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Using hierarchical Bayesian methods to examine the tools of
decision-making

Michael D. Leé Benjamin R. Newell

Abstract

Hierarchical Bayesian methods offer a principled and cahensive way to relate psychological models to data.
Here we use them to model the patterns of information seatopping and deciding in a simulated binary comparison
judgment task. The simulation involves 20 subjects makD@fbrced choice comparisons about the relative magnitudes
of two objects (which of two German cities has more inhati#arifwo worked-examples show how hierarchical models
can be developed to account for and explain the diversityotti bearch and stopping rules seen across the simulated
individuals. We discuss how the results provide insigta surrent debates in the literature on heuristic decisiokimga
and argue that they demonstrate the power and flexibilityesBinchical Bayesian methods in modeling human decision-
making.

Keywords: hierarchical Bayesian models, Bayesian infegeheuristic decision-making, take-the-best, searassrul
stopping rules.

1 Introduction 2010). This approach not only provide tools for inter-
preting individual differences, but also facilitates theo
To the cognitive scientist individual differences in behavbuilding by providing a model-based account of why in-
ior can be both intriguing and annoying. We are all fadividual differences might arise. We think it is an espe-
miliar with the subjects in our experiments who “don’t docially interesting, important, and promising approach, be
what they are supposed to do.” Sometimes these differause it deals with fully developed models of cognition,
ent patterns of behavior are simply noise (the subject wagithout constraints on the theoretical assumptions used to
on a cell phone during the experiment), but often they argevelop the models.Taking existing successful models
due to legitimate responses that our theories and modelf cognition and embedding them within a hierarchical
failed to anticipate or cannot explain. Bayesian framework opens a vista of potential extensions
The field of judgment and decision making is no exand improvements to current modeling, because it pro-
ception to the challenge of individual differences. Asvides a capability to model the rich structure of cognition
Brighton and Gigerenzer (2011) mention in passing, evan complicated settings.
a theory as important and influential as Prospect The- To demonstrate the application of hierarchical
ory (Kahneman & Tversky, 1979) typically predicts onlyBayesian methods to the modeling of heuristic decision-
75%-80% of decisions in two-alternative choice taskanaking, we use a standard experimental setup that
and many models do much worse. How should we, asraquires subjects to make judgments about the rela-
field, treat these individual differences and the challengdive magnitudes of two objects (size, distance, fame,
they present for our models and theories? profitability, and so on). To perform these judgments
One emerging approach for tackling these issues isis often assumed that subjects search their memory,
to use hierarchical Bayesian methods to extend existing external sources of information, for cues to help
models, and apply them in principled ways to experimerdifferentiate objects. For example, an inference about
tal and observational data (e.g., Lee, 2008, 2001; Nilghe relative size of two cities might be facilitated by cues
son, Rieskamp, & Wagenmf_;lkers, 2011; Rouder & Lu; INote, in particular, that we ar®t requiring the models of decision-
2005, van Ravenzwaaij, Dutilh, & Wagenmakers, 201]1’}1aking V\’/e consider t(y) be so-called “rational” models thatiase peo-
Wetzels, Vandekerckhove, Tuerlinckx, & Wagenmakersie are Bayesian reasoners (Griffiths, Kemp, & Tenenbau@8R20We

are not using Bayesian inference as a metaphor for humaritioogn
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Council Grant DP110100797, and MDL acknowledges supportfr models of cognition to behavioral data (Kruschke, 2010; 2€4.1). In
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*Department of Cognitive Sciences, University of Califarfivine,  provide the important theoretical capabilities, with theyBsian infer-
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indicating which of the two cities is a capital, has arof the two dictates search through cues (e.g., Martignon

airport, a university, and so on (Gigerenzer & Goldstein& Hoffrage, 1999). Our modeling of search in this case

1996). Judgments are then determined by rules that ustudy uses the different emphasis people might give to

the presence or absence of cues to provide estimatesdiécriminability and validity as a theoretical bases for in

the desired criterion (i.e., number of inhabitartts). dividual differences in search, and shows how this theory
Such tasks, although apparently simple, incorporagan be formalized within the hierarchical Bayesian ap-

several important features that need specification in theroach.

