*- n ** . and t n e n w e u s e (4.16) with
<t> = Ao, 4>* and <I>H-t (considering the two cases d e <t>t n 4>t- and rf ̂  4>t D 4>t)
to conclude that also in this case each side of (3.19) is equal to 0. Case (3) is
symmetric to (2), so we obtain the same result by arguing as above with k~ replaced
by k+. Finally, the inequalities in (4) imply that d e <&«-* D <&«+*. Observe that
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the wall dQ>u-k (respectively d<t>kk+k) is parallel to 9<&*+ (respectively d<Pk-). Hence
Qkk-k C $ £ , (respectively 4>M+* C $£-). Then if d e Q>kk-k n 4>w+t it cannot happen
that d € <t>* (1 4>t- or d € <J>* fl <t>t+ and we use (4.16) with <t> = Ao, <Pk, <!>«-* and
$**+* W £ ®k H 4>t- and <i ^ O* n 4>i+) to prove that each side of (4.17) equals 0 and
hence to conclude the proof. •

Let now X be a building of type B2. In analogy with the previous case we introduce
the bounded operator M : L°° (^ ) - • L°°(^) defined by

o ~T2 L(9/ - - I)2I)2

+

Denote by 7], / = 0, 1, 2 the operator defined on the space of complex-valued
functions on c€, by

Tif(c) = -

PROPOSITION4.13. For each f 6 L\^(A)) we get

(4.18) MRf = (1 + T0)f.

Before proving Proposition 4.13 we need the following

LEMMA 4.14. Letdetf and p(d) 6 $ c A 0 then

1

(4.19)

Moreover if<$> = <l>, PI 4>o,o

(4.20) | 5 ; ' (8c(d)) \

It ~ 0
It ~ 1)

?1 - l)(<fc - 1)
= *o io , i" = 1 , 2 ;

= 4>oio Pi <I>020-

)' n ^ D ) = (.?, - I ) 2 .

PROOF. We use essentially the same argument as in the proof of Lemma 4.11. So
in the same way we prove the assertion when <J> = Ao and <I> = 4>,-. Similarly we can
prove (4.19) when <1> = <t>Qi0 and (4.20) (apply Corollary 4.10 and see respectively
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the proof of (4.4) and (4.5) to find out the cardinality of the fiber S~l (w) D A for each
w e <£> and A e •c/*). When <t> = 4>! D <J>2 the assertion follows again from Corollary
4.9 and the fact that all four chambers in WXo = {1, sit s2, S)S2 = s2s\] retract onto
{sis2}- When 4> = <f>Oio n O020 then we know from Corollary 4.10 that for any fixed
chamber d such that p(d) e 4 \ there exist a unique chamber ck, k e { 1 , . . . , qo],
O-adjacent to c such that d(ck, d) — d(c, d) — 1, (indeed proj^ d), and such that if *„
is its vertex of type 0, then

£/"' n &fd = srf* n £?d.

Then by symmetry with the case 4> = * , n <J>2 the assertion follows as \8~l (Sc(d)) | =
qo\S-l{SCt(d))\. D

PROOF OF PROPOSITION 4.13. We proceed and use the same notation as in the proof
of Proposition 4.12. Note that, as [c, soc] = (n,=124>+) n (n,=i,24>^0) then ^(Ao) \
{c, soc] = (U,=12«I>,) U (U,=12<l>o,o). Note also that, as 3«t>1 is parallel to 3<t>o2o and
3<t>2isparallelto34>oio, t hen^^OoM = <J)

2n<J>oio = 0- Then if/ = ^(respectively
/ = 1^) we can use (4.19) only in the case O = Ao to prove that each side of (4.18)
is equal to 1 (respectively to (go)"1)- L e t / = ld, d e ^(Ao) \ [c, suc] and suppose
for example that d e <t>,. Then, as one can easily verify, only the following three
cases can occur:

(1) de®2;
(2) d e o010;
(3) d e O+ n CD+0.

In the first case we use (4.19) with <J> = <i>! and <J> = <J>! n 4>2 to prove that each side
of (4.18) vanishes. In the second case we use (4.19) with <t> = <t>\, <$> = <t>OiO and
(4.20) with i = 1 and we obtain again that each side of (4.18) is equal to 0. Finally in
the third case we can use (4.19) only in the case <t> = <t>\ to conclude that also in this
case each side of (4.18) is equal to 0.

Similarly one can argue in the other possible cases (d e <t>2, . . . ), and applying
Lemma 4.14 one proves that (4.18) holds fo r / = ld for each d € ^(A o ) (then in X).
By linearity and continuity, (4.18) follows for an arbitrary / . •

LEMMA 4.15. For i = 0, 1, 2, (1 + 7))"1 « given by

1

2(q, - 1

PROOF. First prove that T} — {\/qd + (1 — 1/«?,•) 7]-. Then the assertion follows by
direct computation. •

We have just proved the following proposition.
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PROPOSITION 4.16. Let X be any building of type B2. Then the Radon transform R

is inverted by

(4.21) 1 [(2tf> - 1) - loTo] MRf = f.
2(q 1)

REMARK 4.17. Applying the same techniques, an inversion formula of the same

kind of (4.21) can be obtained for a building with diagram of type G2. Moreover the

existence of simpler and more general inversion formulas can be proved [3] for 'large

enough' values of parameters.
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