ories and models that wish to describe how subjects per-

form them. In this paper, we present two simple cas

studies: the first focuses on information search, an -1 Data

the second focuses on stopping rules. We show hopjgyre 1 shows the experimental design and simulated
Bayesian inference allows information about these ps¥ata. The top left panel shows how the 83 city objects are
chological processes at the level of both individuals angefined in terms of the 9 cues. The objects are ordered
groups to be extracted from basic behavioral data, angktt to right) in columns from highest to lowest in terms
how hierarchical extension of the models allow deepejt the population decision criterion. The cues correspond
psychological questions abouhy there is variation in  tg rows, and the presence of a dot indicates that a cue be-
search and stopping to be addressed. longs to an object. A few objects are depicted with verti-
cal lines intersecting each cue that they possess (labeled
} 01 to 08); these are used in our subsequent worked exam-
2 Modeling Search ples to illustrate different patterns of search, stoppimgj a
choice. For example, the first object is highlighted as o1,
Our case studies rely on an environment widely used iind has cues 1, 2, 4, 5, 6 and 7. The top right panel shows
the literature, in which 83 German cities are describefow the 9 cues vary in terms of their discriminability (i.e.,
by 9 different cues, and the task is decide which of twenhe proportion of stimulus pairs for which one has the cue
cities has the larger population (Gigerenzer & Goldsteilnd the other does not) and validity (i.e., the proportion of
1996). In a binary comparison task like this there ar@airs for which the stimulus with the cue is higher on the
different properties of cues that are relevant to the likelicriterion, given that the cue discriminates). Each of the 9
hood of aiding judgment, and thus to the order in whiclkyyes is represented by a red cross, showing the discrim-
one might search through cues. For example, the cue “sability and validity of that cue. For example, the first
the City the national Capital?" is often very useful becausgue (Corresponding to “national Capita|" in the German
in most cases capital cities are the largest in the countgties dataset) has a very low discriminability (because
(with notable exceptions, such as Canberra), so if the cagyr most city pairs, neither is the national capital), but a

ital cue is present it is highly likely that the city with that yery high validity (because when one city is the national
cue has more inhabitants. However, for the vast majogapital in a problem, one of those cities is Berlin, and it

ity of cases a comparison on this cue will draw absens always the largest city).

values for both cities, because the majority of cities in @ The pottom panel of Figure 1 shows the decisions
country are not the capital. Thus, in terms of how oftem,ade by 20 simulated subjects completing 100 two-
a cue will provide you with diagnostic information, the gjternative forced-choice problems. The problem set was
“national capital” cue is not at all useful. chosen so that every object was included at least once,
Formally these qualities of cues can be thought of asach problem pair was unique, and the cue validities and
the validity and discriminability rate of a cue in a binarygiscriminabilities based on the problems were similar to
comparison. Discriminability is the rate at which a cughe validities and discriminabilities obtained by consid-
distinguishes between two objects. Validity is the rate aring all possible object pairs. The simulated data indi-
which a cue, given it discriminates, indicates correctlyate when subjects chose the first of the presented objects.
which of two objects should be chosen. There is evagain, some of these problem pairs are labeled, to help
idence from experimental investigations of search rulegith later examples. For example, when objects o1 and
(e.g., Newell, Rakow, Weston, & Shanks, 2004; Rakowy? are presented as a pair, the blue dots in the highlighted
Newell, Fayers, & Hersby, 2005) that both discriminabilcolumn show which subjects chose o1 (i.e., all subjects
ity and validity can be relevant to search, and that individexcept 6,9 and 15).
ual differences and task constraints might influence the These data were generated by simulating subjects who
extent to which one or the other, or some combinatiog|ways applied a one-reason decision process, but used
2Though see Brown and Tan (2011), Glockner and Betsch (200%I1Eferent Sear_Ch orders. That IS’.We used th.e .take-the-
and Juslin and Persson (1999) for alternative conceptibtisequdg-  P€St (TTB: Gigerenzer & Goldstein,1996) decision rule,
ment process. which stops search as soon as one discriminating cue is
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Figure 1: Stimuli defined in terms of cuxes (top left), witlifeiient cue discriminabilities and validities (top right)
The bottom panel shows artificial decision-making data fbs@bjects on 100 problem pairs, indicating when the first
stimulus in the pair was chosen. The highlighted objectai8tand the problems in which they are compared (e.g.,
01-08) are used to indicate individual differences in baraBee main text for detalils.
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found, but used orders other than the standard TTB orsessed by 03. This subset relation can be seen clearly in
that strictly follows decreasing cue validity. To simulatethe upper left panel of Figure 1, because 03 has cue 4 and
the data, we assumed every subject used the same searneh 7 whereas 04 has only cue 7.
order for all their problems, but different subjects used Thus, the modeling challenge is to take the information
different orders. We discuss exactly how these searchin Figure 1, and make inferences about the search orders
orders were chosen once we have described the modelinglividual subjects use, and how these search orders vary
results. across the subjects.

For now, some hint of the individual differences in the
raw data can be gleaned from Figure 1. For example,
in the highlighted problem that compares the objects I22-2 Models
beled 01 and 02, subjects make different decisions. Th'i_sI ure 2 shows the two search models we anply to the
could arise, for example, if some subjects (e.g., subjeatg PPl

1) were using a validity based order of search, and SOeC|S|on data. On the left is a non-hierarchical model,

- : .—"and on the right is a hierarchically-extended model.
used cue 1 to make a decision thereby choosing object . . .
. oth models are shown using the formalism provided by
because only object 01 has cue 1 (see top left panel). In

. . s graphical models, as widely used in statistics and com-
contrast, other subjects (e.g., subject 6) might incorgora uter science (e.g., Koller, Friedman, Getoor, & Taskar,

discriminability into their search order, and so conS|denPO7)' A graphical model is a graph with nodes that

) .represents the probabilistic process by which unobserved
object 02 has cue 3. For other problems, however, I|kee¥) P P y
- . . . arameters generate observed data. We use the same
the highlighted 03—04 comparison, there is consisten . : . :
) . : otation as (Lee, 2008), with observed variables (i.e.,
across all subjects with all choosing 03, presumably be- .
data) shown as shaded nodes, and unobserved variables
cause the cues that 04 possesses are a subset of those pos- .
i.6., model parameters to be inferred) shown as un-
3The current assumption that a single subject uses the sarghse Shaded nodes. Discrete variables are indicated by square
order for all problems is a strong one, which could easilyédaxed in  nodes, and continuous variables are indicated by circu-

an extended hierarchical model. The basic idea would berifirtty- lar nodes. Stochastic variables are indicated by single-
trial variability in search orders for a subject, sampleshiran overar- ’

ching distribution on possible orders. This is an interestirection for Pordered nodes, "_de det?rminiStiC variables (included
future work. for conceptual clarity) are indicated by double-bordered
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Figure 2: Graphical models for the simple search estimatiodel (left side), and the hierarchically extended search

model (right side).
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nodes. Encompassing plates are used to denote indiee TTB model will choose eithet; or b;, depending on
pendent replications of the graph structure within thevhich has the first discriminating cue in the search order
model. Further details and tutorials aimed at cognis;, or will choose at random if there is no discriminating
tive scientists are provided by (Lee, 2008) and Shiffrincue. This choice is represented by the nege which
Lee, Kim, & Wagenmakers (2008). The advantage of double-bordered because it is a deterministic function,
graphical model implementation is that it automaticallydefined as

allows a fully Bayesian analysis for inferences relating

the model to data, and can handle large and complicated Y if TTBs, (a;,b;) =a
joint distributions of parameters, as needed, for example, tij=< 1—~ Iif TTBs, (a;,b;) =0
to examine combinatorial spaces of search orders. We 0.5 otherwise

achieve this using standard WinBUGS software (Spiegel-

halter, Thomas, & Best, 2004), which applies Markoyyhere TTB., (a;,b,) is the TTB model, andy is a
Chain Monte Carlo computational methods (see, for ejecision parameter controlling the probability that the
ample, Chen, Shao, & Ibrahim, 2000; Gilks, Richardgeterministic TTB choice is made. From this genera-
son, & Spiegelhalter, 1996; MacKay, 2003) to make intive process, the decision data are distributedas~
ferences about model parameters and data. WinBUGS.;noulli (tij). Using this model of the data, it is pos-
scripts, Matlab code, and all the relevant data for all o§jple to infer a posterior distribution for the unknown
our models and analysis are provided as supplementag¥arch order for each subject. In other words, this model
materials along with this paper on the page for this issugyovides an ability to estimate search order from decision
http://journal.sjdm.org/vol6.8.html. data, at the level of individual subjects.

In the non-hierarchical model on the left of Figure 2, The model on the right in Figure 2 shows how a hier-
the decision made by thi¢h subject on thegth problem archical Bayesian approach can ask the deeper psycho-
is y;; = 1 if the first object (object “a”) is chosen, and logical question ofvhy different people might have dif-
yi; = 0 if the second object (object “b”) is chosen. Be-ferent search orders. In this model, search orders are
cause these data are observed, the node is shaded, gaderated by weighting information about both cue va-
because they are discrete, it is square. The cues for thdity and discriminability. Formally, the subject has
objects in thejth problem are given by the vectoss  a weightw; that combines the validity,, and discrim-
andb;, and are also known and discrete. If ttfesubject inability d;, of thekth cue to givew; v+ (1 — w;) di, and
searches the cues in an order given by the vegtadhen the order of these weighted sums gives the search order
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over the cues. Under this approach, purely validity-basddset within each figure is the posterior over thewveight
search, as in TTB, corresponds to one extreme wheparameter for each subject, with its true data-generating
w; = 1, whereas purely discrimination-based researctalue shown by the line.

corresponds to the other extreme where= 0. The Subjects 4 and 20 are good examples to focus on to dis-
model assumes that the weights follow a population-leveluss the general results. These two subjects give differ-
normal distribution (i.e., different people have differenent emphases to discriminability and validity, reflected in
weights, but there is a still a pattern at the populatiotheir weights and search orders. Subject 4 tends to search
level), so thatw; ~ Gaussian (1, 0)z( 1), With weakly — cues that are higher in validity first (cues 2,3,1), accord-
informative priorsu, o ~ Uniform (0, 1). ing to the subject’s higher value; = 0.66. In contrast,

We use ay ~ Uniform (0.5, 1) prior, reflecting the as- subject 20 searches the cue with the highest discrimina-
sumption that decisions will generally follow TTB. This tion rate first (cue 7) since they place less emphasis on
corresponds to an assumption about the decisions that feRlidity, as shown by the lower value; = 0.48.
low at the termination of search. Inthe literature, decisio The hierarchical model is able to infer these weights
rules are perhaps less controversial, since most modegsasonably well (the distributions around the true value
simply state that one chooses the option pointed to by oee relatively narrow), and produces excellent estimates
(or more) of the cues. However, the extent to which suchf the search order (the greatest mass is on the true or-
a rule should be applied deterministically or with someler). The modal inferred order is exactly correct, and
probability of error remains an area of contention. Thishe remainder of the inferences are within one or two
is, for example, one of the issues in the debate betweswaps. It is clear for these subjects, and more generally
Brighton and Gigerenzer (2011) and Hilbig and Richteacross all subjects, that the hierarchical model inference
(2011). Here, we make a probabilistic assumption, coref search order are superior to those provided by the non-
sistent with the “accuracy of execution” formulation usechierarchical model. This is because, in the hierarchical
by Rieskamp (2008). model, what is learned about one subject can be used to

The most interesting psychology in the modeling igssist inferences about another, and is a good example of
that the hierarchical extension gives a theory of individwhat is called “shrinkage” or “sharing strength” in statis-
ual differences, as coming from different emphasis beinics (€.g., Gelman, Carlin, Stern, & Rubin, 2004).
placed on cue validity and discriminability in determin- Not shown in Figure 3 are the inferences made about
ing cue search order. It also naturally combines thedbe other parameters. For both models, the expected pos-
individual differences with the idea of population-levelterior of the decision parametgr= .95, and for the hi-
structure, not letting the weights vary arbitrarily, but ex erarchical model, expected posteriors for the overarch-
plaining them as coming from an overarching distribuing group distribution over the relative emphasis on va-
tion. Thus, using the hierarchical model, the decisiolidity and discrimination werg,, = 0.54 ando,, = .10.
data can be used to infer group parametersjliklndos, These are all close to the true generating values of 0.5 and
and individual parameters like the weightsand search 0.1 for the mean and standard deviation, and 0.95 for the
orderss;. decision parameter. These results show how the models

can make inferences about decision processes, and group-

level properties of the subjects.
2.3 Resaults

Figure 3 summarizes some of the main results of the mods . .

eling? Each panel corresponds to a subject, and the trl% M Ode“ng Stopplng

search order used to generate their data is shown at the ) ) )

top of the panel. The histograms show how close the il our first example all simulated subjects used a one-
ferred search orders are to this truth, using the standaffcriminating cue stopping rule. The accuracy and ro-
Kendall Tau measure of distance between order (i.e., hddStness of such rules has been discussed at great length
many pair-wise swaps it takes to change the inferred ordi&}the contextof heuristics like TTB and recognition (e.g.,
into the true order). The yellow (light) distribution cor- CZ€rlinski, Gigerenzer, & Goldstein, 1999; Gigerenzer
responds to the non-hierarchical model, while the greef Goldstein,1996; Katsikopoulos, Schooler, & Hertwig,

(dark) distribution corresponds to the hierarchical mode?oj'o)' These §imple rul_es are c_)ften_contrr_:lsted aQai”St
rules that require more information, including tallying

4All of our modeling inferences in this paper are based oningin  and weighted-additive (WADD) rules, but do not neces-
2 chains of 10,000 samples, after a 100 sample burn-in geenples  sarily improve the accuracy of predictions.

that are generated, but not used in inference). We checkeegence : : ; _
using the standard® statistic (Brooks & Gelman, 1997) for every pa- However, experiments that have mveStlgated the stop

rameter, and always found it to be between 0.99 and 1.0%cafidg ~ Ping rules aqopted by participants reveal mixed evidence:
convergence. some participants use frugal rules often, some less so,
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Figure 3: Performance of the two search models. Each panelspmnds to a subject, and their true cue search order
is shown at the top. The histograms show the distributiomigfried search orders in terms of their tau distance from
the true order. The green (dark) distribution is for the &iehical model, and the yellow (light) distribution is for
the non-hierarchical model. The inset shows the posteigtrilsution over the weiaht parameter in the hierarchical
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some never (e.g., Newell & Shanks, 2003). Environmercues (see top left panel of Figure 1), problems like 07—08
tal factors dictate their use, to some extent, such as tlsbow individual differences (6 subjects chose 07 with the
presence of costly cues increasing the use of frugal rulesmainder choosing 08). Looking at the cue structure of
(Newell, Weston, & Shanks, 2003), but there are always7 and 08 (top left panel of Figure 1), it is clear that cue

individual differences across subjects in the same deci-provides some early evidence for 08 in the search or-

sion environment (e.g., Lee & Cummins, 2004; Newell &der, but this evidence would later be compensated by the

Lee, in press). Our second example examines how sugheater evidence cue 3 provides for o7 if a more conser-
patterns might arise. vative stopping rule was used to allow for longer search.
As for our search example, the modeling challenge is

to take the information in Figure 4, and make inferences

3.1 Data about the stopping rules individual subjects use, and how

. these rules vary across the subjects.
In our second example, we generated data by S|mula{1 y J

ing subjects who always used the same search order
(the7,2,3,4,6,5,1,8,9 order used by subject 20 inour 3.2 Models
search example), but used different stopping rules. In par-

ticular, we used stopping rules using minimal cue seardR9ure 5 shows the two models we applied to the stop-

or encouraging extensive cue search. We describe the é09 data. On the leftis a simple mixture model that as-
act nature of the simulation process once we have pré¥Mes every subject either uses a TTB strategy, in which
sented the modeling results a decision is made from the first discriminating cue, or a

For now, the data are shown in Figure 4. Again, som)é\_/'A‘D_D strategy, in which all cues are used_, and a qui'
indication of the different stopping rules can be gleanea'on is made based on the total_ewde?\tta.t_hls.graph|- .
from the raw data. While there is consistency in prob9a| model, the;; parameter functions as an indicator vari-
lems like the highlighted 05—-06 comparison, which is ot syye measure evidence on the natural log-odds scale, so that-th

surprising given that object 06 has absent values for altement provided by a discriminating cue with validity is log 13’%.
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Figure 4: Artificial decision-making data for 20 subjectsI®0 problem pairs, indicating when the first stimulus in
the pair was chosen. The comparisons between objects o5nd&7—08 highlight individual differences, and are
discussed in the main text.
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able, withz; = 1 if the ith subject uses TTB, and = 0 Formally, the criterion evidence level is for the
if they use WADD. This indicator variable is distributedith subject, and is assumed to come from one of two
according to an (unknown) base-rate of TTB subjects igroup-level Normal distributions with means and stan-
the population, so that; ~ Bernoulli (¢). The deter- dard deviationsui, p2,01,02. The z; indicator vari-

ministic noded;; for theith subject is then given by able now controls which distribution thé&h subject
draws their evidence criterion value from, so that~
v if TTB, (a;,b;) = aandz = 1 Gaussian (., 0., ). We again place weakly informative

priors on the means and standard deviations, and include

1-— if TTBs (a;,b;) =bandz; =1 . .
7 s (a5, 5;) ’ an order constraint in the priors on the means, so that

91'3' = vy if WADDS (aj, bj) =a andzi =0

) 1 < po.
1—~ if WADD; (a;,b;) = bandz; =0 The deterministic decision now follows the sequential
0.5 otherwise sampling model, so that
with y;; ~ Bernoulli(f;;). We use a¢p ~ g 7 if SEQ(s.e,) (aj, b;) = a
Uniform (0.25,0.75) prior, reflecting the assumption that Yl 1=y f SEQ(s .. (@, b;) = b,

we believe there are significant numbers of both TTB and

WADD subjects, but we do not know the exact ProporwhereSEQ, ., (a;, b;) gives the choiced or b) that
tions® We use a ~ Uniform (0.5, 1) prior on the deci-  the sequential sampling model makes using a search or-
sion parameter, as before. der s to criterion level of evidence; on stimulia; and

The hierarchically extended graphical model on the,.
right of Figure 5 provides an account of why people
have different stopping rules. It uses the idea that peq:
ple search until they have some criterion level of evi%'3 Results

dence in favor of one stimulus over another, as per Sgjgyre 6 summarizes the results of applying the two stop-
guential sampling |nterpretat|0r!s of decision-making i ing models to the artificial data. The top row corre-
cue search tasks (Lee & Cummins, 2004; Newell, 20054,5n4s to the simple mixture model. The top-left panel
This theoretical conception is consistent with accounts ﬁows the inferences about whether each subject used
simple decision-making that emphasize desired levels gfg or WADD, as given by the posterior of. Itis clear
confidence as key mechanisms, as in the pioneering wofiat 7 subjects were classified as using a TTB stopping
of Vickers (1979) and later similar ideas in Hausmanrpme, with the remaining 12 using WADD. The other pan-
and Lage (2008). els in the top row show the posterior distributions over

_ _ _ _ ¢ and ~, corresponding to inferences about the base-
6We include this assumption not because it follows from apees

of the current simulated data, but because it demonstrates heason- rate Of_T.TB use, and the probablhty_ of .fO”Ong the
able substantive assumption can easily be incorporatedBiayasian  deterministic TTB and WADD strategies in making de-

analysis. cisions. These results show how a simple hierarchical
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Figure 5: Graphical models for the simple stopping estiamathodel (left side), and the hierarchically extended
stopping model (right side).
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Bayesian mixture model provides a complete and princof limitations in the environment used in the experiment.
pled approach to identifying which subjects use differenthe actual distributions of evidence parameters we used
stopping rules, which is a common methodological chako generate the data had means of 1 and 10 for the TTB
lenge in the heuristic decision-making literature (Brodeand WADD groups respectively, with standard deviations
& Schiffer, 2006; Newell & Lee, in press; Rieskamp & of 0.2 and 3, and a decision parameter of 0.95. The in-
Otto, 2006). ferences in Figure 6 are consistent with these generating

The middle row of Figure 6 presents the same analyalues, but are not very precise. In particular, the dif-
ses for the extended sequential sampling model based twse distribution for the high evidence group in the lower-
evidence accumulation. The results are extremely sinteft panel of Figure 6 shows that, once a threshold level
ilar, highlighting that the same information about stopof about 2 is required, the sequential sampling stopping
ping rule use can be extracted within the sequential sarrule shown in the lower-right panel leads to all cues be-
pling framework. The bottom row shows some of the ading examined, as per the WADD strategy. If people are
ditional psychological information gained by moving tousing finer-grained intermediate evidence values, as they
this framework. The bottom-left panel shows the groupwere in these simulated data, the environment used in
level distribution of evidence for the two distributions,the current experiment is not able to make this distinc-
with the green (dark) distribution corresponding to thdion. The fault here lies with the environment, rather than
low evidence (essentially, TTB) group, and the yellowthe inference method. The cue structure of the problems
(light) distribution corresponding to the high evidenceavailable in the German cities domain simply do not al-
(essentially, WADD group). These evidence values arew for diagnosis of some range of evidence values from
then interpreted in sequential sampling model terms idecision-making behavior.One way to overcome this lim-
the bottom right panel, showing the evidence boundsation would be to use environments with cue validities
needed for decision-making on the 07—-08 problem’s pathat allow for more compensatory decisions. In the cur-
tern of evidence accrual. The dotted black line sumeent setting, the diffuse inference distributions are appr
the evidence provided by cues as search progresses. Hhi@te, showing both what is and is not known about un-
green (dark) evidence threshold is relatively low, so a sirderlying parameters from the available behavioral data.
gle discriminating cue provides sufficient evidence for the
08 decision. The yellow (light) evidence threshold is very
high, so that all cues are searched, leading to o7 beidy Conclusion
chosen.

The results for the hierarchical model tell us somethingVe hope to have demonstrated that hierarchical Bayesian
about different levels of evidence people may require, tmodeling can provide a principled way to understand and
explain their different stopping rules. But the result®alsexplain the diversity found in a standard judgment task.
tell us something about what we do not know, becaus@ne of the most compelling features of the hierarchical

https://doi.org/10.1017/51930297500004253 Published online by Cambridge University Press


https://doi.org/10.1017/S1930297500004253

Judgment and Decision Making, Vol. 6, No. 8, December 2011 erdtchical Bayesian methods 840

Figure 6: Performance of the two stopping models. The topstoews the inferences about TTB and WADD strategy
use, and the base-ratg)(and decision«) parameters for the mixture model. The middle row shows Hraes
inferences for the hierarchically extended model. Thedmottow shows the distribution of evidence values inferred
by the hierarchical model (bottom left), and their intetpt®n as threshold levels of evidence within a sequential
sampling of stopping for the problem 07-08 (bottom right).
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Bayesian approach is that it encourages deeper theoremt search orders. In other words, while our hierarchi-
ing and the construction of more psychologically comeal extensions involve theoretical accounts of searching
plete models Lee (2011), because the graphical modelnd stopping, they are necessarily incomplete theories.
ing framework makes it easy to implement and evaluA fuller account would presumably incorporate aspects
ate new ideas. For example, it is natural to ask whethef individual differences related to intelligence, person
the extended model of search we presented, weightiradity, and so on, describing how they relate to differ-
both validity and discriminability, is more accurate thanences in decision-making behavior (Bréder, 2003; Hilbig,
the original TTB validity-only approach. Both accounts2008). More complete theories incorporating these fac-
are easy to implement as graphical models, and eagys could naturally be incorporated within the hierarchi-
to compare directly, using the Bayesian model compacal Bayesian approach.
ison approach described by Wagenmakers, Lodewyckx, Whether one conceptualizes the tool(s) that people use
Kuriyal, and Grasman (2010). As another example, it ifor tasks of this kind as comprising numerous heuris-
straightforward to develop a model that incorporates botiics contained within a toolbox (e.g., Gigerenzer & Todd,
the searching and stopping processes, which we consith99) or a single “tool” that can incorporate heuristics
ered separately. This would constitute a more completgs special cases (Glockner, Betsch, & Schindler, 2010;
model of heuristic decision-making, and allow informa{.ee & Cummins, 2004; Newell, 2005; Newell & Lee,
tion about both searching and stopping operate, and haw press), both need to provide accounts of how differ-
they interact, at both the individual and group level, to bent heuristics are selected for different decision tasks
inferred from behavioral data. (Gigerenzer & Gaissmaier, 2011; Rieskamp & Otto,
There is also, however, clearly still more that we nee@006), or analogously, how and why new and successful
to understand. For example, while the models we haygarameter combinations are set for each type of problem
considered can explain why one might see individual diftMarewski, 2010; Newell & Lee, 2011).
ferences in search and stopping rules (e.g., because in\We are optimistic that using the hierarchical Bayesian
dividuals weight discrimination and validity differen}ly methods demonstrated here will provide a window on this
they cannot reveal how people arrive at those diffeprocess and in so doing bring a new perspective to the
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